EP0403910B1 - Radiating, diplexing element - Google Patents

Radiating, diplexing element Download PDF

Info

Publication number
EP0403910B1
EP0403910B1 EP90110997A EP90110997A EP0403910B1 EP 0403910 B1 EP0403910 B1 EP 0403910B1 EP 90110997 A EP90110997 A EP 90110997A EP 90110997 A EP90110997 A EP 90110997A EP 0403910 B1 EP0403910 B1 EP 0403910B1
Authority
EP
European Patent Office
Prior art keywords
radiating
radiating element
elements
slot
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90110997A
Other languages
German (de)
French (fr)
Other versions
EP0403910A1 (en
Inventor
Thierry Dusseux
Michel Gomez-Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Original Assignee
Alcatel Espace Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA filed Critical Alcatel Espace Industries SA
Publication of EP0403910A1 publication Critical patent/EP0403910A1/en
Application granted granted Critical
Publication of EP0403910B1 publication Critical patent/EP0403910B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • H01Q9/0435Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points

Definitions

  • the invention relates to a diplexing radiating element.
  • Such a radiating element operates simultaneously in two frequency bands, which can in particular be close and can generate in each frequency band two orthogonal polarizations: linear or circular.
  • any waveguide element requiring operation at two separate frequencies and compact excitation from a TEM line supply for example: coaxial, triplate or microstrip line.
  • a multifrequency antenna device produced in microstrip technology.
  • the device according to this document comprises three electrically conductive discs, superimposed and separated by dielectric planes.
  • a first disk serves as a ground plane for a second disk, forming a first microstrip antenna having a first resonant frequency.
  • This first antenna is supplied by a first coaxial access whose central conductor is connected to said second disc, while the external conductor is connected to the first disc making the ground plane.
  • Said second disk also serves as a ground plane for the third disk, forming a second microstrip antenna having a second resonant frequency.
  • This second antenna is supplied by a second coaxial access, the central conductor of which crosses the first and second disks, disposed on a plane of zero electric field of said first antenna, and on a diameter orthogonal to the diameter on which said first coaxial access is disposed, while the external conductor is connected to the first ground plane disk for the assembly.
  • the object of the invention is to overcome these various drawbacks.
  • a diplexing radiating device comprising at least two radiating elements, at least two dielectric separators, and a reflective plane, said device being produced by stacking these elements in the following order: a first radiating element constituted by a single electrically conducting element; a first dielectric separator; a second radiating element; a second dielectric separator; said reflective plane; said device further comprising means for supplying said radiating elements; characterized in that said second radiating element is a slot defined by two electrically conductive elements, one of which surrounds the other to define a slot between the two; said slot being supplied by at least one transmission line; and in that during the excitation of said radiating elements, two radiating electric currents circulate in said first radiating element, spaced from one another, and two magnetic radiating currents circulate in said second radiating element, spaced apart from one the other ; so as to minimize the coupling between the two resonant radiating elements.
  • the radiating element according to the invention comprises a first radiating element having the form of an annular ring consisting of a conductive ribbon of circular shape, and a radiating element in the form of an annular slot consisting of a conductor making upper ground plane, a conductive disc and a reflective plane rendering the radiation from the unidirectional slot; a first spacer, for example of a dielectric nature separating the first and second radiating elements and a second spacer, for example of a dielectric nature, separating the second radiating element from its reflecting plane.
  • the diplexing radiating element of the invention as shown in FIGS. 1, 2 and 3, consists of two resonant radiating elements 10 and 11.
  • the first radiating and resonant element 10 can be an annular ring ("annular ring" in English), consisting of a conductive tape of circular shape, for example. This element, operating on the fundamental mode TM11, the average circumference of the ribbon is then close to a wavelength.
  • the metallic ribbon can be obtained by chemical etching.
  • a dielectric spacer 12 then separates it from the metal conductors 13 and 14. These two conductors 13 and 14 are concentric, the first 13 having the shape of a disc, the second the shape of a crown external to the first.
  • the microwave source supplying the antenna 10 is connected to one, two or four ports deduced from each other by a rotation of 90 degrees.
  • the connection (s) can be of coaxial nature 15 and 16, or of microstrip line type etched on the substrate 12 or any other technique skilled in the art for feeding the antenna 10.
  • the second radiating and resonant element 17 is an annular slot ("annular slot" in English), consisting of the conductor 14 forming an upper ground plane, the conductive disc 13 and a reflective plane 18 rendering the radiation from the unidirectional slot .
  • the spacing between the conductors 13 and 14 forms said annular slot 17.
  • the conductors 13, 14 and 18 can be obtained by chemical etching on a substrate disposed in the spacing 22, for example.
  • the antenna 17 can be powered according to the state of the art, in particular by coaxial connections 19 and 20, or by triplate line 21 (or microstrip), as shown in Figures 4 and 5. L feeding then takes place without contact.
  • the average circumference of the slot 17 is of the order of the wavelength.
  • FIG. 6 represents the radiating currents 23, of an electrical nature, from the antenna 10 and the main, excited polarization, of the electric field E.
  • the active currents are arranged on either side of the axis of symmetry (TM11 mode ).
  • FIG. 7 represents the radiating currents, of magnetic nature, of the antenna 17 and the main polarization excited.
  • the active currents 24 are arranged, unlike the previous case, along the axis of symmetry, for a radiated field of the same direction as above.
  • the antennas 10 and 17 thus have very similar surfaces, similar radiation performance, while having a minimum coupling between the supply lines of the two antennas.
  • annular slot and a circular "patch” are used;
  • the antenna 10 is then a circular resonant antenna ("circular disk” in English).
  • Figure 8 shows a section of such a device. This device facilitates the adjustment of the adaptation of the antenna 10, by displacement towards the center of the disc, of the ports 15 and 16.
  • FIG. 9 then shows the radiating currents 25 occurring in such an antenna 10.
  • annular slot and a dipole are used.
  • the antenna 10 can in fact be advantageously replaced by a simple or crossed, printed or wire dipole. The excitation of this antenna is then done according to the knowledge of a person skilled in the art.
  • the circular polarization generation is carried out by an access:
  • the circular polarization generated by one of the two, or the two antennas can be obtained by dissymmetrizing the antenna (s), according to techniques known to those skilled in the art (ears or "ear”, recesses or “notches”) as shown in FIGS. 10 and 11 respectively.
  • the device is then advantageously usable, when the directions of circular polarization of the radiated electromagnetic waves are identical.
  • the coupling between the two antennas is then minimal.
  • the waveguide can be circular, hexagonal, elliptical or square.
  • the antennas 10 and 17 can be square, elliptical, rectangular: an antenna of one shape can be associated with an antenna of another shape, a type of feed can be associated with another type of feed.
  • this device can be associated with other already existing devices to constitute a triband, quadriband element, etc.
  • a network antenna can be produced by grouping different radiating elements as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

