JPS5916402A - Broad band microstrip antenna uses two-frequencies in common - Google Patents

Broad band microstrip antenna uses two-frequencies in common

Info

Publication number
JPS5916402A
JPS5916402A JP57124490A JP12449082A JPS5916402A JP S5916402 A JPS5916402 A JP S5916402A JP 57124490 A JP57124490 A JP 57124490A JP 12449082 A JP12449082 A JP 12449082A JP S5916402 A JPS5916402 A JP S5916402A
Authority
JP
Japan
Prior art keywords
microstrip antenna
axis
conductor element
radiation conductor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57124490A
Other languages
Japanese (ja)
Inventor
Tokio Taga
多賀 登喜雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57124490A priority Critical patent/JPS5916402A/en
Publication of JPS5916402A publication Critical patent/JPS5916402A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements

Abstract

PURPOSE:To make the frequency band width broader, by arranging a sectorial parasitic element around an elliptic microstrip antenna. CONSTITUTION:An elliptic radiation conductor element 3 is provided on the upper side of a dielectric 2 and a ground conductor plate 1 is provided on the rear side. Further, two feeding points 7, 8 are provided on a major and a minor axis of the elliptic radiation conductor element 3. Plural sectorial parasitic elements 11, 11', 12, 12' are arranged around the conductor element 3 in a two-frequency common use type microstrip antenna constituted in this way. Thus, the frequency band width of coaxial feeding wires 9, 10 connected to the feeding points 7, 8 is increased as much as about >=3 times in comparison with the case not using the parasitic elements. Further, the coupling attenuation between the coaxial feeding wires is ensured for >=30dB.

Description

【発明の詳細な説明】 本発明は小形軽量でかつ低姿勢構造を有し、独立な2つ
の周波数帯において動作するマイクロストリップアンテ
ナにおいて、それら2つの周波数帯域幅が広帯域である
アンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microstrip antenna that is small, lightweight, has a low-profile structure, and operates in two independent frequency bands, the antenna having a wide frequency bandwidth. .

従来、独立な2つの周波数帯域において動作するマイク
ロストリップアンテナの構成例としては第1図に示すも
のがあった。第1図(a)、(b)、(C)は長方形マ
イクロストリップアンテナであって、図中χ軸及びy軸
上に給電した給電点7及び給電点8の共振周波数fl+
 fz  (fx ’ < b)は、それぞれの辺の長
さα、J!rに対応し、動作するものであった。図(a
)は平面図であり、図(b)は図(a)のy軸断面図で
あり、図(C)は図(a)の2細断面図である。
Conventionally, an example of the configuration of a microstrip antenna that operates in two independent frequency bands is shown in FIG. FIGS. 1(a), (b), and (C) are rectangular microstrip antennas, in which the resonant frequencies fl+ of feeding points 7 and 8 fed on the χ axis and y axis
fz (fx'< b) is the length of each side α, J! It was compatible with r and worked. Figure (a
) is a plan view, figure (b) is a y-axis cross-sectional view of figure (a), and figure (C) is a two-thin cross-sectional view of figure (a).

また第1図(d)、(eL (f)は楕円形マイクロス
トリップアンテナであって、図中2軸(長軸)及びy軸
(短軸)上に給電した給電点7及び給電点8の共振周波
数fL+ b  (fa < b)は、長軸、短軸の長
さ0.dに対応して動作するものであった。図(d)は
平面図であり、図(e)は図(d)のy軸断面図であシ
、図(f)は図(d)の2細断面図である。
1(d) and (eL(f)) are elliptical microstrip antennas, in which the feeding points 7 and 8 are fed on the two axes (long axis) and the y-axis (short axis). The resonance frequency fL + b (fa < b) was such that it operated corresponding to the length of the major axis and minor axis 0.d. Figure (d) is a plan view, and Figure (e) is a diagram ( d) is a y-axis cross-sectional view, and Figure (f) is a two-thin cross-sectional view of Figure (d).

