L'invention concerne une antenne multi-faisceaux comportant :
- un matériau BIP (Bande d'Interdiction Photonique) apte à filtrer spatialement et fréquentiellement des ondes électromagnétiques, ce matériau BIP présentant au moins une bande non passante et formant une surface extérieure rayonnante en émission et/ou en réception, - au moins un défaut de périodicité du matériau BIP de manière à créer au moins une bande passante étroite au sein de ladite au moins une bande non passante de ce matériau BIP, et - un dispositif d'excitation apte à émettre et/ou recevoir des ondes électromagnétiques à l'intérieur de ladite au moins une bande passante étroite créée par ledit au moins un défaut.
Les antennes multi-faisceaux sont très utilisées dans les applications spatiales et notamment dans des satellites géostationnaires pour émettre vers la surface terrestre et/ou recevoir des informations à partir de la surface terrestre. Elles comportent à cet effet plusieurs éléments rayonnants générant chacune un faisceau d'ondes électromagnétiques espacé des autres faisceaux. Ces éléments rayonnants sont, par exemple, placés à proximité du foyer d'une parabole formant réflecteur de faisceaux d'ondes électromagnétiques, la parabole et l'antenne multi-faisceaux étant logées dans un satellite géostationnaire. La parabole est destinée à diriger chaque faisceau sur une zone correspondante de la surface terrestre. Chaque zone de la surface terrestre éclairée par un faisceau de l'antenne multi-faisceaux est communément appelée une zone de couverture.Ainsi, chaque zone de couverture correspond à un élément rayonnant.
Actuellement, les éléments rayonnants utilisés sont connus sous le terme de "cornets" et l'antenne multi-faisceaux équipée de tels cornets est désignée sous le nom d'antenne à cornets. Chaque cornet produit une tache rayonnante sensiblement circulaire formant l'embase d'un faisceau conique rayonné en émission ou en réception. Ces cornets sont disposés les uns à côté des autres de manière à rapprocher le plus possible les taches rayonnantes les unes des autres.
La figure 1A représente schématiquement une antenne multifaisceaux à cornets en vue de face dans laquelle sept carrés F1 à F7 indiquent l'encombrement de sept cornets disposés jointivement les uns aux autres. Sept cercles S1 à S7, inscrits chacun dans l'un des carrés F1 à F7, représentent les taches rayonnantes produites par les cornets correspondants. L'antenne de la figure 1A est placée au foyer d'une parabole d'un satellite géostationnaire destinée à émettre des informations sur le territoire français. La figure 1 B représente des zones C1 à C7 de couverture à -3 dB, correspondant chacune à une tache rayonnante de l'antenne de la figure 1A. Le centre de chaque cercle correspond à un point de la surface terrestre où la puissance reçue est maximale.Le pourtour de chaque cercle délimite une zone à l'intérieur de laquelle la puissance reçue sur la surface terrestre est supérieure à la moitié de la puissance maximale reçue au centre du cercle. Bien que les taches rayonnantes S1 à S7 soient pratiquement jointives, cellesci produisent des zones de couverture à -3 dB disjointes les unes des autres. Les régions situées entre les zones de couverture à -3 dB sont appelées, ici, des trous de réception. Chaque trou de réception correspond donc à une région de la surface terrestre où la puissance reçue est inférieure à la moitié de la puissance maximale reçue. Dans ces trous de réception, la puissance reçue peut s'avérer insuffisante pour qu'un récepteur au sol puisse fonctionner correctement.
Pour résoudre ce problème de trou de réception, il a été proposé de chevaucher entre elles les taches rayonnantes de l'antenne multi-faisceaux. Une vue de face partielle d'une telle antenne multi-faisceaux comportant plusieurs taches rayonnantes se chevauchant est illustrée à la figure 2A. Sur cette figure, seules deux taches rayonnantes SR1 et SR2 ont été représentées. Chaque tache rayonnante est produite à partir de sept sources de rayonnement indépendantes et distinctes les unes des autres. La tache rayonnante SR1 est formée à partir des sources de rayonnement SdR1 à SdR7 disposées jointivement les unes à côtés des autres. Une tache rayonnante SR2 est produite à partir des sources de rayonnement SdR1, SdR2, SdR3 et SdR7 et de sources de rayonnement SdR8 à SdR10.Les sources de rayonnement SdR1 à SdR7 sont propres à travailler à une première fréquence de travail pour créer un premier faisceau d'ondes électromagnétiques sensiblement uniforme à cette première fréquence. Les sources de rayonnement SdR1 à SdR3 et SdR7 à SdR10 sont propres à travailler à une seconde fréquence de travail de manière à créer un second faisceau d'ondes électromagnétiques sensiblement uniforme à cette seconde fréquence de travail. Ainsi, les sources de rayonnement SdR1 à SdR3 et SdR7 sont aptes à travailler simultanément à la première et à la seconde fréquences de travail. La première et la seconde fréquences de travail sont différentes l'une de l'autre de manière à limiter les interférences entre le premier et le second faisceaux produits.
Ainsi, dans une telle antenne multi-faisceaux, des sources de rayonnement, telles que les sources de rayonnement SdR1 à 3, sont utilisées à la fois pour créer la tache rayonnante SR1 et la tache rayonnante SR2, ce qui produit un chevauchement de ces deux taches rayonnantes SR1 et SR2. Une illustration de la disposition des zones de couverture à -3 dB créées par une antenne multi-faisceaux présentant des taches rayonnantes chevauchées est représentée sur la figure 2B. Une telle antenne permet de réduire considérablement les trous de réception, voire même de les faire disparaître.Toutefois, en partie à cause du fait qu'une tache rayonnante est formée à partir de plusieurs sources de rayonnement indépendantes et distinctes les unes des autres, dont au moins certaines sont également utilisées pour d'autres taches rayonnantes, cette antenne multi-faisceaux est plus complexe à commander que les antennes à cornets classiques.
L'invention vise à remédier à cet inconvénient en proposant une antenne multi-faisceaux à taches rayonnantes chevauchées plus simple.
