EP1825566B1 - Improvement of active photonic forbidden band antennae - Google Patents

Improvement of active photonic forbidden band antennae Download PDF

Info

Publication number
EP1825566B1
EP1825566B1 EP05819420A EP05819420A EP1825566B1 EP 1825566 B1 EP1825566 B1 EP 1825566B1 EP 05819420 A EP05819420 A EP 05819420A EP 05819420 A EP05819420 A EP 05819420A EP 1825566 B1 EP1825566 B1 EP 1825566B1
Authority
EP
European Patent Office
Prior art keywords
rods
discontinuous
antenna
rod
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05819420A
Other languages
German (de)
French (fr)
Other versions
EP1825566A1 (en
Inventor
Nicolas Boisbouvier
Ali Louzir
Françoise Le Bolzer
Anne-Claude Tarot
Kouroch Mahdjoubi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP1825566A1 publication Critical patent/EP1825566A1/en
Application granted granted Critical
Publication of EP1825566B1 publication Critical patent/EP1825566B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/0066Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices being reconfigurable, tunable or controllable, e.g. using switches

Definitions

  • the present invention relates to active photonic bandgap antennas.
  • Photonic bandgap structures are known by the abbreviation BIP, generally by the term "Photonic Band Gap Structure” or PBG structure in English, for periodic structures that prohibit the propagation of a wave for certain frequency bands . These structures were first used in the optical field, but in recent years their application has spread to other frequency ranges. Photonic bandgap structures are used in particular in microwave devices such as filters, antennas or the like.
  • metal structures that use a periodic distribution of metal elements, others a periodic distribution of dielectric elements but also metallo-dielectric structures.
  • the present invention relates to a photonic band-gap structure using metal elements, more particularly parallel rods which are perfectly conducting and arranged periodically, some of the rods being formed of sections connected by a switching element which, depending on its state, makes the stem continuous or discontinuous.
  • an antenna consisting of a source placed in the center of a photonic bandgap structure composed of metal rods formed of sections of rods interconnected by a PIN diode for switching from the continuous state to the discontinuous state. This is called an active photonic band gap antenna.
  • the present invention relates to an improvement to an active photonic band gap antenna (BIP) which is carried out with metal rods of finite length, some of which are formed of sections interconnected by a switching element which makes it possible to make the rod continuous or discontinuous.
  • BIP active photonic band gap antenna
  • the present invention relates to an active photonic band gap antenna (BIP) having, in a plane of x, y directions, a radiating source and a photonic band gap structure constituted by parallel metal rods, perpendicular to said plane, the diameter rods. d repeating n x times with a period a x in the x direction and n y times with a period y in the y direction, the rods being constituted by continuous rods and discontinuous rods formed by at least 2 sections connected by a switching element making the rod continuous or discontinuous, characterized in that one of the rods of at least one row of rods viewed from the radiating source is a discontinuous rod.
  • BIP active photonic band gap antenna
  • the discontinuous rod comprises a number of sections t such that t ⁇ 2.
  • the length L of a section is equal to ⁇ 0 / 2 where ⁇ 0 is the wavelength at the operating frequency of the antenna.
  • the discontinuous rod corresponds to the outer stem of a row of stems seen by the source.
  • the source is a monopole mounted on a ground plane on which the rods are also mounted, a DRA (for Dielectric Resonator Antenna) mounted on a ground plane, a dipole or the like.
  • the rods are made of a metallic material such as copper, silver, aluminum or the like.
  • the switching element is selected from PIN diodes or MEMs for MicroElectroMechanical Systems
  • the BIPM period a is such that the plane wave characterization has its first propagation peak at the above frequency. His radiation pattern as depicted on the figure 1 , is then rosette-shaped with four main lobes in the directions (0 °, 90 °, 180 ° and 270 °).
  • This antenna has preferred directions of radiation when the BIPM structure traversed in this direction is busy. On the contrary, this antenna has radiation minima when the crossed BIPM structure is blocking.
  • This blocking or passing state is deduced from an ancillary simulation called plane wave characterization known to those skilled in the art.
  • the characterization under wave consists of illuminating metallic rods of infinite dimensions along the Z axis under plane wave.
  • a BIPM structure characterized by a plane wave has a bandwidth at this frequency.
  • this operation is obtained when a height of metal rods is respected, namely H> 1.5 ⁇ 0 .
  • the first metal rod 3 of two contiguous rows of metal rods seen from the source 1 is a discontinuous rod according to the direction explained below, namely a rod formed of at least 2 sections connected by a switching element which can be on or off such as a PIN diode or a MEMS-based switch (Micro Electro Mechanical System).
  • a switching element which can be on or off
  • MEMS-based switch Micro Electro Mechanical System
  • discontinuous rods 3 are respectively positioned according to the 4 directions surrounding the source 1. In this case, it obtains four possible configurations for the radiation pattern, as shown in the figure.
  • the discontinuous rods 3 are, for the same direction, positioned in three different arrangements, namely respectively on the first line seen by the source 1, the second line and the third line or external line.
  • This last solution facilitates the realization of the antenna because the control due to the switching element such as a PIN diode is made easier by being performed on the outside of the BIPM structure.
  • the associated radiation patterns are comparable to prohibit the energy to propagate in the direction considered.
  • the solution of the present invention makes it possible to control the radiation pattern with minimal cost since only one rod per row is a discontinuous rod whose structure is more expensive due to the use of switching elements.
  • a BIPM antenna with 3 discontinuous rods 3 is shown surrounding source 1 on three sides, the other rods being continuous rods 2. With this structure, we obtain the radiation diagram shown on FIG. figure 6 with 12 dB directivities.

