EP0487387B1 - Flache Mikrowellen-Schlitzantenne - Google Patents

Flache Mikrowellen-Schlitzantenne Download PDF

Info

Publication number
EP0487387B1
EP0487387B1 EP91403083A EP91403083A EP0487387B1 EP 0487387 B1 EP0487387 B1 EP 0487387B1 EP 91403083 A EP91403083 A EP 91403083A EP 91403083 A EP91403083 A EP 91403083A EP 0487387 B1 EP0487387 B1 EP 0487387B1
Authority
EP
European Patent Office
Prior art keywords
slot
antenna according
cavity
line
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91403083A
Other languages
English (en)
French (fr)
Other versions
EP0487387A1 (de
Inventor
Yves Commault
Georges Bonnet
Jacques Roquencourt
Alain Sehan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0487387A1 publication Critical patent/EP0487387A1/de
Application granted granted Critical
Publication of EP0487387B1 publication Critical patent/EP0487387B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • H01Q21/0081Stripline fed arrays using suspended striplines

Definitions

  • the present invention relates to a microwave antenna with a thin structure.
  • microstrip microstrip technology
  • the radiating elements are formed by discontinuities of the ribbon: they are designated by the name of radiating blocks ("patches").
  • pattern radiating blocks
  • the realization is simple since one can realize a radiant surface directly by photoengraving.
  • the performances are mediocre compared to those obtained with waveguides: non negligible losses, parasitic radiation of the supply lines, etc.
  • the radiating element is a slot photo-etched in a metallic plane and excited by a line according to the process indicated in Figure 1 (proposed by RM. Barret and MH. Barnes in 1951: “Survey of design techniques for flat profiles microwave antennas and arrays ", PS. Hall and JR James, The Radio and Electronic Engineer, flight. 48 No. 11 p. 545 - 565, Nov. 78, and: "Microwave printed circuits", RM. Barret and MH. Barnes, Radio and TV News, vol. 46, 1951, p. 16).
  • Document EP-A-0 295 003 discloses an antenna with a three-plate structure comprising a cavity with a depth equal to half a wavelength. This antenna is therefore also too thick.
  • the subject of the present invention is a microwave antenna whose thickness is as small as possible (for example less than 1/4 wavelength), which exhibits the lowest possible microwave losses, of low manufacturing cost, and having the minimum possible stray radiation from its supply lines, and the directivity of which can be adjusted within wide limits.
  • the present invention also relates to an array of slot microwave antennas which can integrate a large number of elementary antennas in the smallest possible space and having the minimum possible mutual interference between the microwave circuits and lines of supply of elementary antennas, and which can be integrated into a metal surface.
  • the object of the invention is a slot microwave antenna according to claim 1.
  • the known antenna 1 shown in FIG. 1 is of the triplate type with dielectric substrates. It comprises an assembly of two dielectric substrate plates 2, 3. The large external faces of this assembly are metallized. A slot 4 is photo-etched in one of the metallized surfaces. A metal strip 5 is formed on the large inner face of one of the plates, before their assembly. This strip 5 forms the excitation line of the slot 4.
  • the equivalent electrical diagram of such an antenna is that shown in FIG. 2: an inductance L1, in series in a characteristic impedance line Zc, coupled at an inductance L2 which is in parallel with a reactance jB and a pure resistance Yo.
  • the dependence of the impedance presented by the slit on the line has been shown as a function of the relative position of one with respect to the other (eccentricity).
  • FIG. 5 represents a section of line 10 "suspended triplate" as used by the present invention.
  • This line 10 is formed in a metallic structure comprising two plates 11, 12 of electrically conductive material applied one against the other. In the facing faces of each of these plates, a groove 13, 14 is formed respectively, these two grooves facing each other. Between the two plates, a film 15 of dielectric material is inserted on at least one face of which a strip 16 of electrically conductive material is formed.
  • This strip 16 is narrower than the grooves 13, 14 and, preferably, its longitudinal axis coincides with the longitudinal axis of the grooves.
  • Such a line has, compared to the line with dielectric substrates of FIG. 1, two important advantages: lower losses thanks to the elimination of the dielectric substrates, and shielding between adjacent lines thanks to the metallic structure and thanks to the possibility to make metallized holes in the film 15. This combination makes for each line a closed channel around each ribbon.
  • FIG. 6 shows a known antenna 17 with a radiating opening.
  • This antenna 17 is supplied by a line 18 in "suspended triplate", similar to that of FIG. 5.
  • the line 18 opens into a cavity 19 with circular section of diameter greater than 1/2 wavelength.