Elle a donc pour objet une antenne telle que définie plus haut, caractérisée : - en ce que le dispositif d'excitation est apte à travailler simultanément au moins autour d'une première et d'une seconde fréquences de travail distinctes, - en ce que le dispositif d'excitation comporte un premier et un second éléments d'excitation distincts et indépendants l'un de l'autre, aptes chacun à émettre et/ou à recevoir des ondes électromagnétiques, le premier élément d'excitation étant apte à travailler à la première fréquence de travail et le second élément d'excitation étant apte à travailler à la seconde fréquence de travail,- en ce que le ou chaque défaut de périodicité du matériau BIP forme une cavité résonante à fuites présentant une hauteur constante dans une direction orthogonale à ladite surface extérieure rayonnante et des dimensions latérales déterminées parallèles à ladite surface extérieure rayonnante ; - en ce que la première et la seconde fréquences de travail sont aptes à exciter le même mode de résonance d'une cavité résonante à fuites, ce mode de résonance s'établissant de façon identique quelles que soient les dimensions latérales de la cavité, de manière à créer sur ladite surface extérieure respectivement une première et une seconde taches rayonnantes, chacune de ces taches rayonnantes représentant l'origine d'un faisceau d'ondes électromagnétiques rayonnées en émission et/ou en réception par l'antenne ;- en ce que chacune des taches rayonnantes présente un centre géométrique dont la position est fonction de la position de l'élément d'excitation qui lui donne naissance et dont la surface est supérieure à celle de l'élément rayonnant lui donnant naissance, et - en ce que le premier et le second éléments d'excitation sont placés l'un par rapport à l'autre de manière à ce que la première et la seconde taches rayonnantes soient disposées sur la surface extérieure du matériau BIP l'une à côté de l'autre et se chevauchent partiellement.
Dans l'antenne multi-faisceaux décrite ci-dessus, chaque élément d'excitation produit une seule tache rayonnante formant l'embase ou section droite à l'origine d'un faisceau d'ondes électromagnétiques. Ainsi, de ce point de vue là, cette antenne est comparable avec les antennes à cornets conventionnelles où un cornet produit une seule tache rayonnante. La commande de cette antenne est donc similaire à celle d'une antenne à cornets conventionnelle. De plus, les éléments d'excitation sont placés de manière à chevaucher les taches rayonnantes. Cette antenne présente donc les avantages d'une antenne multi-faisceaux à taches rayonnantes chevauchées sans que la complexité de la commande des éléments d'excitation ait été accrue par rapport à celle des antennes multi-faisceaux à cornets.
Suivant d'autres caractéristiques d'une antenne multi-faisceaux conforme à l'invention : - chaque tache rayonnante est sensiblement circulaire, le centre géométrique correspondant à un maximum de puissance émise et/ou reçue et la périphérie correspondant à une puissance émise et/ou reçue égale à une fraction de la puissance maximale émise et/ou reçue en son centre, et la distance, dans un plan parallèle à la surface extérieure, séparant les centres géométriques des deux éléments d'excitation, est strictement inférieure au rayon de la tache rayonnante produite par le premier élément d'excitation ajouté au rayon de la tache rayonnante produite par le second élément d'excitation,- le centre géométrique de chaque tache rayonnante est placé sur la ligne orthogonale à ladite surface extérieure rayonnante et passant par le centre géométrique de l'élément d'excitation lui donnant naissance, - le premier et le second éléments d'excitation sont placés à l'intérieur d'une même cavité, - la première et la seconde fréquences de travail sont situées à l'intérieur de la même bande passante étroite créée par cette même cavité, - le premier et le second éléments d'excitation sont placés chacun à l'intérieur de cavités résonantes distinctes, et la première et la seconde fréquences de travail sont aptes à exciter chacune un mode de résonance indépendant des dimensions latérales de leur cavité respective, - un plan réflecteur de rayonnement électromagnétique associé au matériau BIP,ce plan réflecteur étant déformé de manière à former lesdites cavités distinctes, - la ou chaque cavité est de forme parallélépipédique.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins, sur lesquels : - les figures 1 A, 1 B, 2A et 2B représentent des antennes multifaisceaux connues ainsi que les zones de couverture résultantes ; - la figure 3 est une vue en perspective d'une antenne multifaisceaux conforme à l'invention ; - la figure 4 est un graphique représentant le coefficient de transmission de l'antenne de la figure 3 ; - la figure 5 est un graphique représentant le diagramme de rayonnement de l'antenne de la figure 3 ; - la figure 6 représente un deuxième mode de réalisation d'une antenne multi-faisceaux conforme à l'invention ; - la figure 7 représente le coefficient de transmission de l'antenne de la figure 6 ;et - la figure 8 représente un troisième mode de réalisation d'une antenne multi-faisceaux conforme à l'invention. - la figure 9 est une illustration d'une antenne semi-cylindrique conforme à l'invention. La figure 3 représente une antenne multi-faisceaux 4. Cette antenne 4 est formée d'un matériau 20 à bande d'interdiction photonique ou matériau BIP associé à un plan métallique 22 réflecteur d'ondes électromagnétiques.
Les matériaux BIP sont connus et la conception d'un matériau BIP tel que le matériau 20 est, par exemple, décrite dans la demande de brevet FR 99 14521. Ainsi, seules les caractéristiques spécifiques de l'antenne 4 par rapport à cet état de la technique seront décrites ici en détail.
Il est rappelé qu'un matériau BIP est un matériau qui possède la propriété d'absorber certaines gammes de fréquences, c'est-à-dire d'interdire toute transmission dans lesdites gammes de fréquences précitées. Ces gammes de fréquences forment ce qu'il est appelé ici une bande non passante.
Une bande non passante B du matériau 20 est illustrée à la figure 4. Cette figure 4 représente une courbe représentant les variations du coefficient de transmission exprimé en décibels en fonction de la fréquence de l'onde électromagnétique émise ou reçue. Ce coefficient de transmission est représentatif de l'énergie transmise d'un côté du matériau BIP par rapport à l'énergie reçue de l'autre côté. Dans le cas du matériau 20, la bande non passante B ou bande d'absorption B s'étend sensiblement de 7 GHz à 17 GHz.
