EP1416586B1 - Antenna with an assembly of filtering material - Google Patents

Antenna with an assembly of filtering material Download PDF

Info

Publication number
EP1416586B1
EP1416586B1 EP03027264A EP03027264A EP1416586B1 EP 1416586 B1 EP1416586 B1 EP 1416586B1 EP 03027264 A EP03027264 A EP 03027264A EP 03027264 A EP03027264 A EP 03027264A EP 1416586 B1 EP1416586 B1 EP 1416586B1
Authority
EP
European Patent Office
Prior art keywords
antenna
assembly
probe
antenna according
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03027264A
Other languages
German (de)
French (fr)
Other versions
EP1416586A1 (en
Inventor
Marc Thevenot
Bernard Jecko
Alain Reineix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1416586A1 publication Critical patent/EP1416586A1/en
Application granted granted Critical
Publication of EP1416586B1 publication Critical patent/EP1416586B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces

Definitions

  • the present invention relates to a transmitting or receiving antenna achieving significant directivity levels at microwave frequencies.
  • Antennas comprising at least one probe capable of transforming electrical energy into electromagnetic energy and vice versa.
  • Today, conventionally used antennas include parabolic reflector antennas, lens antennas and horn type antennas.
  • Parabolic reflector antennas have a parabolic reflective plane at the focus of which is a probe. This results in a congestion related to the focal length of the parabolic reflector.
  • the lens antennas comprise a lens at the focus of which is a probe.
  • a lens at the focus of which is a probe.
  • such an antenna also has a high weight, due to the weight of the lens, which weight may be disadvantageous for certain applications.
  • Cornet type antennas are cumbersome and heavy to achieve high directivity levels.
  • Cylindrical antennas comprising a stack of dielectric layers are known from GB-A-1555756 and WO 95/33287 A.
  • GB-A-1555756 discloses an antenna according to the preamble of claim 1.
  • a resonant device comprising a defective BIP material is known from US-A-5,471,180.
  • the invention aims to overcome the disadvantages of conventional antennas by creating a less bulky and less heavy antenna capable of transmitting or receiving an electromagnetic wave with significant directivity levels.
  • the subject of the invention is therefore an antenna according to claim 1
  • Said antenna thus makes it possible to obtain reduced bulk and weight by the use of a simplified feed system and a assembly, of small thickness, of elements made of materials differing in their permittivity and / or their permeability and / or their conductivity.
  • the antenna according to the invention may further comprise one or more of the features which appear in the dependent claims.
  • Low loss materials such as for example plastic, ceramic, ferrite, metal, etc., will preferably be selected.
  • An advantage of the present invention is that the probe 10 can be very simple to design from the moment it fills the type of polarization (linear or circular), the ellipticity rate and the electrical characteristics desired by the manufacturer, this probe 10 to be nevertheless small in front of the overall dimensions of the antenna.
  • An interest of the assembly 20 is to make it possible to design an antenna allowing one or more frequency propagation modes inside a non-conducting band, according to one or more allowed spatial directions d, spatial filtering being itself dependent the frequency and nature of the materials in the assembly 20.
  • This assembly 20 comprising a structure 22 designed on the principle of photonic bandgap materials in which is located one or more cavity (s) 21 is to have one or more mode (s) frequency (s) ) of very isolated propagation of its (their) nearest neighbors.
  • a structure designed on the principle of photonic bandgap materials is a structure of elements differing in their permittivity and / or permeability and / or conductivity, which structure has a periodicity of at least one dimension.
  • a cavity 21 placed within the assembly 20 gives it, by association with the photonic bandgap material 22, the behavior of a material known to those skilled in the art photonic bandgap material failing.
  • An antenna shown in FIG. 2 may further comprise an electromagnetic reflective plane 30 placed in the middle of the assembly 20 and containing the probe 10, making it possible to halve the dimensions of the antenna, particularly when the radiation is not useful only in a half space.
  • An interest of an antenna comprising an electromagnetic reflective plane 30 is to increase the gain of the main lobe of the directivity diagram of said antenna.
  • An antenna shown in FIG. 3 comprises a structure 22 designed on the principle of photonic bandgap materials having a one-dimensional periodicity, that is to say that said structure 22 comprises an alternation of plane layers of two materials 23 and 24, for example respectively alumina and air, distinguished by their permittivity and / or their permeability and / or their conductivity.
  • An antenna shown in Figure 4 comprises a structure 22 designed on the principle of photonic bandgap materials having a two-dimensional periodicity, that is to say that said structure 22 has bars, of cylindrical shape arranged regularly , a first material 25, for example alumina, separated from each other by a second material 26, for example air, the second material being distinguished from the first by its permittivity and / or its permeability and / or its conductivity.
  • the structure is composed of cylindrical bars arranged in a succession of superposed layers.
  • the bars extend parallel to each other and are placed with a regular pitch.
  • the bars of successive layers are aligned with a regular pitch.
  • the bars are metallic.
  • An antenna shown in FIG. 5 comprises a structure 22 designed on the principle of photonic bandgap materials, having a three-dimensional periodicity, such that said structure 22 comprises an alternation of bars, for example of parallelepipedal shape arranged in a regular manner, a first material 27, for example alumina or metal, separated from each other by a second material 28, for example air, said second material being distinguished from the first material by its permittivity and / or its permeability and / or its conductivity.
  • the structure 22 is composed of substantially parallelepiped shaped bars arranged in a stack of superposed layers.
  • the bars extend parallel to each other and are placed in a regular pitch, and the bars of two adjacent layers form a constant angle, for example an angle of 90 °.
  • the bars of layers separated by an intermediate layer are parallel to each other and aligned with a regular pitch.
  • the number of useful periods in the direction orthogonal to the plane of the antenna depends on the contrasts of permittivity and / or permeability and / or conductivity of the materials used. To reduce the number of periods, it is necessary to increase the index contrasts between the different materials.
  • the materials used are the high permittivity index alumina and the low permittivity index air, which allows the structure 22 to comprise only three layers of materials.
  • the structure 22 thus consists of a first planar layer 23a of alumina in contact with a second plane layer 24a of air itself in contact with a third planar layer 23b of alumina.
  • the present invention very clearly improves the congestion problem related to the antennas, in particular thanks to the low thickness of an antenna according to the invention.
  • An antenna as shown in FIG. 6 provides the radiation and a spatial and frequency filtering of the electromagnetic waves produced or received by said antenna, as represented in FIG. 7. Said filtering notably allows one or more operating frequencies f of said antenna within a non-conducting frequency band B.
  • An antenna as shown in Figure 6 is designed to achieve a gain of 20db and has a radiation pattern shown in Figure 8.
  • the antenna according to the invention achieves significant gains in a given direction such as conventional aperture antennas.
  • the operation of the antenna described with reference to Figure 6, will now be examined.
  • the antenna has two modes of operation: a transmitter mode and a receiver mode.
  • an electric current led by the power supply wire 11 reaches the level of the probe 10a which transforms it into an electromagnetic wave.
  • This electromagnetic wave then passes through the assembly 20 of elements made of materials differing in their permittivity and / or their permeability and / or their conductivity, the arrangement of which makes it possible to operate by construction a spatial and frequency filtering on the wave electromagnetic and thus conform the radiation pattern of the antenna system according to properties desired by the user.
  • an electromagnetic wave arriving at the antenna is filtered spatially and frequently during its crossing of the assembly 20 of elements made of materials differing in their permittivity and / or permeability and / or their conductivity, before reaching the probe 10a. Then, the electromagnetic wave filtered according to properties desired by construction of the antenna, is transformed into electric current by the probe 10a and transmitted to the supply wire 11.
  • the probe of the antenna is of a nature capable of generating a linear or circular polarization in the antenna, causing an operation thereof, either in linear polarization or in circular polarization.
  • the shape of the planar layers is arranged to obtain a radiation pattern and desired gain according to the theory of radiating openings.
  • the constituent elements of the structure are coaxial cylinders surrounding the probe, the arrangement thus having a radial periodicity, and the inner cylindrical element forms a cavity receiving said probe.
  • the constituent elements of the structure 22 are coaxial cylinders consisting of photonic bandgap materials having a periodicity in two or three dimensions.
  • At least one of the materials has variable dielectric and / or magnetic characteristics as a function of an external source such as an electric or magnetic field, so as to make it possible to achieve tunable antennas.
  • the assembly exhibits multiple periodicity defects generated by a cavity or the juxtaposition of several cavities and making it possible to widen the bandwidth of the antenna and / or to create multiband antennas.
  • the assembly of elements 20 has a periodicity of at least one dimension and at least one defect in one of the dimensions of this periodicity which generates at least one cavity in its entirety.
  • the elements remaining arranged in a regular step in the other dimensions.
  • This structure has a two-dimensional periodicity: it comprises bars 25, of cylindrical shape arranged in two layers 32 and 34 identical and superimposed. In each layer 32 and 34, the bars 25 extend parallel to each other and are placed with a regular pitch.
  • the assembly 20 constituted by the cavity 21a and the structure 22 has a defect in its periodicity, in the dimension corresponding to the direction orthogonal to the planar reflector 30a and the layers 32 and 34.
  • the periodic arrangement of the bars 25 in each layer 32 and 34 is not affected by the presence of the cavity 21a.
  • this antenna is also dependent on the operating frequency for which it was designed. For example, to operate at a frequency of 4.75 GHz, the lateral dimensions of the antenna are 258 mm, the thickness of the cavity 21 is 33.54 mm, the two layers 32 and 34 are distant from each other. 22.36 mm and in each layer, the bars 25 have a diameter of 10.6 mm and their respective axes are spaced 22.36 mm.
  • the bars may be made of dielectric, magnetic or metallic materials.
  • the antenna shown in FIG. 9 has, like that shown in FIG. 6, a radiation pattern such as that represented in FIG. 8.
  • the antenna comprises a multiplicity of probes of different natures.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The high directivity antenna has a transmitter patch (10) with a rear reflector (30a), and a set of elements (22) of differential permittivity and permeability. The elements pass one or several frequencies within a frequency band gap.