  • This cavity 19 comprises, going from the line 18 towards its outlet orifice, a cylindrical section 20 of length T close to or little different from 1/4 wave and an opening 21 flaring into a horn.
  • the cavity 19 ends in a cylindrical cavity 22 closed at its end, of depth P close to or little different from 1/4 wavelength.
  • the core 23 of the line 18 ends substantially at the center of the circle formed by the intersection of the film 24 of the line and cavity 19, that is to say 1/4 wavelength from the wall of the cavity.
  • the section 20 is used for filtering the evanescent upper modes generated by the free end of the core 23 of the triplate suspended in the cavity 19 of large dimensions.
  • This antenna 17 therefore has a large thickness structure (greater than 1/2 wavelength), which excludes its use in applications requiring a very thin structure.
  • FIGS. 7 and 8 show an antenna 25 according to the invention. In these figures, only one slot is shown, but it is understood that the same structure can comprise several slots, either touched independently of each other, or supplied from the same source via distributors.
  • the antenna 25 is formed in two plates 26, 27, of electrically conductive material, assembled, by any suitable means, one against the other with the interposition of a film 28 of dielectric material.
  • a groove, 29, 30 is formed over part of the length of these plates. These grooves can be straight or not.
  • One of the ends of the grooves 29, 30 ends at one of the sides of the corresponding plate.
  • These grooves both have a rectangular section, their depth, less than 1/8 of wavelength, can be constant over their entire length, or can vary, for at least one of the grooves, as illustrated in Figure 20 , and their widths are equal.
  • the depths of the grooves 29, 30 are equal to each other.
  • the plates 26, 27 are assembled so that the groove 29 faces the groove 30.
  • an electrically conductive strip 32 constituting the core of a three-plate line 31A therefore comprising the channel 31 and the core 32.
  • the longitudinal axis of the ribbon 31 is preferably coincident with the longitudinal axis of the channel 31.
  • the core 32 can either be extend to the closed end 33 of the channel 31 (as shown in FIG. 8) and therefore be short-circuited with the conductive plates 26, 27, or terminate shortly before this end, at a distance of protection against breakdown (as shown in figure 17).
  • a radiating slot is made in at least one of the plates 26, 27, referenced 34 in FIGS. 7 and 8.
  • Different forms of slots are described below.
  • the slot is rectilinear and perpendicular to the axis of the channel 31, at least as regards the part of this channel which is close to the slit.
  • This slot is of elongated rectangular shape, its ends being preferably rounded.
  • the slot is at a distance d1 from this end, d1 being less than 1/8 in length wave.
  • the distance d2 between this end and the closed end of the channel is simply intended to ensure a sufficiently high terminal impedance and the distance LE between the axis of the slot and the end of the core is substantially equal to 1/4 wavelength.
  • the slot has, on its medium fiber, a length LF generally between approximately 0.4 and 0.6 working wavelength. Its width LA can be between 0 and approximately 0.1 working wavelength, the latter value being able to be higher, provided that only one resonance mode can exist in the frequency band of use
  • the length LF of the slot is greater than the width LC of the channel 31. Consequently, the latter widens upstream of the slot, advantageously but not imperative at about 1/4 wavelength of the slit, and forms a cavity, referenced 35 in FIGS. 8 and 9.
  • the core 32 can also widen near the slot 34, downstream from the start of the cavity 35.
  • the cavity 35 may have a substantially rectangular shape, but it may have other shapes, as specified below.
  • the length LF of the slot 34 is a function of the wavelength used, and is substantially equal to 1/2 wavelength.
  • the respective dimensions, shapes and mutual positions of the end of the core 32, of the slot 34 and of the cavity 35 are parameters of adjustment to the design of the antenna, of adaptation of impedances, and, if necessary, adjustment of antenna networks, in particular for dense networks.
  • FIG. 10 shows the case where the end of the core is an open circuit, the distance LE between the axis of the slot and this end being substantially equal to 1/4 of wavelength.
  • the LCAV length of the cavity (35 or 37) and its shape, the position of the slot (34, 38) relative to this cavity, and the shape of the core are determined by the design of the antenna to obtain correct impedance adaptations between the line and the cavity, and between this cavity and the slot.
  • the slot 41 follows the shape of the end of the cavity 42, and the width d3 of the cavity is practically equal to the distance d4 between the external faces of the branches of the "U" formed by the slot.
  • the length d5 of the cavity is also determined to obtain a correct adaptation of the antenna.