Abstract

The invention relates to an active photonic forbidden band antenna. The photonic forbidden band structure consists of metallic rods (2,3), some of which are discontinued (3), i.e. they consist of sections of rods connected by a switching element such as a PIN diode. According to the invention, only one rod (3) in a row of rods, as seen from the radiating source (1), is discontinued. The antenna diagram can be economically controlled.

Description

La présente invention concerne les antennes à bandes interdites photoniques actives.The present invention relates to active photonic bandgap antennas.

Les structures à bandes interdites photoniques sont connues sous l'abréviation BIP, de manière générale sous le terme « Photonic Band Gap Structure ou PBG structure » en langue anglaise, pour des structures périodiques qui interdisent la propagation d'une onde pour certaines bandes de fréquences. Ces structures ont tout d'abord été utilisées dans le domaine optique mais, depuis quelques années, leur application s'est étendue à d'autres gammes de fréquences. Les structures à bandes interdites photoniques sont utilisées notamment dans des dispositifs micro-ondes tels que des filtres, des antennes ou similaire.Photonic bandgap structures are known by the abbreviation BIP, generally by the term "Photonic Band Gap Structure" or PBG structure in English, for periodic structures that prohibit the propagation of a wave for certain frequency bands . These structures were first used in the optical field, but in recent years their application has spread to other frequency ranges. Photonic bandgap structures are used in particular in microwave devices such as filters, antennas or the like.

Parmi les structures à bandes interdites photoniques, on trouve des structures métalliques qui utilisent une distribution périodique d'éléments métalliques, d'autres une distribution périodique d'éléments diélectriques mais aussi des structures métallo-diélectriques.Among the photonic band gap structures, there are metal structures that use a periodic distribution of metal elements, others a periodic distribution of dielectric elements but also metallo-dielectric structures.

La présente invention se rapporte à une structure à bandes interdites photoniques utilisant des éléments métalliques, plus particulièrement des tiges parallèles parfaitement conductrices et disposées périodiquement, certaines des tiges étant formées de tronçons connectés par un élément de commutation qui, en fonction de son état, rend la tige continue ou discontinue.The present invention relates to a photonic band-gap structure using metal elements, more particularly parallel rods which are perfectly conducting and arranged periodically, some of the rods being formed of sections connected by a switching element which, depending on its state, makes the stem continuous or discontinuous.