これらのアンテナの周波数帯域幅を広帯域化する手法と
しては、一般に誘電体基板2の厚さを厚くするか、ある
いは誘電体基板の比誘電率81−を小さくする方法があ
るが、誘電体の厚さを増加すればアンテナの体積を増加
させることになシ、アンテナの小形、軽量、低姿勢であ
るという利点を損ない、また誘電体基板の比誘電率碓、
rを減少させ(与を1に近づけ)れば、設、定動作周波
数を固定しておくためには放射素子を大きくしなければ
ならず、アンテナが大型化するという欠点があった。こ
のため、小形アンテナが要求される移動体通信機器、特
に携帯電話無線機にマイクロストリップアンテナ゛を適
用する場合には誘電体基板の比誘電率を大きくして小形
化すること、が要求されるが、それによって動作周波数
帯域幅、が極端に狭帯域となシ実用に供することが困難
であるという欠点を有していた。
Generally speaking, methods for widening the frequency bandwidth of these antennas include increasing the thickness of the dielectric substrate 2 or decreasing the dielectric constant 81- of the dielectric substrate. Increasing the dielectric constant would increase the volume of the antenna, which would impair the antenna's advantages of being small, lightweight, and low-profile, and would also reduce the dielectric constant of the dielectric substrate.
If r is decreased (approaching y to 1), the radiating element must be made larger in order to keep the set and fixed operating frequency fixed, which has the disadvantage of increasing the size of the antenna. For this reason, when applying microstrip antennas to mobile communication devices that require small antennas, especially mobile phone radios, it is necessary to increase the dielectric constant of the dielectric substrate to reduce the size. However, this has the disadvantage that the operating frequency bandwidth is extremely narrow, making it difficult to put it to practical use.

また、広帯域化の他の手段としては、第2図(a)に示
す構成によシ広帯域化した報告がある(D、 H,5c
haubert and F、 G、 Farrar、
  ’Someconformal printed 
circuit antenna designsごi
n Proc、Workshop Pr1nted C
1rcuit  AntennaTech、、New 
Mexico 5tate Univ、、Las Cr
uces*Oct、 、 1979 P、 P、 5/
1−21 )  。
In addition, as another means of widening the band, there are reports of widening the band using the configuration shown in Figure 2(a) (D, H, 5c).
Haubert and F.G. Farrar.
'Someconformal printed
circuit antenna designs
n Proc,Workshop Pr1nted C
1rcuit AntennaTech,,New
Mexico 5tate Univ,, Las Cr
uces*Oct, , 1979 P, P, 5/
1-21).

しかし、この手法では無給電素子12.12’の長さL
は方形放射導体朱子3′の一辺の長さしに対しt>Lと
しなければならず、第2図(b)のように2つの給電点
を設ける構成では各給電点に対応する帯域幅を拡大しよ
うとすれば、無給電素子は一方の給電端子7に対して構
成し得ても、他方の給電端子8に対しては、物理的寸法
の制約から無給電素子12を構成し得ない゛という欠点
があった。
However, in this method, the length L of the parasitic element 12.12'
must be t>L with respect to the length of one side of the rectangular radiating conductor satin 3', and in the configuration with two feeding points as shown in Fig. 2(b), the bandwidth corresponding to each feeding point is If we try to expand it, even if a parasitic element can be configured for one power feeding terminal 7, a parasitic element 12 cannot be configured for the other feeding terminal 8 due to physical size constraints. There was a drawback.

また、2周波共用マイクロストリップアンテナとして第
3図に示すように、円形マイクロストリップアンテナの
放射素子周辺に無給電素子を設けた構成がある(後藤、
石川、河、92周波共用マイクロストリップアンテナ“
、通信学会技術研究報告AP’ 81−70.1984
 ) o図(a)は平面図であシ、図(b)は図(a)
のy軸断面図であり、図(c)は図(a)のχ軸断面図
である。
In addition, as shown in Figure 3, there is a dual-frequency microstrip antenna with a configuration in which a parasitic element is provided around the radiating element of a circular microstrip antenna (Goto,
Ishikawa, Kawa, 92 frequency common microstrip antenna
, Communication Society Technical Research Report AP' 81-70.1984
) Figure (a) is a plan view, Figure (b) is Figure (a)
Figure (c) is a χ-axis cross-sectional view of Figure (a).