La position et la largeur de cette bande non passante B est uniquement fonction des propriétés et des caractéristiques du matériau BIP.
Le matériau BIP est généralement constitué d'un arrangement périodique de diélectrique de permittivité et/ou de perméabilité variable. Ici, le matériau 20 est formé à partir de deux lames 30, 32 réalisées dans un premier matériau magnétique tel que de l'alumine et de deux lames 34 et 36 formées dans un second matériau magnétique tel que de l'air. La lame 34 est interposée entre les lames 30 et 32, tandis que la lame 36 est interposée entre la lame 32 et le plan réflecteur 22. La lame 30 est disposée à une extrémité de cet empilement de lames. Elle présente une surface extérieure 38 à l'opposé de sa surface en contact avec la lame 34. Cette surface 38 forme une surface rayonnante en émission et/ou en réception.
De façon connue, l'introduction d'une rupture dans cette périodicité géométrique et/ou radioélectrique, rupture encore appelée défaut, permet d'engendrer un défaut d'absorption et donc la création d'une bande passante étroite au sein de la bande non passante du matériau BIP. Le matériau est, dans ces conditions, désigné par matériau BIP à défauts.
Ici, une rupture de périodicité géométrique est créée en choisissant la hauteur ou épaisseur H de la lame 36 supérieure à celle de la lame 34. De façon connue, et de manière à créer une bande passante étroite E (figure 4) sensiblement au milieu de la bande passante B, cette hauteur H est définie par la relation suivante :
où : - est la longueur d'onde correspondant à la fréquence médiane fm de la bande passante E, - r est la permittivité relative de l'air, et - Micror est la perméabilité relative de l'air.The invention relates to a multi-beam antenna comprising:
- a BIP (Photonic Prohibition Band) material capable of spatially and frequently filtering electromagnetic waves, this BIP material having at least one non-pass band and forming an exterior radiating surface in transmission and / or reception, - at least one defect periodicity of the BIP material so as to create at least one narrow passband within said at least one non-passband band of this BIP material, and - an excitation device capable of emitting and / or receiving electromagnetic waves at the inside said at least one narrow bandwidth created by said at least one defect.
Multi-beam antennas are widely used in space applications and in particular in geostationary satellites to transmit to the Earth's surface and / or receive information from the Earth's surface. To this end, they comprise several radiating elements each generating a beam of electromagnetic waves spaced from the other beams. These radiating elements are, for example, placed near the focal point of a parabola forming a reflector of electromagnetic wave beams, the parabola and the multi-beam antenna being housed in a geostationary satellite. The parabola is intended to direct each beam on a corresponding zone of the terrestrial surface. Each area of the earth's surface illuminated by a beam from the multi-beam antenna is commonly called a coverage area, so each coverage area corresponds to a radiating element.
Currently, the radiating elements used are known by the term "horns" and the multi-beam antenna equipped with such horns is designated by the name of horn antenna. Each horn produces a substantially circular radiating spot forming the base of a conical beam radiated in transmission or reception. These cones are arranged next to each other so as to bring the radiating spots as close as possible to each other.
FIG. 1A schematically represents a multibeam antenna with horns in front view in which seven squares F1 to F7 indicate the size of seven horns arranged contiguously with each other. Seven circles S1 to S7, each inscribed in one of the squares F1 to F7, represent the radiating spots produced by the corresponding horns. The antenna of FIG. 1A is placed at the focal point of a parable of a geostationary satellite intended to transmit information on French territory. FIG. 1B represents zones C1 to C7 of coverage at -3 dB, each corresponding to a radiating spot of the antenna of FIG. 1A. The center of each circle corresponds to a point on the earth's surface where the received power is maximum. The periphery of each circle delimits an area within which the power received on the earth's surface is greater than half of the maximum power received in the center of the circle. Although the radiating spots S1 to S7 are practically contiguous, these produce areas of coverage at -3 dB disjoint from each other. The regions between the -3 dB coverage areas are referred to here as receiving holes. Each receiving hole therefore corresponds to a region of the earth's surface where the received power is less than half the maximum received power. In these receiving holes, the received power may prove to be insufficient for a receiver on the ground to function properly.
To solve this reception hole problem, it has been proposed to overlap between them the radiating spots of the multi-beam antenna. A partial front view of such a multi-beam antenna comprising several overlapping radiating spots is illustrated in FIG. 2A. In this figure, only two radiating spots SR1 and SR2 have been represented. Each radiating spot is produced from seven independent and distinct sources of radiation. The radiating spot SR1 is formed from the sources of radiation SdR1 to SdR7 arranged contiguously one next to the other. A radiating spot SR2 is produced from the sources of radiation SdR1, SdR2, SdR3 and SdR7 and from sources of radiation SdR8 to SdR10. The sources of radiation SdR1 to SdR7 are suitable for working at a first working frequency to create a first beam substantially uniform electromagnetic waves at this first frequency. The sources of radiation SdR1 to SdR3 and SdR7 to SdR10 are suitable for working at a second working frequency so as to create a second beam of electromagnetic waves substantially uniform at this second working frequency. Thus, the sources of radiation SdR1 to SdR3 and SdR7 are able to work simultaneously at the first and at the second working frequencies. The first and second working frequencies are different from each other so as to limit the interference between the first and second beams produced.
Thus, in such a multi-beam antenna, sources of radiation, such as sources of radiation SdR1 to 3, are used both to create the radiating spot SR1 and the radiating spot SR2, which produces an overlap of these two radiating spots SR1 and SR2. An illustration of the arrangement of the -3 dB coverage areas created by a multi-beam antenna having overlapping radiating spots is shown in Figure 2B. Such an antenna can considerably reduce reception holes, or even make them disappear. However, partly due to the fact that a radiating spot is formed from several independent and distinct sources of radiation, including at least some are also used for other radiating spots, this multi-beam antenna is more complex to control than conventional horn antennas.