Des antennes à bandes interdites photoniques à base d'éléments métalliques tels que des tiges métalliques parallèles ont déjà été étudiées. Ainsi, l'article publié dans la revue Chin. Phys.Lett. Vol. 19, n° 6 (2002) 804 intitulé « Metal Photonic Band Gap Resonant Antenna with High Directivity and High Radiation Résistance », de Lin Qien, FU-Jian, HE Sai-Ling, Zhang Jian-Wu étudie une structure résonnante à bandes interdites photoniques métallique (MBPG) formée de tiges métalliques parallèles infiniment longues selon la direction Z.Photonic bandgap antennas based on metal elements such as parallel metal rods have already been studied. So, the article published in the journal Chin. Phys.Lett. Flight. 19, No. 6 (2002) 804 titled "Metal Photonic Band Gap Resonant Antenna with High Directivity and High Radiation Resistance", Lin Qien, FU-Jian, HE Sai-Ling, Zhang Jian-Wu studies a resonant structure with photonic band gap (MBPG) formed of infinitely long parallel metal rods in the Z direction.

Il est aussi décrit dans un article intitulé « A Beam Steering Antenna Controlled with a EBG Material » au nom de P Ratajczak, P. Y. Garel, P. Brachat paru dans IEEE AP-S 2004 , une antenne constituée d'une source placée au centre d'une structure à bandes interdites photoniques composée de tiges métalliques formées de tronçons de tiges interconnectés par une diode PIN permettant de passer de l'état continu à l'état discontinu. On parle alors d'antenne à bandes interdites photoniques actives.It is also described in an article entitled "A Beam Steering Antenna Controlled with a Material EBG" on behalf of P Ratajczak, PY Garel, P. Brachat published in IEEE AP-S 2004 , an antenna consisting of a source placed in the center of a photonic bandgap structure composed of metal rods formed of sections of rods interconnected by a PIN diode for switching from the continuous state to the discontinuous state. This is called an active photonic band gap antenna.

La présente invention concerne un perfectionnement à une antenne à bandes interdites photoniques (BIP) actives qui est réalisée avec des tiges métalliques de longueur finie, dont certaines sont formées de tronçons interconnectés par un élément de commutation qui permet de rendre la tige continue ou discontinue. Ainsi, différents diagrammes de rayonnement peuvent être obtenus en fonction de l'emplacement des tiges discontinues.The present invention relates to an improvement to an active photonic band gap antenna (BIP) which is carried out with metal rods of finite length, some of which are formed of sections interconnected by a switching element which makes it possible to make the rod continuous or discontinuous. Thus, different radiation patterns can be obtained depending on the location of the discontinuous stems.

La présente invention concerne une antenne à bandes interdites photoniques (BIP) active comportant, selon un plan de directions x, y, une source rayonnante et une structure à bandes interdites photoniques constituée par des tiges métalliques parallèles, perpendiculaires audit plan, les tiges de diamètre d se répétant nx fois avec une période ax dans la direction x et ny fois avec une période ay dans la direction y, les tiges étant constituées par des tiges continues et des tiges discontinues formées par au moins 2 tronçons reliés par un élément de commutation rendant la tige continue ou discontinue, caractérisée en ce qu'une des tiges d'au moins une rangée de tiges vue à partir de la source rayonnante est une tige discontinue.The present invention relates to an active photonic band gap antenna (BIP) having, in a plane of x, y directions, a radiating source and a photonic band gap structure constituted by parallel metal rods, perpendicular to said plane, the diameter rods. d repeating n x times with a period a x in the x direction and n y times with a period y in the y direction, the rods being constituted by continuous rods and discontinuous rods formed by at least 2 sections connected by a switching element making the rod continuous or discontinuous, characterized in that one of the rods of at least one row of rods viewed from the radiating source is a discontinuous rod.

