EP0308933A1 - Verfahren und Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls - Google Patents

Verfahren und Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls Download PDF

Info

Publication number
EP0308933A1
EP0308933A1 EP19880115595 EP88115595A EP0308933A1 EP 0308933 A1 EP0308933 A1 EP 0308933A1 EP 19880115595 EP19880115595 EP 19880115595 EP 88115595 A EP88115595 A EP 88115595A EP 0308933 A1 EP0308933 A1 EP 0308933A1
Authority
EP
European Patent Office
Prior art keywords
ultrasonic
nozzle
crucible
metal particles
atomizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19880115595
Other languages
English (en)
French (fr)
Other versions
EP0308933B1 (de
Inventor
Klaus Prof. Dr.-Ing. Bauckhage
Norbert Kunert
Peter Dipl.-Ing. Schreckenberg
Hermann Dr. Phil. Vetters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Branson Ultraschall Niederlassung der Emerson Technologies GmbH and Co OHG
Original Assignee
Branson Ultraschall Niederlassung der Emerson Technologies GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25860019&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0308933(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Branson Ultraschall Niederlassung der Emerson Technologies GmbH and Co OHG filed Critical Branson Ultraschall Niederlassung der Emerson Technologies GmbH and Co OHG
Priority to AT88115595T priority Critical patent/ATE61261T1/de
Publication of EP0308933A1 publication Critical patent/EP0308933A1/de
Application granted granted Critical
Publication of EP0308933B1 publication Critical patent/EP0308933B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a method for atomizing at least one jet of a liquid substance, preferably molten metal, according to the preamble of claim 1 and a device for atomizing according to the preamble of claim 7.
  • the low ultrasound power when atomizing liquid metals means that the associated cooling of the melt to temperatures below the solidus point cannot take place quickly enough. This results in an uncontrolled cooling of the atomized particles and the associated unfavorable grain sizes and properties.
  • the object of the invention is to create a method and a device of the type mentioned at the outset, as a result of which an increased atomization capacity and better atomization of the atomized metal particles is ensured when atomizing liquid metal.
  • this object is achieved by claim 1.
  • the generation of the ultrasound field in a compressed medium that is to say under excess pressure, enables a higher energy transfer. This leads to the fact that an ultrasound field with higher energy density can be used for the atomization and thus a greater atomization performance can be achieved is.
  • the atomization capacity increased by the method according to the invention also results in a better quenching of the atomized metal particles, since the energy-rich ultrasonic field gives them a greater momentum, which leads to an increased "slippage" of the metal particles in the pressurized medium in which the atomization takes place. This prevents a veil of heated gas from forming around the metal particles; rather, the metal particles can be brought into constant contact with fresh, not yet preheated, ambient gas due to their action by a higher impulse.
  • the method it is proposed to compact the atomized metal particles immediately after quenching and atomizing to form a semi-finished product or a desired molded part.
  • the quenched metal particles are preferably "shot" onto a corresponding base using their superplastic properties with the aid of pressure, the individual metal particles being welded together.
  • the compacting is expediently carried out when the atomized metal particles have reached a solid phase and have cooled to such an extent that, on the one hand, a structural change no longer takes place and, on the other hand, the metal particles are still warm enough to be welded.
  • the device-related solution to the problem can be found in claim 7.
  • the use of at least two (active) transducers i.e. a pair of transducers, creates a particularly high-energy ultrasound field.
  • further pairs of transducers can be provided, which expediently have the same data and also superpositionable parameters with regard to power, frequency and amplitude of the transducers and are arranged such that their standing ultrasound field has one or more common node areas. By passing the melt jet generated in the crucible through this node area, the atomization takes place where the ultrasound fields are superpositioned, that is to say the greatest energy density is present.
  • the device according to the invention enables a considerably larger flow of melt mass to be atomized and a more economical use associated therewith.
  • the superposition of several ultrasound fields despite an increased throughput of melt to be atomized, also achieves a rapid quenching required to form a microstructure.
  • the use of two active transducers also effectively prevents atomized particles from sticking to the transducer surface.
  • the position of the ultrasonic transducers is changed jointly in such a way that the (horizontal) transducer axis is given any inclinations. This makes it possible to specifically deflect the atomized particles from a vertical path. It is thus advantageously possible to compact complex workpieces.
  • a nozzle is arranged downstream of the melt exit from the crucible, which nozzle is preferably designed like a Laval nozzle.
  • the oscillators are assigned to the nozzle in such a way that the node area of the superpositioned ultrasonic fields is slightly offset towards the crucible compared to the narrowest cross section of the nozzle. This not only accelerates the substances due to atomization in the node area of the ultrasonic fields, but also assigns a direction through the nozzle, which narrows after the node area.
  • a (pressure) container behind the nozzle.
  • a (pressure) container is also particularly suitable for carrying out the method according to the invention described at the outset, because it enables the gaseous carrier medium for the ultrasonic wave to be compressed in a simple manner both in the region of the nozzle and in the region of the pressure vessel.
  • the energy density in the ultrasound node area serving for atomization is thus optimally designed by a combination of several narrow-casting measures, namely the superposition of several ultrasound fields and the increase in energy transmission in the compressed medium.
  • the pressure vessel can be used to hold an application surface or application form for compacting the atomized and quenched micro-metal particles.
  • the entire device can also be accommodated in a pressure vessel. This results in particular in pressure relief in the crucible.
  • the material produced by the method according to the invention with the aid of the device described above has particularly favorable properties, since this produces a particularly homogeneous crystalline or amorphous structure with globular grains, which can be ⁇ 0.1 ⁇ m.
  • Such a material has superplastic properties that enable isotropic deformability.
  • the rapid cooling also leads to the Verunreini being integrated in the globular microgranules formed from the atomized metal particles.
  • the device shown here is used to atomize a jet of liquid metal for the production of a metallic powder, tools, semi-finished products and finished parts.
  • the device is composed of a crucible 10, an adjoining nozzle 11 and, in the present exemplary embodiment, two ultrasonic vibrators 12 and a pressure vessel 13 arranged downstream of the latter.
