EP0082751B1 - Mikrowellenstrahler und seine Verwendung für eine Antenne mit elektronischer Abtastung - Google Patents

Mikrowellenstrahler und seine Verwendung für eine Antenne mit elektronischer Abtastung Download PDF

Info

Publication number
EP0082751B1
EP0082751B1 EP82402238A EP82402238A EP0082751B1 EP 0082751 B1 EP0082751 B1 EP 0082751B1 EP 82402238 A EP82402238 A EP 82402238A EP 82402238 A EP82402238 A EP 82402238A EP 0082751 B1 EP0082751 B1 EP 0082751B1
Authority
EP
European Patent Office
Prior art keywords
radiator according
wave radiator
casing
slot line
strips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82402238A
Other languages
English (en)
French (fr)
Other versions
EP0082751A1 (de
Inventor
Michel Dudome
Albert Dupressoir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0082751A1 publication Critical patent/EP0082751A1/de
Application granted granted Critical
Publication of EP0082751B1 publication Critical patent/EP0082751B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present invention relates generally to electromagnetic wave radiators, operating at microwave frequencies, and relates more particularly to a wave radiator produced from a wafer of metallized dielectric substrate.
  • a particularly interesting field of application of the invention is that of small radar antennas operating in a wide frequency band, used either as primary sources illuminating focusing optical systems or as elementary sources of an antenna array with electronic scanning. for example.
  • radioelectric characteristics currently required for antennas with electronic scanning of space by the beam or beams which they radiate are such that it is necessary to use elementary sources having at the same time a small transverse congestion to respect the not between these sources on which the deflection qualities of the antenna depend and a small longitudinal size so that they are not fragile.
  • the solution chosen consists in using either half-wave dipoles printed on a dielectric plate or elements of the “patch” type excited by a microstrip line.
  • the radiating dipole is supplied by a slit line printed on the same face of a dielectric plate as the strands of the dipole, a transition being made between the line at slot and the dipole to ensure proper adaptation.
  • the object of the present invention is to remedy these drawbacks by proposing an electromagnetic wave radiator operating in a large width of frequency bands, having a very compact structure resulting in a small radio footprint, of reproducibility which is easy and inexpensive, and which can be used as part of a linear or two-dimensional array antenna with small distribution pitch measured in wavelength.
  • the subject of the invention is an electromagnetic wave radiator constituted by a radiating element and its supply device, produced from a dielectric plate of median longitudinal axis A, metallized on one face according to two ribbons parallels of total width d 2 and length L, and characterized in that the supply device consists of a slotted line placed inside a parallelepiped metal case.
  • the invention also relates to a use of the wave radiator, characterized in that this radiator constitutes an elementary source of an antenna with electronic scanning, which, associated with a phase shifter, produces an element called a module of a phase shift network. .
  • This radiator constitutes an elementary source of an antenna with electronic scanning, which, associated with a phase shifter, produces an element called a module of a phase shift network.
  • a wave radiator according to the invention is produced from a wafer of dielectric substrate I, of length L and of median longitudinal axis A, on one of the faces of which are deposited two conductive tapes 2 and 3, symmetrical with respect to the axis A.
  • the edges 4 and 5 facing the two tapes are parallel.
  • the wave radiator consists of a radiating element 14, with which is associated a supply device, produced like the radiating element from the dielectric plate 1.
  • the supply device consists of a slotted line 9 placed inside a parallelepipedal metal casing 6 of the same length L i as that of the slotted line.
  • the slotted line 9 is produced from the two tapes con ductors 2 and 3 of total width d 2 whose opposite edges 4 and 5 are separated by a constant distance d, thus defining the width of the slotted line, and of which the two other edges 7 and 8, opposite to the previous ones 4 and 5 are in electrical contact with the internal walls of the metal case 6.
  • These two strips 2 and 3 are equivalent to two parallel metal planes.