Description

La présente invention concerne une antenne émettrice ou réceptrice atteignant des niveaux de directivité importants à des fréquences de l'ordre des micro-ondes.The present invention relates to a transmitting or receiving antenna achieving significant directivity levels at microwave frequencies.

On connaît des antennes comprenant au moins une sonde capable de transformer de l'énergie électrique en énergie électromagnétique et réciproquement.Antennas are known comprising at least one probe capable of transforming electrical energy into electromagnetic energy and vice versa.

Aujourd'hui, les antennes classiquement utilisées sont notamment des antennes à réflecteur parabolique, des antennes lentilles et des antennes de type cornet.Today, conventionally used antennas include parabolic reflector antennas, lens antennas and horn type antennas.

Les antennes à réflecteur parabolique comportent un plan réflecteur de forme parabolique au foyer duquel se trouve une sonde. Il en résulte un encombrement lié à la distance focale du réflecteur parabolique.Parabolic reflector antennas have a parabolic reflective plane at the focus of which is a probe. This results in a congestion related to the focal length of the parabolic reflector.

Les antennes lentilles comportent une lentille au foyer de laquelle se trouve une sonde. Outre l'encombrement lié à la distance focale, une telle antenne présente également un poids élevé, dû au poids de la lentille, lequel poids pouvant être pénalisant pour certaines applications.The lens antennas comprise a lens at the focus of which is a probe. In addition to the congestion related to the focal length, such an antenna also has a high weight, due to the weight of the lens, which weight may be disadvantageous for certain applications.

Les antennes de type cornet sont encombrantes et lourdes pour atteindre des niveaux de directivité élevés.Cornet type antennas are cumbersome and heavy to achieve high directivity levels.

Des antennes cylindriques comportant un empilement de couches diélectriques sont connues de GB-A-1 555 756 et de WO 95/33287 A. Le document GB-A- 1555756 décrit une antenne selon le préambule de la revendication 1.Cylindrical antennas comprising a stack of dielectric layers are known from GB-A-1555756 and WO 95/33287 A. GB-A-1555756 discloses an antenna according to the preamble of claim 1.

Un dispositif résonnant comportant un matériau BIP à défaut est connu de US-A-5 471 180.A resonant device comprising a defective BIP material is known from US-A-5,471,180.

L'invention vise à remédier aux inconvénients des antennes classiques en créant une antenne moins encombrante et moins lourde, capable d'émettre ou recevoir une onde électromagnétique avec des niveaux de directivité importants.The invention aims to overcome the disadvantages of conventional antennas by creating a less bulky and less heavy antenna capable of transmitting or receiving an electromagnetic wave with significant directivity levels.

L'invention a donc pour objet une antenne conforme à la revendication 1The subject of the invention is therefore an antenna according to claim 1

Ladite antenne permet de la sorte d'obtenir un encombrement et un poids réduits par l'utilisation d'un système d'alimentation simplifié et d'un assemblage, de faible épaisseur, d'éléments en matériaux se différenciant par leur permittivité et/ou leur perméabilité et/ou leur conductivité.Said antenna thus makes it possible to obtain reduced bulk and weight by the use of a simplified feed system and a assembly, of small thickness, of elements made of materials differing in their permittivity and / or their permeability and / or their conductivity.

L'antenne selon invention peut en outre comporter une ou plusieurs des caractéristiques qui apparaissent dans les revendications dépendantes.The antenna according to the invention may further comprise one or more of the features which appear in the dependent claims.

L'invention sera mieux comprise à l'aide de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels :

  • la figure 1 représente une antenne selon l'invention dans le cas général ;
  • la figure 2 représente une antenne comprenant un plan réflecteur d'ondes électromagnétiques ;
  • la figure 3 représente schématiquement en perspective un exemple de structure de couches planes de matériaux se différenciant par leur permittivité et/ou par leur perméabilité et/ou leur conductivité agencées selon un motif périodique à une dimension ;
  • la figure 4 représente schématiquement en perspective un exemple de structure présentant une double périodicité selon deux directions spatiales distinctes des matériaux la constituant ;
  • la figure 5 représente schématiquement en perspective un exemple de structure présentant une triple périodicité selon trois directions spatiales distinctes des matériaux la constituant ;
  • la figure 6 représente schématiquement en perspective une autre antenne ;
  • la figure 7 représente une courbe donnant le coefficient de transmission en fonction de la fréquence de l'onde électromagnétique émise ou reçue par une antenne selon l'invention ;
  • la figure 8 représente un diagramme de directivité de l'antenne selon le mode de réalisation présenté dans la figure 6 ; et -
  • la figure 9 représente schématiquement en perspective une antenne selon un autre mode de réalisation.
The invention will be better understood with the aid of the description which follows, given solely by way of example and with reference to the appended drawings, in which:
  • FIG. 1 represents an antenna according to the invention in the general case;
  • FIG. 2 represents an antenna comprising a reflective plane of electromagnetic waves;
  • FIG. 3 is a diagrammatic perspective view of an exemplary structure of flat layers of materials differing in their permittivity and / or in their permeability and / or their conductivity arranged in a one-dimensional periodic pattern;
  • FIG. 4 diagrammatically represents in perspective an example of structure having a double periodicity according to two spatial directions distinct from the materials constituting it;
  • FIG. 5 schematically represents in perspective an example of a structure having a triple periodicity according to three spatial directions distinct from the materials constituting it;
  • Figure 6 shows schematically in perspective another antenna;
  • FIG. 7 represents a curve giving the transmission coefficient as a function of the frequency of the electromagnetic wave emitted or received by an antenna according to the invention;
  • FIG. 8 represents a directivity diagram of the antenna according to the embodiment presented in FIG. 6; and -
  • Figure 9 shows schematically in perspective an antenna according to another embodiment.