  • the crucible 10 at the upper area of the device is bottle-shaped with a downwardly tapering opening 14.
  • the crucible 10 is filled to the level 15 with the raw material to be melted and atomized from powdered or granular metallic granulate 16.
  • the opening 14 of the crucible 10 which is arranged centrally with respect to an upright longitudinal central axis 18 of the device, opens into an upright inlet funnel 19 of the nozzle 11.
  • This is designed here in a laval nozzle-like manner, namely has an upper acceleration section 20 tapering along a circumferential arc adjoining taper section 21 and a lower frustoconical outlet section 22.
  • a gas supply channel opens from the side, which in the present exemplary embodiment is designed as a radially circumferential annular channel 23.
  • a gaseous process medium preferably an inert or reaction gas cooled to a temperature below room temperature, can be fed through this under pressure of the device.
  • the two ultrasonic vibrators 12 are arranged opposite the central narrowing section 21 of the nozzle 11, in such a way that they lie on a common, horizontal vibrator axis 24 which intersects the longitudinal central axis 18 of the device.
  • the front sections of the ultrasonic vibrators 12 are inserted into the constriction section 21 of the nozzle through corresponding through openings 25.
  • the through openings 25 each provided with a corresponding circumferential collar 26.
  • the ultrasound transducers 12 are fixed separately in a suitable manner, not shown, outside the front heads of the ultrasound transducers 12, to be precise in terms of vibration.
  • the relative position of the oscillator axis 24 with respect to the individual sections of the nozzle 11 is here such that the oscillator axis 24 is located somewhat above the narrowing section 21, that is to say approximately in the end region of the acceleration section 20.
  • the two ultrasonic vibrators 12 are of identical design, in particular they have the same powers, frequencies and amplitudes, namely they produce the same, superimposed ultrasonic fields 27 of approximately 20 KHz with a vibrating power of 250 to 3000 W.
  • the two ultrasonic vibrators 12 a distance of six quarter waves, whereby they form three node regions 28 and 29, of which the middle node region 29, which lies on the oscillator axis 24 and the longitudinal central axis 18, serves to atomize the jet of the melt to be atomized, which emerges from the crucible 10.
  • the nozzle 11 has at its lower edge an annular flange 30 to which the pressure vessel 13 can be fastened with a corresponding connecting flange 31, preferably releasably by means of screws, not shown.
  • the pressure vessel can - as shown - consist of a cylindrical jacket 32 and a flat, horizontal bottom 33.
  • the bottom 33 can serve to receive a carrier plate 34 shown in FIG. 1, onto which the atomized Metal particles can be applied, preferably for compacting.
  • FIG. 2 shows a negative mold 35 arranged on the bottom 33 of the pressure vessel 13.
  • finished workpieces of any shape can be produced in the pressure vessel by compacting in the superplastic state of the metal particles.
  • rotationally symmetrical parts can preferably be produced. So that they get an almost uniform wall thickness, the negative mold 35 in the pressure vessel 13 can be rotated continuously about its (vertical) axis of rotation by a suitable drive.
  • Fig. 3 shows an alternative arrangement of a plurality of ultrasonic transducers 12, such that a plurality of pairs of transducers from opposing ultrasonic transducers 12 are provided to further increase performance.
  • the pair of oscillators from the two ultrasonic oscillators 12 are assigned three further pairs of oscillators, shown in dash-dot lines, whose oscillator axes 24 lie in a common horizontal plane for generating further ultrasonic fields, all of which lie in the (central) node region 29 on the longitudinal central axis 18 of the device .
  • the device shown enables a particularly high atomization performance and high quenching rates by a plurality of ultrasonic vibrators 12, each of which generates the same ultrasonic field 27, results in a high energy density in the node region 29 and, moreover, the ultrasonic wave 27 is passed through a compressed gaseous medium with high energy transmission properties.
  • the device shown in FIG. 1 operates as follows:
  • the granulate or the like made of metallic material heated in the crucible 10 by the heating coil 17 passes through the opening 14 of the crucible 10 in the form of a liquid jet into the acceleration section 20 of the nozzle 11, where it is atomized by the ultrasonic wave 27 in the node region 29 before reaching the constriction section 21.
  • the acceleration of the metal particles due to the atomization and the subsequent further constriction of the nozzle 11 onto the constriction section 21 causes the metal particles to "slip" in the gaseous medium. This results in a rapid quenching of the metal particles that are first soaked.
  • the rapid quenching is further increased according to the invention in that, on the one hand, the atomization takes place in a compressed gaseous medium, which means that a higher energy can be applied by the ultrasonic wave 27 and, on the other hand, the nozzle 11 through the ring channel 23 with excess pressure of inert gas (nitrogen) or reaction gas (hydrogen ) which can be cooled down to -200 ° C.
  • inert gas nitrogen
  • reaction gas hydrogen
  • the metal particles atomized and quickly quenched in the manner described above have very small, predominantly globular grains ( ⁇ 0.1 ⁇ m) which have cooled to such an extent that no structural change takes place, but the grains are welded using the superplastic properties, if they are compacted, that is to say applied to the carrier plate 34 or the negative mold 35 on the bottom 33 of the pressure vessel 13 in a pressure-assisted manner.
  • FIG. 4 shows a further exemplary embodiment of the device according to the invention, which differs from that of FIGS. 1 to 3 in that the ultrasonic oscillators 12 are assigned to the nozzle 11 in a variable position.
  • the position of the ultrasonic transducers can be changed in the same way, but in opposite directions relative to the nozzle 11 or with part of it, in such a way that the transducer axis 24 can be pivoted out of the (normal) horizontal.
  • the atomized metal particles can be deflected in a direction deviating from the vertical after reaching the node region 29 with respect to the longitudinal central axis 18.
  • the cone formed by the atomized metal particles and originating in the node 29 can thus be pivoted out of the longitudinal central axis 18 as a whole.
  • the ultrasonic vibrators 12 are arranged wholly or partially in a section of the nozzle 11 designed as a bellows 36.
  • the bellows 36 In the present exemplary embodiment, only the upper half of the ultrasonic vibrators 12 is assigned to the bellows 36, so that it forms the acceleration section 20 or the narrowing section 21 of the nozzle 11.
  • the lower half of the ultrasonic vibrators 12 is assigned to a fixed section of the nozzle 11, namely approximately the outlet section 22, which can be pivoted together with the ultrasonic vibrators 12.
  • Fig. 3 shows a third embodiment of the device.
  • This device enables a particularly high atomization capacity, in which all the node regions 28 and 29 of the ultrasound field 27 serve to atomize the jets of liquid metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