L'invention se rapporte à un élément rayonnant diplexant.The invention relates to a diplexing radiating element.

Un tel élément rayonnant fonctionne simultanément dans deux bandes de fréquences, qui peuvent en particulier être proches et peuvent générer dans chaque bande de fréquence deux polarisations orthogonales : linéaires ou circulaires.Such a radiating element operates simultaneously in two frequency bands, which can in particular be close and can generate in each frequency band two orthogonal polarizations: linear or circular.

L'intérêt d'un tel élement est qu'il présente de bonnes performances de séparation des signaux d'une bande de fréquence par rapport à l'autre, en particulier lorsque ces bandes sont proches.The advantage of such an element is that it has good performance in separating signals from one frequency band relative to the other, in particular when these bands are close.

Il peut également être utilisé dans tout élément en guide d'onde nécessitant un fonctionnement à deux fréquences séparées et une excitation compacte à partir d'une alimentation en ligne TEM (par exemple : ligne coaxiale, triplaque ou microruban).It can also be used in any waveguide element requiring operation at two separate frequencies and compact excitation from a TEM line supply (for example: coaxial, triplate or microstrip line).

Les systèmes de l'art connu, permettant un fonctionnement à deux fréquences, nécessitent généralement :

  • . soit un élément rayonnant large bande et un système de filtres diplexeurs assurant la réjection d'une bande de fréquence sur l'autre ;
  • . soit la superposition de deux types d'éléments rayonnants fonctionnant chacun dans sa bande de fréquence. Les couplages entre les éléments sont d'autant plus faibles que les zones rayonnantes de ces éléments sont éloignées l'une de l'autre. Il est donc difficile d'améliorer ceux-ci, sans accroître les dimensions de l'un des deux éléments rayonnants.
The systems of the known art, allowing operation at two frequencies, generally require:
  • . either a broadband radiating element and a system of diplexer filters ensuring the rejection of one frequency band on the other;
  • . or the superposition of two types of radiating elements each operating in its frequency band. The couplings between the elements are all the weaker as the radiating zones of these elements are distant from each other. It is therefore difficult to improve these, without increasing the dimensions of one of the two radiating elements.

Dans ce dernier cas, il en résulte une différence entre surfaces rayonnantes équivalentes, mal adaptées à une antenne à échantillonnage par exemple.In the latter case, this results in a difference between equivalent radiating surfaces, ill-suited to a sampling antenna for example.

Il est connu par le document IEEE Trans. AP-35 (1987) Nov. No 11, pp.1281-85, DAHLE et al., intitulé : "Dual Frequency Stacked Annular Ring Microstrip Antenna" un dispositif de l'art antérieur, comprenant deux anneaux circulaires, de géométries identiques, superposés au-dessus d'un plan de masse. La réponse en fréquence du dispositif, et notamment la séparation des deux fréquences résonantes, peut être altérée en jouant sur l'espace entre les anneaux. L'anneau supérieur est alimenté par un accès coaxial, dont le conducteur central est connecté à l'anneau tandis que le conducteur externe est connecté au plan de masse. L'anneau inférieur est couplé uniquement par des champs de fuite ("fringing field" en anglais).It is known from the document IEEE Trans. AP-35 (1987) Nov. No 11, pp.1281-85, DAHLE et al., Entitled: "Dual Frequency Stacked Annular Ring Microstrip Antenna" a device of the prior art, comprising two circular rings, of identical geometries, superimposed above a ground plane. The frequency response of the device, and in particular the separation of the two resonant frequencies, can be altered by playing on the space between the rings. The upper ring is powered by a coaxial access, the central conductor of which is connected to the ring while the external conductor is connected to the ground plane. The lower ring is coupled only by leakage fields ("fringing field" in English).