The invention aims to remedy this drawback by proposing a simpler multi-beam antenna with overlapping radiating spots.
It therefore relates to an antenna as defined above, characterized: - in that the excitation device is able to work simultaneously at least around a first and a second distinct working frequencies, - in that the excitation device comprises first and second excitation elements which are distinct and independent of each other, each capable of emitting and / or receiving electromagnetic waves, the first excitation element being able to work on the first working frequency and the second excitation element being able to work at the second working frequency, - in that the or each defect in periodicity of the BIP material forms a resonant cavity with leaks having a constant height in an orthogonal direction to said radiating exterior surface and determined lateral dimensions parallel to said radiating exterior surface; - in that the first and second working frequencies are able to excite the same resonance mode of a resonant cavity with leaks, this resonance mode being established identically whatever the lateral dimensions of the cavity, so as to create on said outer surface respectively a first and a second radiating spots, each of these radiating spots representing the origin of a beam of electromagnetic waves radiated in emission and / or in reception by the antenna; - in that each of the radiating spots has a geometric center whose position is a function of the position of the excitation element which gives rise to it and whose surface is greater than that of the radiating element which gives rise to it, and - in that the first and second excitation elements are placed relative to each other so that the first and second radiating spots are arranged on r the outer surface of the BIP material next to each other and partially overlap.
In the multi-beam antenna described above, each excitation element produces a single radiating spot forming the base or cross section at the origin of a beam of electromagnetic waves. So, from this point of view, this antenna is comparable with conventional horn antennas where a horn produces a single radiating spot. The control of this antenna is therefore similar to that of a conventional horn antenna. In addition, the excitation elements are placed so as to overlap the radiating spots. This antenna therefore has the advantages of a multi-beam antenna with overlapping radiating spots without the complexity of the control of the excitation elements having been increased compared to that of multi-beam antennas with horns.
According to other characteristics of a multi-beam antenna according to the invention: - each radiating spot is substantially circular, the geometric center corresponding to a maximum of transmitted and / or received power and the periphery corresponding to a transmitted power and / or received equal to a fraction of the maximum power emitted and / or received at its center, and the distance, in a plane parallel to the exterior surface, separating the geometric centers of the two excitation elements, is strictly less than the radius of the radiating spot produced by the first excitation element added to the radius of the radiating spot produced by the second excitation element, - the geometric center of each radiating spot is placed on the line orthogonal to said radiating external surface and passing through the center geometry of the excitation element giving rise to it, - the first and second excitation elements are placed at inside the same cavity, - the first and second working frequencies are located inside the same narrow passband created by this same cavity, - the first and second excitation elements are each placed at the interior of distinct resonant cavities, and the first and second working frequencies are each capable of exciting a resonance mode independent of the lateral dimensions of their respective cavities, - a plane reflecting electromagnetic radiation associated with the BIP material, this plane reflecting being deformed so as to form said separate cavities, - the or each cavity is of parallelepiped shape.
The invention will be better understood on reading the description which follows, given solely by way of example, and made with reference to the drawings, in which: - Figures 1 A, 1 B, 2A and 2B represent antennas known multibeams as well as the resulting coverage areas; - Figure 3 is a perspective view of a multibeam antenna according to the invention; - Figure 4 is a graph showing the transmission coefficient of the antenna of Figure 3; - Figure 5 is a graph showing the radiation pattern of the antenna of Figure 3; - Figure 6 shows a second embodiment of a multi-beam antenna according to the invention; - Figure 7 shows the transmission coefficient of the antenna of Figure 6; and - Figure 8 shows a third embodiment of a multi-beam antenna according to the invention. - Figure 9 is an illustration of a semi-cylindrical antenna according to the invention. FIG. 3 represents a multi-beam antenna 4. This antenna 4 is formed of a material 20 with photonic prohibition band or BIP material associated with a metallic plane 22 reflecting electromagnetic waves.
BIP materials are known and the design of a BIP material such as material 20 is, for example, described in patent application FR 99 14521. Thus, only the specific characteristics of the antenna 4 with respect to this state of the technique will be described here in detail.
It is recalled that a BIP material is a material which has the property of absorbing certain frequency ranges, that is to say of prohibiting any transmission in said aforementioned frequency ranges. These frequency ranges form what is here called a non-pass band.
A non-pass band B of the material 20 is illustrated in FIG. 4. This FIG. 4 represents a curve representing the variations in the transmission coefficient expressed in decibels as a function of the frequency of the electromagnetic wave emitted or received. This transmission coefficient is representative of the energy transmitted on one side of the BIP material compared to the energy received on the other side. In the case of material 20, the non-pass band B or absorption band B extends substantially from 7 GHz to 17 GHz.
The position and width of this non-pass band B is solely a function of the properties and characteristics of the BIP material.
The BIP material generally consists of a periodic arrangement of dielectric with variable permittivity and / or permeability. Here, the material 20 is formed from two blades 30, 32 made from a first magnetic material such as alumina and from two blades 34 and 36 formed from a second magnetic material such as air. The blade 34 is interposed between the blades 30 and 32, while the blade 36 is interposed between the blade 32 and the reflective plane 22. The blade 30 is disposed at one end of this stack of blades. It has an outer surface 38 opposite its surface in contact with the blade 34. This surface 38 forms a radiating surface in transmission and / or in reception.
In known manner, the introduction of a break in this geometrical and / or radioelectric periodicity, break also called defect, makes it possible to generate an absorption defect and therefore the creation of a narrow passband within the non-pass band. BIP material pass. The material is, under these conditions, designated by defect BIP material.
Here, a break in geometric periodicity is created by choosing the height or thickness H of the blade 36 greater than that of the blade 34. In known manner, and so as to create a narrow bandwidth E (FIG. 4) substantially in the middle of the bandwidth B, this height H is defined by the following relation:
where: - is the wavelength corresponding to the median frequency fm of the passband E, - r is the relative permittivity of the air, and - Micror is the relative permeability of the air.