1. Verfahren und Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls. 2.1. Bekannte Verfahren und Vorrichtungen der hier angesprochenen Art verfügen über geringe Zerstäubungsleistungen und eine daraus resultierende langsame Abkühlung der zerstäubten Metallpartikel o. dgl. Das führt zu ungünstigen Kornbildungen. Das erfindungsgemäße Verfahren sowie eine entsprechende Vorrichtung sollen diese Nachteile beseitigen. 2.2. Verfahrensmäßig wird vorgeschlagen, die geschmolzenen Metallpartikel o. dgl. in einem verdichteten gasförmigen Medium, das eine höhere Energieübertragung für den verwendeten Ultraschall bietet, zu zerstäuben. Des weiteren wird vorrichtungsmäßig vorgeschlagen, mehrere Ultraschallschwinger (12) zu verwenden. Diese erzeugen durch Superposition ein (gemeinsames) Ultraschallfeld (27) mit einer hohen Energiedichte im Knotenbereich (29) zur intensiveren Zerstäubung und einer damit zusammenhängenden besseren Abschreckrate. 2.3. Das vorgeschlagene Verfahren und die entsprechende Vorrichtung eignen sich besonders zur Herstellung spezifischer Werkstoffe bzw. hieraus bestehender Gegenstände.

Description

  • Die Erfindung betrifft ein Verfahren zum Zerstäuben min­destens eines Strahls eines flüssigen Stoffs, vorzugs­weise geschmolzenen Metalls, gemäß dem Oberbegriff des Anspruchs 1 und eine Vorrichtung zum Zerstäuben gemäß dem Oberbegriff des Anspruchs 7.
  • Verfahren und Vorrichtungen zum Zerstäuben flüssiger Stoffe bzw. geschmolzenen Metalls sind grundsätzlich be­kannt. In zunehmendem Maße finden solche Verfahren auch auf dem Werkstoffsektor zur Herstellung bestimmter Werk­stoffe, insbesondere solcher mit spezifischen Eigen­schaften Verwendung. Das Zerstäuben des aus einem Tiegel austretenden Strahls mit bis auf Temperaturen oberhalb des Liquiduspunktes erhitzten Metallpartikeln, also der Schmelze, erfolgt dabei durch ein stehendes Ultraschall­feld, das zwischen einem Schwinger und einem (nicht ak­tiven) Reflektor gebildet wird. Nachteilig hieran ist die begrenzte Ultraschall-Leistung. Das führt dazu, daß bekannte Vorrichtungen und Verfahren zum Ultraschall-Zer­stäuben geschmolzener Metalle bisher nur in geringem Um­fange eingesetzt worden sind, und zwar meist das Labor­stadium nicht überschritten haben. Auch im Zusammenhang mit anderen Einsatzzwecken, beispielsweise beim Zerstäu­ben von Flüssigkeitsstrahlen mit Ultraschall, hat sich die nur begrenzt verfügbare Ultraschall-Leistung als Hemmnis für eine gerwerbsmäßige Anwendung herausge­stellt.
  • Des weiteren führt die geringe Ultraschall-Leistung beim Zerstäuben von flüssigen Metallen dazu, daß die damit gleichzeitig einhergehende Abkühlung der Schmelze auf Temperaturen unterhalb des Soliduspunktes nicht rasch genug erfolgen kann. Das hat ein unkontrolliertes Abkühlen der zerstäubten Teilpartikelchen und damit verbundenen ungünstigen Korngrößen und -eigenschaften zur Folge.
  • Hiervon ausgehend liegt der Erfindung die Aufgabe zugrun­de, ein Verfahren und eine Vorrichtung der eingangs ge­nannten Art zu schaffen, wodurch eine erhöhte Zerstäu­bungsleistung und beim Zerstäuben von flüssigem Metall eine bessere Abschreckung der zerstäubten Metallpartikel gewährleistet ist.
  • Verfahrensmäßig wird diese Aufgabe durch den Anspruch 1 gelöst. Durch die Erzeugung des Ultraschallfeldes in einem verdichteten, also unter Überdruck stehenden Medium, wird eine höhere Energie-Übertragung ermöglicht. Das führt dazu, daß mit einem Ultraschallfeld höherer Energiedichte bei der Zerstäubung gearbeitet werden kann und damit eine größere Zerstäubungsleistung erreichbar ist.
  • Aus der durch das erfindungsgemäße Verfahren erhöhten Zerstäubungsleistung resultiert darüber hinaus eine bessere Abschreckung der zerstäubten Metallpartikel, da diese durch das energiereichere Ultraschallfeld einen größeren Impuls erhalten, der zu einem vergrößerten "Schlupf" der Metallpartikel im druckbeaufschlagten Medium, in der die Zerstäubung stattfindet, führt. Hier­durch wird verhindert, daß sich um die Metallpartikel herum jeweils ein Schleier angewärmten Gases bildet; vielmehr können die Metallpartikel aufgrund ihrer Beauf­schlagung durch einen höheren Impuls in ständigen Kon­takt mit frischem, noch nicht vorgewärmten Umgebungsgas gebracht werden.
  • Des weiteren wird vorgeschlagen, das druckbeaufschlagte gasförmige Medium auf eine Temperatur unterhalb des Liquiduspunktes der Metallpartikel abzukühlen, vozugs­weise auf Temperaturen bis minimal -200° C., wodurch Abkühlraten von > 10⁷K/s erreicht werden können. Diese Maßnahme führt ohne einen nennenswerten zusätzlichen Aufwand zu einer Schnellabschreckung.
  • Des weiteren wird verfahrensgemäß vorgeschlagen, die zer­stäubten Metallpartikel zur Bildung eines Halbzeuges oder eines gewünschten Formteiles unmittelbar nach dem Abschrecken und Zerstäuben zu kompaktieren. Hierdurch werden die abgeschreckten Metallpartikel unter Ausnut­zung ihrer superplastischen Eigenschaften vorzugsweise druckunterstützt auf eine entsprechende Unterlage "auf­geschossen", wobei eine Verschweißung der einzelnen Me­talpartikel erfolgt. Das Kompaktieren wird zweckmäßiger­weise dann vorgenommen, wenn die zerstäubten Metallparti­kel eine feste Phase erlangt haben und soweit abgekühlt sind, daß einerseits eine Gefügeumwandlung nicht mehr stattfindet und andererseits die Metallpartikel noch warm genug zum Verschweißen sind.
  • Die vorrichtungsmäßige Lösung der Aufgabe ist dem An­spruch 7 zu entnehmen. Durch die Verwendung mindestens zweier (aktiver) Schwinger, also eines Schwingerpaares, entsteht ein besonders energiereiches Ultraschallfeld. Zur weiteren Leistungssteigerung können weitere Schwin­gerpaare vorgesehen werden, die zweckmäßigerweise gleiche Daten sowie auch superpositionsfähige Parameter hinsichtlich Leistung, Frequenz sowie Amplitude der Schwinger aufweisen und derart angeordnet sind, daß ihr stehendes Ultraschallfeld einen oder auch mehrere gemein­same Knotenbereiche aufweist. Durch Hindurchleiten des im Tiegel erzeugten Schmelzstrahls durch diesen Knotenbe­reich findet die Zerstäubung dort statt, wo eine Super­position der Ultraschallfelder erfolgt, das heißt die größte Engergiedichte vorhanden ist. Verglichen zu her­kömmlichen Vorrichtungen ermöglicht die erfindungsgemäße Vorrichtung einen erheblich größeren Durchfluß an zu zerstäubender Schmelzmasse und einem damit verbundenen wirtschaftlicheren Einsatz. Gleichzeitig wird durch die Superposition mehrerer Ultraschallfelder trotz eines erhöhten Durchsatzes zu zerstäubender Schmelze auch noch eine geforderte Schnellabschreckung zur Bildung eines Feinstgefüges erreicht. Auch wird durch die Verwendung zweier aktiver Schwinger ein Ankleben zerstäubter Par­tikel an die Schwingerfläche wirksam vermieden.
  • Nach einer besonder vorteilhaften Weiterbildung der Vor­richtung ist vorgesehen, die Ultraschallschwinger in ihrer Lage derart gemeinsam zu verändern, daß die (hori­zontale) Schwingerachse beliebige Neigungen erhält. Da­mit ist es möglich, die zerstäubten Partikel aus einer vertikalen Bahn gezielt abzulenken. Es ist so ein Kom­paktieren komplexer Werkstücke vorteilhaft durchführbar.