Une antenne représentée à la figure 1 comporte :

  • une sonde 10 capable de transformer une onde électrique en onde électromagnétique et réciproquement. Des antennes, telles que des antennes plaque, les dipôles, les antennes à polarisation circulaire, les fentes, les antennes fil-plaque coplanaires peuvent par exemple convenir comme sonde 10 dans une antenne selon la présente invention.
An antenna shown in Figure 1 comprises:
  • a probe 10 capable of transforming an electric wave into an electromagnetic wave and vice versa. Antennas, such as plate antennas, dipoles, circular polarization antennas, slots, coplanar wire-plate antennas may for example be suitable as a probe 10 in an antenna according to the present invention.

Un assemblage 20 d'éléments en au moins deux matériaux se différenciant par leur permittivité et/ou par leur perméabilité et/ou par leur conductivité au sein duquel la sonde 10 est disposée. On choisira de préférence des matériaux à faibles pertes, tels que par exemple le plastique, la céramique, la ferrite, le métal, etc.An assembly 20 of elements in at least two materials differing in their permittivity and / or permeability and / or conductivity within which the probe 10 is disposed. Low loss materials, such as for example plastic, ceramic, ferrite, metal, etc., will preferably be selected.

Un avantage de la présente invention est que la sonde 10 peut être très simple à concevoir à partir du moment où elle remplit le type de polarisation (linaire ou circulaire), le taux d'ellipticité et les caractéristiques électriques désirés par le constructeur, cette sonde 10 devant être néanmoins petite devant les dimensions globales de l'antenne.An advantage of the present invention is that the probe 10 can be very simple to design from the moment it fills the type of polarization (linear or circular), the ellipticity rate and the electrical characteristics desired by the manufacturer, this probe 10 to be nevertheless small in front of the overall dimensions of the antenna.

Un intérêt de l'assemblage 20 est de permettre de concevoir une antenne autorisant un ou plusieurs modes fréquentiels de propagation à l'intérieur d'une bande non passante, selon une ou plusieurs directions spatiales autorisées d, le filtrage spatial étant lui-même dépendant de la fréquence et de la nature des matériaux que comporte l'assemblage 20.An interest of the assembly 20 is to make it possible to design an antenna allowing one or more frequency propagation modes inside a non-conducting band, according to one or more allowed spatial directions d, spatial filtering being itself dependent the frequency and nature of the materials in the assembly 20.

Un autre intérêt de cet assemblage 20, comportant une structure 22 conçue sur le principe des matériaux à bande interdite photonique au sein de laquelle se trouve une ou plusieurs cavité(s) 21 est d'avoir un ou plusieurs mode(s) fréquentiel(s)de propagation très isolé(s) de ses (leurs) plus proches voisins.Another advantage of this assembly 20, comprising a structure 22 designed on the principle of photonic bandgap materials in which is located one or more cavity (s) 21 is to have one or more mode (s) frequency (s) ) of very isolated propagation of its (their) nearest neighbors.

Une structure conçue sur le principe des matériaux à bande interdite photonique est une structure d'éléments se différenciant par leur permittivité et/ou par leur perméabilité et/ou par leur conductiyité, laquelle structure présente une périodicité à au moins une dimension.A structure designed on the principle of photonic bandgap materials is a structure of elements differing in their permittivity and / or permeability and / or conductivity, which structure has a periodicity of at least one dimension.

Une cavité 21 placée au sein de l'assemblage 20 lui confère, par l'association avec le matériau à bande interdite photonique 22, le comportement d'un matériau appelé par l'homme de l'art matériau à bande interdite photonique à défaut.A cavity 21 placed within the assembly 20 gives it, by association with the photonic bandgap material 22, the behavior of a material known to those skilled in the art photonic bandgap material failing.

Elle peut être :

  • une modification locale des caractéristiques diélectriques et/ou magnétiques et/ou de conductivité des matériaux utilisés,
  • une modification locale des dimensions d'un ou plusieurs matériaux.
She may be :
  • a local modification of the dielectric and / or magnetic characteristics and / or conductivity of the materials used,
  • a local modification of the dimensions of one or more materials.

Une antenne représentée à la figure .2 peut en outre comporter un plan réflecteur électromagnétique 30 placé au milieu de l'assemblage 20 et contenant la sonde 10, permettant de réduire de moitié les dimensions de l'antenne, particulièrement lorsque le rayonnement n'est utile que dans un demi- espace.An antenna shown in FIG. 2 may further comprise an electromagnetic reflective plane 30 placed in the middle of the assembly 20 and containing the probe 10, making it possible to halve the dimensions of the antenna, particularly when the radiation is not useful only in a half space.

Un intérêt d'une antenne comportant un plan réflecteur électromagnétique 30 est d'augmenter le gain du lobe principal du diagramme de directivité de ladite antenne.An interest of an antenna comprising an electromagnetic reflective plane 30 is to increase the gain of the main lobe of the directivity diagram of said antenna.

Une antenne représentée à la figure 3 comporte une stucture 22 conçue sur le principe des matériaux à bande interdite photonique présentant une périodicité à une dimension, c'est-à-dire que ladite structure 22 comporte une alternance de couches planes de deux matériaux 23 et 24, par exemple respectivement de l'alumine et de l'air, se distinguant par leur permittivité et/ou par leur perméabilité et/ou par leur conductivité.An antenna shown in FIG. 3 comprises a structure 22 designed on the principle of photonic bandgap materials having a one-dimensional periodicity, that is to say that said structure 22 comprises an alternation of plane layers of two materials 23 and 24, for example respectively alumina and air, distinguished by their permittivity and / or their permeability and / or their conductivity.

Une antenne représentée à la figure 4 comporte une structure 22 conçue sur le principe des matériaux à bande interdite photonique présentant une périodicité à deux dimensions, c'est-à-dire que ladite structure 22 comporte des barreaux, de forme cylindrique disposés de façon régulière, d'un premier matériau 25, par exemple de l'alumine, séparés entre eux par un deuxième matériau 26, par exemple de l'air, le deuxième matériau se distinguant du premier par sa permittivité et/ou sa perméabilité et/ou sa conductivité.An antenna shown in Figure 4 comprises a structure 22 designed on the principle of photonic bandgap materials having a two-dimensional periodicity, that is to say that said structure 22 has bars, of cylindrical shape arranged regularly , a first material 25, for example alumina, separated from each other by a second material 26, for example air, the second material being distinguished from the first by its permittivity and / or its permeability and / or its conductivity.

Par exemple, la structure est composée de barreaux de forme cylindrique disposés en une succession de couches superposées.For example, the structure is composed of cylindrical bars arranged in a succession of superposed layers.

Dans chaque couche, les barreaux s'étendent parallèlement les uns aux autres et sont placés avec un pas régulier.In each layer, the bars extend parallel to each other and are placed with a regular pitch.