Selon un mode de réalisation, la tige discontinue comporte un nombre de tronçons t tel que t ≥ 2. De préférence, la longueur L d'un tronçon est égale à λ0/2 où λ0 est la longueur d'onde à la fréquence de fonctionnement de l'antenne. Ainsi, la hauteur totale d'une tige discontinue est donnée par la formule H = (ne+1) L+nee, dans laquelle : ne correspond au nombre de discontinuités, L correspond à la longueur d'un tronçon et e à la taille de l'élément de commutation.According to one embodiment, the discontinuous rod comprises a number of sections t such that t ≥ 2. Preferably, the length L of a section is equal to λ0 / 2 where λ0 is the wavelength at the operating frequency of the antenna. Thus, the total height of a discontinuous stem is given by the formula H = (n e + 1) L + n e e, in which: n e corresponds at the number of discontinuities, L corresponds to the length of a section and e to the size of the switching element.

Selon une autre caractéristique de l'invention, la tige discontinue correspond à la tige externe d'une rangée de tiges vue par la source.According to another characteristic of the invention, the discontinuous rod corresponds to the outer stem of a row of stems seen by the source.

Selon un mode de réalisation, la source est un monopôle monté sur un plan de masse sur lequel sont aussi montées les tiges, un DRA (pour Dielectric Resonator Antenna) monté sur un plan de masse, un dipôle ou similaire. Les tiges sont en un matériau métallique tel que du cuivre, de l'argent, de l'aluminium ou similaire. L'élément de commutation est choisi parmi les diodes PIN ou les MEMs pour MicroElectroMechanical systèmesAccording to one embodiment, the source is a monopole mounted on a ground plane on which the rods are also mounted, a DRA (for Dielectric Resonator Antenna) mounted on a ground plane, a dipole or the like. The rods are made of a metallic material such as copper, silver, aluminum or the like. The switching element is selected from PIN diodes or MEMs for MicroElectroMechanical Systems

D'autres avantages et caractéristiques de la présente invention apparaîtront à la lecture de la description faite avec référence aux dessins ci-annexés dans lesquels :

  • Fig :1 est une vue très schématique d'une antenne à bandes interdites photoniques selon l'art antérieur avec son diagramme de rayonnement en 3D,
  • Fig : 2 est une vue identique à celle de figure 1 dans le cas d'une antenne à bandes interdites photoniques selon un mode de réalisation de la présente invention,
  • Fig : 3 est une vue en perspective d'une tige discontinue utilisée dans la présente invention,
  • Fig : 4 représente schématiquement les quatre directions possibles pour les tiges discontinues ainsi que les diagrammes de rayonnement correspondants,
  • Fig : 5 représente schématiquement les différents emplacements possibles pour les tiges discontinues selon une direction donnée ainsi que les diagrammes de rayonnement correspondants et
  • Fig : 6 représente schématiquement une variante de réalisation de la présente invention.
Other advantages and features of the present invention will appear on reading the description made with reference to the accompanying drawings in which:
  • Fig: 1 is a very schematic view of a photonic band gap antenna according to the prior art with its 3D radiation pattern,
  • Fig: 2 is a view identical to that of figure 1 in the case of a photonic bandgap antenna according to an embodiment of the present invention,
  • Fig: 3 is a perspective view of a discontinuous rod used in the present invention,
  • Fig: 4 schematically represents the four possible directions for discontinuous stems as well as the corresponding radiation patterns,
  • Fig: 5 schematically represents the different possible locations for discontinuous stems in a given direction as well as the corresponding radiation patterns and
  • Fig: 6 schematically represents an alternative embodiment of the present invention.