  • the dielectric plate 1 can rest on two shoulders or in two grooves 109 made on the internal walls of the housing 6. To ensure the best possible electrical contact between the edges 7 and 8 of the slotted line 9 and the housing, these are welded or glued with a conductive adhesive to the internal walls of the housing. Thus, both good mechanical resistance of the wafer 1 relative to the housing 6 and good electrical contact of the slotted line 9 with the housing are ensured, the slotted line 9 being moreover placed inside this the latter so as to avoid any mode of propagation elsewhere than in the slot itself.
  • the dielectric plate 1 supporting the slotted line is placed substantially in the longitudinal median plane of the housing 6 to avoid an asymmetry of the field pattern.
  • the box thus placed under cut, allows the two conductive tapes 2 and 3 to be equivalent to two parallel metallic planes of infinite width relative to the slotted line.
  • the box 6 is therefore a shield and must not behave like a radiating waveguide.
  • the radiating element is also produced from the dielectric plate 1. It comprises two conductive parts symmetrical with respect to the axis ⁇ , respectively extending the two strips 2 and 3 and separated by the same distance d as the latter. These two parts are joined to the two strips 2 and 3 by two thinned conductive parts forming a transition 13 between the slotted line 9 and the radiating element 14, a transition such that the width d 2 of the conductive strips 2 and 3 varies continuously. In alternative embodiments, the width d 2 varies circularly or exponentially or according to a curvature representative of a mathematical function which can be transcendent.
  • the radiating element 14 is of the dipole type, the two conductive parts being constituted in this case by two strands 16 and 17.
  • the slotted line 9 and the radiating element are photo-etched on the dielectric plate 1 whose width in the housing 6 is equal to greater or less than its value outside of the housing.
  • the slotted line 9 is excited by a coaxial line 100 arranged perpendicular to the slit against the metal case 6.
  • the core of this coaxial line is extended by a photoetched wire 101 on the dielectric plate 1, on the face opposite to that of the slotted line, the transition between this wire and the slit being constituted by a metallized butterfly wing 102 quarter wave.
  • the latter as well as the wire 101 are drawn in dotted lines in FIG. 1.
  • the dielectric substrate can be for example ceramic or epoxy glass.
  • Figure 2 is a perspective view of an alternative embodiment of a dipole type radiator according to the invention.
  • the width d 2 of the conductive tapes 2 and 3 decreases to form a transition 130 between the slit line 9 and a section of the two-wire line 15 whose end, opposite to the slit line 9 , is joined to the strands 16 and 17 of a dipole constituting the radiating element 14.
  • the slotted line 9, the transition 130, the two-wire line section 15 and the strands of the dipole 14 are photo-etched on the dielectric plate 1.
  • the dielectric plate 1 can be cut along the width of the ribbons making the transition 13 and 130 and the two-wire line 15 but all the forms of cuts between these two cases are also possible.
  • the preferred embodiment is that shown in FIG. 4.
  • FIG. 5 represents a perspective view of a wave radiator according to the invention, for which the radiating element 14 has a particular shape.
  • the supply device is identical to that described above for the other figures and the radiating element 14 is constituted on the one hand by two parts in the shape of a triangle extending each conductive tape forming the transition 13, these triangles forming a point at the end of the wafer 1 and on the other hand by a portion 10 of rectangular conductive tape perpendicular to the axis A and placed on the face of the wafer opposite to that on which the tapes 2 and 3 are deposited.
  • Variants of this solution consists in putting the portion of tape 10 placed on the opposite face of the dielectric plate 1 at the potential of one of the tapes 2 or 3 constituting the slotted line 9.
  • the position of the holes allowing the electrical connection between the associated radiating elements, the slotted line 9 and the portion of the ribbon 10 determines new forms of radiation diagram of the structure thus created compared to those given by the basic model (without electrical connection).
  • the radiation diagram in the plane E has a hollow in the axis. It is therefore of the difference type. This model with low bandwidth of good functioning can nevertheless correspond to particular applications for which this type of diagram is sought.
  • the opening of the housing has on the two large parallel faces 60 and 61 of the housing two V-shaped projections advancing in the direction of the axis A and symmetrical with respect to this axis .