このアンテナは円形放射導体素子3″の共振周波数と扇
形無給電素子11.11’、12.12′の共振周波数
が大きく異なるため給電点7′から励振した場合それぞ
れの共振周波数の点で共振点を有することになシ、この
特性は給電点8′から励振した場合も全く同じであシ、
その結果2周波共用のアンテナとして用いられる。
In this antenna, the resonant frequency of the circular radiation conductor element 3'' and the resonant frequency of the fan-shaped parasitic elements 11.11' and 12.12' are significantly different, so when excited from the feed point 7', the resonance point is at the point of each resonant frequency. This characteristic is exactly the same when exciting from the feed point 8',
As a result, it can be used as a dual-frequency antenna.

しかし、2つの共振周波数を中心とするそれぞれの帯域
幅は、第1図に示す基本構成の場合の帯域幅程度しかな
く、その上、形状として円形を維持し、且つ2周波共用
とする限シ2つの共振点を中心とするそれぞれの帯域幅
を広帯域化する有効な方法が、ないという欠点がある。
However, the respective bandwidths centered on the two resonant frequencies are only about the same as the bandwidth of the basic configuration shown in Figure 1, and in addition, there is a limit to the system that maintains a circular shape and uses two frequencies. There is a drawback that there is no effective method for widening the respective bandwidths around the two resonance points.

本発明は以上の欠点を解決するため、楕円形マイクロス
トリップアンテナの周辺に扇形の無給電素子を配置して
構成したもので、以下図面について詳細に説明する。
In order to solve the above-mentioned drawbacks, the present invention is constructed by arranging fan-shaped parasitic elements around an elliptical microstrip antenna, and will be described in detail below with reference to the drawings.

第4図は本発明の実施例であって、1は接地導体板、2
は比誘電率arの誘電体基板、3は楕円形放射導体素子
、4は楕円形放射導体素子3の中心と接地導体板1とを
結ぶ短絡ビン、5−5′は楕円形放射導体素子3の長軸
(2+軸)、6−6′は楕円形放射導体素子3の奔軸(
y軸)、7は楕円形放射導体素子3の長袖上に設けた給
電点、8は楕円形放射導体素子3の短軸上に設けた給電
点、9は給電点7に給電する同軸給電線、10は給電点
8に給電する同軸給電線、11.11’は長軸5−5′
上の給電点7に対応する扇形無給電素子、12.12′
は短軸6−6′上の給電点8に対応する扇形無給電素子
である。
FIG. 4 shows an embodiment of the present invention, in which 1 is a grounding conductor plate, 2
3 is an elliptical radiation conductor element, 4 is a short-circuit pin connecting the center of the elliptical radiation conductor element 3 and the ground conductor plate 1, and 5-5' is an elliptical radiation conductor element 3. The major axis of
y-axis), 7 is a feed point provided on the long sleeve of the elliptical radiation conductor element 3, 8 is a feed point provided on the short axis of the elliptical radiation conductor element 3, and 9 is a coaxial feed line that feeds power to the feed point 7. , 10 is the coaxial feed line that feeds power to the feed point 8, 11.11' is the long axis 5-5'
sector-shaped parasitic element corresponding to feed point 7 above, 12.12'
is a fan-shaped parasitic element corresponding to the feed point 8 on the short axis 6-6'.

第5図は第4図の実施例の周波数特性である。FIG. 5 shows the frequency characteristics of the embodiment shown in FIG.

13は楕円形放射導体素子3を給電する同軸給電線9に
おけるリターンロス特性(13′は無給電素子11.1
1’が無い場合の特性)、14は楕円形放射導体素子3
を給電する同軸給電線10におけるリターンロス特性(
14′は無給電素子12.12’が無い場合の特性)、
15はこれら2つの同軸給電線間の結合減衰量の周波数
特性を示すものである。ここでリターンロスQdBとは
アンテナヘの入射電力が全て反射してもどる場合を示す
13 is the return loss characteristic in the coaxial feed line 9 that feeds the elliptical radiation conductor element 3 (13' is the parasitic element 11.1
1'), 14 is an elliptical radiation conductor element 3
Return loss characteristics (
14' is the characteristic when there is no parasitic element 12.12'),
15 shows the frequency characteristics of the coupling attenuation between these two coaxial feed lines. Here, the return loss QdB indicates the case where all the power incident on the antenna is reflected back.