  • Nach einem weiteren Vorschlag der Erfindung ist dem Aus­tritt der Schmelze aus dem Tiegel eine Düse nachgeord­net, die vorzugsweise lavaldüsenartig ausgebildet ist.
  • Die Schwinger sind dabei derart der Düse zugeordnet, daß der Knotenbereich der superpositionierten Ultraschall­felder gegenüber dem engsten Querschnitt der Düse gering­fügig zum Tiegel hin versetzt ist. Dadurch erfolgt nicht nur eine Beschleunigung der Stoffe durch die Zerstäubung im Knotenbereich der Ultraschallfelder, sondern zusätz­lich auch eine Richtungszuweisung durch die sich nach dem Knotenbereich noch verengende Düse.
  • Schließlich wird vorgeschlagen, der Düse einen (Druck-) Behälter nachzuordnen. Eine solche vorrichtung eignet sich besonders auch zur Durchführung des eingangs geschilderten erfindungsgemäßen Verfahrens, weil dadurch sowohl im Bereich der Düse als auch im Bereich des Druck­behälters in einfacher Weise eine Verdichtung des gas­förmigen Trägermediums für die Ultraschallwelle möglich ist. Die Energiedichte im zur Zerstäubung dienenden Ultraschall-Knotenbereich wird somit durch eine Kombina­tion mehrerer engergiesteigernder Maßnahmen, nämlich die Superposition mehrerer Ultraschallfelder und die Erhö­gung der Energieübertragung im verdichteten Medium opti­mal gestaltet. Weiterhin kann der Druckbehälter genutzt werden zur Aufnahme einer Auftragfläche bzw. Auftragform zur Kompaktierung der zerstäubten und abgeschreckten Mikro-Metallpartikel. Alternativ kann auch die gesamte Vorrichtung in einem Druckbehälter untergebracht sein. Dies hat insbesondere eine Druckentlastung im Tiegel zur Folge.
  • Der nach dem erfindungsgemäßen Verfahren unter Zuhilfe­nahme der vorstehend beschriebenen Vorrichtung entstehen­de Werkstoff verfügt über besonders günstige Eigen­schaften, da hierdurch ein besonders homogenes kristallines bzw. amorphes Gefüge mit globularen Kör­nern, die < 0,1 µm sein können, entsteht. Ein solches Material verfügt über superplastische Eigenschaften, die eine isotrope Verformbarkeit ermöglichen. Das schnelle Abkühlen führt auch zu einer Einbindung der Verunreini­ gungen in die aus den zerstäubten Metallpartikel ent­stehenden globularen Mikrokörnern.
  • Ausführungsbeispiele der erfindungsgemäßen Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens werden nachfolgend anhand der Zeichnung näher erläutert. In dieser zeigen:
    • Fig. 1 einen vereinfacht dargestellten Vertikal­schnitt durch die Vorrichtung,
    • Fig. 2 einen unteren Abschnitt eines Druckbe­hälters mit einem darin angeordneten Formenträger,
    • Fig. 3 einen horizontalen Querschnitt III-III durch die Vorrichtung gemäß der Fig. 1 im Bereich zweier Schwinger,
    • Fig. 4 einen teilweisen Vertikalschnitt gemäß der Fig. 1 durch eine zweite Ausführungsform der Vorrichtung, und
    • Fig. 5 einen teilweise dargestellten Vertikal­schnitt gemäß der Fig. 1 durch ein drittes Ausführungsbeispiel der Vorrichtung.
  • Die hier gezeigte Vorrichtung dient zur Zerstäubung eines Strahls flüssigen Metalls für die Herstellung eines metallischen Pulvers, von Werkzeugen, Halbzeugen und Fertigteilen.
  • Wie insbesondere aus der Fig. 1 entnehmbar, setzt sich die Vorrichtung zusammen aus einem Tiegel 10, einer sich daran anschließenden Düse 11 und im vorliegenden Aus­führungsbeispiel zwei Ultraschallschwingern 12 sowie einem letzteren nachgeordneten Druckbehälter 13.
  • Der Tiegel 10 am oberen Bereich der Vorrichtung ist hier flaschenförmig ausgebildet mit einer nach unten weisenden, sich verjüngenden Öffnung 14. Gefüllt ist der Tiegel 10 im vorliegenden Falle bis zum Pegelstand 15 mit dem zu schmelzenden und verdüsenden Rohmaterial aus pulver- bzw. körnchenförmigem metallischen Granulat 16. Durch eine in der Fig. 1 punktstrichliniert dargestellte Heizspirale 17 um den Tiegel 10 erfolgt ein Schmelzen des darin enthaltenen Granulats 16 auf eine Temperatur oberhalb des Liquiduspunktes.
  • Die mittig in bezug auf eine aufrechte Längsmittelachse 18 der Vorrichtung angeordnete Öffnung 14 des Tiegels 10 mündet in einen aufrechten Eintrittstrichter 19 der Düse 11. Diese ist hier etwa lavaldüsenartig ausgebildet, verfügt nämlich über einen oberen längs eines umlaufen­den Bogens sich verjüngenden Beschleunigungsabschnitt 20, einen sich daran anschließenden Verjüngungsabschnitt 21 und einen unteren kegelstumpfartigen Austrittsab­schnitt 22.
  • Im oberen Bereich des Beschleunigungsabschnitts 20 mün­det von der Seite her ein Gaszufuhrkanal, der im vorlie­genden Ausführungsbeispiel als radial umlaufender Ring­kanal 23 ausgebildet ist. Durch diesen ist ein gasförmi­ges Prozeßmedium, vorzugsweise ein auf eine Temperatur unterhalb der Raumtemperatur abgekühltes Inert- oder Re­aktionsgas, unter Druck der Vorrichtung zuführbar.
  • Dem mittleren Verengungsabschnitt 21 der Düse 11 sind im vorliegenden Ausführungsbeispiel die beiden Ultraschall­schwinger 12 gegenüberliegend angeordnet, und zwar der­art, daß sie auf einer gemeinsamen, horizontalen Schwin­gerachse 24 liegen, die die Längsmittelachse 18 der Vorrichtung schneidet. Die Ultraschallschwinger 12 sind mit ihren vorderen Abschnitten durch entsprechende Durch­führungsöffnungen 25 in den Verengungsabschnitt 21 der Düse eingeführt. Dazu sind die Durchführungsöffnungen 25 mit jeweils einem korrespondierenden, umlaufenden Kragen 26 versehen. Die Fixierung der Ultraschallschwinger 12 erfolgt separat in geeigneter, nicht dargestellter Weise außerhalb der vorderen Köpfe der Ultraschallschwinger 12, und zwar schwingungsmäßig entkoppelt.
  • Die Relativlage der Schwingerachse 24 in bezug auf die einzelnen Abschnitte der Düse 11 ist hier derart ge­troffen, daß die Schwingerachse 24 etwas oberhalb des Verengungsabschnitts 21 sich befindet, also etwa im End­bereich des Beschleunigungsabschnitts 20.
  • Die beiden Ultraschallschwinger 12 sind im vorliegenden Ausführungsbeispiel gleich ausgebildet, verfügen insbe­sondere über gleiche Leistungen, Frequenzen und Amplitu­den, erzeugen nämlich gleiche, einander überlagerte Ultraschallfelder 27 von etwa 20 KHz bei einer Schwinger­leistung von 250 bis zu 3000 W. Im gezeigten Ausführungs­beispiel haben die beiden Ultraschallschwinger 12 einen Abstand von sechs Viertelwellen, wobei sie drei Knoten­bereiche 28 bzw. 29 bilden, von denen der mittlere, auf der Schwingerachse 24 und der Längsmittelachse 18 liegende Knotenbereich 29 zur Zerstäubung des aus dem Tiegel 10 austretenden Strahls der zu zerstäubenden Schmelze dient.
  • Wie weiterhin der Fig. 1 entnommen werden kann, verfügt die Düse 11 an ihrem unteren Rand über einen kreisring­förmigen Flansch 30, an den der Druckbehälter 13 mit einem korrespondierenden Anschlußflansch 31 befestigbar ist, vorzugsweise lösbar durch nicht dargestellte Schrau­ben.
  • Der Druckbehälter kann im einfachsten Falle - wie ge­zeigt - aus einem zylindrischen Mantel 32 und einem ebenen, horizontalen Boden 33 bestehen. In diesem Falle kann der Boden 33 zur Aufnahme einer in der Fig. 1 ge­zeigten Trägerplatte 34 dienen, auf die die zerstäubten Metallpartikel aufbringbar sind, und zwar vorzugsweise zum Kompaktieren.