  • the actual length of the slot 41 is in fact the length of its average fiber F, between its two ends 43, 44.
  • the slot 41 ′ has the same shapes and dimensions as those of the slot 41, while the cavity 42 ′ is wider, but shorter than the cavity 42.
  • the end 50 of the core of the line can be offset by a value d7.
  • the value d7 can even be greater than d6.
  • the width of the core 51 of the antenna feed line can be varied, close to the cavity 52 and / or inside this cavity.
  • We can, for example, form on this core a constriction 53 at the entrance of the cavity, then, over a short length, form an enlargement 54 (whose width can be equal to that of the core of the front line the constriction, be different), then narrow the end 55 of the core.
  • the variations in width of the web can be abrupt or progressive.
  • Such variations in width of the core introduce, in a manner known per se, either reactive effects (inductive or capacitive), or effects of impedance transformation (in particular by constituting a quarter-wave transformer).
  • metallized holes 56 in the film 57 of this structure, all around the perimeter delimiting the channel 58 of the line and the cavity 59.
  • the mutual distance of these holes is less than 1/8 of wavelength.
  • the cavity 60 has a substantially triangular shape (seen from above) gradually widening from the channel 61 of the supply line towards the slot 62.
  • the cavity 63 has a circular shape (seen from above).
  • the slot 64 can pass through the center of this cavity.
  • the end of the core 65 of the feed line can be, as shown in this figure 16, in open circuit, but it is understood that, as for all the embodiments of the antenna of the invention , this end may as well be short-circuited.
  • FIG. 17 shows another embodiment with the end of the core 66 in open circuit, the cavity 67 having a rectangular shape, and the slot 68 having a "U" shape.
  • the distance d8 between the axis of the central branch (that perpendicular to the axis of the core 66) of the slot and the end of the core 66 being substantially equal to 1/4 of wavelength.
  • FIG. 18 shows the simplified equivalent electrical diagram of the embodiments at the end of a core in open circuit.
  • This diagram includes a characteristic impedance line Zc, which corresponds to the antenna supply line, and continues beyond the start 69 of the cavity 67 to the slot 68, equivalent to an inductance 70 in series in the line, coupled to an inductor 71 in parallel with a resistor 72.
  • the line ends in a section 73 of length substantially equal to 1/4 wavelength, which closes on a capacity 74 which is equivalent to the open end of the line, the value of this capacity being, among other things, a function of the distance d9 between the end of the core and the cavity.
  • a partial reflector 75 known per se, arranged parallel to the metallic plane 76 in which slot 77 is made.
  • the radiating slot thus benefits from an image effect which can increase its directivity.
  • This partial reflector can be made either with a dielectric wall of appropriate thickness and permittivity (see for example "Image element antenna array for a monopulse tracking system for a missile" US Patent No. 3,990,078 2 Nov. 76, EC.
  • antenna adjustment parameters mentioned above must take into account the presence of this re partial flector placed in front of the radiating slot.
  • the distance d between the reflector 75 and the plane 76 is approximately half a wavelength.
  • the height of the channel 78 (step” 79) and / or of the cavity 80 ("step” 81) can be modified in places.
  • Such local modifications of the height of the channel and / or of the cavity produce the same kind of effects as the variations in width of the core, described above with reference to FIG. 13. It is thus possible, by modifying all these various parameters, optimize the operation of the antenna of the invention in the widest possible frequency band.
  • the two faces of the film 82 are metallized with a triplate structure to form the core 83, and the two faces 83A, 83B of this core are connected together by forming metallized holes 84 therein, preferably regularly spaced , at a step less than 1/8 wavelength.
  • metallized holes 84 can be formed only in the part of the core being in the cavity 85, or over the entire length of the core.
  • FIG. 22 shows the equivalent electrical diagram of the antenna of the invention.
  • the supply line of characteristic impedance Zc, arrives on a quadrupole (x1, x2, x3) which represents the input quadrupole in the cavity (transition between the line channel and the cavity).
  • This quadrupole is followed by a line section of length d7, representing the distance between the entry of the cavity and the slot.
  • the slit is equivalent to a series inductor L1 coupled to an inductor L2 in parallel on a reactance jB and a resistance Yo. Downstream of the slit, a section of line of length d8 closes on a reactance jBt (open circuit or short circuit, at a distance d7 from the slit).
  • FIG. 23 includes the elements already described above: plates 86, 87 and film 88 on which the core 89 is formed.