De plus, les barreaux de couches successives sont alignés avec un pas régulier. De préférence, les barreaux sont métalliques.In addition, the bars of successive layers are aligned with a regular pitch. Preferably, the bars are metallic.

Une antenne représentée à la figure 5 comporte une structure 22 conçue sur le principe de matériaux à bande interdite photonique, présentant une périodicité à trois dimensions, telle que ladite structure 22 comporte une alternance de barreaux, par exemple de forme paralléllépipédique disposés de façon régulière, d'un premier matériau 27, par exemple de l'alumine ou du métal, séparés entre eux par un deuxième matériau 28, par exemple de l'air, ledit -deuxième matériau se distinguant du premier matériau par sa permittivité et/ou sa perméabilité et/ou sa conductivité.An antenna shown in FIG. 5 comprises a structure 22 designed on the principle of photonic bandgap materials, having a three-dimensional periodicity, such that said structure 22 comprises an alternation of bars, for example of parallelepipedal shape arranged in a regular manner, a first material 27, for example alumina or metal, separated from each other by a second material 28, for example air, said second material being distinguished from the first material by its permittivity and / or its permeability and / or its conductivity.

Par exemple, la structure 22 est composée de barreaux de forme sensiblement parallélépipédique disposés en un empilage de couches superposées. Dans chaque couche, les barreaux s'étendent parallèlement les uns aux autres et sont placés selon un pas régulier et, les barreaux de deux couches voisines forment un angle constant, par exemple un angle de 90°.For example, the structure 22 is composed of substantially parallelepiped shaped bars arranged in a stack of superposed layers. In each layer, the bars extend parallel to each other and are placed in a regular pitch, and the bars of two adjacent layers form a constant angle, for example an angle of 90 °.

De plus, les barreaux de couches séparées par une couche intermédiaire sont parallèles entre eux et alignés avec un pas régulier.In addition, the bars of layers separated by an intermediate layer are parallel to each other and aligned with a regular pitch.

En référence à la figure 6, un mode préféré de réalisation d'une antenne comporte :

  • Une sonde plaque 10a utilisant un seul fil d'alimentation 11 ;
With reference to FIG. 6, a preferred embodiment of an antenna comprises:
  • A plate probe 10a using a single feed wire 11;

Un intérêt de cette sonde est d'être très simple de conception et de limiter les pertes métalliques et diélectriques de l'antenne.

  • Une plaque métallique formant un réflecteur plan électromagnétique 30a ;
  • Une couche plane formant une cavité 21a en contact avec le réflecteur plan 30a, ladite cavité 21a étant constituée d'un matériau, de préférence à faible permittivité ou perméabilité afin de limiter le guidage des ondes de surface, lequel matériau peut être de l'air comme représenté à la figure 6 à titre d'exemple ;
  • Une structure 22 dont les matériaux 23a, 24a, 23b se différenciant par leur permittivité et/ou leur perméabilité et/ou leur conductivité sont agencés en couches planes successives, selon un motif périodique à une dimension.
An interest of this probe is to be very simple in design and to limit the metallic and dielectric losses of the antenna.
  • A metal plate forming an electromagnetic plane reflector 30a;
  • A planar layer forming a cavity 21a in contact with the planar reflector 30a, said cavity 21a being made of a material, preferably of low permittivity or permeability in order to limit the guidance of the surface waves, which material may be air as shown in Figure 6 by way of example;
  • A structure 22 whose materials 23a, 24a, 23b differing in their permittivity and / or their permeability and / or their conductivity are arranged in successive planar layers, in a periodic one-dimensional pattern.

Le nombre de périodes utiles dans la direction orthogonale au plan de l'antenne dépend des contrastes de permittivité et/ou perméabilité et/ou conductivité des matériaux utilisés. Pour réduire le nombre de périodes, il faut augmenter les contrastes d'indice entre les différents matériaux.The number of useful periods in the direction orthogonal to the plane of the antenna depends on the contrasts of permittivity and / or permeability and / or conductivity of the materials used. To reduce the number of periods, it is necessary to increase the index contrasts between the different materials.

A titre d'exemple, dans le mode de réalisation représenté figure 6, les matériaux utilisés sont l'alumine de fort indice de permittivité et l'air de faible indice de permittivité ce qui permet à la structure 22 de ne comporter que trois couches de matériaux.By way of example, in the embodiment shown in FIG. 6, the materials used are the high permittivity index alumina and the low permittivity index air, which allows the structure 22 to comprise only three layers of materials.

La structure 22 est donc constituée d'une première couche plane 23a d'alumine en contact avec une deuxième couche plane 24a d'air elle-même en contact avec une troisème couche plane 23b d'alumine.The structure 22 thus consists of a first planar layer 23a of alumina in contact with a second plane layer 24a of air itself in contact with a third planar layer 23b of alumina.

Dans le mode de réalisation tel que représenté figure 6, où l'assemblage 20 de couches planes successives de matériaux diélectriques ou magnétiques où la première couche 21 a constitue la cavité et où les suivantes 23a, 24a et 23b constituent la structure 22 :

  • a) L'épaisseur e21a de la couche plane 21a constituée d'un matériau de permittivité relative εr et de perméabilité relative µr est donnée par la formule e 21 a ~ 0 , 5 λ ε r μ r
    Figure imgb0001
    où λ est la longueur d'onde correspondant à la fréquence de fonctionnement de l'antenne, et où le symbole "~" signifie " égal ou à peu près égal ".
    A titre d'exemple, l'épaisseur de la couche plane d'air 21a représentée figure 6 vaut e21a = 0,5 λ.
  • b) L'épaisseur e d'une couche plane d'un matériau diélectrique ou magnétique de permittivité relative εr et de perméabilité relative µr à l'intérieur de la structure 22 est donnée par la formule e ~ 0 , 25 λ ε r μ r .
    Figure imgb0002

    A titre d'exemple, l'épaisseur de la couche plane d'alumine 23a représentée figure 6 vaut environ e23a = 0,08 λ ; l'épaisseur de la couche plane d'air 24a représentée figure 6 vaut e24a = 0,25 λ ; l'épaisseur de la couche plane d'alumine 23b représentée figure 6 vaut environ e23b = 0,08λ.
  • c) Les dimensions latérales de la structure 22, de la plaque 30a et de la cavité 21a sont choisies en fonction du gain désiré de l'antenne. La forme utile pour l'antenne s'inscrit dans un cercle dont le diamètre Φ est relié au gain recherché, selon la formule empirique connue suivante : G dB 20 log π Φ λ 2 , 5.
    Figure imgb0003

    A titre d'exemple, pour obtenir un gain de 20 dB tel que représenté figure 8, un système d'antenne peut avoir des dimensions latérales de 4,3 λ. La forme latérale de l'antenne est ensuite choisie pour obtenir une certaine forme du rayonnement de l'antenne, selon un procédé connu.
  • d) Compte tenu des dimensions latérales et des épaisseurs des différentes couches de matériaux entrant dans la composition de l'antenne telle que décrite dans la figure 6, lesdites épaisseurs et dimensions latérales étant mentionnées ci-dessus, les dimensions générales de l'antenne sont donc: une épaisseur H d'environ λ et une dimension latérale L de 4,3 λ. Ainsi, pour une fréquence de fonctionnement de 10 Ghz correspondant à une longueur d'onde de 3 cm, un exemple particulier d'antenne tel que représenté figure 6 aura un volume de l'ordre de 3 x 13 x 13 cm3 , alors qu'un système d'antenne parabolique classique, fonctionnant à la même fréquence de 10 Ghz, qui a une distance focale d'environ 70 cm, occupe un volume nettement supérieur.
In the embodiment as shown in FIG. 6, where the assembly 20 of successive planar layers of dielectric or magnetic materials where the first layer 21a constitutes the cavity and where the following 23a, 24a and 23b constitute the structure 22:
  • a) The thickness e 21a of the plane layer 21a made of a material of relative permittivity ε r and relative permeability μ r is given by the formula e 21 at ~ 0 , 5 λ ε r μ r
    Figure imgb0001
    where λ is the wavelength corresponding to the operating frequency of the antenna, and where the symbol "~" means "equal or nearly equal".
    By way of example, the thickness of the plane air layer 21a shown in FIG. 6 is e 21a = 0.5λ.
  • b) The thickness e of a plane layer of a dielectric or magnetic material of relative permittivity ε r and relative permeability μ r inside the structure 22 is given by the formula e ~ 0 , 25 λ ε r μ r .
    Figure imgb0002