  • the opening of the housing can also have, in opposite manner, two V-shaped notches, directed towards the interior of the housing.
  • the radiating dipole can be a full wave or half wave dipole, its strands 16 and 17 being constituted by rectangular or flared tongues, called butterfly wings, like those of the figure 6 for example.
  • butterfly wings like those of the figure 6 for example.
  • the adaptation of the radiating dipole is carried out by the dimensions of the transition between the supply slit line and the two-wire line leading to the strands of the dipole.
  • FIG. 6 is a longitudinal section of a radiating source according to the invention, on which the impedance transformer 21 of length equal to the quarter wave at the central frequency of the operating band of the source is shown.
  • This transformer can be produced either at the level of the two-wire line 15, or at the level of the slit line 9 as shown in dotted lines in the figure.
  • point capacitors to this previous transformer, produced for example in the form of metallized surfaces 23 deposited on the face of the dielectric plate opposite the slotted line, and shown in dotted lines on the figure 6.
  • Modifications of the radiation pattern of the source according to the invention can be obtained by means of the addition of a reflector placed at a distance equal to a quarter of the operating wavelength, constituted for example, as shown in FIG. 8, by two metal strands 24 and 25 photo-etched on the dielectric plate 1 in the plane of the opening of the housing 6 or else by the edges 26 of the housing 6 according to its cross section of opening.
  • the directivity can be improved by the presence of directors placed in front of the dipole. In the case of FIG. 9, three directors 27 or photo-etched metal strands, are placed parallel to the dipole 14 and are of decreasing size in the direction of the radiation emitted.
  • the electromagnetic characteristics of the slotted line of the supply device according to the invention are defined by the width d of the slit, the thickness as well as the value of the dielectric constant of the wafer 1 supporting it, as well as the mechanical dimensions. of the metal case in which it is placed.
  • phase shifter 28 includes a slotted line 29 coupled to a coplanar line 30 with the same propagation axis and a device with two diodes 31 and 32, located in the coupling zone of these two transmission lines, as described in the patent No. 2,379,196 filed in the name of the plaintiff.
  • the box 6 protects the diodes of the phase shifter radioelectrically. It is found that such a module has reduced dimensions and avoids insertion losses.
  • a source is used as an element of a network antenna as shown in FIG.
  • the height of the box is such that it determines a filter for the frequencies with horizontal polarization cutoff.
  • the width of the box is such that the cut-off frequency is placed much lower, the installation of a network of metallic wires parallel to the cross polarization filter compensates for this defect.
  • FIG. 12 represents a radiating source, the supply device of which comprises, at the opening 34 of the housing, a network of parallel conducting wires 33, the direction of which is orthogonal to that of the electric field E radiated by the slotted line 9
  • this source is used as an element of a network antenna for example, operating on transmission as on reception, such a network makes it possible to reflect any wave whose direction of polarization is perpendicular to that radiated by the source.
  • an electromagnetic wave radiator supplied by a slotted line deposited on a wafer of dielectric substrate whose main advantage is apart from the small radio footprint when using a dielectric substrate with a high dielectric constant a very large bandwidth, of the order of 20%. This therefore makes it possible to produce array antennas with a low distribution pitch measured in wavelength.
  • Figure 13 shows a longitudinal section of a lens fraction, which can be illuminated on one side by a source.
  • This lens is produced from the stack of modules each consisting of two wave radiators according to the invention, placed symmetrically with respect to a diode phase shifter 28.
  • the source illuminates the radiating elements 140 for example, which thus receive the 'energy.
  • the phase shifters 28 the different signals are phase shifted before to be radiated by the elements 14.
  • This embodiment from a slotted line 9 produced on the same dielectric wafer 1 and placed in the same housing 6, simplifies the problems of impedance matching.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Claims (22)