Il est connu par le document US-A-4 089 003 de Conroy, un dispositif d'antenne multifréquence réalisé en technologie microruban. Le dispositif selon ce document comprend trois disques électriquement conducteurs, superposés et séparés par des plans diélectriques. Un premier disque sert de plan de masse pour un deuxième disque, formant une première antenne microruban ayant une première fréquence résonante. Cette première antenne est alimentée par un premier accès coaxial dont le conducteur central est connecté audit deuxième disque, tandis que le conducteur externe est connecté au premier disque faisant plan de masse. Ledit deuxième disque sert également de plan de masse pour le troisième disque, formant une deuxième antenne microruban ayant une deuxième fréquence résonante. Cette deuxième antenne est alimentée par un deuxième accès coaxial dont le conducteur central traverse les premier et deuxième disques, disposé sur un plan de champ électrique nul de ladite première antenne, et sur un diamètre orthogonal au diamètre sur lequel ledit premier accès coaxial est disposé, tandis que le conducteur externe est connecté au premier disque faisant plan de masse pour l'ensemble.It is known from document US-A-4 089 003 by Conroy, a multifrequency antenna device produced in microstrip technology. The device according to this document comprises three electrically conductive discs, superimposed and separated by dielectric planes. A first disk serves as a ground plane for a second disk, forming a first microstrip antenna having a first resonant frequency. This first antenna is supplied by a first coaxial access whose central conductor is connected to said second disc, while the external conductor is connected to the first disc making the ground plane. Said second disk also serves as a ground plane for the third disk, forming a second microstrip antenna having a second resonant frequency. This second antenna is supplied by a second coaxial access, the central conductor of which crosses the first and second disks, disposed on a plane of zero electric field of said first antenna, and on a diameter orthogonal to the diameter on which said first coaxial access is disposed, while the external conductor is connected to the first ground plane disk for the assembly.

L'invention a pour objet de pallier ces différents inconvénients.The object of the invention is to overcome these various drawbacks.

Elle propose propose à cet effet un dispositif rayonnant diplexant, comprenant au moins deux éléments rayonnants, au moins deux séparateurs diélectriques, et un plan réflecteur, ledit dispositif étant réalisé par empilage de ces éléments dans l'ordre suivant :
un premier élément rayonnant constitué par un seul élément électriquement conducteur ;
un premier séparateur diélectrique ;
un deuxième élément rayonnant ;
un deuxième séparateur diélectrique ;
ledit plan réflecteur ;
ledit dispositif comprenant en outre des moyens d'alimentation desdits éléments rayonnants ; caractérisé en ce que ledit deuxième élément rayonnant est une fente définie par deux éléments électriquement conducteurs dont l'un entoure l'autre pour définir une fente entre les deux ; ladite fente étant alimentée par au moins une ligne de transmission ; et en ce que lors de l'excitation desdits éléments rayonnants, deux courants électriques rayonnants circulent dans ledit premier élément rayonnant, espacés l'un de l'autre, et deux courants magnétiques rayonnants circulent dans ledit deuxième élément rayonnant, espacés l'un de l'autre ; de manière à minimiser le couplage entre les deux éléments rayonnants résonnants.
It proposes for this purpose a diplexing radiating device, comprising at least two radiating elements, at least two dielectric separators, and a reflective plane, said device being produced by stacking these elements in the following order:
a first radiating element constituted by a single electrically conducting element;
a first dielectric separator;
a second radiating element;
a second dielectric separator;
said reflective plane;
said device further comprising means for supplying said radiating elements; characterized in that said second radiating element is a slot defined by two electrically conductive elements, one of which surrounds the other to define a slot between the two; said slot being supplied by at least one transmission line; and in that during the excitation of said radiating elements, two radiating electric currents circulate in said first radiating element, spaced from one another, and two magnetic radiating currents circulate in said second radiating element, spaced apart from one the other ; so as to minimize the coupling between the two resonant radiating elements.

Avantageusement l'élément rayonnant selon l'invention comprend un premier élément rayonnant ayant la forme d'une bague annulaire constituée d'un ruban conducteur de forme circulaire, et un élément rayonnant en forme de fente annulaire constituée d'un conducteur faisant plan de masse supérieur, d'un disque conducteur et d'un plan réflecteur rendant le rayonnement de la fente unidirectionnel ; un premier espaceur par exemple de nature diélectrique séparant le premier et le second éléments rayonnants et un second espaceur par exemple de nature diélectrique séparant le second élément rayonnant de son plan réflecteur.Advantageously, the radiating element according to the invention comprises a first radiating element having the form of an annular ring consisting of a conductive ribbon of circular shape, and a radiating element in the form of an annular slot consisting of a conductor making upper ground plane, a conductive disc and a reflective plane rendering the radiation from the unidirectional slot; a first spacer, for example of a dielectric nature separating the first and second radiating elements and a second spacer, for example of a dielectric nature, separating the second radiating element from its reflecting plane.

Un tel élément rayonnant présente les avantages suivants :

  • il est extrêmement compact ; la polarisation circulaire est ici directement générée à partir d'une ligne TEM pour les deux bandes de fréquence sur une longueur inférieure à un quart de longueur d'onde,
  • il peut être muni entièrement d'accès arrières longitudinaux, ce qui permet de coupler ces accès, sans câbles coaxiaux supplémentaires, à un répartiteur de puissance TEM émission et/ou réception parallèle à la direction de rayonnement maximum, endroit où peuvent être également implantés les coupleurs hybrides de mise en quadrature,
  • le couplage d'un élément sur l'autre est réduit par le choix des éléments rayonnants utilisés,
  • dans le cas où le dispositif est utilisé pour l'excitation d'un guide d'onde alimenté en mode fondamental, les surfaces rayonnantes équivalentes sont identiques dans les deux bandes de fréquences.
Such a radiating element has the following advantages:
  • it is extremely compact; the circular polarization is here directly generated from a TEM line for the two frequency bands over a length less than a quarter of a wavelength,
  • it can be fully fitted with longitudinal rear access, which makes it possible to couple these accesses, without additional coaxial cables, to a TEM power distribution and / or reception distributor parallel to the direction of maximum radiation, place where the quadrature hybrid couplers,
  • the coupling of one element on the other is reduced by the choice of the radiating elements used,
  • in the case where the device is used for the excitation of a waveguide supplied in fundamental mode, the equivalent radiating surfaces are identical in the two frequency bands.

Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, à titre d'exemple non limitatif, en référence aux figures annexées sur lesquelles :

  • les figures 1, 2 et 3 illustrent, schématiquement, respectivement une vue en coupe longitudinale, une vue en coupe transversale suivant le plan II-II représenté à la figure 1, et une vue en coupe transversale suivant le plan III-III d'une réalisation de l'élément rayonnant diplexant de l'invention.
  • les figures 4 et 5 illustrent respectivement une vue en coupe longitudinale et une vue en coupe transversale d'une autre réalisation de l'élément rayonnant diplexant de l'invention ;
  • les figure 6 et 7 sont des vues explicatives du fonctionnement de l'élément rayonnant diplexant selon l'invention ;
  • les figures 8 et 9 illustrent une coupe longitudinale d'une variante de réalisation de l'élément rayonnant diplexant selon l'invention et une vue explicative de son fonctionnement ;
  • les figures 10, 11 et 12 illustrent plusieurs variantes de réalisation de l'élément rayonnant diplexant selon l'invention.
The characteristics and advantages of the invention will become apparent from the description which follows, by way of nonlimiting example, with reference to the appended figures in which:
  • Figures 1, 2 and 3 illustrate, schematically, respectively a longitudinal sectional view, a cross-sectional view along the plane II-II shown in Figure 1, and a cross-sectional view along the plane III-III of a realization of the diplexing radiating element of the invention.
  • Figures 4 and 5 respectively illustrate a longitudinal sectional view and a cross-sectional view of another embodiment of the diplexing radiating element of the invention;
  • Figures 6 and 7 are explanatory views of the operation of the diplexing radiating element according to the invention;
  • Figures 8 and 9 illustrate a longitudinal section of an alternative embodiment of the radiating diplexing element according to the invention and an explanatory view of its operation;
  • Figures 10, 11 and 12 illustrate several alternative embodiments of the radiating diplexing element according to the invention.

L'élément rayonnant diplexant de l'invention, tel que représenté aux figures 1, 2 et 3, est constitué par deux éléments rayonnants résonnants 10 et 11.The diplexing radiating element of the invention, as shown in FIGS. 1, 2 and 3, consists of two resonant radiating elements 10 and 11.

Le premier élément rayonnant et résonnant 10 peut être une bague annulaire ("annular ring" en anglo-saxon), constituée d'un ruban conducteur de forme circulaire, par exemple. Cet élément, fonctionnant sur le mode fondamental TM11, la circonférence moyenne du ruban est alors proche d'une longueur d'onde. Le ruban métallique peut être obtenu par gravure chimique. Un espaceur de nature diélectrique 12 le sépare alors des conducteurs métalliques 13 et 14. Ces deux conducteurs 13 et 14 sont concentriques, le premier 13 ayant la forme d'un disque, le second la forme d'une couronne extérieure au premier. La source hyperfréquence alimentant l'antenne 10 est connectée à un, deux ou quatre accès déduits les uns des autres par une rotation de 90 degrés. La ou les connections peuvent être de nature coaxiale 15 et 16, ou de type ligne microruban gravée sur le substrat 12 ou toute autre technique de l'homme de l'art pour alimenter l'antenne 10.The first radiating and resonant element 10 can be an annular ring ("annular ring" in English), consisting of a conductive tape of circular shape, for example. This element, operating on the fundamental mode TM11, the average circumference of the ribbon is then close to a wavelength. The metallic ribbon can be obtained by chemical etching. A dielectric spacer 12 then separates it from the metal conductors 13 and 14. These two conductors 13 and 14 are concentric, the first 13 having the shape of a disc, the second the shape of a crown external to the first. The microwave source supplying the antenna 10 is connected to one, two or four ports deduced from each other by a rotation of 90 degrees. The connection (s) can be of coaxial nature 15 and 16, or of microstrip line type etched on the substrate 12 or any other technique skilled in the art for feeding the antenna 10.

Le second élément rayonnant et résonnant 17 est une fente annulaire ("annular slot" en anglo-saxon), constitué du conducteur 14 faisant plan de masse supérieur, du disque conducteur 13 et d'un plan réflecteur 18 rendant le rayonnement de la fente unidirectionnel. L'espacement entre les conducteurs 13 et 14 forme ladite fente annulaire 17. Les conducteurs 13, 14 et 18 peuvent être obtenus par gravure chimique sur un substrat disposé dans l'espacement 22, par exemple.The second radiating and resonant element 17 is an annular slot ("annular slot" in English), consisting of the conductor 14 forming an upper ground plane, the conductive disc 13 and a reflective plane 18 rendering the radiation from the unidirectional slot . The spacing between the conductors 13 and 14 forms said annular slot 17. The conductors 13, 14 and 18 can be obtained by chemical etching on a substrate disposed in the spacing 22, for example.

L'alimentation de l'antenne 17 peut être effectuée selon l'état de l'art, en particulier par des connections coaxiales 19 et 20, ou par ligne triplaque 21 (ou microruban), comme représenté sur les figures 4 et 5. L'alimentation se faisant alors sans contact.The antenna 17 can be powered according to the state of the art, in particular by coaxial connections 19 and 20, or by triplate line 21 (or microstrip), as shown in Figures 4 and 5. L feeding then takes place without contact.

La circonférence moyenne de la fente 17 est de l'ordre de la longueur d'onde.The average circumference of the slot 17 is of the order of the wavelength.

Afin de supprimer une éventuelle différence de potentiel entre les conducteurs 18 et 14, des liaisons électriques par plots métalliques, ou vis peuvent être disposées autour de la fente 17.In order to eliminate any potential difference between the conductors 18 and 14, electrical connections by metal studs or screws can be arranged around the slot 17.