    By way of example, the thickness of the planar alumina layer 23a shown in FIG. 6 is approximately e 23a = 0.08λ; the thickness of the plane air layer 24a shown in FIG. 6 is e 24a = 0.25λ; the thickness of the planar alumina layer 23b shown in FIG. 6 is approximately e 23b = 0.08λ.
  • c) The lateral dimensions of the structure 22, the plate 30a and the cavity 21a are chosen according to the desired gain of the antenna. The useful form for the antenna fits into a circle whose diameter Φ is related to the desired gain, according to the following empirical formula: BOY WUT dB 20 log π Φ λ - two , 5.
    Figure imgb0003

    By way of example, to obtain a gain of 20 dB as represented in FIG. 8, an antenna system can have lateral dimensions of 4.3λ. The lateral shape of the antenna is then selected to obtain a certain shape of the antenna radiation, according to a known method.
  • d) Given the lateral dimensions and the thicknesses of the various layers of materials used in the composition of the antenna as described in FIG. 6, said thicknesses and lateral dimensions being mentioned above, the general dimensions of the antenna are therefore: a thickness H of approximately λ and a lateral dimension L of 4.3 λ. Thus, for an operating frequency of 10 Ghz corresponding to a wavelength of 3 cm, a particular example of an antenna as represented in FIG. 6 will have a volume of the order of 3 × 13 × 13 cm 3 , while a conventional parabolic antenna system, operating at the same frequency of 10 Ghz, which has a focal length of about 70 cm, occupies a much larger volume.

Il apparaît donc clairement que la présente invention améliore très nettement le problème d'encombrement lié aux antennes grâce notamment à la faible épaissseur d'une antenne selon l'invention.It therefore clearly appears that the present invention very clearly improves the congestion problem related to the antennas, in particular thanks to the low thickness of an antenna according to the invention.

De plus, étant donné que l'épaisseur des couches planes successives d'une antenne, telle que décrite à la figure 6, est proportionnelle à λ et donc inversement proportionnelle à la fréquence de fonctionnement de l'antenne, une telle réalisation permet de concevoir une antenne fonctionnant à très haute fréquence grâce aux technologies multicouches.Moreover, since the thickness of the successive plane layers of an antenna, as described in FIG. 6, is proportional to λ and therefore inversely proportional to the operating frequency of the antenna, such an embodiment makes it possible to design an antenna operating at very high frequency thanks to multilayer technologies.

Une antenne telle que représentée à la figure 6 assure le rayonnement et un filtrage spatial et fréquentiel des ondes électromagnétiques produites ou reçues par ladite antenne, comme représenté à la figure 7. Ledit filtrage autorise notamment une ou plusieurs fréquence(s) de fonctionnement f de ladite antenne à l'intérieur d'une bande de fréquences non passante B.An antenna as shown in FIG. 6 provides the radiation and a spatial and frequency filtering of the electromagnetic waves produced or received by said antenna, as represented in FIG. 7. Said filtering notably allows one or more operating frequencies f of said antenna within a non-conducting frequency band B.

Une antenne telle que représentée à la figure 6 est conçue pour atteindre un gain de 20db et présente un diagramme de rayonnement représenté à la figure 8.An antenna as shown in Figure 6 is designed to achieve a gain of 20db and has a radiation pattern shown in Figure 8.

Il apparaît que l'antenne selon l'invention permet d'atteindre des gains importants dans une direction donnée comme les antennes à ouverture classiques.It appears that the antenna according to the invention achieves significant gains in a given direction such as conventional aperture antennas.

Il est également visible que ce diagramme de rayonnement présente de faibles niveaux de lobes secondaires.It is also visible that this radiation pattern has low levels of sidelobes.

Le fonctionnement de l'antenne décrite en référence à la figure 6, va maintenant être examiné. L'antenne possède deux modes de fonctionnement : un mode émetteur et un mode récepteur.The operation of the antenna described with reference to Figure 6, will now be examined. The antenna has two modes of operation: a transmitter mode and a receiver mode.

En mode de fonctionnement émetteur, un courant électrique conduit par le fil d'alimentation 11 parvient au niveau de la sonde 10a qui le transforme en onde électromagnétique. Cette onde électromagnétique traverse ensuite l'assemblage 20 d'éléments en matériaux se différenciant par leur permittivité et/ou par leur perméabilité et/ou leur conductivité, dont l'agencement permet d'opérer par construction un filtrage spatial et fréquentiel sur l'onde électromagnétique et de conformer ainsi le diagramme de rayonnement du système d'antenne selon des propriétés voulues par l'utilisateur.In the transmitter operating mode, an electric current led by the power supply wire 11 reaches the level of the probe 10a which transforms it into an electromagnetic wave. This electromagnetic wave then passes through the assembly 20 of elements made of materials differing in their permittivity and / or their permeability and / or their conductivity, the arrangement of which makes it possible to operate by construction a spatial and frequency filtering on the wave electromagnetic and thus conform the radiation pattern of the antenna system according to properties desired by the user.

En mode de fonctionnement récepteur, une onde électromagnétique parvenant au niveau de l'antenne est filtrée spatialement et fréquentiellement lors de sa traversée de l'assemblage 20 d'éléments en matériaux se différenciant par leur permittivité et/ou par leur perméabilité et/ou par leur conductivité, avant de pouvoir atteindre la sonde 10a. Puis, l'onde électromagnétique filtrée selon des propriétés voulues par construction de l'antenne, est transformée en courant électrique pa la sonde 10a et transmise au fil d'alimentation 11.In the receiver operating mode, an electromagnetic wave arriving at the antenna is filtered spatially and frequently during its crossing of the assembly 20 of elements made of materials differing in their permittivity and / or permeability and / or their conductivity, before reaching the probe 10a. Then, the electromagnetic wave filtered according to properties desired by construction of the antenna, is transformed into electric current by the probe 10a and transmitted to the supply wire 11.

Selon un mode de réalisation particulier, la sonde de l'antenne est de nature capable de générer une polarisation linéaire ou circulaire dans l'antenne, entraînant un fonctionnement de celle-ci, soit en polarisation linéaire, soit en polarisation circulaire.According to a particular embodiment, the probe of the antenna is of a nature capable of generating a linear or circular polarization in the antenna, causing an operation thereof, either in linear polarization or in circular polarization.

Selon un autre mode de réalisation particulier, la forme des couches planes est agencée de façon à obtenir un diagramme de rayonnement et de gain voulu conformément à la théorie des ouvertures rayonnantes.According to another particular embodiment, the shape of the planar layers is arranged to obtain a radiation pattern and desired gain according to the theory of radiating openings.