また結合減衰量OdBとは、同軸給電線9に入射した電
力が全て同軸給電線lOよυとシ出せる場合(あるいは
同軸給電線10に入射した電力が全て同軸給電線9よシ
とシ出せる場合)を示す○以下、第4図の構成を例にと
り、2周波共用楕円形マイクロストリップアンテナの動
作につき説明する。
In addition, the coupling attenuation amount OdB is defined as when all the power incident on the coaxial feed line 9 can be transferred to the coaxial feed line lO (or when all the power incident on the coaxial feed line 10 can be transferred to the coaxial feed line 9) ) indicates ◯ Below, the operation of the dual-frequency elliptical microstrip antenna will be explained using the configuration shown in FIG. 4 as an example.

楕円形放射導体素子3によって励振される基本モード(
TMltoモード)はeTM11gモー・ド及びoTM
ttoモードなるもので、これら2つの基本モードの固
有値は楕円形放射導体素子3の長軸と短軸の長さくa及
びb)によって決まり、それぞれ異なる共振周波数fl
 * f2を持つ。eTMtx。
The fundamental mode excited by the elliptical radiation conductor element 3 (
TMlto mode) is eTM11g mode and oTM
The eigenvalues of these two fundamental modes are determined by the lengths a and b) of the major and minor axes of the elliptical radiation conductor element 3, and have different resonance frequencies fl.
*Has f2. eTMtx.

モードは長袖モードと考えることができ、給電点7を同
軸給電線9によシ励振したときのモードである。また、
OTMIIOモードは短軸モードと考えることができ、
給電点8を同軸給電線10によシ励振したときのモード
である。
The mode can be considered as a long-sleeved mode, and is the mode when the feed point 7 is excited by the coaxial feed line 9. Also,
OTMIIO mode can be considered a short axis mode,
This is the mode when the feed point 8 is excited by the coaxial feed line 10.

e T M s 1oモードの磁界成分は第6図(a)
のように励振され、y軸上に設けた扇形無給電・素子1
1及び11′の基本モードをこの磁界成分によって励振
する。また、同様にしてOTMIIOモードの磁界成分
は第6図(b)のように励振され、χ軸上に設けた扇形
無給電素子12及び12′の基本モードをこの磁界成分
によって励振する。
The magnetic field component of e T M s 1o mode is shown in Figure 6 (a).
The fan-shaped parasitic element 1 is excited as follows and is placed on the y-axis.
The fundamental modes of 1 and 11' are excited by this magnetic field component. Similarly, the magnetic field component of the OTMIIO mode is excited as shown in FIG. 6(b), and the fundamental mode of the fan-shaped parasitic elements 12 and 12' provided on the χ axis is excited by this magnetic field component.

そこで、これら扇形無給電素子(11、11’、12 
Therefore, these fan-shaped parasitic elements (11, 11', 12
.

12′)の角度α”1 +αχ2.α2Il+αy2並
びに素子幅W21.Wχ2 、 NVJ’l 、 W2
2  (第4図参照)を適当に設定すること吟よυ、こ
れら扇形無給電素子11.・11’ 、 12.12’
の固有値と楕円形放射導体素子3で励振される2つの基
本モードの各固有値との関係を選択することができる。
12′) angle α”1 +αχ2.α2Il+αy2 and element width W21.Wχ2, NVJ'l, W2
2 (see Figure 4) should be set appropriately for these fan-shaped parasitic elements 11.・11', 12.12'
The relationship between the eigenvalues of and the eigenvalues of the two fundamental modes excited in the elliptical radiation conductor element 3 can be selected.

すなわち、扇形放射導体素子である扇形無給電素子11
、11’ 、 12.12’の共振周波数を楕円形放射
導体素子3の共振周波数の近傍に設定し得る。
That is, the fan-shaped parasitic element 11 which is a fan-shaped radiation conductor element
, 11', 12.12' can be set near the resonance frequency of the elliptical radiation conductor element 3.

扇形放射導体素子の固有値は扇形の角度と素子幅の両者
によって決定されるの工、扇形素子の角度αχ1.αχ
2.αyx+αy2  はそれぞれ900未満とするこ
とができ、第2図(b)に示したような物理的制約がな
いため、同軸給電線9及び10の周波数帯域をともに独
立に拡大する構成とすることができる。
The eigenvalues of a sector-shaped radiating conductor element are determined by both the sector angle and the element width. αχ
2. αyx+αy2 can each be less than 900, and since there is no physical restriction as shown in FIG. 2(b), it is possible to have a configuration in which the frequency bands of both coaxial feed lines 9 and 10 are expanded independently. .