  • the slot, made in the plate 87, is referenced 90. This slot, thus that the cavity (not visible in the figure) can have any of the characteristics described above.
  • Two monopoles 91 are formed or fixed on the plate 87, 92 equidistant from the axis 93 of the slot, and arranged on an axis 94 perpendicular to the axis 93 and passing through the middle of the slot 90.
  • These two monopolies 91 , 92 are for example straight trunks of cylinders, perpendicular to the hollow or solid plate 87, the diameter of which is approximately equal to 1/10 of the length of the slot 90, and the height of which is substantially equal to or less than 1 / 4 wavelength.
  • Such monopoles are known per se (for example from "An improved element for use in array antenna", A. Clavin, DA Huebner and FJ Kilburg, IEEE Transactions on antennas and propagation, AP22, No. 4, July 74, p. 521). These monopoles make it possible to increase the directivity of the radiating slot 90 and / or to reduce its coupling to neighboring slots, if this slot is part of a network.
  • FIG. 24 shows a simplified example of supplying a network of slots from a common line 95, the network here comprising four slots, but it is understood that their number may be greater than this value.
  • Line 95 is subdivided into two branches 96, 97 which are each subdivided in turn into two sub-branches 98, 99 and 100, 101.
  • the common line, the branches and sub-branches are produced in the same way as the line of FIG. 5.
  • These four sub-branches each supply a slot, respectively 102, 103, 104 and 105.
  • a microwave circuit respectively 106, 107, 108 and 109.
  • These microwave circuits are for example phase shifters, but could also be amplifiers or attenuators. Of course, such microwave circuits could just as easily be inserted in the branches 96, 97 or in the line 95.
  • FIG. 25 shows a mode of installation of a microwave element 110 (phase shifter, amplifier, mixer, attenuator, etc.) in a line 111 (such as one of the lines 95 to 101) of the invention.
  • Line 111 is cut or interrupted over a length just sufficient to insert the element 110.
  • This element 110 can be produced using any suitable microwave technology, for example microstrip technology on an alumina substrate, and is enclosed in a housing 112 of electrically conductive material.
  • the input and output terminals 113, 114 of the element 110 are for example glass beads traversed by conductors and fixed to the housing 112.
  • the ends 115, 116 of the interrupted core of the line 111 are directly connected (for example by welding or metallization) at the terminals 113, 114 which are, of course, arranged in the plane of the core.
  • FIG. 26 shows, in a simplified manner, an enclosure 117 for microwave heating (that is to say operating in microwave).
  • a triplate structure 118 is formed (not shown in detail), so that the latter matches these walls.
  • This structure comprises several slots 119 arranged in appropriate locations on the walls so as to obtain the desired homogeneity or distribution of heating power. These slots are supplied from a common line 120 via distributors 121.
  • the antenna of the invention can also be used in a medical hyperthermia device.
  • the triplate structure of the invention is produced by forming two half-channels in two adjacent plates, these enclosing a metallized dielectric film.
  • the assembly of the two plates is done by screws, rivets or any other process.
  • the film can be produced from any material from the specialized trade (brands: Duro ⁇ d, Cuclad, etc.), the composition of which is generally a resin (polytetrafluoroethylene, polyimides, etc.), whether or not loaded with fibers of glass (woven or randomized).
  • the metallization of the film can be single or double sided; the latter choice may be advantageous from the point of view of losses and decoupling with an adjacent channel.
  • metallized holes can be useful for ensuring electrical symmetry when using a double-sided triplate core ( Figure 21).
  • the shape of the cavity is not limiting, the radius of curvature in the angles depends on the technology of realization of the plates: it can evolve from a null value (sharp angle) up to a value compatible with the presence of the slot (see figure 11a).
  • the slit being cut in a plane transverse to the propagation, intercepts the longitudinal lines of the current and consequently is modeled as an impedance in series according to the classic diagram of FIG. 2.
  • the line is terminated by a purely reactive impedance, which is a short circuit in the preferred case of FIG. 9 or an open circuit (case of the figures 10, 16 or 17).
  • the diagram of FIG. 2 becomes within the framework of the invention that of FIG. 22 where a transition quadrupole is introduced between the line "suspended plate" and the cavity coupled to the slot. If other reactive or transforming elements are used to adjust the load impedance to that of the line, they should be introduced in their place in this diagram.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (21)