1. Strahler für elektromagnetische Wellen, bestehend aus einem strahlenden Element (14) und seiner Speisevorrichtung, wobei der Strahler eine dielektrische Platte (1) aufweist, deren eine Seite gemäss zwei teilweise parallelen Bändern (2, 3) metallbeschichtet ist und so die Speisevorrichtung in Form einer Spaltleitung (9) bildet, wobei das Ende der beiden Bänder das strahlende Element (14) darstellt, dadurch gekennzeichnet, dass er ausserdem ein rechteckiges Metallgehäuse (6) solcher Abmessungen besitzt, dass die Betriebsfrequenzen des Strahlers unter der Sperrfrequenz des Gehäuses liegen, so dass die Ausbreitung von Wellen im Gehäuse unmöglich wird.
2. Strahler von elektromagnetischen Wellen nach Anspruch 1, dadurch gekennzeichnet, dass die einander gegenüberliegenden Ränder (4, 5) der beiden leitenden Bänder (2, 3) symmetrisch bezüglich der mittleren Längsachse (A) der dielektrischen Platte (1) liegen und einen konstanten Abstand besitzen und dass die äusseren Ränder (7 und 8) der Bänder elektrisch an die Innenwände des Gehäuses (6) angeschlossen sind, während die Länge der Spaltleitung (9) gleich der Länge L, des Gehäuses ist.
3. Wellenstrahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dielektrische Platte (1) in zwei Rillen (109) ruht, die in die Innenwände des Gehäuses (6) eingebracht sind.
4. Wellenstrahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das strahlende Element (14) zwei leitende Bereiche besitzt, die die Enden der Bänder bilden und symmetrisch bezüglich der Achse A der Spaltleitung (9) angeordnet sind, und dass die einander gegenüberliegenden Ränder dieser Bereiche denselben gegenseitigen Abstand (d) besitzen wie die Ränder der Spaltleitung (9).
5. Wellenstrahler nach Anspruch 4, dadurch gekennzeichnet, dass zwischen den beiden leitenden Bereichen des strahlenden Elements (14) und den beiden Bänder (2 und 3) der Spaltleitung (9) zwei verdünnte leitende Bereiche liegen, die einen Übergang (13) zwischen der Spaltleitung und dem strahlenden Element bilden.
6. Wellenstrahler nach Anspruch 5, dadurch gekennzeichnet, dass der Übergang (13 oder 130) so gewählt ist, dass die Breite (d2) der Bänder (2 und 3) sich kontinuierlich ändert.
7. Wellenstrahler nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die Breite (d2) der beiden leitenden Bänder (2 und 3), die parallel und symmetrisch zur Achse (A) angeordnet sind, in Form einer Kreis- oder Exponentialfunktion oder einer Kurve variiert, die für eine mathematische Funktion steht, welche transzendent sein kann.
8. Wellenstrahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das strahlende Element (14) vom Dipoltyp ist.
9. Wellenstrahler nach einem der Ansprüche 5 und 8, dadurch gekennzeichnet, dass die Abschnitte (16 und 17) des Dipols (14) am Ende des Übergangs (130), der der Spaltleitung (9) entgegengesetzt liegt, durch einen Abschnitt einer Zweidrahtleitung (15) verbunden sind.
10. Wellenstrahler nach Anspruch 9, dadurch gekennzeichnet, dass er einen Impedanztransformator (21) einer Länge gleich einer Viertelwellenlänge bei der Mittelfrequenz des Betriebsfrequenzbands besitzt, der in Höhe der Spaltleitung (8) oder der Zweidrahtleitung (15) angeordnet ist.
11. Wellenstrahler nach Anspruch 8, dadurch gekennzeichnet, dass er Direktoren (27) aufweist, die parallel zu den Abschnitten (16 und 17) des Dipols (14) in der ausgesandten Strahlung liegen.
12. Wellenstrahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dielektrische Platte (1) gemäss der Breite (d2) der leitenden Bänder (2 und 3) beschnitten ist.
13. Wellenstrahler nach Anspruch 5, dadurch gekennzeichnet, dass das strahlende Element (14) einerseits aus zwei dreieckigen Bereichen besteht, die jedes den Übergang (13) bildende leitende Band verlängern und die eine Spitze am Ende der dielektrischen Platte (1) bilden, und andererseits aus einer rechteckigen Metallbeschichtung (10), die sich senkrecht zur Achse (A) der Spaltleitung erstreckt und auf der anderen Seite der dielektrischen Platte (1) angeordnet ist.
14. Wellenstrahler nach Anspruch 13, dadurch gekennzeichnet, dass mindestens ein Leiterdraht (11, 12) den elektrischen Kontakt zwischen der rechteckigen leitenden Metallbeschichtung (10) und einem der beiden leitenden Bänder (2 oder 3) durch die dielektrische Platte (1) hindurch bewirkt, so dass die Metallbeschichtung (10) und die Bänder (2 und 3) auf gleiches elektrisches Potential gebracht werden.
15. Wellenstrahler nach Anspruch 13, dadurch gekennzeichnet, dass die Öffnung des Gehäuses (6) auf den beiden grossen parallelen Seiten (60, 61) des Gehäuses zwei V-förmige Vorsprünge besitzt, die in Richtung der Achse der Spaltleitung (A) vorspringen und symmetrisch bezüglich dieser Achse liegen.
16. Wellenstrahler nach Anspruch 13, dadurch gekennzeichnet, dass die Öffnung des Gehäuses (6) zwei V-förmige Ausschnitte besitzt, die zum Inneren des Gehäuses hin ausgerichtet sind.
17. Wellenstrahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die leitenden Bänder (2 oder 3) durch ein Fotogravurverfahren auf die dielektrische Platte (1) aufgebracht sind.
18. Wellenstrahler nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass er zwei metallische Reflektoren (24 und 25) aufweist, die auf der dielektrischen Platte (1) in der Ebene der Öffnung des Gehäuses (6) angebracht sind.
19. Wellenstrahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spaltleitung (9) direkt in der Verlängerung der Ausgangsspaltleitung (29) eines Diodenphasenschiebers (28) liegt.
20. Wellenstrahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Öffnung (34) des Gehäuses (6) ein Netz von parallelen leitenden Drähten (33) aufweist, deren Richtung senkrecht zu der des elektrischen Feldes E verläuft, das von der Spaltleitung (9) ausgestrahlt wird.
21. Verwendung eines Wellenstrahlers nach einem der vorhergehenden Ansprüche als Elementarquelle eines Antennennetzes mit elektronischer Abtastung.
22. Verwendung zweier Wellenstrahler nach einem der Ansprüche 1 bis 20 als Modul einer Linse, wobei die beiden Wellenstrahler symmetrisch bezüglich eines Diodenphasenschiebers (28) angeordnet sind.
EP82402238A 1981-12-18 1982-12-07 Mikrowellenstrahler und seine Verwendung für eine Antenne mit elektronischer Abtastung Expired EP0082751B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8123735A FR2518827A1 (fr) 1981-12-18 1981-12-18 Dispositif d'alimentation d'un dipole rayonnant
FR8123735 1981-12-18