第2図のように無給電素子が直線的な形状で構成されて
いる場合、素子幅を変えても固有値があまり変化しない
ため、前記制約を、本発明のように回避できない。
When the parasitic element has a linear shape as shown in FIG. 2, the eigenvalue does not change much even if the element width is changed, so the above-mentioned restriction cannot be avoided as in the present invention.

また楕円形放射導体素子3と扇形無給電素子との間隔t
χl、tχ2 ! tit 5ty2は楕円形放射導体
素子3で励振される基本モードと扇形無給電素子11.
11’ 、 12.12’に存在するモードとの結合度
に関与し、これを適当なる間隔に選ぶことによって、扇
形無給電素子11.11’ 、 12゜12′から放射
される放射電磁界強度を楕円形放射導体素子3から放射
される放射電磁界強度に等しくすることができる0 扇形放射導体素子である無給電素子11及び11′ある
いは12及び12′の固有値は扇形の角度α並びに扇形
素子幅Wによシ任意に変え得るので、アンテナ特性の要
求条件により適当に選ぶことが可能である。
Also, the distance t between the elliptical radiation conductor element 3 and the fan-shaped parasitic element
χl, tχ2! tit 5ty2 is the fundamental mode excited by the elliptical radiation conductor element 3 and the fan-shaped parasitic element 11.
The intensity of the radiated electromagnetic field radiated from the fan-shaped parasitic elements 11, 11', 12 and 12' can be adjusted by selecting an appropriate interval between the modes. can be made equal to the intensity of the radiated electromagnetic field radiated from the elliptical radiating conductor element 3. The eigenvalues of the parasitic elements 11 and 11' or 12 and 12', which are sector-shaped radiating conductor elements, are the angle α of the sector and the sector-shaped element. Since the width W can be changed arbitrarily, it can be appropriately selected depending on the requirements of the antenna characteristics.

また、第4図における短絡ピン4は楕円形導体素子3の
励振モードのうち、基本モード以外の不要な高次モード
を抑制するために設けたものであシ、短絡ピン4が無い
場合でも本発明の作用及び効果に変わシはない。
Moreover, the shorting pin 4 in FIG. 4 is provided to suppress unnecessary higher-order modes other than the fundamental mode among the excitation modes of the elliptical conductor element 3, and even if the shorting pin 4 is not provided, the main There is no change in the operation and effect of the invention.