Selon encore un mode de réalisation , les éléments constitutifs de la structure sont des cylindres coaxiaux entourant la sonde, l'agencement présentant ainsi une périodicité radiale, et l'élément cylindrique intérieur forme une cavité recevant ladite sonde.According to another embodiment, the constituent elements of the structure are coaxial cylinders surrounding the probe, the arrangement thus having a radial periodicity, and the inner cylindrical element forms a cavity receiving said probe.

Selon encore un autre mode de réalisation, les éléments constitutifs de la structure 22 sont des cylindres coaxiaux constitués de matériaux à bande interdite photonique présentant une périodicité dans deux ou trois dimensions.According to yet another embodiment, the constituent elements of the structure 22 are coaxial cylinders consisting of photonic bandgap materials having a periodicity in two or three dimensions.

Selon encore un autre mode de réalisation de l'invention, l'un des matériaux au moins a des caractéristiques diélectriques et/ou magnétiques variables en fonction d'une source extérieure telle qu'un champ électrique ou magnétique, de manière à permettre de réaliser des antennes accordables.According to yet another embodiment of the invention, at least one of the materials has variable dielectric and / or magnetic characteristics as a function of an external source such as an electric or magnetic field, so as to make it possible to achieve tunable antennas.

Selon une autre caractéristique de l'invention, l'assemblage présente des défauts de périodicité multiples générés par une cavité ou la juxtaposition de plusieurs cavités et permettant d'élargir la bande passante de l'antenne et/ou de créer des antennes multibandes.According to another characteristic of the invention, the assembly exhibits multiple periodicity defects generated by a cavity or the juxtaposition of several cavities and making it possible to widen the bandwidth of the antenna and / or to create multiband antennas.

Enfin, selon un autre mode de réalisation de l'invention, l'assemblage d'éléments 20 présente une périodicité à au moins une dimension et au moins un défaut dans l'une des dimensions de cette périodicité qui génère au moins une cavité en son sein, les éléments restant disposés en un pas régulier dans les autres dimensions.Finally, according to another embodiment of the invention, the assembly of elements 20 has a periodicity of at least one dimension and at least one defect in one of the dimensions of this periodicity which generates at least one cavity in its entirety. breast, the elements remaining arranged in a regular step in the other dimensions.

Ainsi, l'antenne représentée à la figure 9 comporte :

  • une sonde plaque 10a utilisant un seul fil d'alimentation 11;
  • une plaque métallique formant un réflecteur plan électromagnétique 30a ;
  • une couche plane formant une cavité 21 a en contact avec le réflecteur plan 30a, identique à celle représentée à la figure 6 ; et
  • une structure 22 en contact avec la couche plane formant cavité 21 a.
Thus, the antenna represented in FIG. 9 comprises:
  • a plate probe 10a using a single feed wire 11;
  • a metal plate forming an electromagnetic plane reflector 30a;
  • a planar layer 21 forming a cavity in contact with the plane reflector 30a, identical to that shown in Figure 6; and
  • a structure 22 in contact with the planar cavity layer 21a.

Cette structure présente une périodicité à deux dimensions : elle comporte des barreaux 25, de forme cylindrique disposés en deux couches 32 et 34 identiques et superposées. Dans chaque couche 32 et 34, les barreaux 25 s'étendent parallélement les uns aux autres et sont placés avec un pas régulier.This structure has a two-dimensional periodicity: it comprises bars 25, of cylindrical shape arranged in two layers 32 and 34 identical and superimposed. In each layer 32 and 34, the bars 25 extend parallel to each other and are placed with a regular pitch.

Ainsi, l'assemblage 20 constitué de la cavité 21 a et de la structure 22 présente un défaut dans sa périodicité, dans la dimension correspondant à la direction orthogonale au réflecteur plan 30a et aux couches 32 et 34. Par contre, la disposition périodique des barreaux 25 dans chaque couche 32 et 34 n'est pas affectée par la présence de la cavité 21 a.Thus, the assembly 20 constituted by the cavity 21a and the structure 22 has a defect in its periodicity, in the dimension corresponding to the direction orthogonal to the planar reflector 30a and the layers 32 and 34. On the other hand, the periodic arrangement of the bars 25 in each layer 32 and 34 is not affected by the presence of the cavity 21a.

Les dimensions de cette antenne sont par ailleurs dépendantes de la fréquence de fonctionnement pour laquelle elle a été conçue. Par exemple, pour fonctionner à une fréquence de 4,75 GHz, les dimensions latérales de l'antenne sont de 258 mm, l'épaisseur de la cavité 21 a est de 33,54 mm, les deux couches 32 et 34 sont distantes de 22,36 mm et dans chaque couche, les barreaux 25 ont un diamètre de 10,6 mm et leurs axes respectifs sont espacés de 22,36 mm.The dimensions of this antenna are also dependent on the operating frequency for which it was designed. For example, to operate at a frequency of 4.75 GHz, the lateral dimensions of the antenna are 258 mm, the thickness of the cavity 21 is 33.54 mm, the two layers 32 and 34 are distant from each other. 22.36 mm and in each layer, the bars 25 have a diameter of 10.6 mm and their respective axes are spaced 22.36 mm.

Les barreaux peuvent être constitués de matériaux diélectriques, magnétiques ou métalliques.The bars may be made of dielectric, magnetic or metallic materials.

Dans ces conditions, l'antenne représentée à la figure 9 présente comme celle représentée à la figure 6, un diagramme de rayonnement tel que celui représenté à la figure 8.Under these conditions, the antenna shown in FIG. 9 has, like that shown in FIG. 6, a radiation pattern such as that represented in FIG. 8.

En variante, l'antenne comporte une multiplicité de sondes de natures différentes.In a variant, the antenna comprises a multiplicity of probes of different natures.

Une antenne selon l'invention peut être utilisée en tant que :

  • antenne haute fréquence à haut débit d'informations, en raison de sa capacité à fonctionner à des fréquences élevées grâce aux techniques de dépôts multicouches ;
  • antenne pour des applications embarquées de type aérospatial ou militaire, par exemple, en raison de son faible encombrement et en raison de ces caractéristiques de furtivité dues à l'étroitesse de sa bande passante ;
  • antenne à ouverture classique en remplacement des antennes à ouverture connues du type antenne parabolique ou antenne à lentille.
An antenna according to the invention can be used as:
  • a high-frequency information broadband antenna due to its ability to operate at high frequencies using multilayer deposition techniques;
  • antenna for aerospace or military type embedded applications, for example, because of its small footprint and because of these stealth characteristics due to the narrow bandwidth;
  • conventional aperture antenna to replace known aperture antennas such as dish antenna or lens antenna.