Ici, la fréquence médiane fm est sensiblement égale à 12 GHz.
La lame 36 forme une cavité résonante parallélépipédique à fuites dont la hauteur H est constante et dont les dimensions latérales sont définies par les dimensions latérales du matériau BIP 20 et du réflecteur 22. Ces lames 30 et 32, ainsi que le plan réflecteur 22, sont rectangulaires et de dimensions latérales identiques. Ici, ces dimensions latérales sont choisies de manière à être plusieurs fois plus grandes que le rayon R défini par la formule empirique suivante :
où : - GdB est le gain en décibels souhaité pour l'antenne, - =2 R, - est la longueur d'onde correspondant à la fréquence médiane fm A titre d'exemple, pour un gain de 20 dB, le rayon R est sensiblement égal à 2.15 .
De façon connue, une telle cavité résonante parallélépipédique présente plusieurs familles de fréquences de résonance. Chaque famille de fréquences de résonance est formée par une fréquence fondamentale et ses harmoniques ou multiples entiers de la fréquence fondamentale. Chaque fréquence de résonance d'une même famille excite le même mode de résonance de la cavité. Ces mode de résonance sont connus sous les termes de modes de résonance TMo, TM1, ..., TMi, .... Ces modes de résonance sont décrits plus en détail dans le document de F. Cardiol, "Electromagnétisme, traité d'Electricité, d'Electronique et d'Electrotechnique", Ed. Dunod, 1987.
Il est rappelé ici que le mode de résonance TMo est susceptible d'être excité par une gamme de fréquences d'excitation voisine d'une fréquence fondamentale fmo. De façon similaire, chaque mode TM, est susceptible d'être excité par une gamme de fréquences d'excitation voisine d'une fréquence fondamentale fmi. Chaque mode de résonance correspond à un diagramme de rayonnement de l'antenne particulier et à une tache rayonnante en émission et/ou en réception formée sur la surface extérieure 38. La tache rayonnante est ici la zone de la surface extérieure 38 contenant l'ensemble des points où la puissance rayonnée en émission et/ou en réception est supérieure ou égale à la moitié de la puissance maximale rayonnée à partir de cette surface extérieure par l'antenne 4.Chaque tache rayonnante admet un centre géométrique correspondant au point où la puissance rayonnée est sensiblement égale à la puissance rayonnée maximale.
Dans le cas du mode de résonance TMo, cette tache rayonnante s'inscrit dans un cercle dont le diamètre ()) est donné par la formule (1). Pour le mode de résonance TMo, le diagramme de rayonnement est ici fortement directif le long d'une direction perpendiculaire à la surface extérieure 38 et passant par le centre géométrique de la tache rayonnante. Le diagramme de rayonnement correspondant au mode de résonance TMo est illustré sur la figure 5.
Les fréquences fmi sont placées à l'intérieur de la bande passante étroite E.
Finalement, quatre éléments d'excitation 40 à 43 sont placés les uns à côté des autres dans la cavité 36 sur le plan réflecteur 22. Dans l'exemple décrit ici, les centres géométriques de ces éléments d'excitation sont placés aux quatre angles d'un losange dont les dimensions des côtés sont strictement inférieures à 2R.
Chacun de ces éléments d'excitation est apte à émettre et/ou recevoir une onde électromagnétique à une fréquence de travail fTi différente de celle des autres éléments d'excitation. Ici, la fréquence fTi de chaque élément d'excitation est voisine de fmo de manière à exciter le mode de résonance TMo de la cavité 36. Ces éléments d'excitation 40 à 43 sont raccordés à un générateur/récepteur 45 classique de signaux électriques destinés à être transformés par chaque élément d'excitation en une onde électromagnétique et vice-versa.
Ces éléments d'excitation sont, par exemple, constitués par un dipôle rayonnant, une fente rayonnant, une sonde plaque ou un patch rayonnants. L'encombrement latéral de chaque élément rayonnant, c'est-à-dire dans un plan parallèle à la surface extérieure 38, est strictement inférieur à la surface de la tache rayonnante à laquelle il donne naissance.
Le fonctionnement de l'antenne de la figure 3 va maintenant être décrit.
En émission, l'élément d'excitation 40, activé par le générateur/récepteur 45, émet une onde électromagnétique à une fréquence de travail fTo et excite le mode de résonance TMo de la cavité 36. Les autres éléments rayonnants 41 à 43 sont, par exemple, simultanément activés par le générateur/récepteur 45 et font de même respectivement aux fréquences de travail fT1, fT2 et fT3.
Il a été découvert que, pour le mode de résonance TMo, la tache rayonnante et le diagramme de rayonnement correspondant sont indépendants des dimensions latérales de la cavité 36. En effet, le mode de résonance TMo n'est fonction que de l'épaisseur et de la nature des matériaux de chacune des lames 30 à 36 et s'établit indépendamment des dimensions latérales de la cavité 36 lorsque celles-ci sont plusieurs fois supérieures au rayon R défini précédemment. Ainsi, plusieurs modes de résonance TMo peuvent s'établir simultanément l'un à côté de l'autre et donc générer simultanément plusieurs taches rayonnantes disposées les unes à côté des autres. C'est ce qui se produit lorsque les éléments d'excitation 40 à 43 excitent, chacun en des points différents de l'espace, le même mode de résonance.Par conséquent, l'excitation par l'élément d'excitation 40 du mode de résonance TMo se traduit par l'apparition d'une tache rayonnante 46 sensiblement circulaire et dont le centre géométrique est placé à la verticale du centre géométrique de l'élément 40. De façon similaire, l'excitation par les éléments 41 à 43 du mode de résonance TMo se traduit par l'apparition, à la verticale du centre géométrique de chacun de ces éléments, respectivement de taches rayonnantes 47 à 49. Le centre géométrique de l'élément 40 étant à une distance strictement inférieure à 2R du centre géométrique des éléments 41 et 43, la tache rayonnante 46 chevauche en partie les taches rayonnantes 47 et 49 correspondant respectivement aux éléments rayonnants 41 et 43.Pour les mêmes raisons, la tache rayonnante 49 chevauche en partie les taches rayonnantes 46 et 48, la tache rayonnante 48 chevauche en partie les taches rayonnantes 49 et 47 et la tache rayonnante 47 chevauche en partie les taches rayonnantes 46 et 48.