  1. Mikrowellen-Schlitzantenne mit einer Struktur geringer Dicke und mit einer Speiseleitung (31A, 40, 46, 61, 98 bis 101) sowie einem Hohlraum, wobei die Leitung in einer sogenannten aufgehängten Dreiplattenstruktur untergebracht ist, die zwei Platten aus elektrisch leitendem Material und einen dazwischenliegenden Film (26, 27, 28, 86, 87, 88) enthält, auf dem eine leitende Seele der Leitung liegt, wobei das Ende der Seele der Leitung (32, 39, 50, 51, 65, 66, 89) in den Hohlraum (35, 37, 42, 42′, 48, 52, 59, 60, 63, 67, 85) eindringt, in der mindestens ein Schlitz (34, 38, 41, 41′, 49, 62, 64, 68, 90, 119) ausgebildet ist, dadurch gekennzeichnet, daß die Speiseleitung aus zwei einander gegenüberliegenden Rinnen in jeder der beiden Platten besteht, die einen Kanal um diese Seele herum bilden, und daß die Tiefe des Hohlraums praktisch gleich der Dicke des Kanals (31, 78) der Speiseleitung ist, und diese Dicke weniger als ein Viertel der verwendeten Wellenlänge beträgt.
  2. Antenne nach Anspruch 1, dadurch gekennzeichnet, daß sie einen partiellen Reflektor (75) enthält, der parallel zur metallischen Ebene (76) angeordnet ist, in der der Schlitz (77) ausgebildet ist.
  3. Antenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Ende der Seele der Leitung im Kurzschluß mit der Endwand (33) des Hohlraums liegt.
  4. Antenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Ende der Seele der Leitung eine offenen Leitung (36, 65, 66) bildet.
  5. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Schlitz geradlinig ist (34, 38, 49, 62, 64, 119).
  6. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Enden des Schlitzes umgebogen sind (41, 41′, 68, 102 bis 105).
  7. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Längsachse (45) der Speiseleitung bezüglich der Längsachse des Hohlraums (47) seitlich versetzt ist.
  8. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Ende (50) der Seele der Speiseleitung bezüglich des Mittelpunkts (M) des Schlitzes (49) seitlich versetzt ist.
  9. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Breite des Endes der Seele der Speiseleitung variabel ist (53, 54, 55).
  10. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dicke des Endes des Kanals der Speiseleitung und/oder die Tiefe des Hohlraums Veränderungen (79, 81) aufweisen.
  11. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der dielektrische Film (57) der Dreiplattenstruktur metallbeschichtete Löcher (56) auf dem Umfang des Kanals (58) und/oder des Hohlraums (59) aufweist, die die beiden elektrisch leitenden Platten der Dreiplattenstruktur um den Hohlraum und/oder den Kanal herum in elektrischen Kontakt bringen.
  12. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens das Ende der Seele der Leitung eine Metallbeschichtung auf beiden Seiten (83A, 83B) des Films der Dreiplattenstruktur aufweist.
  13. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie zwei Monopole (91, 92) aufweist, die senkrecht zur äußeren Oberfläche der den Schlitz enthaltenden Platte (87) zu beiden Seiten dieses Schlitzes angeordnet sind.
  14. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie in ihrer Speiseleitung (111) ein Gehäuse (112) enthält, in dem sich ein Mikrowellenelement befindet.
  15. Antenne nach Anspruch 14, dadurch gekennzeichnet, daß das Element ein Phasenschieber ist.
  16. Antenne nach Anspruch 14, dadurch gekennzeichnet, daß das Element eine Mischstufe ist.
  17. Antenne nach Anspruch 14, dadurch gekennzeichnet, daß das Element ein Dämpfungsglied ist.
  18. Antenne nach Anspruch 14, dadurch gekennzeichnet, daß das Element einen Verstärker enthält.
  19. Mikrowellen-Antennennetz, dadurch gekennzeichnet, daß es Antennen nach einem der vorhergehenden Ansprüche enthält.
  20. Mikrowellen-Heizvorrichtung, dadurch gekennzeichnet, daß sie Antennen nach einem der vorhergehenden Ansprüche enthält.
  21. Medizinisches Hyperthermiegerät, dadurch gekennzeichnet, daß es Antennen nach einem der Ansprüche 1 bis 19 enthält.
EP91403083A 1990-11-23 1991-11-15 Flache Mikrowellen-Schlitzantenne Expired - Lifetime EP0487387B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9014621 1990-11-23
FR9014621A FR2669776B1 (fr) 1990-11-23 1990-11-23 Antenne hyperfrequence a fente a structure de faible epaisseur.