  • Die Fig. 2 zeigt eine auf dem Boden 33 des Druckbehäl­ters 13 angeordnete Negativform 35. Dadurch können im Druckbehälter bereits fertige Werkstücke beliebiger Ge­stalt durch Kompaktieren im superplastischen Zustand der Metallpartikel hergestellt werden. Vorzugsweise lassen sich so rotationssymmetrische Teile herstellen. Damit diese eine nahezu gleichmäßige Wandstärke erhalten, kann die Negativform 35 im Druckbehälter 13 um ihre (senk­rechte) Rotationsachse durch einen geeigneten Antrieb kontinuierlich gedreht werden.
  • Alternativ ist es auch denkbar, abweichend vom gezeigten Ausführungsbeispiel den Druckbehälter so groß auszubil­den, daß in diesem der Tiegel 10 mit der Düse 11 und den Ultraschallschwingern 12 vollständig eingesetzt werden kann, beispielsweise hängend unter einem den Druckbehäl­ter verschließenden Deckel. Diese alternative Ausbildung des Druckbehälters ist in der Fig. 1 strichpunktiert an­gedeutet.
  • Die Fig. 3 zeigt eine alternative Anordnung einer Viel­zahl von Ultraschallschwinger 12, derart, daß zur weiteren Leistungssteigerung mehrere Schwingerpaare aus einander gegenüberliegenden Ultraschallschwingern 12 vorgesehen sind. Dementsprechend sind in der Fig. 3 dem Schwingerpaar aus den beiden Ultraschallschwingern 12 drei weitere strichpunktiert dargestellte Schwingerpaare zugeordnet, deren Schwingerachsen 24 in einer gemeinsamen horizontalen Ebene liegen zur Erzeugung weiterer Ultraschallfelder, die allesamt im (mittigen) Knotenbereich 29 auf der Längsmittelachse 18 der Vorrichtung liegen.
  • Die gezeigte Vorrichtung ermöglicht eine besonders hohe Zerstäubungsleistung und hohe Abschreckraten, indem durch mehrere Ultraschallschwinger 12, die jeweils ein gleiches Ultraschallfeld 27 erzeugen, eine hohe Energie­dichte im Knotenbereich 29 entsteht und darüber hinaus die Ultraschallwelle 27 durch ein verdichtetes gas­förmiges Medium mit hohen Energieübertragungseigen­schaften hindurchgeleitet wird. Es ist aber auch mög­lich, eine Verbesserung der Zerstäubungsleistung bekannter Vorrichtungen bzw. Verfahren dieser Art schon dadurch zu erreichen, daß entweder (wie beim Stand der Technik) mit nur einem Ultraschallschwinger die Zerstäu­bung in einem unter Druck stehenden gasförmigen Medium, also im Druckbehälter 13 erfolgt, oder mit einer Mehr­zahl von Ultraschallschwingern in einem unter (normalen) atmosphärischen Druck stehenden gasförmigen Medium das Zerstäuben des geschmolzenen Metalls erfolgt. In diesem Fall kann der Druckbehälter 13 oder der strichpunktiert dargestellte Druckbehälter entfallen.
  • Die in der Fig. 1 gezeigte Vorrichtung arbeitet wie folgt: Das im Tiegel 10 durch die Heizspirale 17 er­hitzte Granulat oder dergleichen aus metallischem Werk­stoff gelangt durch die Öffnung 14 des Tiegels 10 in Form eines flüssigen Strahls in den Beschleunigungs­abschnitt 20 der Düse 11, wo es vor Erreichen des Veren­gungsabschnitts 21 im Knotenbereich 29 durch die Ultra­schallwelle 27 zerstäubt wird. Die durch das Zerstäuben und die anschließende weitere Verengung der Düse 11 auf den Verengungsabschnitt 21 erfolgende Beschleunigung der Metallpartikel bewirkt einen "Schlupf" desselben im gas­förmigen Medium. Das hat eine Schnellabschreckung der zuerstäubten Metallpartikel zur Folge. Die Schnellab­schreckung wird erfindungsgemäß dadurch noch erhöht, daß zum einen das Zerstäuben in einem verdichteten gasförmi­gen Medium stattfindet, woduch eine höhrere Energie von der Ultraschallwelle 27 aufbringbar ist und zum anderen der Düse 11 durch den Ringkanal 23 mit Überdruck Inert­gas (Stickstoff) oder Reaktionsgas (Wasserstoff) zuführ­bar ist, welches bis zum -200° C abgekühlt sein kann.
  • Die in der vorstehend beschriebenen Weise zerstäubten und schnell abgeschreckten Metallpartikel verfügen über sehr kleine, überwiegend globulare Körner (< 0,1 µm), die soweit abgekühlt sind, daß keine Gefügeumwandlung mehr stattfindet, aber unter Ausnutzung der super­plastischen Eigenschaften eine Verschweißung der Körner erfolgt, wenn diese kompaktiert werden, also auf die Trä­gerplatte 34 oder die Negativform 35 auf dem Boden 33 des Druckbehälters 13 druckunterstützt aufgebracht wer­den.
  • Die Fig. 4 zeigt ein weiteres Ausführungsbeispiel der er­findungsgemäßen Vorrichtung, welches sich von demjenigen der Fig. 1 bis 3 dadurch unterscheidet, daß die Ultra­schallschwinger 12 lageveränderlich der Düse 11 zugeord­net sind. Dazu sind die Ultraschallschwinger gleicher­maßen, aber in entgegengesetzten Richtungen derart gegen­über der Düse 11 bzw. mit einem Teil derselben in ihrer Lage veränderlich, daß die Schwingerachse 24 aus der (normalen) Horizontalen herausschwenkbar ist. Dadurch lassen sich die zerstäubten Metallpartikel nach Errei­chen des Knotenbereichs 29 gegenüber der Längsmittel­achse 18 ablenken in eine aus der Vertikalen abweichende Richtung. Der von den zerstäubten Metallpartikeln gebil­dete Kegel mit Ursprung im Knotenpunkt 29 ist damit als Ganzes aus der Längsmittelachse 18 herausschwenkbar.
  • Darüber hinaus ist es denkbar, die Ultraschallschwinger 12 bei gleichbleibendem Abstand in Richtung längs zur Schwingerachse 24 zu verschieben, wodurch der Knotenbe­reich 29 sich exakt mit der Längsmittelachse 18 zur Deckung bringen läßt, bzw. bei einem von der Längsmittel­achse 18 abweichenden Knotenbereich 29 mit dem aus dem Tiegel 10 austretenden Strahl flüssigen Metalls wieder zur Deckung bringen läßt. Auch sind so Abweichungen der Lage des Knotenbereichs 29 zwischen den Ultraschall­schwingern 12 so ausgleichbar, daß der Knotenbereich 29 wiederum vom Strahl getroffen wird.
  • Bei dieser Vorrichtung sind die Ultraschallschwinger 12 ganz oder teilweise in einem als Faltenbalg 36 ausgebil­deten Abschnitt der Düse 11 angeordnet. Im vorliegenden Ausführungsbeispiel ist nur der oberen Hälfte der Ultra­schallschwinger 12 der Faltenbalg 36 zugeordnet, so daß dieser den Beschleunigungsabschnitt 20 bzw. den Ver­engnungsabschnitt 21 der Düse 11 bildet. Die untere Hälfte der Ultraschallschwinger 12 ist einem festen Ab­schnitt der Düse 11, nämlich etwa dem Austrittsabschnitt 22 zugeordnet, der zusammen mit den Ultraschallschwin­gern 12 verschwenkbar ist.
  • Schließlich zeigt die Fig. 3 ein drittes Ausführungsbei­spiel der Vorrichtung. Diese weicht dadurch von den vor­stehenden Ausführungsbeispielen der Vorrichtung ab, daß drei vorzugsweise in einer gemeinsamen vertikalen Ebene nebeneinanderliegende Tiegel 10 der Düse 11 zugeordnet sind. Der Abstand diese drei Tiegel 10 ist derart ge­wählt, daß die drei aus demselben austretenden Strahlen geschmolzenen Metalls auf jeweils einen der drei Knoten­bereiche 28 bzw. 29 des Ultraschallfeldes 27 gerichtet sind. Diese Vorrichtung ermöglicht eine besonders hohe Zerstäubungsleistung, in dem sämtliche Knotenbereiche 28 und 29 des Ultraschallfeldes 27 zur Zerstäubung der Strahlen flüssigen Metalls dienen.
  • Die Arbeitsweisen dieser alternativen Ausführungsbei­spiele der erfindungsgemäßen Vorrichtung gemäß der Fig. 1 sind prinzipiell mit der weiter oben beschriebenen Ar­beitsweise der in der Fig. 1 gezeigten Vorrichtung ver­gleichbar.