Claims (13)

  1. Antenna comprising at least one probe (10) capable of converting electrical energy into electromagnetic energy and vice versa, and also comprising an assembly (20) of elements made of at least two materials that differ by their permittivity and/or their permeability and/or their conductivity, within which assembly (20) said probe is arranged, characterised in that the assembly comprises a structure (22) designed according to the principle of forbidden photonic band (BIP) materials, within which structure (22) there are located one or more cavities (21) which confer on the assembly the behaviour of a BIP defect material in which the arrangement of the elements in said assembly provides for the radiation and a spatial and temporal filtering of the electromagnetic waves produced or received by said probe, which filtering permits in particular the transmission through the assembly of one or more operating frequencies (f) of the antenna within a non-passing frequency band, and in that said assembly of elements (20) has a radial periodicity and at least one defect (21) in that radial periodicity.
  2. Antenna according to claim 1, characterised in that said assembly of elements (20) comprises a first material of given permittivity, permeability and conductivity forming at least one cavity (21; 21a) and a structure (22) composed of two other materials (23, 24; 25, 26; 27, 28; 23a, 23b, 24a) which differ by their permittivity and/or their permeability and/or their conductivity, said structure having a radial periodicity.
  3. Antenna according to claim 2, characterised in that the elements constituting the structure (22) are coaxial cylinders surrounding the probe, the arrangement thus having a radial periodicity, and in that the inner cylindrical element forms said at least one cavity receiving said probe.
  4. Antenna according to claim 3, characterised in that said assembly of elements comprises a first cylindrical layer of material (21a) produced with said first material forming at least one cavity within which the probe is arranged, said first layer being in contact with at least one succession of cylindrical layers (23a, 23b, 24a) of materials which differ by their permittivity and/or their permeability and/or their conductivity, which layer(s) is/are arranged according to an at least one-dimensional periodic pattern to form said structure of coaxial cylinders.
  5. Antenna according to claim 3, characterised in that the coaxial cylinders are homogeneous.
  6. Antenna according to claim 3 or 4, characterised in that the coaxial cylinders are constituted by forbidden photonic band materials having a periodicity in two or three dimensions.
  7. Antenna according to any one of the preceding claims, characterised in that it further comprises an electromagnetic wave reflector (30; 30A) which supports said probe and is in contact with said assembly of elements.
  8. Antenna according to claim 4, characterised in that it comprises a cylindrical metal plate which forms an electromagnetic wave reflector (30a) and on which there is arranged the probe (10; 10a), said cylindrical metal plate being in contact with the first cylindrical layer, the thickness e1 of said first layer being given by the relationship e 1 = 0.5 λ ε r μ r ,
    Figure imgb0006
    said first layer itself being in contact with said succession of layers (23a, 23b, 24a), the thickness e of each of the layers of said succession of layers being given by the relationship e = 0.25 λ ε r μ r ,
    Figure imgb0007
    where λ is the wavelength corresponding to the operating frequency (f) of the antenna desired by the user, εr and µr being the relative permittivity and the relative permeability, respectively, of the material of the layer in question.
  9. Antenna according to any one of the preceding claims, characterised in that the probe of the antenna is capable of generating a linear or circular polarisation in the antenna, resulting in operation thereof either in linear polarisation or in circular polarisation.
  10. Antenna according to any one of the preceding claims, characterised in that the probe is located within the cavity (21).
  11. Antenna according to any one of the preceding claims, characterised in that at least one of the materials has dielectric and/or magnetic characteristics which are variable as a function of an external source such as an electric or magnetic field, so as to permit the production of tuneable antennae.
  12. Antenna according to any one of the preceding claims, characterised in that the assembly has a cavity or a juxtaposition of a plurality of cavities forming multiple defects in periodicity, allowing the passing band of the antenna to be enlarged and/or multi-band antennae to be created.
  13. Antenna according to claim 6, characterised in that the structure (22) comprises metal bars arranged with a two-or three-dimensional periodicity.
EP03027264A 1999-11-18 2000-11-17 Antenna with an assembly of filtering material Expired - Lifetime EP1416586B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9914521 1999-11-18
FR9914521A FR2801428B1 (en) 1999-11-18 1999-11-18 ANTENNA PROVIDED WITH AN ASSEMBLY OF FILTER MATERIALS
EP00981432A EP1145379B1 (en) 1999-11-18 2000-11-17 Antenna provided with an assembly of filtering materials

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP00981432A Division EP1145379B1 (en) 1999-11-18 2000-11-17 Antenna provided with an assembly of filtering materials
EP00981432.8 Division 2000-11-17

Publications (2)

Publication Number Publication Date
EP1416586A1 EP1416586A1 (en) 2004-05-06
EP1416586B1 true EP1416586B1 (en) 2006-08-09

Family

ID=9552269

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00981432A Expired - Lifetime EP1145379B1 (en) 1999-11-18 2000-11-17 Antenna provided with an assembly of filtering materials
EP03027264A Expired - Lifetime EP1416586B1 (en) 1999-11-18 2000-11-17 Antenna with an assembly of filtering material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00981432A Expired - Lifetime EP1145379B1 (en) 1999-11-18 2000-11-17 Antenna provided with an assembly of filtering materials

Country Status (11)

Country Link
US (1) US6549172B1 (en)
EP (2) EP1145379B1 (en)
JP (2) JP4727884B2 (en)
CN (2) CN100424930C (en)
AT (2) ATE336091T1 (en)
AU (1) AU1868401A (en)
CA (1) CA2360432C (en)
DE (2) DE60030013T2 (en)
ES (2) ES2292491T3 (en)
FR (1) FR2801428B1 (en)
WO (1) WO2001037373A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2801428B1 (en) * 1999-11-18 2004-10-15 Centre Nat Rech Scient ANTENNA PROVIDED WITH AN ASSEMBLY OF FILTER MATERIALS
FR2830131B1 (en) * 2001-09-24 2005-06-24 Centre Nat Rech Scient BROADBAND OR MULTI-BAND ANTENNA
GB0126737D0 (en) * 2001-11-07 2002-01-02 Univ Glasgow Filter
FR2843238B1 (en) * 2002-07-31 2006-07-21 Cit Alcatel MULTISOURCES ANTENNA, IN PARTICULAR FOR A REFLECTOR SYSTEM
FR2854734B1 (en) * 2003-07-31 2006-07-21 Centre Nat Rech Scient ELECTROMAGNETIC WAVE EMISSION AND RECEPTION SYSTEM EQUIPPED WITH A BEAM MATERIAL MULTI-BEAM ANTENNA
FR2854738B1 (en) * 2003-07-31 2005-08-26 Centre Nat Rech Scient AERIAL EQUIPMENT BIP MULTI-BAND FREQUENCY
AU2003285445A1 (en) 2002-10-24 2004-05-25 Centre National D'etudes Spatiales Frequency multiband antenna with photonic bandgap material
US7242368B2 (en) 2002-10-24 2007-07-10 Centre National De La Recherche Scientifique (C.N.R.S.) Multibeam antenna with photonic bandgap material
FR2854735B1 (en) * 2003-07-31 2006-07-21 Centre Nat Rech Scient MULTI-BEAM BEEP MATERIAL ANTENNA
JP4181172B2 (en) 2002-10-24 2008-11-12 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Multi-beam antenna with photonic band gap material
FR2854737A1 (en) * 2002-10-24 2004-11-12 Centre Nat Rech Scient Earth communications geostationary satellite multiple beam antenna having focal point radiation pattern and photonic band gap material outer surface with periodicity default providing narrow pass band
FR2870642B1 (en) 2004-05-19 2008-11-14 Centre Nat Rech Scient Cnrse BIP MATERIAL ANTENNA (PHOTONIC PROHIBITED BAND) WITH A SIDE WALL SURROUNDING A AXIS
JP2007235460A (en) * 2006-02-28 2007-09-13 Mitsumi Electric Co Ltd Antenna system
JP4912716B2 (en) * 2006-03-29 2012-04-11 新光電気工業株式会社 Wiring substrate manufacturing method and semiconductor device manufacturing method
FR2906410B1 (en) 2006-09-25 2008-12-05 Cnes Epic BIP MATERIAL ANTENNA (BAND PHOTONIC PROHIBITED), SYSTEM AND METHOD USING THE ANTENNA
FR2914506B1 (en) 2007-03-29 2010-09-17 Centre Nat Rech Scient RESONATOR ANTENNA EQUIPPED WITH A FILTER COATING AND SYSTEM INCORPORATING THIS ANTENNA.
GB2456556A (en) * 2008-01-21 2009-07-22 Zarlink Semiconductor Ltd Antenna arrangement including dielectric and ferrite materials.
JP4623105B2 (en) * 2008-02-18 2011-02-02 ミツミ電機株式会社 Broadcast receiving antenna device
WO2010008258A2 (en) * 2008-07-18 2010-01-21 주식회사 이엠따블유안테나 Antenna with complex structure of periodic, grating arrangement of dielectric and magnetic substances
EP2705570B1 (en) 2011-05-06 2020-07-08 Avantix A device for receiving and/or emitting a wave, a system comprising the device, and use of such device
FR2985096B1 (en) 2011-12-21 2014-01-24 Centre Nat Rech Scient ELEMENTARY ANTENNA AND CORRESPONDING TWO-DIMENSIONAL NETWORK ANTENNA
GB2512083B (en) * 2013-03-19 2016-10-26 Mettalinovich Tishin Alexandr Antenna, array or system with a material structure surrounding at least part of an antenna element
RU2562401C2 (en) 2013-03-20 2015-09-10 Александр Метталинович Тишин Low-frequency antenna
JP5938012B2 (en) * 2013-06-21 2016-06-22 日本電信電話株式会社 Reflector and antenna device
JP7193805B2 (en) * 2019-09-03 2022-12-21 日本電信電話株式会社 antenna system
WO2024135945A1 (en) * 2022-12-20 2024-06-27 Samsung Electronics Co., Ltd. Antenna array with partially reflective depolarizing metasurface