Publications (2)

Publication Number Publication Date
EP0082751A1 EP0082751A1 (de) 1983-06-29
EP0082751B1 true EP0082751B1 (de) 1988-01-27

Family

ID=9265189

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82402238A Expired EP0082751B1 (de) 1981-12-18 1982-12-07 Mikrowellenstrahler und seine Verwendung für eine Antenne mit elektronischer Abtastung

Country Status (7)

Country Link
US (1) US4573056A (de)
EP (1) EP0082751B1 (de)
JP (1) JPS58111412A (de)
CA (1) CA1211208A (de)
DE (1) DE3278061D1 (de)
DK (1) DK558082A (de)
FR (1) FR2518827A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3409460A1 (de) * 1984-03-15 1985-09-19 Brown, Boveri & Cie Ag, 6800 Mannheim Antenne
US4782346A (en) * 1986-03-11 1988-11-01 General Electric Company Finline antennas
US4843403A (en) * 1987-07-29 1989-06-27 Ball Corporation Broadband notch antenna
US4816839A (en) * 1987-12-18 1989-03-28 Amtech Corporation Transponder antenna
US4905013A (en) * 1988-01-25 1990-02-27 United States Of America As Represented By The Secretary Of The Navy Fin-line horn antenna
US5170140A (en) * 1988-08-11 1992-12-08 Hughes Aircraft Company Diode patch phase shifter insertable into a waveguide
US4978965A (en) * 1989-04-11 1990-12-18 Itt Corporation Broadband dual-polarized frameless radiating element
US5081467A (en) * 1990-09-11 1992-01-14 Grumman Aerospace Corporation Snap-in antenna element for window shade-type radar
US5175560A (en) * 1991-03-25 1992-12-29 Westinghouse Electric Corp. Notch radiator elements
US5488380A (en) * 1991-05-24 1996-01-30 The Boeing Company Packaging architecture for phased arrays
US5194875A (en) * 1991-06-07 1993-03-16 Westinghouse Electric Corp. Notch radiator elements
JP3324243B2 (ja) * 1993-03-30 2002-09-17 三菱電機株式会社 アンテナ装置およびアンテナシステム
US5428364A (en) * 1993-05-20 1995-06-27 Hughes Aircraft Company Wide band dipole radiating element with a slot line feed having a Klopfenstein impedance taper
US5499035A (en) * 1993-07-21 1996-03-12 Texas Instruments Incorporated Phased array antenna aperture and method
US5557291A (en) * 1995-05-25 1996-09-17 Hughes Aircraft Company Multiband, phased-array antenna with interleaved tapered-element and waveguide radiators
JP3440909B2 (ja) * 1999-02-23 2003-08-25 株式会社村田製作所 誘電体共振器、インダクタ、キャパシタ、誘電体フィルタ、発振器、誘電体デュプレクサおよび通信装置
US6249260B1 (en) * 1999-07-16 2001-06-19 Comant Industries, Inc. T-top antenna for omni-directional horizontally-polarized operation
US6304226B1 (en) * 1999-08-27 2001-10-16 Raytheon Company Folded cavity-backed slot antenna
JP2020036297A (ja) * 2018-08-31 2020-03-05 富士通コネクテッドテクノロジーズ株式会社 アンテナ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623112A (en) * 1969-12-19 1971-11-23 Bendix Corp Combined dipole and waveguide radiator for phased antenna array
GB1348478A (en) * 1970-06-20 1974-03-20 Emi Ltd Aerial arrangements
DE2138384C2 (de) * 1971-07-31 1982-10-21 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Yagi-Antenne in Streifenleitertechnik
US4001834A (en) * 1975-04-08 1977-01-04 Aeronutronic Ford Corporation Printed wiring antenna and arrays fabricated thereof
FR2379196A1 (fr) * 1976-04-30 1978-08-25 Thomson Csf Dephaseur hyperfrequence a diodes et antenne a balayage electronique comportant un tel dephaseur
US4114163A (en) * 1976-12-06 1978-09-12 The United States Of America As Represented By The Secretary Of The Army L-band radar antenna array
US4146896A (en) * 1977-05-23 1979-03-27 Thomson-Csf 180° Phase shifter for microwaves supplied to a load such as a radiating element
FR2452804A1 (fr) * 1979-03-28 1980-10-24 Thomson Csf Source rayonnante constituee par un dipole excite par un guide d'onde, et antenne a balayage electronique comportant de telles sources
US4287518A (en) * 1980-04-30 1981-09-01 Nasa Cavity-backed, micro-strip dipole antenna array
US4445122A (en) * 1981-03-30 1984-04-24 Leuven Research & Development V.Z.W. Broad-band microstrip antenna