Claims (22)

1. Verfahren zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls , wobei der Strahl durch ein Ultraschallfeld ge­leitet wird, dadurch gekennzeichnet, daß die flüssigen Stoffe (geschmolzene Metalle) innerhalb eines verdichte­ten gasförmigen Mediums durch das Ultraschallfeld (27) hindurchgeleitet werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als gasförmiges Medium ein Inertgas (Stickstoff) oder ein Reaktionsgas (Wasserstoff) verwendet wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das gasförmige Medium auf eine Temperatur unterhalb des Liquiduspunktes des zu zerstäubenden Metalls ge­bracht wird zur Schnellabschreckung desselben.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß unmittelbar nach dem Zerstäuben die Stoffpartikel, insbesondere Metallparti­kel, kompaktiert werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Kompaktieren in dem zur Zerstäubung dienenden, verdichteten gasförmigen Medium durchgeführt wird.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeich­net, daß das Kompaktieren druckunterstützt durchgeführt wird, insbesondere unter Ausnutzung der superplastischen Eigenschaft der Metallpartikel.
7. Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Me­talls, mit einem Tiegel zum Schmelzen des zu zerstäuben­den Stoffs bzw. Metalls und wenigstens einem Ultra­schall-Zerstäubungsorgan, dadurch gekennzeichnet, daß das Ultraschall-Zerstäubungsorgan mindestens zwei Ultra­schallschwinger (12) aufweist.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß das Ultraschall-Zerstäubungsorgan zwei auf einer ge­meinsamen Schwingerachse (24) einander mit Abstand gegen­überliegende Ultraschallschwinger (12) aufweist.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekenn­zeichnet, daß beide Ultraschallschwinger (12) über die gleichen Kenngrößen, insbesondere gleiche Leistung, ver­fügen.
10. Vorrichtung nach Anspruch 7, sowie einem oder mehre­ ren der weiteren Ansprüche, dadurch gekennzeichnet, daß die Ultraschallschwinger (12) derart relativ zum Tiegel (10) angeordnet sind, daß ein von den Ultraschallschwin­gern (12) erzeugtes (stehendes) Ultraschallfeld (27) sowohl senkrecht als auch in einer kegelförmigen Ablenk­bahn mit variablen Winkel zu einer Längsmittelachse (18) verläuft.
11. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Schwingerachse (24) durch entsprechende Lagever­änderung beider Ultraschallschwinger (12) in der Lage veränderbar ist, insbesondere aus der Horizontalen (Nor­mallage) herausschwenkbar ist, derart, daß das Ultra­schallfeld (27) sowohl senkrecht als auch in einer kegel­förmigen Ablenkbahn mit variablem Winkel zu der Längs­mittelachse (18) des Schmelzstrahls verläuft.
12. Vorrichtung nach Anspruch 7, sowie einem oder mehre­ren der weiteren Ansprüche, dadurch gekennzeichnet, daß am Austritt (Öffnung 14) der Schmelze aus dem Tiegel (10) eine Düse (11) angeordnet ist.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeich­net, daß im Bereich des engsten Querschnitts der Düse (11) die Ultraschallschwinger (12) angeordnet sind, vor­zugsweise derart, daß die Schwingerachse (24) derselben kurz vor dem engsten Querschnitt (Verengungsabschnitt) der Düse (11) (vom Tiegel 10 aus gesehen) sich befindet.
14. Vorrichtung nach Anspruch 12, dadurch gekennzeich­net, daß die Düse (11) lavaldüsenartig ausgebildet ist.
15. Vorrichtung nach Anspruch 7, sowie einem oder mehre­ren der weiteren Ansprüche, dadurch gekennzeichnet, daß der Düse (11) wenigstens eine Gas-Zufuhrleitung (Ring­kanal 23) zugeordnet ist.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeich­ net, daß die Gas-Zufuhrleitung als ein an der zum Tiegel (10) gerichteten (Zufluß-)Seite der Düse (11) angeord­neter Ringkanal (23) ausgebildet ist.
17. Vorrichtung nach Anspruch 11, sowie einem oder mehre­ren der weiteren Ansprüche, dadurch gekennzeichnet, daß der Düse (11) ein Druckbehälter (13) nachgeordnet ist.
18. Vorrichtung nach Anspruch 11, sowie einem oder mehre­ren der weiteren Ansprüche, dadurch gekennzeichnet, daß wenigstens die Ultraschallschwinger (12), die Düse (11) und der Tiegel (10) innerhalb eines (gemeinsamen) Druck­behälters (13) angeordnet sind.
19. Vorrichtung nach Anspruch 17 oder 18, dadurch gekenn­zeichnet, daß im Druckbehälter (13) Einrichtungen zum Formen der zerstäubten Metallpartikel angeordnet sind.
20. Vorrichtung nach Anspruch 7, sowie einem oder mehre­ren der weiteren Ansprüche, dadurch gekennzeichnet, daß das Ultraschall-Zerstäubungsorgan mehrere Paare auf einer gemeinsamen Schwingerachse mit Abstand gegenüber­liegend angeordneter Ultraschallschwinger (12) aufweist.
21. Vorrichtung nach Anspruch 20, dadurch gekennzeich­net, daß sämtliche Paare gegenüberliegender Ultraschall­schwinger (12) ein festgelegtes Ultraschallfeld (27) bil­den, in dem sich ein oder mehrere Knotenbereiche (28, 29) ausbilden mit sich in einem gemeinsamen Knoten­bereich (29) kreuzenden Schwingerachsen angeordnet sind.
22. Vorrichtung nach Anspruch 21, dadurch gekennzeich­net, daß mehreren, insbesondere jedem Knotenbereich (28, 29), wenigstens ein Tiegel (10) und vorzugsweise auch eine Düse (11) zugeordnet sind zum gleichzeitigen Zer­stäuben mehrerer Strahlen.
EP88115595A 1987-09-22 1988-09-22 Verfahren und Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls Expired - Lifetime EP0308933B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88115595T ATE61261T1 (de) 1987-09-22 1988-09-22 Verfahren und vorrichtung zum zerstaeuben mindestens eines strahls eines fluessigen stoffs, vorzugsweise geschmolzenen metalls.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3731866 1987-09-22
DE3731866 1987-09-22
DE19873735787 DE3735787A1 (de) 1987-09-22 1987-10-22 Verfahren und vorrichtung zum zerstaeuben mindestens eines strahls eines fluessigen stoffs, vorzugsweise geschmolzenen metalls
DE3735787 1987-10-22

Publications (2)

Publication Number Publication Date
EP0308933A1 true EP0308933A1 (de) 1989-03-29
EP0308933B1 EP0308933B1 (de) 1991-03-06

Family

ID=25860019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88115595A Expired - Lifetime EP0308933B1 (de) 1987-09-22 1988-09-22 Verfahren und Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls

Country Status (4)