Publications (2)

Publication Number Publication Date
EP0487387A1 EP0487387A1 (de) 1992-05-27
EP0487387B1 true EP0487387B1 (de) 1995-08-02

Family

ID=9402504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91403083A Expired - Lifetime EP0487387B1 (de) 1990-11-23 1991-11-15 Flache Mikrowellen-Schlitzantenne

Country Status (4)

Country Link
US (1) US5337065A (de)
EP (1) EP0487387B1 (de)
DE (1) DE69111757T2 (de)
FR (1) FR2669776B1 (de)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2280558B (en) * 1993-07-31 1998-04-15 Plessey Semiconductors Ltd Doppler microwave sensor
JP3185513B2 (ja) * 1994-02-07 2001-07-11 株式会社村田製作所 表面実装型アンテナ及びその実装方法
JPH09501295A (ja) * 1994-02-28 1997-02-04 ハゼルタイン・コーポレーション スロットアレイアンテナ
US5724049A (en) * 1994-05-23 1998-03-03 Hughes Electronics End launched microstrip or stripline to waveguide transition with cavity backed slot fed by offset microstrip line usable in a missile
GB2299213A (en) * 1995-03-20 1996-09-25 Era Patents Ltd Antenna array
RU2083035C1 (ru) * 1995-06-05 1997-06-27 Александр Данилович Христич Высокочастотная плоская антенная решетка
KR100355263B1 (ko) * 1995-09-05 2002-12-31 가부시끼가이샤 히다치 세이사꾸쇼 동축공진형슬롯안테나와그제조방법및휴대무선단말
US5648786A (en) * 1995-11-27 1997-07-15 Trw Inc. Conformal low profile wide band slot phased array antenna
US5793263A (en) * 1996-05-17 1998-08-11 University Of Massachusetts Waveguide-microstrip transmission line transition structure having an integral slot and antenna coupling arrangement
FR2764739B1 (fr) * 1997-06-13 1999-09-17 Thomson Csf Antenne reseau a fentes rayonnantes
JP3340374B2 (ja) * 1998-01-27 2002-11-05 株式会社東芝 多周波アンテナ
FR2784236B1 (fr) * 1998-10-02 2006-06-23 Thomson Csf Antenne a commutation en frequence
JP3255403B2 (ja) * 1998-12-24 2002-02-12 インターナショナル・ビジネス・マシーンズ・コーポレーション パッチアンテナおよびそれを用いた電子機器
DE29925006U1 (de) 1999-09-20 2008-04-03 Fractus, S.A. Mehrebenenantenne
US6445906B1 (en) * 1999-09-30 2002-09-03 Motorola, Inc. Micro-slot antenna
TW432746B (en) * 1999-11-08 2001-05-01 Acer Neweb Corp Circular polarization antenna for wireless data communication
ES2410085T3 (es) * 2000-01-19 2013-06-28 Fractus, S.A. Antenas miniatura rellenadoras de espacio
US6344829B1 (en) * 2000-05-11 2002-02-05 Agilent Technologies, Inc. High-isolation, common focus, transmit-receive antenna set
US6340951B1 (en) * 2000-06-02 2002-01-22 Industrial Technology Research Institute Wideband microstrip leaky-wave antenna
US6567053B1 (en) * 2001-02-12 2003-05-20 Eli Yablonovitch Magnetic dipole antenna structure and method
US6677915B1 (en) 2001-02-12 2004-01-13 Ethertronics, Inc. Shielded spiral sheet antenna structure and method
US6906667B1 (en) 2002-02-14 2005-06-14 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures for very low-profile antenna applications
US7339531B2 (en) * 2001-06-26 2008-03-04 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and method of reusing the volume of an antenna
US6456243B1 (en) 2001-06-26 2002-09-24 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
US6664931B1 (en) 2002-07-23 2003-12-16 Motorola, Inc. Multi-frequency slot antenna apparatus
US6911940B2 (en) * 2002-11-18 2005-06-28 Ethertronics, Inc. Multi-band reconfigurable capacitively loaded magnetic dipole
