EP0124023B1 - Vorrichtung und Verfahren zur Zerstäubung von flüssigen Metallen zwecks Erzeugung eines feinkörnigen Pulvers - Google Patents

Vorrichtung und Verfahren zur Zerstäubung von flüssigen Metallen zwecks Erzeugung eines feinkörnigen Pulvers Download PDF

Info

Publication number
EP0124023B1
EP0124023B1 EP84104377A EP84104377A EP0124023B1 EP 0124023 B1 EP0124023 B1 EP 0124023B1 EP 84104377 A EP84104377 A EP 84104377A EP 84104377 A EP84104377 A EP 84104377A EP 0124023 B1 EP0124023 B1 EP 0124023B1
Authority
EP
European Patent Office
Prior art keywords
gas
jet
annular
gas jet
liquid metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84104377A
Other languages
English (en)
French (fr)
Other versions
EP0124023A1 (de
Inventor
Thomas Dr. Duerig
Marcel Dr. Escudier
Jakob Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0124023A1 publication Critical patent/EP0124023A1/de
Application granted granted Critical
Publication of EP0124023B1 publication Critical patent/EP0124023B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance

Definitions

  • the invention relates to a device for atomizing liquid metals according to the preamble of claim 1 and to a method according to the preamble of claim 2.
  • Metal atomization for the production of a powder for powder metallurgical and other applications has been published for a long time and is known from a wide range of specialist literature.
  • the process of atomization using a gas jet is preferred.
  • gas jet air, nitrogen, noble gas
  • Known devices for gas jet atomization have, as an essential tool, a centrally symmetrical body for guiding the liquid metal to be atomized (metal jet) and the atomizing medium (gas jet), a so-called nozzle. Such devices are intended to achieve the most complete possible resolution of the liquid metal jet into individual small droplets.
  • a device has already been proposed (cf., for example, US Pat. No. 2,997,245) which, in a rotationally symmetrical body, has an annular inlet channel for the gaseous atomizing medium, which is directed obliquely upwards against the body axis an imaginary cone-shaped taper (circumferentially distributed) (tapered nozzles with a circular cross-section) or in a single cone-shaped, also sloping upwards (as a nozzle). Opposite the individual nozzles or the annular gap there are recesses arranged symmetrically to the latter and so-called resonance chambers on both sides of these recesses.
  • the structure of this device is comparatively complicated, unclear and therefore hardly accessible to the gas dynamic calculation.
  • the abrupt deflection of the gas jet, the series connection of confusors and diffusers is also associated with considerable energy losses.
  • the metal powders produced with such a device leave something to be desired in various respects.
  • the invention has for its object to provide a device and a method for atomizing liquid metals, by means of which extremely high cooling rates of the melt and extremely fine-grained powder particles can be achieved.
  • the gas dynamic conditions in the atomization chamber should be simple and clear and should be optimized to ensure the greatest possible disintegration of the metal.
  • 1 shows a schematic longitudinal section through a device for atomizing liquid metals.
  • 1 is a rotationally symmetrical housing with preferably cylindrical boundary surfaces.
  • the housing 1 has an annular cooling channel 2 for receiving a liquid or gaseous coolant.
  • annular chamber 3 is provided, which serves for the gas supply (atomizing agent).
  • the chamber 3 merges into a conical narrow annular gap nozzle 4 which runs coaxially with the longitudinal axis of the housing 1.
  • the housing 1 On the outlet side of the annular gap nozzle 4, the housing 1 is closed off with a stepped flange (end plate) 5.
  • the latter has a sharp annular edge 6 and an annular resonance chamber 7 on its inner (bore) side.
  • a sleeve 8 In the central longitudinal bore of the housing 1 there is a sleeve 8, the outlet end of which is conical is cut and has a sharp trailing edge 9.
  • the sleeve 8 provided with a bore 10 for receiving the liquid metal to be atomized has a thread 11 at its inlet end, via which it is held on the housing 1 by means of a round nut 12.
  • the sleeve 8 is displaceable in its longitudinal direction with respect to the housing 1 and can thus be clamped in any position relative to the latter.
  • exit edge 9 can be varied with respect to the position of the annular gap nozzle 4 and the annular edge 6.
  • the components 1, 5, 8 and 12 are advantageously made of metallic materials with graded heat resistance and different thermal conductivity.
  • the sleeve 8 can also consist of a heat-resistant material such as ceramic material.
  • the invention is in no way material-specific; their characteristic geometry can in principle be transferred to all suitable material combinations.
  • Fig. 2 shows a longitudinal section through an atomization zone of the device on an enlarged scale.
  • the reference numerals correspond exactly to those in FIG. 1.
  • the exit edge 9 of the sleeve 8 is set back advantageously compared to the imaginary continuation of the conical movement surface of the annular gap nozzle 4, so that the exit cone of the sleeve 8 is not in alignment with the cone of the annular gap nozzle.
  • FIG 3 shows a diagram of the gas dynamic conditions in the atomization zone.
  • the sound intensity in decibels is plotted as a function of frequency in kHz.
  • Nitrogen under a pressure of 80 bar was used as the atomizing agent.
  • the components 1, 5, 8 and 12 according to FIG. 1 were made of steel, the actual dimensions being approximately half as large as shown in FIG. 1.
  • the sleeve 8 was set in such a way that its exit edge 9 was set back approximately 1.2 mm with respect to the imaginary section of the extension of the conical jacket corresponding to the annular gap nozzle 4 with the jacket of the cylindrical bore 10 of the sleeve 8 (see FIG. 2! .
  • the annular cooling channel 2 of the housing 1 was cooled with water, while the annular chamber 3 serving for gas supply was pressurized with nitrogen at 80 bar pressure as an atomizing agent. As can be seen from the diagram in FIG.
  • the invention is not exhausted in the description of the figures or in the aforementioned exemplary embodiment.
  • an inert gas e.g. B. argon or helium can be used.
  • the average total opening angle of the imaginary cone of the gas jet should be approximately 35 to 55 °.
  • the advantageous effect of the new atomization device consists in the generation of a gas jet which moves at least at the speed of sound against the liquid metal jet and which, in addition to a more or less continuous band, has clearly perceptible, high-intensity discrete sound frequencies. This is achieved by special training of a resonance room and a targeted guidance of the gas emitters.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Nozzles (AREA)
  • Glanulating (AREA)