Also Published As

Publication number Publication date
DE3278061D1 (en) 1988-03-03
CA1211208A (en) 1986-09-09
DK558082A (da) 1983-06-19
FR2518827A1 (fr) 1983-06-24
EP0082751A1 (de) 1983-06-29
FR2518827B1 (de) 1985-05-17
JPS58111412A (ja) 1983-07-02
US4573056A (en) 1986-02-25

Similar Documents

Publication Publication Date Title
EP0082751B1 (de) Mikrowellenstrahler und seine Verwendung für eine Antenne mit elektronischer Abtastung
EP0205212B1 (de) Modulare Mikrowellenantenneneinheiten und Antenne mit solchen Einheiten
EP0013222B1 (de) Diodenphasenschieber für Mikrowellen und elektronisch abtastende Antenne mit einem solchen Schieber
EP2510574B1 (de) Mikrowellenübergangsvorrichtung zwischen einer mikrostripleitung und einem rechteckigen wellenleiter
EP0108463B1 (de) Strahlelement für orthogonal polarisierte Signale und flache Antennengruppe mit solchen nebeneinandergestellten Elementen
EP0487387B1 (de) Flache Mikrowellen-Schlitzantenne
EP0575211B1 (de) Strahlerelement einer Antenne mit breitbandigem Durchlassbereich und aus derartigen Elementen bestehende Gruppenantenne
EP0213646B1 (de) Modulare Mikrowellenantenneneinheiten und Antenne mit solchen Einheiten
FR3079678A1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
EP0145597B1 (de) Ebene periodische Antenne
WO2008065311A2 (fr) Antenne multi secteurs
CA2310125C (fr) Antenne
EP0017530B1 (de) Durch einen von einem Hohlleiter gespeisten Dipol gebildete Strahlungsquelle und ihre Verwendung in einer elektronisch abtastenden Antenne
EP0149400B1 (de) Strahler mit einer Zirkularmoduserregungsvorrichtung
EP0065467B1 (de) Mikrowellenantenne für Zirkularpolarisation
EP0439970A1 (de) Geschlitzter Hohlleiterstrahler mit quer verlaufenden Schlitzen, die von gedruckten, leitenden Mustern erregt werden
EP0520908B1 (de) Lineare Gruppenantenne
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
FR2629644A1 (fr) Antenne boucle large bande a alimentation dissymetrique, notamment antenne pour emission, et antenne reseau formee d'une pluralite de telles antennes
FR2535531A1 (fr) Radiateur d'ondes electromagnetiques et son utilisation dans une antenne a balayage electronique
FR2490025A1 (fr) Antenne du type cornet monomode ou multimode comprenant au moins deux voies radar et fonctionnant dans le domaine des hyperfrequences
EP0477102A1 (de) Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk
FR2519476A1 (fr) Dispositif d'alimentation d'un element rayonnant
FR2494047A1 (fr) Antenne a reseau plan a polarisation variable et a faibles lobes secondaires
FR2943464A1 (fr) Element rayonnant bas cout, notamment pour antenne active a balayage electronique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830722

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3278061

Country of ref document: DE

Date of ref document: 19880303

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891231

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921112

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921118

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921211

Year of fee payment: 11

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST