WO2010008258A2 - Antenna with complex structure of periodic, grating arrangement of dielectric and magnetic substances - Google Patents

Antenna with complex structure of periodic, grating arrangement of dielectric and magnetic substances Download PDF

Info

Publication number
WO2010008258A2
WO2010008258A2 PCT/KR2009/004014 KR2009004014W WO2010008258A2 WO 2010008258 A2 WO2010008258 A2 WO 2010008258A2 KR 2009004014 W KR2009004014 W KR 2009004014W WO 2010008258 A2 WO2010008258 A2 WO 2010008258A2
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
antenna
magnetic material
substrate
magnetic
Prior art date
Application number
PCT/KR2009/004014
Other languages
French (fr)
Korean (ko)
Other versions
WO2010008258A3 (en
Inventor
유병훈
성원모
지정근
Original Assignee
주식회사 이엠따블유안테나
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080069886A external-priority patent/KR100961190B1/en
Priority claimed from KR1020080069887A external-priority patent/KR100961213B1/en
Application filed by 주식회사 이엠따블유안테나 filed Critical 주식회사 이엠따블유안테나
Priority to JP2011518663A priority Critical patent/JP5221758B2/en
Priority to EP09798161.7A priority patent/EP2325943A4/en
Priority to CN2009801281599A priority patent/CN102113173A/en
Priority to US13/054,787 priority patent/US20110187621A1/en
Publication of WO2010008258A2 publication Critical patent/WO2010008258A2/en
Publication of WO2010008258A3 publication Critical patent/WO2010008258A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way

Definitions

  • the present invention provides a composite structure in which a dielectric having a low dielectric constant and a magnetic material having a high permeability are arranged in a lattice periodic structure to improve antenna gain, efficiency, and bandwidth while maintaining miniaturization, which is an advantage of an antenna using a dielectric having a high dielectric constant. It relates to the antenna used.
  • the frequency bands adopted for these DMBs are 174-216 MHz, which are mainly low frequency bands such as UHF and VHF, which resulted in limitations on the development of several mobile terminals.
  • the most representative problem is the size of the antenna that is basically used in the mobile terminal.
  • the size of the antenna increases as the frequency used decreases. Fabricating antennas for the UHF or VHF bands typically requires tens of centimeters (cm) in length. However, such antennas are not suitable for use in portable terminal devices. Accordingly, research and development to reduce the size of the antenna for the portable terminal is also in full swing.
  • the monopole whip antenna or helical antenna which has been widely used in the past, has a structure that protrudes to the outside of the mobile terminal. Therefore, the use of this type of antenna has recently been avoided.
  • the built-in antenna which does not protrude, has attracted a lot of attention and various portable terminals applying the built-in antenna have emerged.
  • PCB antenna a printed circuit board antenna
  • the characteristics of the PCB antenna are mainly used in the form of a flat antenna, it is easier to implement the circuit than the coil-shaped antenna, low cost and can solve the process problems.
  • FIG. 1 is a (a) plan view showing a PCB antenna which is a conventional built-in antenna and (b) cross-sectional view taken along line II ′ of the plan view.
  • a conventional PCB antenna has an antenna pattern serving as a printed circuit board (PCB) 10 on which components of a mobile terminal are mounted and a radiator patterned in a predetermined shape on the printed circuit board 10 ( 20).
  • PCB printed circuit board
  • the material widely used for PCB is FR4, and the antenna pattern is printed in copper (Cu).
  • the size of the built-in antenna is also very large because the frequency and antenna size do not deviate from the correlation.
  • these built-in antennas are also a significant limiting factor to limit the miniaturization of portable terminals.
  • the DMB portable terminal is operated in a low frequency band such as UHF or VHF of 174 ⁇ 216 MHz, there are many difficulties in using the conventional PCB antenna as shown in FIG.
  • antennas using high dielectric materials are not suitable for various digital multimedia broadcasting systems including terrestrial DMB, which require wide bandwidths and gains. It is required.
  • the present invention devised to solve the above problems grating a dielectric having a low dielectric constant and a magnetic material having a high permeability in order to improve the antenna gain, efficiency and bandwidth while maintaining the miniaturization, which is an advantage of the antenna using a dielectric having a high dielectric constant.
  • An object of the present invention is to provide an antenna using a composite structure arranged in a periodic structure.
  • the present invention to achieve the above object, a substrate; And a radiation patch formed on the substrate, wherein the substrate is formed of a plurality of rows, each row of which is arranged with alternating rod-shaped dielectrics and magnetic bodies, and the dielectrics and magnetic bodies of each row are alternately disposed with each other. And an antenna using a complex structure having a lattice periodic structure of a dielectric material and a magnetic material, wherein the major axes of the magnetic material are formed to be perpendicular to each other.
  • the present invention to achieve the above object, a substrate; And a radiation patch formed on the substrate, wherein the substrate is formed of a plurality of layers, each layer of which a cube-shaped dielectric and a magnetic body are alternately disposed, and the dielectric and magnetic body also in the height direction of the substrate.
  • the substrate is formed of a plurality of layers, each layer of which a cube-shaped dielectric and a magnetic body are alternately disposed, and the dielectric and magnetic body also in the height direction of the substrate.
  • the antenna is characterized in resonating in the multi-band.
  • the dielectric and the magnetic body has a square cross section, the length of each side of the dielectric and the magnetic body is characterized in that it is formed to a length of 5 mm or 10 mm.
  • the dielectric material has a dielectric constant of 2.2 and a magnetic permeability of 1.0
  • the magnetic material has a dielectric constant of 16 and a magnetic permeability of 16.
  • the present invention provides a wireless terminal device including the antenna.
  • the present invention provides a lattice periodic structure of a dielectric having a low dielectric constant and a magnetic material having a high permeability in order to improve antenna gain, efficiency, and bandwidth while maintaining miniaturization, which is an advantage of an antenna using a dielectric having a high dielectric constant. It provides an antenna using a composite structure arranged as.
  • FIG. 1 is a (a) plan view showing a PCB antenna which is a conventional built-in antenna and (b) cross-sectional view taken along line II ′ of the plan view.
  • FIG. 2 is a view showing an antenna using a composite structure having a vertical lattice periodic structure of a dielectric and a magnetic material according to the first embodiment of the present invention.
  • 3 and 4 are diagrams showing the return loss of a patch antenna implemented on a composite structure arranged in a variety of vertical grating periodic structure.
  • FIG. 5 is a view showing the return loss of the patch antenna of the same size as the first embodiment of the present invention implemented using a high dielectric constant having a dielectric constant of about 40.
  • FIG. 6 is a diagram illustrating an antenna using a composite structure having a multi-grid periodic structure of a dielectric and a magnetic material according to a second embodiment of the present invention.
  • FIG. 7 and 8 illustrate return loss of a patch antenna implemented on a composite structure arranged in various multi-grid periodic structures.
  • FIG. 9 is a view showing a return loss of a patch antenna of the same size as the second embodiment of the present invention implemented using a high dielectric constant of about 40 permittivity.
  • FIG. 2 is a diagram illustrating an antenna using a composite structure having a vertical lattice periodic structure of a dielectric and a magnetic material according to the first embodiment of the present invention.
  • the antenna according to the first embodiment of the present invention is largely composed of a first patch 100 and a radiation patch 200 formed on the first substrate 100
  • the first substrate ( 100 is formed of a composite structure in which the dielectric material 110 and the magnetic material 120 have a vertical lattice periodic structure. That is, the substrate is formed of a plurality of rows, the rod-shaped dielectric 110 and the magnetic body 120 constituting each row are alternately arranged, and the dielectric 110 and the magnetic body 120 of each row are alternately The long axes of the dielectric 110 and the magnetic body 120 are disposed to be perpendicular to each other.
  • the dielectric 110 is a dielectric having a low dielectric constant of about 2.2, a permeability of about 2.2
  • the magnetic body 120 is preferably a magnetic material having a high permeability of about 16 and a permeability of 16.
  • the size of the radiation patch 200 may be 170 mm * 170 mm and the overall size of the first substrate 100 may be 300 mm * 300 mm * 20 mm.
  • 3 and 4 are diagrams showing the return loss of a patch antenna implemented on a composite structure arranged in various vertical lattice periodic structures.
  • FIG. 3 illustrates the reflection loss when the first substrate 100 is vertically arranged with a 5 mm dielectric and a magnetic material 5 mm period
  • FIG. 4 is vertically arranged with a 10 mm dielectric and a 10 mm magnetic material period.
  • the total length in the first substrate 100 having the vertical lattice periodic structure is the same as 300 mm as described above, and each layer has the same period.
  • a multiband antenna is implemented, and it can be seen that high gain, efficiency, and bandwidth are formed.
  • FIG. 5 is a diagram illustrating a return loss of a patch antenna having the same size as that of the first embodiment of the present invention implemented using a high dielectric constant having a dielectric constant of about 40.
  • the conventional high dielectric material is used.
  • the bandwidth is narrow and the efficiency is low.
  • Table 1 above compares the antenna characteristics of the two antennas of the first embodiment of the present invention disclosed in FIGS. 3 and 4 with the patch antenna disclosed in FIG. 5.
  • the comparison data here is a calculation of the bandwidth, gain, and efficiency for the first resonant frequency.
  • the two configurations for the first embodiment of the present invention are improved in bandwidth, gain, efficiency and the like at the same antenna size compared to a patch antenna using a dielectric having a high dielectric constant.
  • various resonance frequencies can be obtained by changing the feeding position for each vertical lattice periodic structure.
  • the first embodiment of the present invention utilizes a composite structure in which a dielectric having a low dielectric constant and a magnetic material having a high permeability are arranged in a vertical lattice periodic structure to improve antenna gain, efficiency, bandwidth, and various resonance frequencies at the same time.
  • the antenna can be designed.
  • FIG. 6 is a diagram illustrating an antenna using a composite structure having a multi-grid periodic structure of a dielectric and a magnetic material according to a second embodiment of the present invention.
  • the antenna according to the second exemplary embodiment of the present invention is largely composed of a second substrate 300 and a radiation patch 200 formed on the second substrate 300, and the second substrate ( 300 is formed of a composite structure in which the dielectric material 110 and the magnetic material 120 have a multi-grid periodic structure. That is, the second substrate 300 is formed of a plurality of layers, each layer of which the dielectric 110 and the magnetic body 120 of the cube shape are alternately arranged, and in the height direction of the second substrate 300 In addition, the dielectric 110 and the magnetic body 120 are alternately stacked.
  • the dielectric 110 is a dielectric having a low dielectric constant of about 2.2, a permeability of about 2.2
  • the magnetic body 120 is preferably a magnetic material having a high permeability of about 16 and a permeability of 16.
  • the size of the radiation patch 200 may be 170 mm * 170 mm and the total size of the second substrate 300 may be 300 mm * 300 mm * 20 mm.
  • FIG. 7 and 8 illustrate return loss of a patch antenna implemented on a composite structure arranged in various multi-grid periodic structures.
  • FIG. 3 illustrates a reflection loss when the second substrate 300 is arranged in a lattice form with a 5 mm dielectric material and a magnetic material 5 mm cycle. .
  • the overall length is the same as 300 mm as described above, and each layer has the same period.
  • a multiband antenna is implemented, and it can be seen that high gain, efficiency, and bandwidth are formed.
  • FIG. 5 is a diagram illustrating a return loss of a patch antenna of the same size as the second embodiment of the present invention implemented using a high dielectric constant having a dielectric constant of about 40.
  • a conventional high dielectric material is used.
  • the bandwidth is narrow and the efficiency is low.
  • Table 2 above compares the antenna characteristics of the patch antenna disclosed in FIG. 5 with the two configurations of the second embodiment of the present invention disclosed in FIGS. 7 and 8.
  • the comparison data here is a calculation of the bandwidth, gain, and efficiency for the first resonant frequency.
  • the two configurations for the second embodiment of the present invention are improved in bandwidth, gain, efficiency, etc. at the same antenna size compared to a patch antenna using a dielectric having a high dielectric constant.
  • various resonance frequencies can be obtained by changing the feeding position for each multi-grid periodic structure.
  • the second embodiment of the present invention utilizes a composite structure in which a dielectric having a low dielectric constant and a magnetic material having a high permeability are arranged in a multi-grid periodic structure to reduce antenna size, improve antenna gain, efficiency, bandwidth, and various resonance frequencies.
  • the antenna can be designed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

The present invention provides an antenna of a complex structure in which a dielectric material having low dielectric constant and a magnetic substance having high magnetic permeability are disposed in a periodic, grating arrangement. This improves the gain, efficiency and bandwidth of the antenna while maintaining miniaturization which is an advantage in conventional antennas using a dielectric having a high dielectric constant. The present invention comprises a substrate onto which a radiation patch is disposed. The substrate consists of double columns, where the bar shaped- dielectric and the magnetic substances are placed alternatively on each column, and the major axes of the dielectric and the magnetic substance are perpendicular to each other.

Description

유전체와 자성체의 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나Antenna using composite structure with lattice periodic structure of dielectric and magnetic material
본 발명은 종래 고유전율을 갖는 유전체를 이용한 안테나의 장점인 소형화를 유지하면서 안테나 이득과 효율 및 대역폭을 향상시키기 위하여 저유전율을 갖는 유전체와 고투자율을 갖는 자성체를 격자 주기 구조로 배열한 복합 구조체를 이용한 안테나에 관한 것이다.The present invention provides a composite structure in which a dielectric having a low dielectric constant and a magnetic material having a high permeability are arranged in a lattice periodic structure to improve antenna gain, efficiency, and bandwidth while maintaining miniaturization, which is an advantage of an antenna using a dielectric having a high dielectric constant. It relates to the antenna used.
최근, 지상파 DMB를 비롯한 여러 가지 디지털 멀티미디어 방송 시스템들이 본격적인 서비스 개시를 시작하였다. 이에 대비하여 방송 시스템은 물론이고 이러한 DMB 방송을 수신할 수 있는 휴대 단말기의 개발도 한창 진행되고 있다.Recently, various digital multimedia broadcasting systems, including terrestrial DMB, have begun in earnest. In preparation for the broadcast system, a mobile terminal capable of receiving such a DMB broadcast is also in full swing.
또한, 현재 널리 상용화되어 있는 이동 휴대 전화 시스템과 접목하여 두 가지 서비스를 하나의 휴대 단말기로 동시에 받을 수 있는 복합형 단말기에 대한 개발도 활발히 이루어지고 있다.In addition, development of a hybrid terminal capable of receiving two services simultaneously with a single portable terminal by combining with a widely available mobile cellular phone system is being actively made.
그러나, 이러한 DMB 들에 채택된 주파수 대역들은 174~216 MHz로 주로 UHF나 VHF 등의 저주파 대역이고 이로 인하여 몇 가지 휴대 단말기의 개발에 대한 제약 사항들이 발생하였다.However, the frequency bands adopted for these DMBs are 174-216 MHz, which are mainly low frequency bands such as UHF and VHF, which resulted in limitations on the development of several mobile terminals.
가장 대표적인 것이 휴대 단말기에 기본적으로 사용되는 안테나의 크기에 관한 문제이다.The most representative problem is the size of the antenna that is basically used in the mobile terminal.
일반적으로 안테나의 크기는 사용되는 주파수가 낮아질수록 그 크기가 커진다. UHF나 VHF 대역용으로 안테나를 제작하기 위해서는 보통 몇십 센티미터(cm)의 길이를 필요로 한다. 그러나, 이러한 안테나는 휴대용 단말기기에 적용하기 부적합하다. 이에 휴대 단말기용 안테나의 크기를 줄이기 위한 연구 개발도 한창 진행 중에 있다.In general, the size of the antenna increases as the frequency used decreases. Fabricating antennas for the UHF or VHF bands typically requires tens of centimeters (cm) in length. However, such antennas are not suitable for use in portable terminal devices. Accordingly, research and development to reduce the size of the antenna for the portable terminal is also in full swing.
기존에 널리 사용되었던 모노폴 형태의 휩 안테나나 헬리컬 안테나는 휴대단말기의 바깥부분으로 돌출되는 구조를 가지고 있기 때문에 최근에는 이러한 형태의 안테나 사용이 지양되고 있고, 안테나를 휴대 단말기 내부에 완전히 집어넣어서 외부로 돌출되지 않는 형태인 내장형 안테나가 많은 관심을 불러 일으킴과 동시에 내장형 안테나를 적용하고 있는 다양한 휴대단말기가 등장하고 있다.The monopole whip antenna or helical antenna, which has been widely used in the past, has a structure that protrudes to the outside of the mobile terminal. Therefore, the use of this type of antenna has recently been avoided. The built-in antenna, which does not protrude, has attracted a lot of attention and various portable terminals applying the built-in antenna have emerged.
내장형 안테나들 중의 하나가 인쇄회로기판 안테나(Printed Circuit Board Antenna : 이하, "PCB 안테나"라 한다.)이다.One of the built-in antennas is a printed circuit board antenna (hereinafter referred to as a "PCB antenna").
PCB 안테나의 특징은 안테나의 모양이 납작한 형태로 주로 사용하고 코일 형태의 안테나에 비해 회로 구현이 쉽고 저비용이며 공정상의 문제점을 해결할 수 있다.The characteristics of the PCB antenna are mainly used in the form of a flat antenna, it is easier to implement the circuit than the coil-shaped antenna, low cost and can solve the process problems.
도 1은 종래의 내장형 안테나인 PCB 안테나를 나타낸 (a)평면도 및 상기 평면도의 I-I'를 절단한 (b)단면도이다.1 is a (a) plan view showing a PCB antenna which is a conventional built-in antenna and (b) cross-sectional view taken along line II ′ of the plan view.
도 1을 참조하면, 기존의 PCB 안테나는 휴대 단말기의 부품들이 실장되는 인쇄회로기판(PCB)(10)과 상기 인쇄회로기판(10) 상에 일정 형태로 패터닝된 방사체로서의 역할을 하는 안테나 패턴(20)으로 구성된다. 일반적으로 PCB에 널리 사용되는 재질은 FR4이고, 안테나 패턴은 구리(Cu)로 인쇄한다.Referring to FIG. 1, a conventional PCB antenna has an antenna pattern serving as a printed circuit board (PCB) 10 on which components of a mobile terminal are mounted and a radiator patterned in a predetermined shape on the printed circuit board 10 ( 20). In general, the material widely used for PCB is FR4, and the antenna pattern is printed in copper (Cu).
그러나, 도 1에 도시된 내장형 안테나인 PCB 안테나의 경우도 주파수와 안테나 크기의 상관관계에서 벗어나지 못하기 때문에 역시 내장형 안테나의 크기도 현재는 매우 크다. 크기는 점점 소형화 되어가고 있고 기능은 점점 많아지고 있는 현 휴대 단말기의 추세로 볼 때 이러한 내장형 안테나 역시 휴대단말기의 소형화를 제약하는 중대한 하나의 제한 요소로 자리잡고 있다.However, in the case of the PCB antenna which is the built-in antenna shown in FIG. 1, the size of the built-in antenna is also very large because the frequency and antenna size do not deviate from the correlation. With the trend of current portable terminals, which are getting smaller and more functional, these built-in antennas are also a significant limiting factor to limit the miniaturization of portable terminals.
특히, DMB용 휴대 단말기의 경우 174~216 MHz의 UHF나 VHF 등의 저주파 대역에서 동작되기 때문에 도 1과 같은 기존의 PCB 안테나를 사용하는데 많은 어려움이 있어 더욱더 작은 크기의 안테나가 절실히 요구된다.In particular, since the DMB portable terminal is operated in a low frequency band such as UHF or VHF of 174 ~ 216 MHz, there are many difficulties in using the conventional PCB antenna as shown in FIG.
이와 같은 문제점을 해결하기 위하여 고유전체를 이용하여 기판을 구성하고, 상기 기판상에 방사패턴을 형성하는 기술이 개발되어 사용되고 있다. 그러나, 고유전체를 이용하여 안테나를 구현하는 경우 안테나의 소형화는 달성할 수 있으나, 안테나의 이득과 대역폭이 감소하는 단점을 피할 수 없다.In order to solve such a problem, a technique of forming a substrate using a high dielectric material and forming a radiation pattern on the substrate has been developed and used. However, when the antenna is implemented using a high dielectric constant, the antenna can be miniaturized, but the disadvantage of reducing the gain and bandwidth of the antenna cannot be avoided.
이와 같이 고유전체를 이용한 안테나는 넓은 대역폭과 이득이 요구되는 지상파 DMB를 비롯한 여러 가지 디지털 멀티미디어 방송 시스템에 적합하지 않으며, 따라서 안테나의 소형화와 더불어 넓은 대역폭 및 높은 이득을 만족시킬 수 있는 방법의 개발이 요구되는 실정이다.As such, antennas using high dielectric materials are not suitable for various digital multimedia broadcasting systems including terrestrial DMB, which require wide bandwidths and gains. It is required.
상기 문제점을 해결하기 위하여 안출된 본 발명은 종래 고유전율을 갖는 유전체를 이용한 안테나의 장점인 소형화를 유지하면서 안테나 이득과 효율 및 대역폭을 향상시키기 위하여 저유전율을 갖는 유전체와 고투자율을 갖는 자성체를 격자 주기 구조로 배열한 복합 구조체를 이용한 안테나를 제공하는 것을 목적으로 한다.The present invention devised to solve the above problems grating a dielectric having a low dielectric constant and a magnetic material having a high permeability in order to improve the antenna gain, efficiency and bandwidth while maintaining the miniaturization, which is an advantage of the antenna using a dielectric having a high dielectric constant. An object of the present invention is to provide an antenna using a composite structure arranged in a periodic structure.
상기 목적을 달성하기 위해 본 발명은, 기판; 및 상기 기판 상에 형성되는 방사패치를 포함하며, 상기 기판은 복수의 열로 형성되며, 각 열은 막대 형상의 유전체 및 자성체가 서로 번갈아가며 배치되고, 각 열의 유전체 및 자성체는 서로 엇갈리게 배치되어 상기 유전체 및 자성체의 장축이 상호 수직을 이루도록 형성되는 것을 특징으로 하는 유전체와 자성체의 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나를 제공한다.The present invention to achieve the above object, a substrate; And a radiation patch formed on the substrate, wherein the substrate is formed of a plurality of rows, each row of which is arranged with alternating rod-shaped dielectrics and magnetic bodies, and the dielectrics and magnetic bodies of each row are alternately disposed with each other. And an antenna using a complex structure having a lattice periodic structure of a dielectric material and a magnetic material, wherein the major axes of the magnetic material are formed to be perpendicular to each other.
또한, 상기 목적을 달성하기 위해 본 발명은, 기판; 및 상기 기판 상에 형성되는 방사패치를 포함하며, 상기 기판은 복수의 층으로 형성되며, 각 층은 정육면체 형상의 유전체 및 자성체가 서로 번갈아가며 배치되고, 상기 기판의 높이 방향으로도 상기 유전체 및 자성체가 번갈아가며 적층되는 구조로 형성되는 것을 특징으로 하는 유전체와 자성체의 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나를 제공한다.In addition, the present invention to achieve the above object, a substrate; And a radiation patch formed on the substrate, wherein the substrate is formed of a plurality of layers, each layer of which a cube-shaped dielectric and a magnetic body are alternately disposed, and the dielectric and magnetic body also in the height direction of the substrate. Provided is an antenna using a composite structure having a lattice periodic structure of a dielectric and a magnetic material, which is formed to be alternately stacked.
바람직하게는, 상기 안테나는 다중대역에서 공진하는 것을 특징으로 한다.Preferably, the antenna is characterized in resonating in the multi-band.
또한, 상기 유전체 및 자성체는 정사각형의 단면을 가지고, 상기 유전체 및 자성체의 각 변의 길이는 5 mm 또는 10 mm 길이로 형성되는 것을 특징으로 한다.In addition, the dielectric and the magnetic body has a square cross section, the length of each side of the dielectric and the magnetic body is characterized in that it is formed to a length of 5 mm or 10 mm.
더욱 바람직하게는, 상기 유전체는 유전율 2.2, 투자율 1.0을 갖고, 상기 자성체는 유전율 16, 투자율 16을 갖는 것을 특징으로 한다.More preferably, the dielectric material has a dielectric constant of 2.2 and a magnetic permeability of 1.0, and the magnetic material has a dielectric constant of 16 and a magnetic permeability of 16.
또한, 본 발명은 상기 안테나를 포함하는 무선단말장치를 제공한다.In addition, the present invention provides a wireless terminal device including the antenna.
이상에서 설명한 바와 같이, 본 발명은 종래 고유전율을 갖는 유전체를 이용한 안테나의 장점인 소형화를 유지하면서 안테나 이득과 효율 및 대역폭을 향상시키기 위하여 저유전율을 갖는 유전체와 고투자율을 갖는 자성체를 격자 주기 구조로 배열한 복합 구조체를 이용한 안테나를 제공한다.As described above, the present invention provides a lattice periodic structure of a dielectric having a low dielectric constant and a magnetic material having a high permeability in order to improve antenna gain, efficiency, and bandwidth while maintaining miniaturization, which is an advantage of an antenna using a dielectric having a high dielectric constant. It provides an antenna using a composite structure arranged as.
도 1은 종래의 내장형 안테나인 PCB 안테나를 나타낸 (a)평면도 및 상기 평면도의 I-I'를 절단한 (b)단면도.1 is a (a) plan view showing a PCB antenna which is a conventional built-in antenna and (b) cross-sectional view taken along line II ′ of the plan view.
도 2는 본 발명의 제 1 실시예에 따른 유전체와 자성체의 수직 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나를 도시한 도면.2 is a view showing an antenna using a composite structure having a vertical lattice periodic structure of a dielectric and a magnetic material according to the first embodiment of the present invention.
도 3 및 도 4는 다양한 수직 격자 주기 구조로 배열된 복합 구조체 상에 구현한 패치 안테나의 반사손실을 나타낸 도면.3 and 4 are diagrams showing the return loss of a patch antenna implemented on a composite structure arranged in a variety of vertical grating periodic structure.
도 5는 유전율 40 정도인 고유전체를 이용하여 구현한 본 발명의 제 1 실시예와 동일 크기의 패치 안테나의 반사손실을 나타낸 도면.5 is a view showing the return loss of the patch antenna of the same size as the first embodiment of the present invention implemented using a high dielectric constant having a dielectric constant of about 40.
도 6은 본 발명의 제 2 실시예에 따른 유전체와 자성체의 다중 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나를 도시한 도면.6 is a diagram illustrating an antenna using a composite structure having a multi-grid periodic structure of a dielectric and a magnetic material according to a second embodiment of the present invention.
도 7 및 도 8은 다양한 다중 격자 주기 구조로 배열된 복합 구조체 상에 구현한 패치 안테나의 반사손실을 나타낸 도면.7 and 8 illustrate return loss of a patch antenna implemented on a composite structure arranged in various multi-grid periodic structures.
도 9는 유전율 40 정도인 고유전체를 이용하여 구현한 본 발명의 제 2 실시예와 동일 크기의 패치 안테나의 반사손실을 나타낸 도면.9 is a view showing a return loss of a patch antenna of the same size as the second embodiment of the present invention implemented using a high dielectric constant of about 40 permittivity.
본 발명과 본 발명의 동작성의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.In order to fully understand the present invention, the advantages of the operability of the present invention, and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings which illustrate preferred embodiments of the present invention and the contents described in the accompanying drawings.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
제 1 실시예First embodiment
도 2는 본 발명의 제 1 실시예에 따른 유전체와 자성체의 수직 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나를 도시한 도면이다.2 is a diagram illustrating an antenna using a composite structure having a vertical lattice periodic structure of a dielectric and a magnetic material according to the first embodiment of the present invention.
도 2를 참조하면, 본 발명의 제 1 실시예에 따른 안테나는 크게 제 1 기판(100)과 상기 제 1 기판(100) 상에 형성되는 방사패치(200)로 구성되며, 상기 제 1 기판(100)은 유전체(110)와 자성체(120)가 수직 격자 주기 구조를 갖는 복합 구조체로 형성된다. 즉, 상기 기판은 복수의 열로 형성되며, 각 열을 구성하는 막대 형상의 상기 유전체(110) 및 자성체(120)가 서로 번갈아가며 배치되고, 각 열의 유전체(110) 및 자성체(120)는 서로 엇갈리게 배치되어 상기 유전체(110) 및 자성체(120)의 장축이 상호 수직을 이루도록 형성된다.2, the antenna according to the first embodiment of the present invention is largely composed of a first patch 100 and a radiation patch 200 formed on the first substrate 100, the first substrate ( 100 is formed of a composite structure in which the dielectric material 110 and the magnetic material 120 have a vertical lattice periodic structure. That is, the substrate is formed of a plurality of rows, the rod-shaped dielectric 110 and the magnetic body 120 constituting each row are alternately arranged, and the dielectric 110 and the magnetic body 120 of each row are alternately The long axes of the dielectric 110 and the magnetic body 120 are disposed to be perpendicular to each other.
여기서, 상기 유전체(110)는 유전율 2.2, 투자율 1.0 정도의 저유전율을 갖는 유전체이며, 상기 자성체(120)는 유전율 16, 투자율 16 정도의 고투자율을 갖는 자성체임이 바람직하다.Here, the dielectric 110 is a dielectric having a low dielectric constant of about 2.2, a permeability of about 2.2, and the magnetic body 120 is preferably a magnetic material having a high permeability of about 16 and a permeability of 16.
일 예로 상기 방사패치(200)의 크기는 170 mm * 170 mm 이고 제 1 기판(100)의 전체 크기는 300 mm * 300 mm * 20 mm 일 수 있다.For example, the size of the radiation patch 200 may be 170 mm * 170 mm and the overall size of the first substrate 100 may be 300 mm * 300 mm * 20 mm.
이하 도면 및 표를 참조하여 위와 같은 구성을 가지는 본 발명의 제 1 실시예에 따른 안테나의 동작 특성을 설명한다.Hereinafter, operation characteristics of the antenna according to the first exemplary embodiment of the present invention having the above configuration will be described with reference to the drawings and the table.
도 3 및 도 4는 다양한 수직 격자 주기 구조로 배열된 복합 구조체 상에 구현한 패치 안테나의 반사손실을 나타낸 도면이다.3 and 4 are diagrams showing the return loss of a patch antenna implemented on a composite structure arranged in various vertical lattice periodic structures.
보다 상세히, 도 3은 제 1 기판(100)을 유전체 5 mm, 자성체 5 mm 주기로 수직 배열한 경우, 도 4는 유전체 10 mm, 자성체 10 mm 주기로 수직 배열한 경우의 반사손실을 나타낸다.In more detail, FIG. 3 illustrates the reflection loss when the first substrate 100 is vertically arranged with a 5 mm dielectric and a magnetic material 5 mm period, and FIG. 4 is vertically arranged with a 10 mm dielectric and a 10 mm magnetic material period.
수직 배열한 각각의 경우에 대하여 수직 격자 주기 구조를 갖는 제 1 기판(100)에서 전체 길이는 위에 설명한 바와 같이 300 mm 로 동일하며 각 층은 동일한 주기를 갖는다. For each case arranged vertically, the total length in the first substrate 100 having the vertical lattice periodic structure is the same as 300 mm as described above, and each layer has the same period.
위 경우 다중대역 안테나가 구현되며, 높은 이득과 효율 및 대역폭이 형성됨을 확인할 수 있다.In this case, a multiband antenna is implemented, and it can be seen that high gain, efficiency, and bandwidth are formed.
도 5는 유전율 40 정도인 고유전체를 이용하여 구현한 본 발명의 제 1 실시예와 동일 크기의 패치 안테나의 반사손실을 나타낸 도면이다.FIG. 5 is a diagram illustrating a return loss of a patch antenna having the same size as that of the first embodiment of the present invention implemented using a high dielectric constant having a dielectric constant of about 40. FIG.
도 5를 참조하면, 유전체(110)와 자성체(120)가 수직 격자 주기 구조로 배열된 제 1 기판(100)을 가지는 본 발명의 제 1 실시예에 따른 안테나와 비교할 때 종래 고유전체를 이용하여 기판을 구현한 안테나의 경우 대역폭이 협소하고, 효율이 떨어짐을 확인할 수 있다.Referring to FIG. 5, when comparing the antenna 110 according to the first embodiment of the present invention having the first substrate 100 having the dielectric 110 and the magnetic body 120 arranged in a vertical lattice periodic structure, the conventional high dielectric material is used. In the case of the antenna implemented with the board, the bandwidth is narrow and the efficiency is low.
표 1
Figure PCTKR2009004014-appb-T000001
Table 1
Figure PCTKR2009004014-appb-T000001
위 표 1은 도 3 및 도 4에 개시된 본 발명의 제 1 실시예에 대한 2가지 구성과 도 5에 개시된 패치 안테나에 대한 안테나 특성을 비교한 것이다.Table 1 above compares the antenna characteristics of the two antennas of the first embodiment of the present invention disclosed in FIGS. 3 and 4 with the patch antenna disclosed in FIG. 5.
여기서 비교 데이터는 첫번째 공진 주파수에 대한 대역폭, 이득, 효율을 계산한 것이다. 위 표를 참조하면, 본 발명의 제 1 실시예에 대한 2가지 구성이 고유전율을 갖는 유전체를 이용한 패치 안테나와 비교하여 동일한 안테나 크기에서 대역폭, 이득, 효율 등이 향상됨을 확인할 수 있다. 또한 각각의 수직 격자 주기 구조에 대하여 급전 위치를 변경함에 따라 다양한 공진 주파수를 얻을 수 있다.The comparison data here is a calculation of the bandwidth, gain, and efficiency for the first resonant frequency. Referring to the above table, it can be seen that the two configurations for the first embodiment of the present invention are improved in bandwidth, gain, efficiency and the like at the same antenna size compared to a patch antenna using a dielectric having a high dielectric constant. In addition, various resonance frequencies can be obtained by changing the feeding position for each vertical lattice periodic structure.
이와 같이 본 발명의 제 1 실시예는 저유전율을 갖는 유전체와 고투자율을 갖는 자성체를 수직 격자 주기 구조로 배열한 복합 구조체를 이용하여 안테나 소형화와 동시에 향상된 안테나 이득과 효율 및 대역폭, 다양한 공진 주파수를 갖는 안테나를 설계할 수 있다.As described above, the first embodiment of the present invention utilizes a composite structure in which a dielectric having a low dielectric constant and a magnetic material having a high permeability are arranged in a vertical lattice periodic structure to improve antenna gain, efficiency, bandwidth, and various resonance frequencies at the same time. The antenna can be designed.
제 2 실시예Second embodiment
도 6은 본 발명의 제 2 실시예에 따른 유전체와 자성체의 다중 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나를 도시한 도면이다.6 is a diagram illustrating an antenna using a composite structure having a multi-grid periodic structure of a dielectric and a magnetic material according to a second embodiment of the present invention.
도 2를 참조하면, 본 발명의 제 2 실시예에 따른 안테나는 크게 제 2 기판(300)과 상기 제 2 기판(300) 상에 형성되는 방사패치(200)로 구성되며, 상기 제 2 기판(300)은 상기 유전체(110)와 상기 자성체(120)가 다중 격자 주기 구조를 갖는 복합 구조체로 형성된다. 즉, 상기 제 2 기판(300)은 복수의 층으로 형성되며, 각 층은 정육면체 형상의 상기 유전체(110) 및 자성체(120)가 서로 번갈아가며 배치되고, 제 2 기판(300)의 높이 방향으로도 상기 유전체(110) 및 자성체(120)가 번갈아가며 적층된다.Referring to FIG. 2, the antenna according to the second exemplary embodiment of the present invention is largely composed of a second substrate 300 and a radiation patch 200 formed on the second substrate 300, and the second substrate ( 300 is formed of a composite structure in which the dielectric material 110 and the magnetic material 120 have a multi-grid periodic structure. That is, the second substrate 300 is formed of a plurality of layers, each layer of which the dielectric 110 and the magnetic body 120 of the cube shape are alternately arranged, and in the height direction of the second substrate 300 In addition, the dielectric 110 and the magnetic body 120 are alternately stacked.
여기서, 상기 유전체(110)는 유전율 2.2, 투자율 1.0 정도의 저유전율을 갖는 유전체이며, 상기 자성체(120)는 유전율 16, 투자율 16 정도의 고투자율을 갖는 자성체임이 바람직하다.Here, the dielectric 110 is a dielectric having a low dielectric constant of about 2.2, a permeability of about 2.2, and the magnetic body 120 is preferably a magnetic material having a high permeability of about 16 and a permeability of 16.
일 예로 상기 방사패치(200)의 크기는 170 mm * 170 mm 이고 제 2 기판(300)의 전체 크기는 300 mm * 300 mm * 20 mm 일 수 있다.For example, the size of the radiation patch 200 may be 170 mm * 170 mm and the total size of the second substrate 300 may be 300 mm * 300 mm * 20 mm.
이하 도면 및 표를 참조하여 위와 같은 구성을 가지는 본 발명의 제 2 실시예에 따른 안테나의 동작 특성을 설명한다.Hereinafter, operation characteristics of the antenna according to the second exemplary embodiment of the present invention having the above configuration will be described with reference to the drawings and the table.
도 7 및 도 8은 다양한 다중 격자 주기 구조로 배열된 복합 구조체 상에 구현한 패치 안테나의 반사손실을 나타낸 도면이다.7 and 8 illustrate return loss of a patch antenna implemented on a composite structure arranged in various multi-grid periodic structures.
보다 상세히, 도 3은 제 2 기판(300)을 유전체 5 mm, 자성체 5 mm 주기로 격자 형태로 배열한 경우, 도 4는 유전체 10 mm, 자성체 10 mm 주기로 격자 형태로 배열한 경우의 반사손실을 나타낸다.In detail, FIG. 3 illustrates a reflection loss when the second substrate 300 is arranged in a lattice form with a 5 mm dielectric material and a magnetic material 5 mm cycle. .
다중 격자 주기 구조를 갖는 제 2 기판(300)에서 전체 길이는 위에 설명한 바와 같이 300 mm 로 동일하며 각 층은 동일한 주기를 갖는다. In the second substrate 300 having the multi-grid periodic structure, the overall length is the same as 300 mm as described above, and each layer has the same period.
위 경우 다중대역 안테나가 구현되며, 높은 이득과 효율 및 대역폭이 형성됨을 확인할 수 있다.In this case, a multiband antenna is implemented, and it can be seen that high gain, efficiency, and bandwidth are formed.
도 5는 유전율 40 정도인 고유전체를 이용하여 구현한 본 발명의 제 2 실시예와 동일 크기의 패치 안테나의 반사손실을 나타낸 도면이다.5 is a diagram illustrating a return loss of a patch antenna of the same size as the second embodiment of the present invention implemented using a high dielectric constant having a dielectric constant of about 40. FIG.
도 5를 참조하면, 유전체(110)와 자성체(120)가 다중 격자 주기 구조로 배열된 제 2 기판(300)을 가지는 본 발명의 제 2 실시예에 따른 안테나와 비교할 때 종래 고유전체를 이용하여 기판을 구현한 안테나의 경우 대역폭이 협소하고, 효율이 떨어짐을 확인할 수 있다.Referring to FIG. 5, when compared with an antenna according to a second exemplary embodiment of the present invention having a second substrate 300 having a dielectric 110 and a magnetic body 120 arranged in a multi-grid periodic structure, a conventional high dielectric material is used. In the case of the antenna implemented with the board, the bandwidth is narrow and the efficiency is low.
표 2
Figure PCTKR2009004014-appb-T000002
TABLE 2
Figure PCTKR2009004014-appb-T000002
위 표 2는 도 7 및 도 8에 개시된 본 발명의 제 2 실시예에 대한 2가지 구성과 도 5에 개시된 패치 안테나에 대한 안테나 특성을 비교한 것이다.Table 2 above compares the antenna characteristics of the patch antenna disclosed in FIG. 5 with the two configurations of the second embodiment of the present invention disclosed in FIGS. 7 and 8.
여기서 비교 데이터는 첫번째 공진 주파수에 대한 대역폭, 이득, 효율을 계산한 것이다. 위 표를 참조하면, 본 발명의 제 2 실시예에 대한 2가지 구성이 고유전율을 갖는 유전체를 이용한 패치 안테나와 비교하여 동일한 안테나 크기에서 대역폭, 이득, 효율 등이 향상됨을 확인할 수 있다. 또한 각각의 다중 격자 주기 구조에 대하여 급전 위치를 변경함에 따라 다양한 공진 주파수를 얻을 수 있다.The comparison data here is a calculation of the bandwidth, gain, and efficiency for the first resonant frequency. Referring to the above table, it can be seen that the two configurations for the second embodiment of the present invention are improved in bandwidth, gain, efficiency, etc. at the same antenna size compared to a patch antenna using a dielectric having a high dielectric constant. In addition, various resonance frequencies can be obtained by changing the feeding position for each multi-grid periodic structure.
이와 같이 본 발명의 제 2 실시예는 저유전율을 갖는 유전체와 고투자율을 갖는 자성체를 다중 격자 주기 구조로 배열한 복합 구조체를 이용하여 안테나 소형화와 동시에 향상된 안테나 이득과 효율 및 대역폭, 다양한 공진 주파수를 갖는 안테나를 설계할 수 있다.As described above, the second embodiment of the present invention utilizes a composite structure in which a dielectric having a low dielectric constant and a magnetic material having a high permeability are arranged in a multi-grid periodic structure to reduce antenna size, improve antenna gain, efficiency, bandwidth, and various resonance frequencies. The antenna can be designed.
본 발명은 도면에 도시된 일 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.Although the present invention has been described with reference to one embodiment shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. . Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (10)

  1. 기판; 및Board; And
    상기 기판 상에 형성되는 방사패치를 포함하며, Including a radiation patch formed on the substrate,
    상기 기판은 복수의 열로 형성되며, The substrate is formed of a plurality of rows,
    각 열은 막대 형상의 유전체 및 자성체가 서로 번갈아가며 배치되고,Each column is arranged alternately of rod-shaped dielectric and magnetic material,
    각 열의 유전체 및 자성체는 서로 엇갈리게 배치되어 상기 유전체 및 자성체의 장축이 상호 수직을 이루도록 형성되는 것을 특징으로 하는 유전체와 자성체의 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나.Dielectric and magnetic material of each row are arranged alternately so that the long axis of the dielectric and the magnetic material is formed to be perpendicular to each other, the antenna using a composite structure having a lattice periodic structure of the dielectric and magnetic material.
  2. 제 1항에 있어서,The method of claim 1,
    상기 안테나는 다중대역에서 공진하는 것을 특징으로 하는 유전체와 자성체의 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나.The antenna using a composite structure having a lattice periodic structure of dielectric and magnetic material, characterized in that the resonant in the multi-band.
  3. 제 1항에 있어서,The method of claim 1,
    상기 유전체 및 자성체는 정사각형의 단면을 가지고,The dielectric and magnetic material has a square cross section,
    상기 유전체 및 자성체의 각 변의 길이는 5 mm 또는 10 mm 길이로 형성되는 것을 특징으로 하는 유전체와 자성체의 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나.An antenna using a composite structure having a lattice periodic structure of a dielectric material and a magnetic material, wherein the lengths of the sides of the dielectric material and the magnetic material are 5 mm or 10 mm long.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 유전체는 유전율 2.2, 투자율 1.0을 갖고,The dielectric has a permittivity of 2.2 and a permeability of 1.0,
    상기 자성체는 유전율 16, 투자율 16을 갖는 것을 특징으로 하는 유전체와 자성체의 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나.And said magnetic material has a dielectric constant of 16 and a magnetic permeability of 16. The antenna using a composite structure having a lattice periodic structure of a dielectric material and a magnetic material.
  5. 제 1항 내지 제 4항 중 어느 한 항의 안테나를 포함하는 무선단말장치.A wireless terminal device comprising the antenna of any one of claims 1 to 4.
  6. 기판; 및Board; And
    상기 기판 상에 형성되는 방사패치를 포함하며,Including a radiation patch formed on the substrate,
    상기 기판은 복수의 층으로 형성되며, 각 층은 정육면체 형상의 유전체 및 자성체가 서로 번갈아가며 배치되고,The substrate is formed of a plurality of layers, each layer of the cube-like dielectric and magnetic material are alternately arranged,
    상기 기판의 높이 방향으로도 상기 유전체 및 자성체가 번갈아가며 적층되는 구조로 형성되는 것을 특징으로 하는 유전체와 자성체의 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나.An antenna using a composite structure having a lattice periodic structure of a dielectric material and a magnetic material, wherein the dielectric and the magnetic material are alternately stacked in the height direction of the substrate.
  7. 제 6항에 있어서,The method of claim 6,
    상기 안테나는 다중대역에서 공진하는 것을 특징으로 하는 유전체와 자성체의 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나.The antenna using a composite structure having a lattice periodic structure of dielectric and magnetic material, characterized in that the resonant in the multi-band.
  8. 제 6항에 있어서,The method of claim 6,
    상기 유전체 및 자성체는 정사각형의 단면을 가지고,The dielectric and magnetic material has a square cross section,
    상기 유전체 및 자성체의 각 변의 길이는 5 mm 또는 10 mm 길이로 형성되는 것을 특징으로 하는 유전체와 자성체의 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나.An antenna using a composite structure having a lattice periodic structure of a dielectric material and a magnetic material, wherein the lengths of the sides of the dielectric material and the magnetic material are 5 mm or 10 mm long.
  9. 제 8항에 있어서,The method of claim 8,
    상기 유전체는 유전율 2.2, 투자율 1.0을 갖고,The dielectric has a permittivity of 2.2 and a permeability of 1.0,
    상기 자성체는 유전율 16, 투자율 16을 갖는 것을 특징으로 하는 유전체와 자성체의 격자 주기 구조를 갖는 복합 구조체를 이용한 안테나.And said magnetic material has a dielectric constant of 16 and a magnetic permeability of 16. The antenna using a composite structure having a lattice periodic structure of a dielectric material and a magnetic material.
  10. 제 6항 내지 제 9항 중 어느 한 항의 안테나를 포함하는 무선단말장치.A wireless terminal device comprising the antenna of any one of claims 6 to 9.
PCT/KR2009/004014 2008-07-18 2009-07-20 Antenna with complex structure of periodic, grating arrangement of dielectric and magnetic substances WO2010008258A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011518663A JP5221758B2 (en) 2008-07-18 2009-07-20 Antenna using composite structure with lattice period structure of dielectric and magnetic material
EP09798161.7A EP2325943A4 (en) 2008-07-18 2009-07-20 Antenna with complex structure of periodic, grating arrangement of dielectric and magnetic substances
CN2009801281599A CN102113173A (en) 2008-07-18 2009-07-20 Antenna with complex structure of periodic, grating arrangement of dielectric and magnetic substances
US13/054,787 US20110187621A1 (en) 2008-07-18 2009-07-20 Antenna with complex structure of periodic, grating arrangement of dielectric and magnetic substances