Chaque tache rayonnante correspond à l'embase ou section droite à l'origine d'un faisceau d'ondes électromagnétiques rayonné. Ainsi, cette antenne fonctionne de façon similaire aux antennes multi-faisceaux à taches rayonnantes chevauchées connues.
Le fonctionnement de l'antenne en réception, découle de celui décrit en émission. Ainsi, par exemple, si une onde électromagnétique est émise vers la tache rayonnante 46, celle-ci est reçue dans la surface correspondant à la tache 46. Si l'onde reçue est à une fréquence comprise dans la bande passante étroite E, elle n'est pas absorbée par le matériau BIP 20 et elle est reçue par l'élément d'excitation 40. Chaque onde électromagnétique reçue par un élément d'excitation est transmise sous forme d'un signal électrique au générateur/récepteur 45.
La figure 6 représente une antenne 70 réalisée à partir d'un matériau BIP 72 et d'un réflecteur 74 d'ondes électromagnétiques et la figure 7 l'évolution du coefficient de transmission de cette antenne en fonction de la fréquence.
Le matériau BIP 72 est, par exemple, identique au matériau BIP 20 et présente la même bande non passante B (figure 7). Les lames formant ce matériau BIP déjà décrites en regard de la figure 3 portent les mêmes références numériques.
Le réflecteur 74 est formé, par exemple, à partir du plan réflecteur 22 déformé de manière à diviser la cavité 36 en deux cavités résonantes 76 et 78 de hauteurs différentes. La hauteur constante H1 de la cavité 76 est déterminée de manière à placer, au sein de la bande non passante B, une bande passante étroite E1 (figure 7), par exemple, autour de la fréquence de 10 GHz. De façon similaire, la hauteur H2 de la cavité résonante 78 est déterminée pour placer, au sein de la même bande non passante B, une bande passante étroite E2 (figure 7), par exemple centrée autour de 14 GHz. Le réflecteur 74 se compose ici de deux demi-plans réflecteurs 80 et 82 disposés en gradins et reliés électriquement l'un à l'autre. Le demi-plan réflecteur 80 est parallèle à la lame 32 et espacé de celle-ci de la hauteur H1.Le demi-plan 82 est parallèle à la lame 32 et espacé de celle-ci de la hauteur constante H2.
Finalement, un élément d'excitation 84 est disposé dans la cavité 76 et un élément d'excitation 86 est disposé dans la cavité 78. Ces éléments d'excitation 84, 86 sont, par exemple, identiques aux éléments d'excitation 40 à 43 à l'exception du fait que l'élément d'excitation 84 est propre à exciter le mode de résonance TMo de la cavité 76, tandis que l'élément d'excitation 86 est propre à exciter le mode de résonance TMo de la cavité 78.
Dans ce mode de réalisation, la distance horizontale, c'est-à-dire parallèle à la lame 32, séparant le centre géométrique des éléments d'excitation 84 et 86, est strictement inférieure à la somme des rayons de deux taches rayonnantes produites respectivement par les éléments 84 et 86.
Le fonctionnement de cette antenne 70 est identique à celui de l'antenne de la figure 3. Toutefois, dans ce mode de réalisation, les fréquences de travail des éléments d'excitation 84 et 86 sont situées dans des bandes passantes étroites E1, E2 respectives. Ainsi, contrairement à l'antenne 4 de la figure 3, les fréquences de travail de chacun de ces éléments d'excitation sont séparées l'une de l'autre par un grand intervalle de fréquence, par exemple, ici, 4 GHz. Dans ce mode de réalisation, les positions des bandes passentes E1, E2 sont choisies de manière à pouvoir utiliser des fréquences de travail imposées. La figure 8 représente une antenne multi-faisceaux 100. Cette antenne 100 est similaire à l'antenne 4 à l'exception du fait que le matériau BIP mono-défaut 20 du dispositif rayonnant 4 est remplacé par un matériau BIP 102 à plusieurs défauts.Sur la figure 8, les éléments déjà décrits en regard de la figure 4 portent les mêmes références numériques.
L'antenne 100 est représentée en coupe suivant un plan de coupe perpendiculaire au plan réflecteur 22 et passant par les éléments d'excitation 41 et 43.
Le matériau BIP 102 comporte deux groupements successifs 104 et 106 de lames réalisées dans un premier matériau diélectrique. Les groupements 104 et 106 sont superposés dans la direction perpendiculaire au plan réflecteur 22. Chaque groupement 104, 106 est formé, à titre d'exemple non limitatif, respectivement par deux lames 110, 112 et 114, 116 parallèles au plan réflecteur 22. Chaque lame d'un groupement a la même épaisseur que les autres lames de ce même groupement. Dans le cas du groupement 106, chaque lame a une épaisseur e2 = /2 où 2, désigne la longueur d'onde de la fréquence médiane de la bande étroite créée par les défauts du matériau BIP.Here, the median frequency fm is substantially equal to 12 GHz.
The blade 36 forms a parallelepipedal resonant cavity with leaks whose height H is constant and whose lateral dimensions are defined by the lateral dimensions of the BIP material 20 and of the reflector 22. These blades 30 and 32, as well as the reflector plane 22, are identical rectangular and lateral dimensions. Here, these lateral dimensions are chosen so as to be several times larger than the radius R defined by the following empirical formula:
where: - GdB is the gain in decibels desired for the antenna, - = 2 R, - is the wavelength corresponding to the median frequency fm As an example, for a gain of 20 dB, the radius R is substantially equal to 2.15.