Dans le cas d'alimentation par ligne coaxiale de l'antenne 10, 11 est nécessaire de prévoir le passage des accès (15, 16 dans le cas de deux accès) à travers les différentes épaisseurs de substrats ou de conducteurs (18, 22, 13 et 12). Ces jonctions, tendant à neutraliser le champ électrique naissant entre les conducteurs 13 et 18, ne perturbent pas fondamentalement le fonctionnement de la fente 17.In the case of feed by coaxial line of the antenna 10, 11 it is necessary to provide for the passage of the accesses (15, 16 in the case of two accesses) through the different thicknesses of substrates or conductors (18, 22, 13 and 12). These junctions, tending to neutralize the emerging electric field between the conductors 13 and 18, do not fundamentally disturb the operation of the slot 17.

La figure 6 représente les courants 23 rayonnants, de nature électrique, de l'antenne 10 et la polarisation principale, excitée, du champ électrique E. Les courants actifs sont disposés de part et d'autre de l'axe de symétrie (Mode TM₁₁).FIG. 6 represents the radiating currents 23, of an electrical nature, from the antenna 10 and the main, excited polarization, of the electric field E. The active currents are arranged on either side of the axis of symmetry (TM₁₁ mode ).

La figure 7 représente les courants rayonnants, de nature magnétique, de l'antenne 17 et la polarisation principale excitée. Les courants actifs 24 sont disposés, contrairement au cas précédent, le long de l'axe de symétrie, pour un champ rayonné de même direction que précédemment.FIG. 7 represents the radiating currents, of magnetic nature, of the antenna 17 and the main polarization excited. The active currents 24 are arranged, unlike the previous case, along the axis of symmetry, for a radiated field of the same direction as above.

De par la nature et la disposition de ces courants rayonnants 23 et 24 des antennes 10 et 17, le couplage entre les deux antennes est minimal, ce qui constitue un des avantages de l'invention. Les antennes 10 et 17 présentent ainsi des surfaces très voisines, des performances de rayonnement semblables, tout en présentant un couplage minimum entre les lignes d'alimentation des deux antennes.Due to the nature and arrangement of these radiating currents 23 and 24 of the antennas 10 and 17, the coupling between the two antennas is minimal, which constitutes one of the advantages of the invention. The antennas 10 and 17 thus have very similar surfaces, similar radiation performance, while having a minimum coupling between the supply lines of the two antennas.

L'adaptation des divers accès à une impédance choisie et l'élargissement de la bande passante peuvent être obtenus selon les techniques de l'homme de l'art, par modifications de :

  • la largeur du ruban métallique 10 et la largeur de la fente 17 ;
  • la hauteur des espaceurs 12 et 22 ;
  • la nature diélectrique des espaceurs 12 et 22 ;
  • les caractéristiques électriques des lignes d'alimentation des antennes 10 et 17.
The adaptation of the various accesses to a chosen impedance and the widening of the bandwidth can be obtained according to the techniques of a person skilled in the art, by modifications of:
  • the width of the metal strip 10 and the width of the slot 17;
  • the height of the spacers 12 and 22;
  • the dielectric nature of the spacers 12 and 22;
  • the electrical characteristics of the feed lines of the antennas 10 and 17.

Dans une autre réalisation de l'invention, on utilise une fente annulaire et un "patch" circulaire ; L'antenne 10 est alors une antenne résonnante circulaire ("circular disk" en anglo-saxon).In another embodiment of the invention, an annular slot and a circular "patch" are used; The antenna 10 is then a circular resonant antenna ("circular disk" in English).

La figure 8 montre alors une coupe d'un tel dispositif. Ce dispositif facilite le réglage de l'adaptation de l'antenne 10, par déplacement vers le centre du disque, des accès 15 et 16.Figure 8 then shows a section of such a device. This device facilitates the adjustment of the adaptation of the antenna 10, by displacement towards the center of the disc, of the ports 15 and 16.

La figure 9 montre alors les courants rayonnants 25 intervenant dans une telle antenne 10.FIG. 9 then shows the radiating currents 25 occurring in such an antenna 10.

Dans une autre réalisation de l'invention, on utilise une fente annulaire et un dipôle. L'antenne 10 peut être, en effet, avantageusement remplacée par un dipôle simple ou croisé, imprimé ou filaire. L'excitation de cette antenne se fait alors selon les connaissances de l'homme de l'art.In another embodiment of the invention, an annular slot and a dipole are used. The antenna 10 can in fact be advantageously replaced by a simple or crossed, printed or wire dipole. The excitation of this antenna is then done according to the knowledge of a person skilled in the art.

Dans une autre réalisation de l'invention, on effectue la génération de polarisation circulaire par un accès : Dans le cas où les bandes de fréquence spécifiées sont suffisamment étroites selon les performances recherchées, la polarisation circulaire générée par une des deux, ou les deux antennes peut être obtenue en dissymétrisant la ou les antenne(s), selon des techniques connues de l'homme de l'art (oreilles ou "ear", évidements ou "notches") comme représenté respectivement aux figures 10 et 11.In another embodiment of the invention, the circular polarization generation is carried out by an access: In the case where the specified frequency bands are sufficiently narrow according to the desired performances, the circular polarization generated by one of the two, or the two antennas can be obtained by dissymmetrizing the antenna (s), according to techniques known to those skilled in the art (ears or "ear", recesses or "notches") as shown in FIGS. 10 and 11 respectively.

Indépendamment du positionnement de l'antenne 17 par rapport à l'antenne 10, le dispositif est alors avantageusement utilisable, lorsque les sens de polarisation circulaire des ondes électromagnétiques rayonnées sont identiques. Le couplage entre les deux antennes est alors minimal.Regardless of the positioning of the antenna 17 relative to the antenna 10, the device is then advantageously usable, when the directions of circular polarization of the radiated electromagnetic waves are identical. The coupling between the two antennas is then minimal.