以上説明したように、本発明の構成では、第5図の特性
13と13′との比較及び特性14と14′との比較か
ら明らかなように、同軸給電線9並びに10における周
波数帯域幅を無給電素子を用いない構成における周波数
帯域の約3倍以上に拡大でき、しかも各同軸給電線間の
結合減衰量が30 dB以上確保でき(第5図特性15
参照)、独立な2つのアンテナポートを持つ広帯域なア
ンテナとして動作せしめることができるから、送信、受
信の2つの帯域を使用する自動車電話方式のような移動
体通信方式の移動体側のアンテナに適用すれば、小形に
してしかも所要帯竿幅を満足できるので、極めて有効で
ある。
As explained above, in the configuration of the present invention, as is clear from the comparison between characteristics 13 and 13' and the comparison between characteristics 14 and 14' in FIG. The frequency band can be expanded to more than three times the frequency band in a configuration that does not use parasitic elements, and the coupling attenuation between each coaxial feeder can be secured to be more than 30 dB (Characteristic 15 in Figure 5).
), it can be operated as a wideband antenna with two independent antenna ports, so it can be applied to the antenna on the mobile side of mobile communication systems such as car phone systems that use two bands for transmission and reception. For example, it is extremely effective because it can be made small and still satisfy the required rod width.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の2周波数共用のマイクロストリップアン
テナの構成例で、図(a)、(d)は平面図、図(b)
、(e)はそれぞれ図(a)、(d)のy軸断面図、図
(c)、(f)はそれぞれ図(a)、((1)の2細断
面図である。 第2図(、)は広帯域マイクロストリップアンテナの構
成例を示す図、第2図(b)は(a)の構成で2周波共
用にしようとする場合の制約を示す図、第3図は2周波
共用円形マイクロストリップアンテナの構成例を示す図
で、図(a)は平面図、図(b)は図(a)のy軸断面
図、図(c)は図(a)のχ軸断面図、第4図は本発明
の実施例を示す図で図(a)は平面図、図(b)は図(
a)のy軸断面図、図(c)は図(a)のχ軸断面図、
第5図は、第4図の実施例の周波数特性例を示す図、第
6図は第4図の実施例の内部磁界の概要図で、図(a)
は給電点7を励振した場合を示し、図(b)は給電点8
を励振した場合を示す。 1・・・・・・・・・接地導体板、2・・・・・曲u電
体基板、3・・・・・・・・・楕円形放射導体素子、3
′・曲回方形放射導体素子、3″・・・・・・・・・円
形放射導体素子、4曲曲・楕円形放射導体素子3の中心
と接地導体板1を結ぶ短絡ビイ、5−5’・・・・・・
・・・2軸(長軸)、6−6′・・・・・・・・・y軸
(短軸)、7・・・・・・・・・長軸上の給電点 71
・・・・・・・・・χ軸上の給電点、8・・・・・・・
・・短軸上の給電点、8′・・・・・・・・・y軸上の
給電点、9・・・・・・・・・長軸上に給電した同軸給
電線、10・・・・・・・・・短軸上に給電した同軸給
電線、11.11’・・・・・・・・・y軸方向に設け
た扇形無給電素子、12,12’・・・・・・・・・2
軸方向に設けた扇形無給電素子、13・・・・・・・・
・本発明の同軸給電線9に対するリターンロス特性、1
3′・・・・・・・・・無給電素子11.11’が無い
場合の同軸給電線9に対するリターンロス特性、14・
・・・・・・・・本発明の同軸給電線10に対するリタ
ーンロス特性、14′・・・・・・・・・無給電素子・
12 、12 ’が無い場合の同軸給電線10に対する
リターンロス特性、15・・・・・・・・・本発明の同
軸給電線9及び10のアンテナ端子間の結合減衰量 代理人 弁理士  本  間     崇第5図 蛎     θ’70     900      久
鞭     り5θ@波t (MHz) 9− 第 6 図 (cfL) (b)
Figure 1 shows an example of the configuration of a conventional microstrip antenna that can share two frequencies. Figures (a) and (d) are plan views, and Figure (b)
, (e) are y-axis cross-sectional views of figures (a) and (d), respectively, and figures (c) and (f) are two thin cross-sectional views of figures (a) and ((1), respectively. (,) is a diagram showing an example of the configuration of a wideband microstrip antenna, Figure 2 (b) is a diagram showing the restrictions when trying to use two frequencies with the configuration in (a), and Figure 3 is a circular diagram for dual frequency use. FIG. 2 is a diagram showing a configuration example of a microstrip antenna, in which FIG. Figure 4 shows an embodiment of the present invention, where figure (a) is a plan view and figure (b) is a figure (
a) is a y-axis cross-sectional view, Figure (c) is a χ-axis cross-sectional view of Figure (a),
Fig. 5 is a diagram showing an example of frequency characteristics of the embodiment shown in Fig. 4, and Fig. 6 is a schematic diagram of the internal magnetic field of the embodiment shown in Fig. 4.
Figure (b) shows the case where feeding point 7 is excited, and Figure (b) shows the case where feeding point 8 is excited.
This shows the case when excited. 1......Grounding conductor plate, 2...Curved U electric board, 3......Oval radiation conductor element, 3
'・Curved rectangular radiation conductor element, 3''...Circular radiation conductor element, 4-curved short circuit connecting the center of the elliptical radiation conductor element 3 and the ground conductor plate 1, 5-5 '・・・・・・
...2 axes (long axis), 6-6'...Y axis (short axis), 7...... Feeding point on the long axis 71
......Feeding point on the χ axis, 8...
...Feeding point on the short axis, 8'...Feeding point on the y-axis, 9...Coaxial feeder line feeding power on the long axis, 10... ......Coaxial feeder line feeding power on the short axis, 11.11'......Sector-shaped parasitic element provided in the y-axis direction, 12,12'... ...2
Fan-shaped parasitic element provided in the axial direction, 13...
・Return loss characteristics for the coaxial feeder line 9 of the present invention, 1
3'...Return loss characteristics for the coaxial feeder line 9 when there is no parasitic element 11.11', 14.
......Return loss characteristics for the coaxial feed line 10 of the present invention, 14'...Passive element...
12, 12' Return loss characteristics for the coaxial feed line 10 without 15... Coupling attenuation between the antenna terminals of the coaxial feed lines 9 and 10 of the present invention Agent Patent attorney Honma Takashi Fig. 5 Hajime θ'70 900 Kubuchi Ri 5θ@wave t (MHz) 9- Fig. 6 (cfL) (b)