In known manner, such a parallelepiped resonant cavity has several families of resonant frequencies. Each family of resonant frequencies is formed by a fundamental frequency and its harmonics or integer multiples of the fundamental frequency. Each resonance frequency of the same family excites the same resonance mode of the cavity. These resonance modes are known under the terms of TMo, TM1, ..., TMi, .... resonance modes. These resonance modes are described in more detail in the document by F. Cardiol, "Electromagnetism, treaty of Electricity, Electronics and Electrical Engineering ", Ed. Dunod, 1987.
It is recalled here that the resonance mode TMo is likely to be excited by a range of excitation frequencies close to a fundamental frequency fmo. Similarly, each mode TM, is capable of being excited by a range of excitation frequencies close to a fundamental frequency fmi. Each resonance mode corresponds to a radiation pattern of the particular antenna and to a radiating spot in emission and / or in reception formed on the external surface 38. The radiating spot is here the zone of the external surface 38 containing the assembly points where the radiated power in transmission and / or reception is greater than or equal to half the maximum power radiated from this exterior surface by the antenna 4.Each radiating spot has a geometric center corresponding to the point where the power radiated is substantially equal to the maximum radiated power.
In the case of the TMo resonance mode, this radiating spot forms part of a circle whose diameter ()) is given by the formula (1). For the TMo resonance mode, the radiation diagram here is strongly directive along a direction perpendicular to the outer surface 38 and passing through the geometric center of the radiating spot. The radiation diagram corresponding to the TMo resonance mode is illustrated in FIG. 5.
The fmi frequencies are placed within the narrow bandwidth E.
Finally, four excitation elements 40 to 43 are placed one next to the other in the cavity 36 on the reflecting plane 22. In the example described here, the geometric centers of these excitation elements are placed at the four angles d '' a rhombus whose side dimensions are strictly less than 2R.
Each of these excitation elements is capable of transmitting and / or receiving an electromagnetic wave at a working frequency fTi different from that of the other excitation elements. Here, the frequency fTi of each excitation element is close to fmo so as to excite the resonance mode TMo of the cavity 36. These excitation elements 40 to 43 are connected to a conventional generator / receiver 45 of electrical signals intended to be transformed by each excitation element into an electromagnetic wave and vice versa.
These excitation elements are, for example, constituted by a radiating dipole, a radiating slot, a plate probe or a radiating patch. The lateral size of each radiating element, that is to say in a plane parallel to the external surface 38, is strictly less than the surface of the radiating spot to which it gives rise.
The operation of the antenna of FIG. 3 will now be described.
In transmission, the excitation element 40, activated by the generator / receiver 45, emits an electromagnetic wave at a working frequency fTo and excites the resonance mode TMo of the cavity 36. The other radiating elements 41 to 43 are, for example, simultaneously activated by the generator / receiver 45 and do the same respectively at the working frequencies fT1, fT2 and fT3.
It has been discovered that, for the TMo resonance mode, the radiating spot and the corresponding radiation diagram are independent of the lateral dimensions of the cavity 36. In fact, the TMo resonance mode is only a function of the thickness and of the nature of the materials of each of the blades 30 to 36 and is established independently of the lateral dimensions of the cavity 36 when these are several times greater than the radius R defined above. Thus, several TMo resonance modes can be established simultaneously one beside the other and therefore simultaneously generate several radiating spots arranged one next to the other. This is what occurs when the excitation elements 40 to 43 excite, each at different points in space, the same resonance mode. Consequently, the excitation by the excitation element 40 of the mode TMo resonance results in the appearance of a radiant spot 46 which is substantially circular and whose geometric center is placed vertically from the geometric center of the element 40. Similarly, the excitation by the elements 41 to 43 of the TMo resonance mode results in the appearance, vertically of the geometric center of each of these elements, respectively of radiating spots 47 to 49. The geometric center of element 40 being at a distance strictly less than 2R from the geometric center elements 41 and 43, the radiating spot 46 partially overlaps the radiating spots 47 and 49 corresponding respectively to the radiating elements 41 and 43. For the same reasons, the radiating spot 49 overlaps in pa rtie the radiating spots 46 and 48, the radiating spot 48 partially overlaps the radiating spots 49 and 47 and the radiating spot 47 partially overlaps the radiating spots 46 and 48.
Each radiating spot corresponds to the base or cross section at the origin of a beam of radiated electromagnetic waves. Thus, this antenna functions in a similar manner to known multi-beam antennas with overlapping radiating spots.
The operation of the antenna in reception follows from that described in transmission. Thus, for example, if an electromagnetic wave is emitted towards the radiating spot 46, this is received in the surface corresponding to the spot 46. If the received wave is at a frequency included in the narrow passband E, it n is not absorbed by the BIP material 20 and is received by the excitation element 40. Each electromagnetic wave received by an excitation element is transmitted in the form of an electrical signal to the generator / receiver 45.
FIG. 6 represents an antenna 70 produced from a BIP material 72 and a reflector 74 of electromagnetic waves and FIG. 7 the evolution of the transmission coefficient of this antenna as a function of the frequency.
The BIP material 72 is, for example, identical to the BIP material 20 and has the same non-pass band B (FIG. 7). The blades forming this BIP material already described with reference to FIG. 3 bear the same numerical references.
The reflector 74 is formed, for example, from the reflector plane 22 deformed so as to divide the cavity 36 into two resonant cavities 76 and 78 of different heights. The constant height H1 of the cavity 76 is determined so as to place, within the non-pass band B, a narrow pass band E1 (FIG. 7), for example, around the frequency of 10 GHz. Similarly, the height H2 of the resonant cavity 78 is determined to place, within the same non-passband B, a narrow passband E2 (FIG. 7), for example centered around 14 GHz. The reflector 74 here consists of two reflector half-planes 80 and 82 arranged in steps and electrically connected to each other. The reflecting half-plane 80 is parallel to the plate 32 and spaced therefrom by the height H1. The half-plane 82 is parallel to the plate 32 and spaced from the latter by the constant height H2.