Quelque soit la réalisation du dispositif décrite précédemment, celle-ci peut être avantageusement utilisée pour exciter deux ondes à des fréquences différentes dans un guide d'onde 26 selon la figure 12. Ce dispositif est particulièrement adapté lorsque les ondes sont polarisées circulairement et de même sens, la génération de l'ellipticité de l'onde se faisant par irrégularités sur les antennes ou alimentations par deux ou quatre accès à l'aide des coupleurs 0°, 90° ou 0, 90°, 180°, 270°Whatever the embodiment of the device described above, it can be advantageously used to excite two waves at different frequencies in a waveguide 26 according to Figure 12. This device is particularly suitable when the waves are circularly polarized and similarly sense, the generation of the ellipticity of the wave being done by irregularities on the antennas or power supplies by two or four accesses using couplers 0 °, 90 ° or 0, 90 °, 180 °, 270 °

Il est bien entendu que la présente invention n'a été décrite et représentée qu'à titre d'exemple préférentiel et que l'on pourra remplacer ses éléments constitutifs par des éléments équivalents sans, pour autant, sortir du cadre de l'invention.It is understood that the present invention has only been described and shown as a preferred example and that its constituent elements can be replaced by equivalent elements without, however, departing from the scope of the invention.

Ainsi le guide d'onde peut être circulaire, hexagonal, elliptique ou carré.Thus the waveguide can be circular, hexagonal, elliptical or square.

Ainsi les antennes 10 et 17 peuvent être de forme carrée, elliptique, rectangulaire : une antenne d'une forme peut être associée à une antenne d'une autre forme, un type d'alimentation peut être associé à un autre type d'alimentation.Thus the antennas 10 and 17 can be square, elliptical, rectangular: an antenna of one shape can be associated with an antenna of another shape, a type of feed can be associated with another type of feed.

Ainsi un élargissement de bande peut être obtenu par empilage d'éléments rayonnants non alimentés par accroissement de la complexité du circuit d'adaptation.Thus a band widening can be obtained by stacking radiating elements which are not supplied by increasing the complexity of the adaptation circuit.

Ainsi ce dispositif peut être associé à d'autres dispositifs déjà existant pour constituer un élément tribande, quadribande etc...Thus, this device can be associated with other already existing devices to constitute a triband, quadriband element, etc.

Ainsi une antenne réseau peut être réalisée en regroupant différents éléments rayonnants tels que décrits précédemment.Thus, a network antenna can be produced by grouping different radiating elements as described above.

Claims (10)

  1. A diplexing radiating device, comprising at least two radiating elements (10; 13, 14), at least two dielectric separators (12, 22) and a reflecting plane (18), said device being made by stacking these elements in the following order:
       a first radiating element (10) constituted by a single electrically conductive element;
       a first dielectric separator (12);
       a second radiating element (13, 14);
       a second dielectric separator (22); and
       said reflecting plane (18);
       said device further comprising means (15, 16) of feeding said radiating elements;
       the device being characterized in that said second radiating element is a slot defined by two electrically conductive elements (13, 14) of which one (14) surrounds the other (13) in order to define a slot between them; said slot being fed by at least one transmission line;
       and in that at the time of exciting said radiating elements, two radiating electrical currents which are spaced apart from each other flow in said first radiating element (10), and two radiating magnetic currents which are spaced apart from each other flow in said second radiating element (13, 14), in a manner as to minimize the coupling between the two resonant radiating elements.
  2. A device according to claim 1, characterized in that the first radiating element (10) in the form of an annular ring constituted by a conductive strip which is circular in shape.
  3. A device according to claim 1, characterized in that the second radiating element is an annular slot (17) constituted by a conductor (14) constituting an upper ground plane, by a conductive disk (13), and by a reflecting plane (18) making the radiation from the slot unidirectional.
  4. A device according to claim 2 or 3, characterized in that a dielectric spacer separates the first and second radiating elements (10; 13, 14).
  5. A device according to any one of claims 2 to 4, characterized in that a second dielectric spacer (22) separates the second radiating element (13, 14) from its reflecting plane (18).
  6. A device according to claim 4, characterized in that a microwave source feeding the first radiating element (10) is connected to one or at least two accesses offset from each other by rotation through 90°.
  7. A device according to claim 1, characterized in that the first radiating element (10) is a circular resonant antenna.
  8. A device according to any preceding claim, characterized in that it is disposed in a waveguide for the purpose of exciting the waveguide.
  9. A device according to any preceding claim, characterized in that the waves it generates are linearly polarized, are polarized linearly in two different directions, are circularly polarized, or are polarized circularly in two different directions.
  10. An array antenna, characterized in that it comprises a group of devices according to any preceding claim.
EP90110997A 1989-06-20 1990-06-11 Radiating, diplexing element Expired - Lifetime EP0403910B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8908190A FR2648626B1 (en) 1989-06-20 1989-06-20 RADIANT DIPLEXANT ELEMENT
FR8908190 1989-06-20

Publications (2)

Publication Number Publication Date
EP0403910A1 EP0403910A1 (en) 1990-12-27
EP0403910B1 true EP0403910B1 (en) 1995-07-19

Family

ID=9382938

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90110997A Expired - Lifetime EP0403910B1 (en) 1989-06-20 1990-06-11 Radiating, diplexing element

Country Status (6)