Pour expliquer le concept de la présente invention, l'on décrira tout d'abord, avec référence à la figure 1, une antenne à bandes interdites photoniques selon l'art antérieur. Cette antenne est constituée d'une source rayonnante formée par un dipôle 1 dimensionné pour fonctionner à une fréquence f0=5.25GHz et positionné au centre d'une structure à bandes interdites photoniques métalliques ou BIPM de forme carrée composée de 6x6 tiges 2 métalliques. La période a du BIPM est telle que la caractérisation sous onde plane présente son premier pic de propagation à la fréquence ci-dessus. Son diagramme de rayonnement tel que représenté sur la figure 1,est alors en forme de rosace avec quatre lobes principaux dans les directions (0°, 90°, 180° et 270°). Cette antenne présente des directions privilégiées de rayonnement lorsque la structure BIPM traversée dans cette direction est passante. Au contraire, cette antenne présente des minima de rayonnement lorsque la structure BIPM traversée est bloquante. Cet état bloquant ou passant se déduit d'une simulation annexe appelée caractérisation sous onde plane connue de l'homme de l'art. La caractérisation sous onde consiste à illuminer des tiges métalliques de dimensions infinies suivant l'axe Z sous onde plane.To explain the concept of the present invention, we will first describe, with reference to the figure 1 , an antenna with forbidden bands photonics according to the prior art. This antenna consists of a radiating source formed by a dipole 1 sized to operate at a frequency f 0 = 5.25GHz and positioned in the center of a metal photonic band gap structure or BIPM of square shape composed of 6x6 metal rods 2. The BIPM period a is such that the plane wave characterization has its first propagation peak at the above frequency. His radiation pattern as depicted on the figure 1 , is then rosette-shaped with four main lobes in the directions (0 °, 90 °, 180 ° and 270 °). This antenna has preferred directions of radiation when the BIPM structure traversed in this direction is busy. On the contrary, this antenna has radiation minima when the crossed BIPM structure is blocking. This blocking or passing state is deduced from an ancillary simulation called plane wave characterization known to those skilled in the art. The characterization under wave consists of illuminating metallic rods of infinite dimensions along the Z axis under plane wave.

Ainsi, une source dimensionnée à f=5.25GHz (dipôle filaire) au centre d'une structure BIPM de 6x6 tiges de période a=17.5mm présente un diagramme en forme de rosace avec des directions privilégiées de rayonnement dans le plan Θ=90° pour (0°, 90°, 180° et 270°). Cela s'explique par le fait qu'une structure BIPM caractérisée sous onde plane présente une bande passante à cette fréquence. Au contraire, dans les directions (45°, 135°, 225° et 315°), le diagramme de rayonnement de l'antenne présente des minima de rayonnement car la caractérisation sous onde plane à cette fréquence pour une période vue de a'=a√2= 24.8mm présente une bande interdite. Ceci explique le diagramme de rayonnement en forme de rosace. Par ailleurs, ce fonctionnement est obtenu lorsqu'une hauteur de tiges métalliques est respectée, à savoir H> 1.5λ0.Thus, a source sized at f = 5.25GHz (wired dipole) at the center of a BIPM structure of 6x6 rods of period a = 17.5mm presents a rosette-shaped diagram with preferred directions of radiation in the plane Θ = 90 ° for (0 °, 90 °, 180 ° and 270 °). This is explained by the fact that a BIPM structure characterized by a plane wave has a bandwidth at this frequency. On the contrary, in the directions (45 °, 135 °, 225 ° and 315 °), the radiation pattern of the antenna has radiation minima because the characterization under a plane wave at this frequency for a period viewed from a '= a√2 = 24.8mm has a band gap. This explains the rosette-shaped radiation pattern. Moreover, this operation is obtained when a height of metal rods is respected, namely H> 1.5λ 0 .