ATE545173T1 (de) 2002-12-22 2012-02-15 Fractus Sa Mehrband-monopolantenne für ein mobilfunkgerät
US6919857B2 (en) * 2003-01-27 2005-07-19 Ethertronics, Inc. Differential mode capacitively loaded magnetic dipole antenna
US6822611B1 (en) * 2003-05-08 2004-11-23 Motorola, Inc. Wideband internal antenna for communication device
EP1709704A2 (de) * 2004-01-30 2006-10-11 Fractus, S.A. Mehrband-monopolantennen für mobilkommunikationsgeräte
DE102004050598A1 (de) * 2004-10-15 2006-04-27 Daimlerchrysler Ag Dualband-Antenne für zirkulare Polarisation
US8738103B2 (en) 2006-07-18 2014-05-27 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US20080266194A1 (en) * 2007-04-27 2008-10-30 Sony Ericsson Mobile Communications Ab Slot Antenna with a Spiral Feed Element for Wireless Communication Devices
TWI449252B (zh) * 2008-11-26 2014-08-11 Htc Corp 微帶線結構
TWI407631B (zh) * 2009-07-21 2013-09-01 Univ Nat Taiwan 天線
US8547280B2 (en) * 2010-07-14 2013-10-01 Raytheon Company Systems and methods for exciting long slot radiators of an RF antenna
US9160049B2 (en) 2011-11-16 2015-10-13 Commscope Technologies Llc Antenna adapter
US8558746B2 (en) 2011-11-16 2013-10-15 Andrew Llc Flat panel array antenna
US8866687B2 (en) 2011-11-16 2014-10-21 Andrew Llc Modular feed network
DE102012111382A1 (de) * 2012-11-23 2014-05-28 GAT Gesellschaft für Antriebstechnik mbH Antennenstruktur zur breitbandigen Übertragung elektrischer Signale
PL2932562T3 (pl) * 2012-12-14 2019-04-30 Bae Systems Plc Usprawnienia w antenach
JP6165649B2 (ja) * 2014-02-04 2017-07-19 株式会社東芝 アンテナ装置およびレーダ装置
ES2568749B1 (es) * 2014-10-01 2017-02-07 Consejo Superior De Investigaciones Científicas (Csic) Célula calefactora, calefactor que hace uso de la misma, sistema de calefacción y uso del mismo
IL236739B (en) * 2015-01-15 2018-02-28 Mti Wireless Edge Ltd Antenna formed from plates and methods useful in conjunction therewith
EP3240101B1 (de) * 2016-04-26 2020-07-29 Huawei Technologies Co., Ltd. Hochfrequenzverbindung zwischen einer leiterplatte und einem wellenleiter
DE102017203513A1 (de) * 2017-03-03 2018-09-06 Robert Bosch Gmbh Dual-Band-Antenne sowie Vorrichtung mit solch einer Dual-Band-Antenne
US10686254B2 (en) * 2017-05-31 2020-06-16 The Boeing Company Wideband antenna system
DE102019108358A1 (de) * 2019-03-30 2020-10-01 Endress+Hauser SE+Co. KG Vorrichtung zur Übertragung von Signalen aus einem zumindest teilweise metallischen Gehäuse
US11901601B2 (en) 2020-12-18 2024-02-13 Aptiv Technologies Limited Waveguide with a zigzag for suppressing grating lobes
US11444364B2 (en) 2020-12-22 2022-09-13 Aptiv Technologies Limited Folded waveguide for antenna
RU205041U1 (ru) * 2021-01-17 2021-06-24 Евгений Вадимович Николаев Излучатель для микроволновой абляции на основе резонансной структуры
US11962085B2 (en) 2021-05-13 2024-04-16 Aptiv Technologies AG Two-part folded waveguide having a sinusoidal shape channel including horn shape radiating slots formed therein which are spaced apart by one-half wavelength
US11616282B2 (en) 2021-08-03 2023-03-28 Aptiv Technologies Limited Transition between a single-ended port and differential ports having stubs that match with input impedances of the single-ended and differential ports