Country Link
US (1) US5055852A (en)
EP (1) EP0403910B1 (en)
JP (1) JPH0332202A (en)
CA (1) CA2019181A1 (en)
DE (1) DE69020965T2 (en)
FR (1) FR2648626B1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672437B1 (en) * 1991-02-01 1993-09-17 Alcatel Espace RADIANT DEVICE FOR FLAT ANTENNA.
KR920022585A (en) * 1991-05-14 1992-12-19 오오가 노리오 Planar antenna
JP2584698B2 (en) * 1991-10-17 1997-02-26 ヒロセ電機株式会社 Electromagnetic coupling type loop antenna for circular polarization
DE4135828A1 (en) * 1991-10-30 1993-05-06 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V., 5300 Bonn, De ANTENNA ARRANGEMENT
GB2274548B (en) * 1993-01-25 1996-07-24 Securicor Datatrak Ltd Dual purpose, low profile antenna
FR2703190B1 (en) * 1993-03-26 1995-05-12 Alcatel Espace Radiant structure with variable directivity.
DE4313397A1 (en) * 1993-04-23 1994-11-10 Hirschmann Richard Gmbh Co Planar antenna
FR2706085B1 (en) * 1993-06-03 1995-07-07 Alcatel Espace Multilayer radiating structure with variable directivity.
US5440319A (en) * 1993-10-01 1995-08-08 California Amplifier Integrated microwave antenna/downconverter
GB9417450D0 (en) 1994-08-25 1994-10-19 Symmetricom Inc An antenna
US5793258A (en) * 1994-11-23 1998-08-11 California Amplifier Low cross polarization and broad bandwidth
JPH08213829A (en) * 1995-02-07 1996-08-20 Matsushita Electric Ind Co Ltd Microstrip antenna
US5835057A (en) * 1996-01-26 1998-11-10 Kvh Industries, Inc. Mobile satellite communication system including a dual-frequency, low-profile, self-steering antenna assembly
US6064347A (en) * 1997-12-29 2000-05-16 Scientific-Atlanta, Inc. Dual frequency, low profile antenna for low earth orbit satellite communications
US6078297A (en) * 1998-03-25 2000-06-20 The Boeing Company Compact dual circularly polarized waveguide radiating element
FR2778802B1 (en) * 1998-05-15 2000-09-08 Alsthom Cge Alcatel CIRCULARLY POLARIZED MICROWAVE TRANSMISSION AND RECEPTION DEVICE
DE69914528T2 (en) * 1998-06-04 2004-07-08 Matsushita Electric Industrial Co., Ltd., Kadoma monopole antenna
GB9813002D0 (en) * 1998-06-16 1998-08-12 Symmetricom Inc An antenna
US6329958B1 (en) * 1998-09-11 2001-12-11 Tdk Rf Solutions, Inc. Antenna formed within a conductive surface
GB9828768D0 (en) 1998-12-29 1999-02-17 Symmetricom Inc An antenna
GB9902765D0 (en) 1999-02-08 1999-03-31 Symmetricom Inc An antenna
GB9912441D0 (en) 1999-05-27 1999-07-28 Symmetricon Inc An antenna
US20020122820A1 (en) * 2001-01-16 2002-09-05 Hildebrand William H. Soluble MHC artificial antigen presenting cells
US6624787B2 (en) * 2001-10-01 2003-09-23 Raytheon Company Slot coupled, polarized, egg-crate radiator
US6646614B2 (en) * 2001-11-07 2003-11-11 Harris Corporation Multi-frequency band antenna and related methods
FR2834837A1 (en) * 2002-01-14 2003-07-18 Thomson Licensing Sa DEVICE FOR RECEIVING AND / OR TRANSMITTING ELECTROMAGNETIC WAVES WITH RADIATION DIVERSITY
DE10209996A1 (en) * 2002-03-07 2003-10-09 Kathrein Werke Kg Combined antenna arrangement for receiving terrestrial and satellite signals
US6809686B2 (en) * 2002-06-17 2004-10-26 Andrew Corporation Multi-band antenna
US7403158B2 (en) * 2005-10-18 2008-07-22 Applied Wireless Identification Group, Inc. Compact circular polarized antenna
US9172145B2 (en) 2006-09-21 2015-10-27 Raytheon Company Transmit/receive daughter card with integral circulator
US8279131B2 (en) * 2006-09-21 2012-10-02 Raytheon Company Panel array
US7671696B1 (en) * 2006-09-21 2010-03-02 Raytheon Company Radio frequency interconnect circuits and techniques
US9019166B2 (en) 2009-06-15 2015-04-28 Raytheon Company Active electronically scanned array (AESA) card
CN101179148B (en) * 2006-11-10 2012-01-25 鸿富锦精密工业(深圳)有限公司 Wideband antenna
US7859835B2 (en) * 2009-03-24 2010-12-28 Allegro Microsystems, Inc. Method and apparatus for thermal management of a radio frequency system
US8102330B1 (en) * 2009-05-14 2012-01-24 Ball Aerospace & Technologies Corp. Dual band circularly polarized feed
US8537552B2 (en) * 2009-09-25 2013-09-17 Raytheon Company Heat sink interface having three-dimensional tolerance compensation
US8508943B2 (en) 2009-10-16 2013-08-13 Raytheon Company Cooling active circuits
US8766854B2 (en) * 2010-01-07 2014-07-01 National Taiwan University Bottom feed cavity aperture antenna
JP2011171839A (en) * 2010-02-16 2011-09-01 Toshiba Tec Corp Antenna and portable apparatus
JP5048092B2 (en) * 2010-02-16 2012-10-17 東芝テック株式会社 Antenna and portable device
US8427371B2 (en) 2010-04-09 2013-04-23 Raytheon Company RF feed network for modular active aperture electronically steered arrays
US8363413B2 (en) 2010-09-13 2013-01-29 Raytheon Company Assembly to provide thermal cooling
US8810448B1 (en) 2010-11-18 2014-08-19 Raytheon Company Modular architecture for scalable phased array radars
US8355255B2 (en) 2010-12-22 2013-01-15 Raytheon Company Cooling of coplanar active circuits
US9124361B2 (en) 2011-10-06 2015-09-01 Raytheon Company Scalable, analog monopulse network
US9130278B2 (en) 2012-11-26 2015-09-08 Raytheon Company Dual linear and circularly polarized patch radiator
CN103346402B (en) * 2013-06-18 2015-05-13 哈尔滨工业大学 Omni-directional ultra-wide band wafer antenna
US10381725B2 (en) * 2015-07-20 2019-08-13 Optimum Semiconductor Technologies Inc. Monolithic dual band antenna
KR101989820B1 (en) 2017-03-14 2019-06-18 주식회사 아모텍 Multilayer patch antenna
CN110400779B (en) * 2018-04-25 2022-01-11 华为技术有限公司 Packaging structure
JP7149820B2 (en) * 2018-11-26 2022-10-07 日本特殊陶業株式会社 waveguide slot antenna
EP3910735B1 (en) * 2020-05-11 2024-03-06 Nokia Solutions and Networks Oy An antenna arrangement
US11502414B2 (en) 2021-01-29 2022-11-15 Eagle Technology, Llc Microstrip patch antenna system having adjustable radiation pattern shapes and related method
EP4160819A1 (en) * 2021-10-01 2023-04-05 The Boeing Company Ring slot patch radiator unit cell for phased array antennas
US20230106696A1 (en) * 2021-10-01 2023-04-06 The Boeing Company Low cost electronically scanning antenna array architecture
US20230104894A1 (en) * 2021-10-01 2023-04-06 The Boeing Company Ultra-low-cost 1d-scanning antenna array