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020080069886A KR100961190B1 (en) 2008-07-18 2008-07-18 Antenna using complex structure having perpendicular cubical period of dielectric and magnetic substance
KR10-2008-0069887 2008-07-18
KR10-2008-0069886 2008-07-18
KR1020080069887A KR100961213B1 (en) 2008-07-18 2008-07-18 Antenna using complex structure having multiple cubical period of dielectric and magnetic substance

Publications (2)

Publication Number Publication Date
WO2010008258A2 true WO2010008258A2 (en) 2010-01-21
WO2010008258A3 WO2010008258A3 (en) 2010-03-25

Family

ID=41550887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004014 WO2010008258A2 (en) 2008-07-18 2009-07-20 Antenna with complex structure of periodic, grating arrangement of dielectric and magnetic substances

Country Status (5)

Country Link
US (1) US20110187621A1 (en)
EP (1) EP2325943A4 (en)
JP (1) JP5221758B2 (en)
CN (1) CN102113173A (en)
WO (1) WO2010008258A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010008256A2 (en) * 2008-07-18 2010-01-21 주식회사 이엠따블유안테나 Antenna using complex structure having periodic, vertical spacing between dielectric and magnetic substances
JP2013157973A (en) * 2012-02-01 2013-08-15 Mitsumi Electric Co Ltd Antenna device
JPWO2022172872A1 (en) 2021-02-10 2022-08-18

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2920178B2 (en) * 1993-03-26 1999-07-19 関西ペイント株式会社 Radio wave absorber
US5689275A (en) * 1995-05-16 1997-11-18 Georgia Tech Research Corporation Electromagnetic antenna and transmission line utilizing photonic bandgap material
FR2801428B1 (en) * 1999-11-18 2004-10-15 Centre Nat Rech Scient ANTENNA PROVIDED WITH AN ASSEMBLY OF FILTER MATERIALS
JP4029274B2 (en) * 2002-04-09 2008-01-09 ソニー株式会社 Broadband antenna device
US7522124B2 (en) * 2002-08-29 2009-04-21 The Regents Of The University Of California Indefinite materials
US6791496B1 (en) * 2003-03-31 2004-09-14 Harris Corporation High efficiency slot fed microstrip antenna having an improved stub
KR20050006564A (en) * 2003-07-09 2005-01-17 주식회사 팬택 Multiband Antenna of Grid Structure
JP2005080023A (en) * 2003-09-01 2005-03-24 Sony Corp Magnetic core member, antenna module and portable communication terminal provided with the same
JP3935190B2 (en) * 2005-05-26 2007-06-20 株式会社東芝 Antenna device
JP4747854B2 (en) * 2006-01-24 2011-08-17 株式会社豊田中央研究所 Array antenna
KR100843415B1 (en) * 2006-12-15 2008-07-03 삼성전기주식회사 Chip antenna body and method of manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2325943A4

Also Published As

Publication number Publication date
JP2011528527A (en) 2011-11-17
WO2010008258A3 (en) 2010-03-25
EP2325943A2 (en) 2011-05-25
JP5221758B2 (en) 2013-06-26
EP2325943A4 (en) 2013-07-03
CN102113173A (en) 2011-06-29
US20110187621A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
WO2016003237A1 (en) Antenna apparatus in wireless communication device
US7847736B2 (en) Multi section meander antenna
WO2011087177A1 (en) Internal mimo antenna having isolation aid
US7626555B2 (en) Antenna arrangement and method for making the same
CN1276923A (en) Compact antenna structure including balun
CN1578171A (en) Apparatus for reducing ground effects in a folder-type communications handset device
WO2009154376A2 (en) Antenna device for a portable handset
CN1675795A (en) Dual band antenna system
WO2017222114A1 (en) Vehicular antenna
WO2010008256A2 (en) Antenna using complex structure having periodic, vertical spacing between dielectric and magnetic substances
WO2010008258A2 (en) Antenna with complex structure of periodic, grating arrangement of dielectric and magnetic substances
CN213692328U (en) Microstrip antenna
WO2009125972A2 (en) Antenna using complex structure having perpendicular period between dielectric and magnetic substance
WO2009125977A2 (en) Antenna using composite structure with dielectrics and magnets arranged in horizontal cycle
WO2009125963A2 (en) Antenna based on a dielectro-magnetic composite structure having a periodic lattice
WO2009139561A2 (en) Substrate in which a metal member is inserted
KR100961190B1 (en) Antenna using complex structure having perpendicular cubical period of dielectric and magnetic substance
KR100961188B1 (en) Antenna using complex structure having multiple perpendicular period of dielectric and magnetic substance
CN214124132U (en) Electronic equipment
WO2009116832A2 (en) Ferrite microstrip antenna
KR100961191B1 (en) Antenna using complex structure having crossing perpendicular period of dielectric and magnetic substance
KR100961213B1 (en) Antenna using complex structure having multiple cubical period of dielectric and magnetic substance
CN2483918Y (en) Microstrip doublet antenna
KR101026955B1 (en) Substrate inserted metal segment
WO2010095816A2 (en) Multiband antenna having a crlh-tl periodic structure constituted by multilayer unit cells, and communication apparatus using the antenna

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128159.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09798161

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2011518663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009798161

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13054787

Country of ref document: US