Sur la figure 2, on a représenté une antenne BIPM active conforme à la présente invention. Dans ce cas, la première tige métallique 3 de deux rangées contiguës de tiges métalliques vues à partir de la source 1 est une tige discontinue selon le sens expliqué ci-après, à savoir une tige formée d'au moins 2 tronçons reliés par un élément de commutation qui peut être passant ou ouvert tel qu'une diode PIN ou un commutateur à base de MEMS (Micro Electro Mechanical System). L'énergie rayonnée par la source 1 au milieu de la structure BIPM active ne se propage pas dans la direction où se trouvent les 2 tiges discontinues, la structure BIPM étant bloquante, et l'on obtient un diagramme de rayonnement tel que représenté sur la figure 2 avec une direction privilégiée de rayonnement opposée à la direction dans laquelle se trouvent les tiges discontinues. Ce fonctionnement dual entre les tiges continues et discontinues est obtenu lorsque la longueur des tronçons L des tiges métalliques formant les tiges discontinues est de l'ordre de la demi-longueur d'onde. Ainsi pour une fréquence de fonctionnement de f0=5.25GHz, L=28.6mm.On the figure 2 , there is shown an active BIPM antenna according to the present invention. In this case, the first metal rod 3 of two contiguous rows of metal rods seen from the source 1 is a discontinuous rod according to the direction explained below, namely a rod formed of at least 2 sections connected by a switching element which can be on or off such as a PIN diode or a MEMS-based switch (Micro Electro Mechanical System). The energy radiated by the source 1 in the middle of the active BIPM structure does not propagate in the direction where the two discontinuous rods are located, the BIPM structure being blocking, and one obtains a radiation pattern as shown in FIG. figure 2 with a preferred direction of radiation opposite to the direction in which the discontinuous stems are. This dual operation between the continuous and discontinuous rods is obtained when the length of the sections L of the metal rods forming the discontinuous rods is of the order of the half-wavelength. Thus for an operating frequency of f 0 = 5.25GHz, L = 28.6mm.

On expliquera ci-après avec référence à la figure 3, le dimensionnement d'une tige discontinue. Plus particulièrement, la figure 3 représente une tige discontinue et la relation permettant de lier « H », la hauteur totale de la tige discontinue aux paramètres géométriques de la tige discontinue. Ces paramètres sont « L », la longueur des tronçons métalliques, « ne », le nombre des discontinuités et « e », la taille de la discontinuité. On obtient donc l'équation : H = n e + 1 x L + n e x e

Figure imgb0001
We will explain below with reference to the figure 3 , the dimensioning of a discontinuous rod. In particular, the figure 3 represents a discontinuous stem and the relation allowing to link "H", the total height of the discontinuous stem to the geometrical parameters of the discontinuous stem. These parameters are "L", the length of the metal sections, "ne", the number of discontinuities and "e", the size of the discontinuity. So we get the equation: H = not e + 1 x L + not e xe
Figure imgb0001

Ainsi pour la topologie d'antenne présentée comme exemple, la hauteur des tiges métalliques est égale à H=8.98cm, avec ne = 2 (2 discontinuités par tige), e=2mm (correspondant à la taille d'une diode) et L=28.6cm (tel que mentionné ci-dessus pour un fonctionnement à 5.25GHz).Thus for the antenna topology presented as an example, the height of the metal rods is equal to H = 8.98 cm, with n = 2 (2 discontinuities per rod), e = 2 mm (corresponding to the size of a diode) and L = 28.6cm (as mentioned above for 5.25GHz operation).