Finally, an excitation element 84 is placed in the cavity 76 and an excitation element 86 is arranged in the cavity 78. These excitation elements 84, 86 are, for example, identical to the excitation elements 40 to 43 except that the excitation element 84 is adapted to excite the TMo resonance mode of the cavity 76, while the excitation element 86 is adapted to excite the TMo resonance mode of the cavity 78 .
In this embodiment, the horizontal distance, that is to say parallel to the blade 32, separating the geometric center of the excitation elements 84 and 86, is strictly less than the sum of the radii of two radiating spots produced respectively by elements 84 and 86.
The operation of this antenna 70 is identical to that of the antenna of FIG. 3. However, in this embodiment, the working frequencies of the excitation elements 84 and 86 are located in narrow passbands E1, E2 respective . Thus, unlike the antenna 4 of FIG. 3, the working frequencies of each of these excitation elements are separated from each other by a large frequency interval, for example, here, 4 GHz. In this embodiment, the positions of the pass bands E1, E2 are chosen so as to be able to use imposed working frequencies. FIG. 8 represents a multi-beam antenna 100. This antenna 100 is similar to the antenna 4 with the exception of the fact that the single defect BIP material 20 of the radiating device 4 is replaced by a BIP material 102 with several faults. In Figure 8, the elements already described with reference to Figure 4 have the same reference numerals.
The antenna 100 is shown in section along a section plane perpendicular to the reflective plane 22 and passing through the excitation elements 41 and 43.
The BIP 102 material comprises two successive groupings 104 and 106 of blades made of a first dielectric material. The groups 104 and 106 are superimposed in the direction perpendicular to the reflective plane 22. Each group 104, 106 is formed, by way of nonlimiting example, respectively by two blades 110, 112 and 114, 116 parallel to the reflective plane 22. Each blade of a group has the same thickness as the other blades of this same group. In the case of grouping 106, each plate has a thickness e2 = / 2 where 2 denotes the wavelength of the median frequency of the narrow band created by the defects of the BIP material.
Chaque lame du groupement 104 a une épaisseur e1 = /4.
Le calcul de ces épaisseurs e1 et e2 découle de l'enseignement divulgué dans le brevet français 99 14521 (2 801 428).
Entre chaque lame du matériau BIP 102 à défaut est interposée une lame en un second matériau diélectrique, tel que de l'air. L'épaisseur de ces lames séparant les lames 110, 112, 114 et 116 est égale à /4.
La première lame 116 est disposée en vis-à-vis du pian réflecteur 22 et séparée de ce plan par une lame en second matériau diélectrique d'épaisseur /2 de manière à former une cavité parallélépipédique résonante à fuites. De préférence, l'épaisseur ei des lames de matériau diélectrique, consécutive de chaque groupe de lames de matériau diélectrique, est en progression géométrique de raison q dans la direction des groupements 104, 106 successifs.
De plus, dans le mode de réalisation décrit ici, à titre d'exemple non limitatif, le nombre de groupements superposés est égal à 2 afin de ne pas surcharger le dessin, et la raison de progression géométrique est également prise égale à 2. Ces valeurs ne sont pas limitatives.
Cette superposition de groupements de matériau BIP ayant des caractéristiques de perméabilité magnétique, de permittivité diélectrique et d'épaisseur ei différentes accroît la largeur de la bande passante étroite créée au sein de la même bande non passante du matériau BIP. Ainsi, les fréquences de travail des éléments rayonnants 40 à 43 sont choisies plus espacées les unes des autres que dans le mode de réalisation de la figure 3.
Le fonctionnement de ce dispositif rayonnant 100 découle directement de celui de l'antenne 4.
En variante, le rayonnement émis ou reçu par chaque élément d'excitation est polarisé dans une direction différente de celle utilisée par les éléments d'excitation voisins. Avantageusement, la polarisation de chaque élément d'excitation est orthogonale à celle utilisée par les éléments d'excitation voisins. Ainsi, les interférences et les couplages entre éléments d'excitation voisins sont limités.
En variante, un même élément d'excitation est adapté pour fonctionner successivement ou simultanément à plusieurs fréquences de travail différentes. Un tel élément permet de créer une zone de couverture dans laquelle, par exemple, l'émission et la réception se font à des longueurs d'ondes différentes. Un tel élément d'excitation est également apte à faire de la commutation de fréquence.Each blade of the group 104 has a thickness e1 = / 4.
The calculation of these thicknesses e1 and e2 follows from the teaching disclosed in French patent 99 14521 (2 801 428).
Between each blade of the BIP 102 material, failing this, is interposed a blade of a second dielectric material, such as air. The thickness of these blades separating the blades 110, 112, 114 and 116 is equal to / 4.
The first strip 116 is disposed opposite the reflector plane 22 and separated from this plane by a strip of second dielectric material of thickness / 2 so as to form a resonant parallelepiped cavity with leaks. Preferably, the thickness ei of the strips of dielectric material, consecutive of each group of strips of dielectric material, is in geometric progression by reason q in the direction of the successive groupings 104, 106.
In addition, in the embodiment described here, by way of nonlimiting example, the number of superimposed groupings is equal to 2 so as not to overload the drawing, and the reason for geometric progression is also taken equal to 2. These values are not limiting.
This superimposition of groups of BIP material having characteristics of magnetic permeability, dielectric permittivity and different thickness increases the width of the narrow pass band created within the same non-pass band of the BIP material. Thus, the working frequencies of the radiating elements 40 to 43 are chosen to be spaced apart from each other than in the embodiment of FIG. 3.
The operation of this radiating device 100 follows directly from that of the antenna 4.
As a variant, the radiation emitted or received by each excitation element is polarized in a direction different from that used by the neighboring excitation elements. Advantageously, the polarization of each excitation element is orthogonal to that used by the neighboring excitation elements. Thus, interference and couplings between neighboring excitation elements are limited.
As a variant, the same excitation element is adapted to operate successively or simultaneously at several different working frequencies. Such an element makes it possible to create a coverage area in which, for example, transmission and reception are carried out at different wavelengths. Such an excitation element is also able to make frequency switching.