Country Link
US (1) US5164198A (de)
EP (1) EP0308933B1 (de)
JP (1) JPH01301810A (de)
DE (2) DE3735787A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3939178A1 (de) * 1989-11-27 1991-05-29 Branson Ultraschall Vorrichtung zum zerstaeuben von fluessigen und festen stoffen, vorzugsweise geschmolzenen metalls
US5183493A (en) * 1990-07-17 1993-02-02 Nukem Gmbh Method for manufacturing spherical particles out of liquid phase
EP0472479B1 (de) * 1990-08-20 1994-12-28 I.P.S. Industrie des Poudres Sphériques S.A. Ultraschallgerät zur kontinuierlichen herstellung von Teilchen
WO2002046097A1 (de) * 2000-11-30 2002-06-13 Solarworld Aktiengesellschaft VERFAHREN UND VORRICHTUNG ZUR ERZEUGUNG GLOBULÄRER KÖRNER AUS REINST-SILIZIUM MIT DURCHMESSERN VON 50 νM BIS 300 νM UND IHRE VERWENDUNG
CN112974801A (zh) * 2021-02-04 2021-06-18 东睦新材料集团股份有限公司 一种粉末冶金零件的制备方法
US11897782B2 (en) 2017-08-25 2024-02-13 Saab Ab Method of combusting aluminium and system therefor

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194596A (en) * 1989-07-27 1993-03-16 California Biotechnology Inc. Production of vascular endothelial cell growth factor
US5503372A (en) * 1989-11-27 1996-04-02 Martin Marietta Energy Systems, Inc. Nozzle for electric dispersion reactor
DE4015605A1 (de) * 1990-05-15 1991-11-21 Nied Roland Verfahren zur erzeugung feinster partikel und vorrichtung zur durchfuehrung des verfahrens
DE4242645C2 (de) * 1992-12-17 1997-12-18 Deutsche Forsch Luft Raumfahrt Verfahren und Einrichtung zur Herstellung von Metallkügelchen annähernd gleichen Durchmessers
DE4444525A1 (de) * 1994-11-30 1996-06-05 Hielscher Gmbh Ultraschallzerstäuber
US5667749A (en) * 1995-08-02 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for the production of fibers and materials having enhanced characteristics
US5711970A (en) * 1995-08-02 1998-01-27 Kimberly-Clark Worldwide, Inc. Apparatus for the production of fibers and materials having enhanced characteristics
US5811178A (en) * 1995-08-02 1998-09-22 Kimberly-Clark Worldwide, Inc. High bulk nonwoven sorbent with fiber density gradient
AU1022397A (en) * 1995-12-15 1997-07-14 Kimberly-Clark Corporation High temperature, high speed rotary valve
US5864578A (en) 1996-04-29 1999-01-26 Golden Bridge Technology, Inc. Matched filter-based handoff method and apparatus
DE19801832C2 (de) * 1998-01-14 2000-01-20 Juergen Schulze Verfahren und Vorrichtung zur Herstellung von kugelförmigen Teilchen nahezu gleichen Durchmessers
DE19926464A1 (de) * 1999-06-10 2000-12-21 Siemens Ag Mikrodosiervorrichtung und Verfahren zum Ausstoß einer Flüssigkeit
DE19929709C2 (de) * 1999-06-24 2001-07-12 Lueder Gerking Verfahren zur Herstellung von im Wesentlichen endlosen feinen Fäden und Verwendung der Vorrichtung zur Durchführung des Verfahrens
DE10245324A1 (de) * 2002-09-27 2004-04-08 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10245326A1 (de) * 2002-09-27 2004-04-08 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10252437A1 (de) * 2002-11-12 2004-05-27 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10327431A1 (de) * 2003-06-18 2005-01-05 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10327429A1 (de) * 2003-06-18 2005-01-05 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10327430A1 (de) 2003-06-18 2005-01-05 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
JP2005199239A (ja) * 2004-01-19 2005-07-28 Kyocera Corp 微小粒子の製造方法および製造装置
DE102009018021B4 (de) * 2009-04-18 2013-09-05 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Mikrodosiersystem mit einem gepulsten Laser
KR100983947B1 (ko) * 2010-05-26 2010-09-27 연규엽 구형미세마그네슘분말 제조장치
DE102012107076A1 (de) 2011-08-24 2013-02-28 Technische Hochschule Wildau Verfahren und Vorrichtung zum thermischen Spritzen von Beschichtungswerkstoffen
US20160228991A1 (en) * 2015-02-05 2016-08-11 Siemens Energy, Inc. Acoustic manipulation and laser processing of particles for repair and manufacture of metallic components
CN105252010B (zh) * 2015-10-27 2018-08-03 上海航天精密机械研究所 基于热-磁-超声效应的金属雾化喷嘴
CN109434126A (zh) * 2018-12-25 2019-03-08 西安赛隆金属材料有限责任公司 一种耦合超声旋转电极制粉装置及方法
CN113953519A (zh) * 2021-09-29 2022-01-21 西安交通大学 一种热-磁-超声金属雾化制粉系统及方法
CN114147231B (zh) * 2021-11-22 2024-02-27 哈尔滨工业大学 超声驻波阵列雾化熔融金属进行微粉制备的装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2537103A1 (de) * 1974-08-21 1976-03-04 Osprey Metals Ltd Verfahren und vorrichtung zur herstellung von gespruehten metallkoerpern
DE2656330A1 (de) * 1976-12-13 1978-06-15 Battelle Institut E V Verfahren und vorrichtung zur herstellung von pulvern oder granulaten aus metallen und legierungen
EP0124023A1 (de) * 1983-05-03 1984-11-07 BBC Brown Boveri AG Vorrichtung und Verfahren zur Zerstäubung von flüssigen Metallen zwecks Erzeugung eines feinkörnigen Pulvers