Claims (1)

【特許請求の範囲】[Claims] (1)゛誘電体あるいは空気層を挾み、互いに対向する
放射導体素子と接地導体板から構成され、接地導体板の
対向背面側から同軸給電線により給電されるマイクロス
トリップアンテナにおいて、楕円形放射導体素子の長軸
及び短軸の延長上での各両I?11周囲にそれぞれが対
応する各延長軸に対して線対称である扇形の無給電放射
導体素子を一定の相互間隔を介して有し、前記楕円形放
射導体素子の長軸上並びに短軸上にそれぞれ独立に各1
個の給電点を有するととを特徴とする2周波共用広帯域
マイクロストリップアンテナ。
(1) In a microstrip antenna, which is composed of a radiation conductor element and a ground conductor plate facing each other with a dielectric or air layer in between, and is fed by a coaxial feeder line from the opposite rear side of the ground conductor plate, an elliptical radiation Both I? on the extension of the long and short axes of the conductor element? 11, having sector-shaped parasitic radiation conductor elements that are line-symmetrical with respect to each corresponding extension axis at a constant interval, and on the long axis and the short axis of the elliptical radiation conductor elements. 1 each independently
A dual-frequency common wideband microstrip antenna having two feeding points.
JP57124490A 1982-07-19 1982-07-19 Broad band microstrip antenna uses two-frequencies in common Pending JPS5916402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124490A JPS5916402A (en) 1982-07-19 1982-07-19 Broad band microstrip antenna uses two-frequencies in common

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124490A JPS5916402A (en) 1982-07-19 1982-07-19 Broad band microstrip antenna uses two-frequencies in common

Publications (1)

Publication Number Publication Date
JPS5916402A true JPS5916402A (en) 1984-01-27

Family

ID=14886791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124490A Pending JPS5916402A (en) 1982-07-19 1982-07-19 Broad band microstrip antenna uses two-frequencies in common

Country Status (1)

Country Link
JP (1) JPS5916402A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617706A (en) * 1984-06-22 1986-01-14 Japan Radio Co Ltd Circularly polarized wave antenna
JPS617707A (en) * 1984-06-22 1986-01-14 Japan Radio Co Ltd Array antenna for circularly polarized wave
JPS61146003A (en) * 1984-12-18 1986-07-03 テキサス インスツルメンツ インコーポレイテツド Microstrip patch antenna and system thereof
JPS63169103A (en) * 1986-12-23 1988-07-13 ボール、コーパレイシヤン Radio frequency antenna
US4835541A (en) * 1986-12-29 1989-05-30 Ball Corporation Near-isotropic low-profile microstrip radiator especially suited for use as a mobile vehicle antenna
JPH01243704A (en) * 1988-03-25 1989-09-28 Japan Radio Co Ltd Microstrip antenna
FR2644938A1 (en) * 1989-03-21 1990-09-28 Inrets Transmitting and receiving antenna for microwaves
US5055852A (en) * 1989-06-20 1991-10-08 Alcatel Espace Diplexing radiating element
EP0608992A1 (en) * 1993-01-25 1994-08-03 Securicor Datatrak Limited Dual purpose, low profile antenna
US5561435A (en) * 1995-02-09 1996-10-01 The United States Of America As Represented By The Secretary Of The Army Planar lower cost multilayer dual-band microstrip antenna
WO1999059223A2 (en) * 1998-05-11 1999-11-18 Csa Limited Dual-band microstrip antenna array
EP1653556A1 (en) * 2004-10-27 2006-05-03 Delphi Technologies, Inc. Linear polarization planar microstrip antenna array with circular patch elements and co-planar annular sector parasitic strips
WO2015159505A1 (en) * 2014-04-17 2015-10-22 株式会社デンソー Planar antenna device
WO2024071012A1 (en) * 2022-09-29 2024-04-04 日東電工株式会社 Patch antenna