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331073A (en) * 1965-07-01 1967-07-11 Armstrong Cork Co Antenna
GB1555756A (en) * 1975-03-18 1979-11-14 Aerialite Aerials Ltd Aerials
EP0217426A3 (en) * 1985-08-08 1988-07-13 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Microstrip antenna device
US5398037A (en) * 1988-10-07 1995-03-14 The Trustees Of The University Of Pennsylvania Radomes using chiral materials
US5187461A (en) * 1991-02-15 1993-02-16 Karl Brommer Low-loss dielectric resonator having a lattice structure with a resonant defect
US5386215A (en) * 1992-11-20 1995-01-31 Massachusetts Institute Of Technology Highly efficient planar antenna on a periodic dielectric structure
US5528254A (en) * 1994-05-31 1996-06-18 Motorola, Inc. Antenna and method for forming same
US5541613A (en) * 1994-11-03 1996-07-30 Hughes Aircraft Company, Hughes Electronics Efficient broadband antenna system using photonic bandgap crystals
WO1996029621A1 (en) * 1995-03-17 1996-09-26 Massachusetts Institute Of Technology Metallodielectric photonic crystal
US5614919A (en) * 1995-04-04 1997-03-25 Hughes Aircraft Company Wire diamond lattice structure for phased array side lobe suppression and fabrication method
US5600342A (en) * 1995-04-04 1997-02-04 Hughes Aircraft Company Diamond lattice void structure for wideband antenna systems
JP3158963B2 (en) * 1995-05-31 2001-04-23 株式会社村田製作所 Antenna duplexer
US5739796A (en) * 1995-10-30 1998-04-14 The United States Of America As Represented By The Secretary Of The Army Ultra-wideband photonic band gap crystal having selectable and controllable bad gaps and methods for achieving photonic band gaps
FR2801428B1 (en) * 1999-11-18 2004-10-15 Centre Nat Rech Scient ANTENNA PROVIDED WITH AN ASSEMBLY OF FILTER MATERIALS

Also Published As

Publication number Publication date
EP1145379A1 (en) 2001-10-17
ES2292491T3 (en) 2008-03-16
FR2801428A1 (en) 2001-05-25
ATE336091T1 (en) 2006-09-15
DE60036195D1 (en) 2007-10-11
DE60036195T2 (en) 2008-05-15
CA2360432A1 (en) 2001-05-25
CN1337078A (en) 2002-02-20
ES2269897T3 (en) 2007-04-01
JP4714417B2 (en) 2011-06-29
WO2001037373A1 (en) 2001-05-25
EP1145379B1 (en) 2007-08-29
JP2004159372A (en) 2004-06-03
CA2360432C (en) 2008-10-07
CN1203579C (en) 2005-05-25
JP2003514476A (en) 2003-04-15
US6549172B1 (en) 2003-04-15
FR2801428B1 (en) 2004-10-15
DE60030013T2 (en) 2007-02-22
JP4727884B2 (en) 2011-07-20
EP1416586A1 (en) 2004-05-06
CN1519988A (en) 2004-08-11
ATE371964T1 (en) 2007-09-15
AU1868401A (en) 2001-05-30
CN100424930C (en) 2008-10-08
DE60030013D1 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
EP1416586B1 (en) Antenna with an assembly of filtering material
EP3547450B1 (en) Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity
EP0487387B1 (en) Low profile microwave slot antenna
EP0481417B1 (en) Device for feeding an antenna element radiating two orthogonal polarisations
EP2622685B1 (en) Broadband antenna reflector for a circularly-polarized planar wire antenna and method for producing said antenna reflector
EP1325537B1 (en) Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna
EP0667984B1 (en) Monopolar wire-plate antenna
CA2019181A1 (en) Diplexing radiating element
FR2692404A1 (en) Basic pattern of broadband antenna and antenna-network with it.
EP1568104B1 (en) Multiple-beam antenna with photonic bandgap material
WO2014202498A1 (en) Source for parabolic antenna
CA2460820C (en) Broadband or multiband antenna
EP1554777B1 (en) Multibeam antenna with photonic bandgap material
FR2953652A1 (en) Orthogonal double polarization multisector antenna system for e.g. multiple input and multiple output system, has group of horizontal polarization vivaldi antennas formed in sector and excited by corresponding set of power supply lines
EP1551078A1 (en) Omnidirectional antenna with steerable diagram
EP0769824B1 (en) Electromagnetic lens of the type of a circuit printed on a suspended substrate
EP0860894B1 (en) Miniature resonant antenna in the form of annular microstrips
EP0015804A2 (en) Polarizing device and microwave antenna comprising same
CA2448636C (en) Antenna provided with an assembly of filtering materials
FR2538959A1 (en) Two-band microwave lens, its method of manufacture and two-band tracking radar antenna
EP0088681B1 (en) Dual-reflector antenna with incorporated polarizer
EP1825566B1 (en) Improvement of active photonic forbidden band antennae
EP0623970A1 (en) Circular or elliptical sectionned antenna, fixed or rotating, fed by single or multiple microwave generators producing multipolarized waves
FR2854735A1 (en) Earth communications geostationary satellite multiple beam antenna having focal point radiation pattern and photonic band gap material outer surface with periodicity default providing narrow pass band
FR2854734A1 (en) Earth communications geostationary satellite multiple beam antenna having focal point radiation pattern and photonic band gap material outer surface with periodicity default providing narrow pass band

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031128

AC Divisional application: reference to earlier application

Ref document number: 1145379

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20050630

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1145379

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060809

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REF Corresponds to:

Ref document number: 60030013

Country of ref document: DE

Date of ref document: 20060921

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070109

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2269897

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20181015

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181015

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181112

Year of fee payment: 19

Ref country code: SE

Payment date: 20181115

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181120

Year of fee payment: 19

Ref country code: BE

Payment date: 20181126

Year of fee payment: 19

Ref country code: ES

Payment date: 20181220

Year of fee payment: 19

Ref country code: FR

Payment date: 20181129

Year of fee payment: 19

Ref country code: GB

Payment date: 20181116

Year of fee payment: 19

Ref country code: IT

Payment date: 20181113

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60030013

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20191201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191117

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191118

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191117

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191117

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191118