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1250065B (de) * 1967-09-14
DE1099239B (de) * 1958-07-07 1961-02-09 Philips Nv Ultraschall-Vibrator zum Dispergieren von Fluessigkeiten in einem Gas
US3081946A (en) * 1962-07-09 1963-03-19 Astrosonics Inc Sonic spray nozzle
US3397258A (en) * 1965-12-15 1968-08-13 Sinclair Koppers Co Process for extruding spherical expandable particles
DE1558356A1 (de) * 1966-02-03 1970-07-23 Horn Dr Lutz Mittels Ultraschalleinwirkung auf eine Metallschmelze durch Zerstaeubung des Metalls hergestelltes Pulver und Verfahren zu seiner Herstellung
DE2337812C3 (de) * 1973-07-25 1981-01-15 Pjotr Stepanovitsch Dserschinsk Voloschin Einrichtung zum Verspritzen von Flüssigkeiten
JPS5146546A (ja) * 1974-10-18 1976-04-21 Tokuriki Honten Kk Ginrogokin
SE394604B (sv) * 1974-12-18 1977-07-04 Uddeholms Ab Forfarande och anordning for pulvertillverkning genom granulering av en smelta
CA1050832A (en) * 1976-02-12 1979-03-20 Joseph A. Kovacs Continuous metal coating process and apparatus
JPS5468764A (en) * 1977-11-12 1979-06-02 Mizusawa Industrial Chem Production of particulate article comprising low melting metal
DE2802083A1 (de) * 1978-01-18 1979-07-19 Innung Des Kraftfahrzeughandwe Zerstaeuberduese fuer fluessigkeiten
DE2842232C2 (de) * 1978-09-28 1985-04-18 Battelle-Institut E.V., 6000 Frankfurt Verfahren und Vorrichtung zum Zerstäuben von Flüssigkeiten, Suspensionen und Emulsionen, agglomerierten Stäuben bzw. Pulvern sowie Mischungen derselben
IT1148877B (it) * 1980-06-30 1986-12-03 Francesco Mario Vota Apparecchiatura adatta per la generazione e la regolazione automatica di onde ultrasoniche, impiegate nei processi di trattamento dei fluidi
GB2098498B (en) * 1980-10-27 1984-08-22 Secr Defence Separating particles from fluid
US4553917A (en) * 1982-12-21 1985-11-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling
DE3305810A1 (de) * 1983-02-19 1984-08-23 Bayer Ag, 5090 Leverkusen Duesenziehverfahren und ziehduese zur zerteilung von schmelzen
DE3311343A1 (de) * 1983-03-29 1984-10-04 Bayer Ag, 5090 Leverkusen Metallpulver und verfahren zu dessen herstellung
CA1235367A (en) * 1984-04-05 1988-04-19 Gary J. Green Method and apparatus for producing uniform liquid droplets
GB8417241D0 (en) * 1984-07-06 1984-08-08 Unilever Plc Transducers and control means
US4659014A (en) * 1985-09-05 1987-04-21 Delavan Corporation Ultrasonic spray nozzle and method
DE3641437A1 (de) * 1985-12-04 1987-06-11 Canon Kk Feinteilchen-blasvorrichtung
GB8604328D0 (en) * 1986-02-21 1986-03-26 Ici Plc Producing spray of droplets of liquid
US4767492A (en) * 1986-04-18 1988-08-30 Pola Chemical Industries, Inc. Ultrasonic fuse-bonding sealing apparatus with improved contact surfaces
DE3637631C1 (de) * 1986-11-05 1987-08-20 Philips Patentverwaltung Verfahren zum Aufbringen kleiner schmelzfluessiger,tropfenfoermiger Lotmengen aus einer Duese auf zu benetzende Flaechen und Vorrichtung zur Durchfuehrung des Verfahrens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2537103A1 (de) * 1974-08-21 1976-03-04 Osprey Metals Ltd Verfahren und vorrichtung zur herstellung von gespruehten metallkoerpern
DE2656330A1 (de) * 1976-12-13 1978-06-15 Battelle Institut E V Verfahren und vorrichtung zur herstellung von pulvern oder granulaten aus metallen und legierungen
EP0124023A1 (de) * 1983-05-03 1984-11-07 BBC Brown Boveri AG Vorrichtung und Verfahren zur Zerstäubung von flüssigen Metallen zwecks Erzeugung eines feinkörnigen Pulvers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3939178A1 (de) * 1989-11-27 1991-05-29 Branson Ultraschall Vorrichtung zum zerstaeuben von fluessigen und festen stoffen, vorzugsweise geschmolzenen metalls
US5122047A (en) * 1989-11-27 1992-06-16 Branson Ultraschall Niederlassung Der Emerson Technologies Gmbh & Co. Apparatus for pulverizing at least a jet of a pulverizing fluid, preferably a molten metal
US5183493A (en) * 1990-07-17 1993-02-02 Nukem Gmbh Method for manufacturing spherical particles out of liquid phase
EP0472479B1 (de) * 1990-08-20 1994-12-28 I.P.S. Industrie des Poudres Sphériques S.A. Ultraschallgerät zur kontinuierlichen herstellung von Teilchen
WO2002046097A1 (de) * 2000-11-30 2002-06-13 Solarworld Aktiengesellschaft VERFAHREN UND VORRICHTUNG ZUR ERZEUGUNG GLOBULÄRER KÖRNER AUS REINST-SILIZIUM MIT DURCHMESSERN VON 50 νM BIS 300 νM UND IHRE VERWENDUNG
US6951637B2 (en) 2000-11-30 2005-10-04 Solarworld Aktiengesellschaft Method and device for producing globular grains of high-puroty silicon having a diameter of between 50 μm and 300 μm and use of the same
US11897782B2 (en) 2017-08-25 2024-02-13 Saab Ab Method of combusting aluminium and system therefor
CN112974801A (zh) * 2021-02-04 2021-06-18 东睦新材料集团股份有限公司 一种粉末冶金零件的制备方法

Also Published As

Publication number Publication date
JPH01301810A (ja) 1989-12-06
DE3735787A1 (de) 1989-03-30
US5164198A (en) 1992-11-17
EP0308933B1 (de) 1991-03-06
DE3861942D1 (de) 1991-04-11
DE3735787C2 (de) 1992-02-27

Similar Documents

Publication Publication Date Title
EP0308933B1 (de) Verfahren und Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls
DE69814860T2 (de) Verfahren und vorrichtung zur herstellung von kugeln mit uniformer grösse und form
EP0124023B1 (de) Vorrichtung und Verfahren zur Zerstäubung von flüssigen Metallen zwecks Erzeugung eines feinkörnigen Pulvers
DE2528999C2 (de) Verfahren und Vorrichtung zur Herstellung von hochreinem Metallpulver mittels Elektronenstrahlbeheizung
EP0308600B1 (de) Vorrichtung zum Zerstäuben eines flüssigen Mediums mit Hilfe von Ultraschall
DE2725849C3 (de) Vorrichtung zur Herstellung von kugelförmigen Teilchen
DE4242645C2 (de) Verfahren und Einrichtung zur Herstellung von Metallkügelchen annähernd gleichen Durchmessers
EP0361396B1 (de) Verfahren und Vorrichtung zum Herstellen eines Pulvers von amorphen Partikeln einer keramischen oder metallischen Substanz
EP1022078B1 (de) Verfahren und Vorrichtung zur Herstellung von Metallpulver durch Gasverdüsung
DE2126856B2 (de) Verfahren und vorrichtung zum herstellen von metallpulver
EP0434980B1 (de) Vorrichtung zum Zerstäuben von flüssigen und festen Stoffen, vorzugsweise geschmolzenen Metalls
CH631636A5 (en) Process for preparing spherical particles from low-melting substances
DE1458080A1 (de) Verfahren sowie Ringlochduese zum Zerstaeuben von Stoffen aus dem Schmelzfluss
DE1427634A1 (de) Vorrichtung und Verfahren zum Aufbringen einer Kunstharzbeschichtung auf die Innenseite eines Rohrs
DE3918363A1 (de) Vorrichtung fuer einen leistungslaser
DE2847713A1 (de) Verfahren zur herstellung von granulaten niedrig schmelzender metalle
DE3150221A1 (de) Verfahren und vorrichtung zur herstellung von metallpulver aus einer schmelze
DE3913649A1 (de) Verfahren und anlage zum herstellen metallischer pulver aus einer metallschmelze durch gasverduesen
DE1964584A1 (de) Verfahren und Vorrichtung zum Herstellen von Metallpulvern
EP2014355A1 (de) Vorrichtung und Verfahren zum Prillen
DE19801832A1 (de) Verfahren und Vorrichtung zur Herstellung von kugelförmigen Teilchen nahezu gleichen Durchmessers
EP0350432B1 (de) Einrichtung zum semikontinuierlichen Sprühkompaktieren
DE2057862B2 (de) Verfahren und Vorrichtung zur Herstellung eines Metallpulvers
DE2260868A1 (de) Verfahren und vorrichtung zur herstellung von metallpulvern
AT224922B (de) Verfahren und Vorrichtung zur Pulverisierung und/oder Aufschließung fester Stoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19890921

17Q First examination report despatched

Effective date: 19900227

ITF It: translation for a ep patent filed

Owner name: INVENTION S.N.C.

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BRANSON ULTRASCHALL NIEDERLASSUNG DER EMERSON TECH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 61261

Country of ref document: AT

Date of ref document: 19910315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3861942

Country of ref document: DE

Date of ref document: 19910411

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO SEDE;BRANSON ULTRASCHALL NIEDERLASSUNG DER

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAA Information modified related to event that no opposition was filed

Free format text: ORIGINAL CODE: 0009299DELT

26N No opposition filed
26 Opposition filed

Opponent name: BATTELLE-INSTITUT E.V.

Effective date: 19911203

NLR1 Nl: opposition has been filed with the epo

Opponent name: BATTELLE-INSTITUT E.V.

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19931206

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980226

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980306

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980326

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980327

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980922

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980922

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050922