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141605A (en) * 1980-04-05 1981-11-05 Nippon Telegr & Teleph Corp <Ntt> Two resonance microstrip antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141605A (en) * 1980-04-05 1981-11-05 Nippon Telegr & Teleph Corp <Ntt> Two resonance microstrip antenna

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617706A (en) * 1984-06-22 1986-01-14 Japan Radio Co Ltd Circularly polarized wave antenna
JPS617707A (en) * 1984-06-22 1986-01-14 Japan Radio Co Ltd Array antenna for circularly polarized wave
JPS61146003A (en) * 1984-12-18 1986-07-03 テキサス インスツルメンツ インコーポレイテツド Microstrip patch antenna and system thereof
JPS63169103A (en) * 1986-12-23 1988-07-13 ボール、コーパレイシヤン Radio frequency antenna
US4821040A (en) * 1986-12-23 1989-04-11 Ball Corporation Circular microstrip vehicular rf antenna
US4835541A (en) * 1986-12-29 1989-05-30 Ball Corporation Near-isotropic low-profile microstrip radiator especially suited for use as a mobile vehicle antenna
JPH01243704A (en) * 1988-03-25 1989-09-28 Japan Radio Co Ltd Microstrip antenna
FR2644938A1 (en) * 1989-03-21 1990-09-28 Inrets Transmitting and receiving antenna for microwaves
US5055852A (en) * 1989-06-20 1991-10-08 Alcatel Espace Diplexing radiating element
EP0608992A1 (en) * 1993-01-25 1994-08-03 Securicor Datatrak Limited Dual purpose, low profile antenna
US5561435A (en) * 1995-02-09 1996-10-01 The United States Of America As Represented By The Secretary Of The Army Planar lower cost multilayer dual-band microstrip antenna
WO1999059223A2 (en) * 1998-05-11 1999-11-18 Csa Limited Dual-band microstrip antenna array
WO1999059223A3 (en) * 1998-05-11 2000-01-20 Csa Limited Dual-band microstrip antenna array
EP1653556A1 (en) * 2004-10-27 2006-05-03 Delphi Technologies, Inc. Linear polarization planar microstrip antenna array with circular patch elements and co-planar annular sector parasitic strips
WO2015159505A1 (en) * 2014-04-17 2015-10-22 株式会社デンソー Planar antenna device
WO2024071012A1 (en) * 2022-09-29 2024-04-04 日東電工株式会社 Patch antenna

Similar Documents

Publication Publication Date Title
CN211428346U (en) Antenna module and electronic equipment
JP3753436B2 (en) Multiband printed monopole antenna
EP0829112B1 (en) Multiple band printed monopole antenna
TW402824B (en) A multifrequency microstrip antenna and a device including said antenna
JP3288059B2 (en) Feeder for radiating element operating with two polarizations
US6133880A (en) Short-circuit microstrip antenna and device including that antenna
JPS5916402A (en) Broad band microstrip antenna uses two-frequencies in common
US11749902B2 (en) Dual-band shared-aperture antenna array based on dual-mode parallel waveguide
JP2002026636A (en) Antenna structure for electromagnetic configuration
CN213753059U (en) Multi-frequency low-SAR antenna and electronic equipment
US20140118206A1 (en) Antenna and filter structures
JP3628668B2 (en) Multi-frequency dipole antenna device
CN109546356B (en) Inverted L-shaped printed oscillator antenna array device based on hybrid feed network
JPH07202562A (en) Printed dipole antenna
WO2021098042A1 (en) Antenna, middle terminal frame, and terminal
CN113937465B (en) Dual-polarized electromagnetic transparent antenna and method for realizing dual-frequency scattering suppression
CN114243274B (en) Differential feed circularly polarized super-surface antenna with wide axial ratio bandwidth
CN113871850B (en) Ridge gap waveguide feed microwave millimeter wave dual-frequency broadband super-surface antenna
CN111541018B (en) High-gain steep filtering fusion duplex integrated antenna
CN114597652A (en) Antenna array
JPH0590826A (en) Microstrip antenna
JPH11330845A (en) Inverted f-type antenna using waveguide as element
JP2023543278A (en) antenna device, array of antenna devices
JP3181326B2 (en) Microstrip and array antennas
JPS5829203A (en) Multilayered microstrip diversity antenna