On décrira maintenant avec référence aux figures 4 à 6, différents modes de réalisation de la présente invention. Ainsi sur la figure 4, deux tiges discontinues 3 sont positionnées respectivement selon les 4 directions entourant la source 1.Dans ce cas, l'obtient quatre configurations possibles pour le diagramme de rayonnement, comme représenté sur la figure. Sur la figure 5, les tiges discontinues 3 sont, pour une même direction, positionnées selon trois agencements différents, à savoir respectivement sur la première ligne vue par la source 1, sur la seconde ligne et sur la troisième ligne ou ligne externe. Cette dernière solution facilite la réalisation de l'antenne car la commande due l'élément de commutation tel qu'une diode PIN est rendue plus facile en étant réalisée sur l'extérieur de la structure BIPM. Pour comparaison, l'on a aussi représenté une solution avec 2 rangées complètes de tiges discontinues 3. Comme représenté sur la figure, les diagrammes de rayonnement associés sont comparables permettant d'interdire à l'énergie de se propager dans la direction considérée. Ainsi, la solution de la présente invention permet de contrôler le diagramme de rayonnement avec un coût minime puisqu'une seule tige par rangée est une tige discontinue dont la structure est plus coûteuse du fait de l'utilisation d'éléments de commutation. Sur la figure 6, on a représenté une antenne BIPM avec 3 tiges discontinues 3 entourant la source 1 sur trois cotés, les autres tiges étant des tiges continues 2. Avec cette structure, l'on obtient le diagramme de rayonnement représenté sur la figure 6 avec des directivités de 12 dB.We will now describe with reference to Figures 4 to 6 various embodiments of the present invention. So on the figure 4 , two discontinuous rods 3 are respectively positioned according to the 4 directions surrounding the source 1. In this case, it obtains four possible configurations for the radiation pattern, as shown in the figure. On the figure 5 , the discontinuous rods 3 are, for the same direction, positioned in three different arrangements, namely respectively on the first line seen by the source 1, the second line and the third line or external line. This last solution facilitates the realization of the antenna because the control due to the switching element such as a PIN diode is made easier by being performed on the outside of the BIPM structure. For comparison, there is also shown a solution with 2 complete rows of discontinuous rods 3. As shown in the figure, the associated radiation patterns are comparable to prohibit the energy to propagate in the direction considered. Thus, the solution of the present invention makes it possible to control the radiation pattern with minimal cost since only one rod per row is a discontinuous rod whose structure is more expensive due to the use of switching elements. On the figure 6 a BIPM antenna with 3 discontinuous rods 3 is shown surrounding source 1 on three sides, the other rods being continuous rods 2. With this structure, we obtain the radiation diagram shown on FIG. figure 6 with 12 dB directivities.

Ainsi en n'utilisant qu'un nombre restreint de tiges discontinues, il est possible de contrôler le diagramme de rayonnement d'une antenne à bandes interdites photoniques actives.Thus, by using only a small number of discontinuous rods, it is possible to control the radiation pattern of an active photonic band gap antenna.

Claims (6)

  1. An active photonic band gap antenna (PBG) comprising, according to a plane of directions x, y, a radiating source and a photonic band gap structure constituted by parallel metal rods, perpendicular to the said plane, the rods of diameter d repeating themselves nx times with a period ax in the direction x and ny times with a period ay in the direction y, the rods being constituted by continuous rods and discontinuous rods formed by at least 2 sections connected by a switching element making the rod continuous or discontinuous, characterized in that one of the rods of at least one row of rods seen from the radiating source is a discontinuous rod.
  2. Antenna according to claim 1, characterized in that the discontinuous rod comprises a number of sections t such that t ≥ 2.
  3. Antenna according to any one of the claims 1 or 2, characterized in that the length L of a section is equal to λ0/2 where λ0 is the wavelength at the operating frequency of the antenna.
  4. Antenna according to any one of claims 1 to 3, characterized in that the total height of a discontinuous rod is given by the formula H = (ne+1) x L + ne x e, wherein: ne corresponds to the number of discontinuities, L corresponds to the length of a section and e to the size of the switching element.
  5. Antenna according to any one of claims 1 to 4, characterized in that the discontinuous rod corresponds to the external rod of a row of rods seen from the source.
  6. Antenna according to any one of claims 1 to 5, characterized in that the source is a monopole mounted on a ground plane on which the rods are also mounted, a DRA (Dielectric Resonator Antenna) mounted on a ground plane or a dipole.
EP05819420A 2004-12-14 2005-11-24 Improvement of active photonic forbidden band antennae Expired - Fee Related EP1825566B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0452965A FR2879357A1 (en) 2004-12-14 2004-12-14 IMPROVEMENT OF PHOTONIC PROHIBITED BAND ANTENNAS
PCT/FR2005/050986 WO2006064141A1 (en) 2004-12-14 2005-11-24 Improvement of active photonic forbidden band antennae

Publications (2)

Publication Number Publication Date
EP1825566A1 EP1825566A1 (en) 2007-08-29
EP1825566B1 true EP1825566B1 (en) 2012-06-06