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375415A2 (en) * 1988-12-23 1990-06-27 Harada Industry Co., Ltd. Plane slot antennas and their use in motor vehicles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU509182A1 (en) * 1974-05-06 1976-11-25 Ордена Трудового Красного Знамени Институт Радиотехники Ан Ссср Antenna
US4089003A (en) * 1977-02-07 1978-05-09 Motorola, Inc. Multifrequency microstrip antenna
US4138684A (en) * 1977-05-12 1979-02-06 The United States Of America As Represented By The Secretary Of The Army Loaded microstrip antenna with integral transformer
US4329689A (en) * 1978-10-10 1982-05-11 The Boeing Company Microstrip antenna structure having stacked microstrip elements
DE3150235A1 (en) * 1981-12-18 1983-06-30 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Passive radiating element
JPS5916402A (en) * 1982-07-19 1984-01-27 Nippon Telegr & Teleph Corp <Ntt> Broad band microstrip antenna uses two-frequencies in common
US4660048A (en) * 1984-12-18 1987-04-21 Texas Instruments Incorporated Microstrip patch antenna system
US5005019A (en) * 1986-11-13 1991-04-02 Communications Satellite Corporation Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375415A2 (en) * 1988-12-23 1990-06-27 Harada Industry Co., Ltd. Plane slot antennas and their use in motor vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON ANTENNAS & PROPAGATION AP-35,no. 11, novembre 1987, pages 1281-1285; DAHELE et al.:"Dual-Frequency Stacked Annular- Ring Microstrip Antenna" *

Also Published As

Publication number Publication date
FR2648626B1 (en) 1991-08-23
DE69020965T2 (en) 1995-11-30
FR2648626A1 (en) 1990-12-21
US5055852A (en) 1991-10-08
DE69020965D1 (en) 1995-08-24
CA2019181A1 (en) 1990-12-20
EP0403910A1 (en) 1990-12-27
JPH0332202A (en) 1991-02-12

Similar Documents

Publication Publication Date Title
EP0403910B1 (en) Radiating, diplexing element
EP3547450B1 (en) Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity
EP0426972B1 (en) Flat antenna
EP0123350B1 (en) Plane microwave antenna with a totally suspended microstrip array
CA1290449C (en) Device for exciting a circularly polarized wage guide by means of a planar antenna
EP0108463B1 (en) Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements
EP1172885B1 (en) Short-circuit microstrip antenna and dual-band transmission device including that antenna
EP0427654B1 (en) Tuned helical antennae consisting of two quadrifilar antennas fit into each other
EP0954055B1 (en) Dual-frequency radiocommunication antenna realised according to microstrip technique
EP0899814B1 (en) Radiating structure
FR2810163A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS
FR2775835A1 (en) FLAT ANTENNA
EP1416586A1 (en) Antenna with an assembly of filtering material
EP3011639A1 (en) Source for parabolic antenna
EP3180816B1 (en) Multiband source for a coaxial horn used in a monopulse radar reflector antenna.
EP0377155B1 (en) Dual frequency radiating device
WO2012095365A1 (en) Dielectric resonator antenna
EP1470614A1 (en) Circular polarization antenna
EP0860893A1 (en) Concentric set of microwave antennas
EP0463263A1 (en) Circularly-polarized omnidirectionnal antenna with maximum horizontal gain
FR2552273A1 (en) Omnidirectional microwave antenna
EP0860895A1 (en) Resonant antenna for emitting or receiving polarized waves
EP0477102B1 (en) Directional network with adjacent radiator elements for radio communication system and unit with such a directional network
EP3900113A1 (en) Elementary microstrip antenna and array antenna
EP0088681B1 (en) Dual-reflector antenna with incorporated polarizer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19910624

17Q First examination report despatched

Effective date: 19921216

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 69020965

Country of ref document: DE

Date of ref document: 19950824

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090625

Year of fee payment: 20

Ref country code: FR

Payment date: 20090615

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090622

Year of fee payment: 20

Ref country code: GB

Payment date: 20090618

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20100610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100611