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172112A (en) * 1961-05-29 1965-03-02 Elwin W Seeley Dumbbell-loaded folded slot antenna
US4130822A (en) * 1976-06-30 1978-12-19 Motorola, Inc. Slot antenna
FR2487588A1 (fr) * 1980-07-23 1982-01-29 France Etat Doublets replies en plaques pour tres haute frequence et reseaux de tels doublets
US4443802A (en) * 1981-04-22 1984-04-17 University Of Illinois Foundation Stripline fed hybrid slot antenna
US4587524A (en) * 1984-01-09 1986-05-06 Mcdonnell Douglas Corporation Reduced height monopole/slot antenna with offset stripline and capacitively loaded slot
JPH0685487B2 (ja) * 1985-05-18 1994-10-26 日本電装株式会社 2周波共用平面アンテナ
US4710775A (en) * 1985-09-30 1987-12-01 The Boeing Company Parasitically coupled, complementary slot-dipole antenna element
EP0295003A3 (de) * 1987-06-09 1990-08-29 THORN EMI plc Antenne
CA1323419C (en) * 1988-08-03 1993-10-19 Emmanuel Rammos Planar array antenna, comprising coplanar waveguide printed feed lines cooperating with apertures in a ground plane

Also Published As

Publication number Publication date
US5337065A (en) 1994-08-09
FR2669776B1 (fr) 1993-01-22
DE69111757D1 (de) 1995-09-07
EP0487387A1 (de) 1992-05-27
DE69111757T2 (de) 1995-12-14
FR2669776A1 (fr) 1992-05-29

Similar Documents

Publication Publication Date Title
EP0487387B1 (de) Flache Mikrowellen-Schlitzantenne
EP0575211B1 (de) Strahlerelement einer Antenne mit breitbandigem Durchlassbereich und aus derartigen Elementen bestehende Gruppenantenne
EP0924797B1 (de) Multifrequenzstreifenleitungsantenne und Gerät mit einer derartigen Antenne
EP1416586B1 (de) Antenne mit einer Filtermaterialanordnung
EP0108463B1 (de) Strahlelement für orthogonal polarisierte Signale und flache Antennengruppe mit solchen nebeneinandergestellten Elementen
FR2691015A1 (fr) Antenne-réseau de type micro-ruban à faible épaisseur mais à large bande passante.
CA1290449C (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
EP1075043A1 (de) Antenne mit übereinanderliegenden Resonanzstrukturen und Multibandfunkkommunikationsendgerät mit einer derartigen Antenne
EP0923156A1 (de) Kurzgeschlossene Streifenleiterantenne und Gerät damit
FR2668305A1 (fr) Dispositif d'alimentation d'un element rayonnant fonctionnant en double polarisation.
EP1042845B1 (de) Antenne
EP0082751B1 (de) Mikrowellenstrahler und seine Verwendung für eine Antenne mit elektronischer Abtastung
FR2751471A1 (fr) Dispositif rayonnant a large bande susceptible de plusieurs polarisations
FR2645353A1 (fr) Antenne plane
EP2643886B1 (de) Flachantenne mit erweiterter bandbreite
EP0661773A1 (de) Konische, auf einem ebenen Substrat präparierte Streifenleitungsantenne und Verfahren zu ihrer Herstellung
FR2830131A1 (fr) Antenne a large bande ou multi-bandes
FR2953652A1 (fr) Systeme d'antennes multi secteurs
FR2569906A1 (fr) Reflecteur pour antenne a micro-ondes, muni d'une structure de grille a polarisation selective
Rahmani et al. Circularly polarised periodic leaky‐wave antenna with filtering capability
EP0769824B1 (de) Elektomagnetische Linse in Form einer auf einem getragenen Substrat gedruckten Schaltung
Brito Metamaterial inspired improved antennas and circuits
EP0477102B1 (de) Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk
Horestani et al. A Wideband Rotary-Joint-Free H-Plane Horn Antenna With 360-Degree Steerable Radiation Pattern Using Gap Waveguide Technology
EP0623970A1 (de) Antenne mit zirkularem oder elliptischem Profil, feststehend oder rotierend, für einen oder mehrere multipolarisierte Wellen abgebende Mikrowellengeneratoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19920918

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19940620

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69111757

Country of ref document: DE

Date of ref document: 19950907

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011019

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011029

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051115