Family

ID=34955399

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05819420A Expired - Fee Related EP1825566B1 (en) 2004-12-14 2005-11-24 Improvement of active photonic forbidden band antennae

Country Status (7)

Country Link
US (1) US7864132B2 (en)
EP (1) EP1825566B1 (en)
JP (1) JP2008523753A (en)
CN (1) CN101069326A (en)
BR (1) BRPI0518843A2 (en)
FR (1) FR2879357A1 (en)
WO (1) WO2006064141A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104518274B (en) * 2013-09-26 2017-11-07 北京壹人壹本信息科技有限公司 Antenna, method for manufacturing antenna and mobile terminal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728805A (en) * 1986-11-10 1988-03-01 California Microwave, Inc. Synaptic radio frequency interactive systems with photoresponsive switching
US5293172A (en) * 1992-09-28 1994-03-08 The Boeing Company Reconfiguration of passive elements in an array antenna for controlling antenna performance
JP3491682B2 (en) * 1999-12-22 2004-01-26 日本電気株式会社 Linear antenna
US6859304B2 (en) * 2002-08-09 2005-02-22 Energy Conversion Devices, Inc. Photonic crystals and devices having tunability and switchability

Also Published As

Publication number Publication date
US7864132B2 (en) 2011-01-04
WO2006064141A1 (en) 2006-06-22
FR2879357A1 (en) 2006-06-16
BRPI0518843A2 (en) 2008-12-09
US20090096695A1 (en) 2009-04-16
JP2008523753A (en) 2008-07-03
CN101069326A (en) 2007-11-07
EP1825566A1 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
EP2175523B1 (en) Reflecting surface array and antenna comprising such a reflecting surface
EP1416586B1 (en) Antenna with an assembly of filtering material
EP2564466B1 (en) Compact radiating element having resonant cavities
EP2194602B1 (en) Antenna with shared sources and design process for a multi-beam antenna with shared sources
FR2863109A1 (en) CONFIGURABLE AND ORIENTABLE SENDING / RECEIVING RADIATION DIAGRAM ANTENNA, CORRESPONDING BASE STATION
EP2079131A1 (en) Improvement of planar antennas comprising at least one radiating element such as a slot with longitudinal radiation
EP1979987B1 (en) Circularly or linearly polarized antenna
EP3258543A1 (en) Compact wifi antenna with a metamaterial reflector
WO2016097362A1 (en) Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire
EP1551078B1 (en) Omnidirectional antenna with steerable diagram
EP1825566B1 (en) Improvement of active photonic forbidden band antennae
EP1191630A1 (en) High frequency diverging dome shaped lens and antenna incorporating such lens
CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
CA2706761C (en) Multi-frequency flexible coverage reflector antenna and satellite equipped with such an antenna
FR3046301A1 (en) ANTENNA SYSTEM
EP1825565B1 (en) Optimisation of forbidden photon band antennae
CA2448636C (en) Antenna provided with an assembly of filtering materials
EP0534862A1 (en) An electronic scanning antenna
FR2903232A1 (en) SYMMETRIC ANTENNA IN MICRO-RIBBON TECHNOLOGY.
GB2337362A (en) An optical waveguide
FR2899727A1 (en) Hyper frequency electronically scanned antenna e.g. wireless point to point communication antenna, feeding splitter for masthead of ship, has body delimiting cavity with higher dimension, and absorbing unit placed at upper end wall of body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LE BOLZER, FRANCOISE

Inventor name: MAHDJOUBI, KOUROCH

Inventor name: TAROT, ANNE-CLAUDE

Inventor name: LOUZIR, ALI

Inventor name: BOISBOUVIER, NICOLAS

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20120612

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005034584

Country of ref document: DE

Effective date: 20120802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005034584

Country of ref document: DE

Effective date: 20130307

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151126

Year of fee payment: 11

Ref country code: GB

Payment date: 20151130

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151120

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005034584

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161124

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161124