Description

  • Die Erfindung geht aus von einer Vorrichtung zur Zerstäubung von flüssigen Metallen nach der Gattung des Oberbegriffs des Anspruchs 1 und von einem Verfahren nach der Gattung des Oberbegriffs des Anspruchs 2.
  • Die Metallzerstäubung zwecks Herstellung eines Pulvers für pulvermetallurgische und andere Anwendungen wird seit längerer Zeit publiziert und ist aus einer umfangreichen Fachliteratur bekannt. Dabei nimmt das Verfahren der Zerstäubung mittels eines Gasstrahls (Luft, Stickstoff, Edelgas) eine Vorzugsstellung ein. Bekannte Vorrichtungen zur Gasstrahl-Zerstäubung besitzen als wesentliches Werkzeug einen zentralsymmetrischen Körper zur Führung des flüssigen zu zerstäubenden Metalls (Metallstrahl) sowie des zerstäubenden Mediums (Gasstrahl), eine sogenannte Düse. Mit derartigen Vorrichtungen soll eine möglichst vollständige Auflösung des flüssigen Metallstrahls in einzelne kleine Tröpfchen erreicht werden.
  • Es ist bereits eine Vorrichtung vorgeschlagen worden (vgl. z. B. US-A-2 997 245), welche in einem rotationssymmetrischen Körper einen ringförmigen Zulaufkanal für das gasförmige zerstäubende Medium aufweist, der gegen die Körperachse zu in schräg nach oben gerichtete, auf einem gedachten Kegelmantel sitzende, am Umfang verteilt angeordnete Verjüngungen (Einzeldüsen mit kreisförmigem Querschnitt) oder in einen einzigen kegelförmigen, ebenfalls nach schräg oben gerichteten Ringspalt (als Düse) ausläuft. Gegenüber den Einzeldüsen bzw. dem Ringspalt befinden sich zu letzteren symmetrisch angeordnete Vertiefungen und zu beiden Seiten dieser Vertiefungen sogenannte Resonanzkammern. Im rechten Winkel zu den besagten ersten Düsen steht - ebenfalls auf einem gedachten Kegelmantel angeordnet, ein zunächst schroff sich erweiternder, dann verjüngender Ringspalt als zweite "Düse", die schlussendlich den Gasstrom in einem flachen, nach unten zulaufenden Kegel von ca. 120° totalem Öffnungswinkel in den freien Raum und auf den senkrecht nach unten fliessenden zylindrischen flüssigen Metallstrahl schleudert.
  • Diese Vorrichtung ist in ihrem Aufbau vergleichsweise kompliziert, wenig übersichtlich und deshalb der gasdynamischen Berechnung kaum zugänglich. Die schroffe Umlenkung des Gasstrahles, die Hintereinanderschaltung von Konfusoren und Diffusoren ist überdies mit beträchtlichen Energieverlusten verbunden. Die mit einer derartigen Vorrichtung erzeugten Metallpulver lassen in verschiedener Hinsicht zu wünschen übrig.
  • In der Pulvermetallurgie gibt es nun Anwendungsfälle, die es als wünschenswert erscheinen lassen, die Abkühlungsgeschwindigkeit während der Erstarrung der Tröpfchen bis zu extrem hohen Werten zu steigern, um ganz bestimmte, gezielte Strukturen zu verwirklichen. Insbesondere sollen auf diese Weise Seigerungen aus gesättigten oder übersättigten Schmelzen vermieden und homogene Gefüge erreicht werden. Dies bedingt wiederum spezielle Vorrichtungen, welche ganz bestimmte gasdynamische Bedingungen im Zerstäubungsbereich zu verwirklichen gestatten. Die bereits bekannten Vorrichtungen und Düsen erfüllen diese Bedingungen nicht oder nur in unzureichendem Masse.
  • Es besteht daher ein grosses Bedürfnis, die bekannten Vorrichtungen zur Metallzerstäubung sowie deren Methoden dermassen zu verbessern, dass die vorgenannten Mängel möglichst weitgehend behoben werden können.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren zur Zerstäubung von flüssigen Metallen anzugeben, mittels welchem extrem hohe Abkühlungsgeschwindigkeiten der Schmelze und äusserst feinkörnige Pulverpartikel erzielt werden können. Dabei sollen die gasdynamischen Verhältnisse im Zerstäubungsraum einfach und übersichtlich sein und optimiert gestaltet werden, um eine möglichst weitgehende Desintegration des Metalls zu gewährleisten.
  • Diese Aufgabe wird durch die im kennzeichnenden Teil der Ansprüche 1 und 2 angegebenen Merkmale gelöst.
  • Die Erfindung wird anhand des nachfolgenden, durch Figuren näher erläuterten Ausführungsbeispiels beschrieben.
  • Dabei zeigt:
    • Fig. 1 einen schematischen Längsschnitt durch eine Vorrichtung zur Zerstäubung von flüssigen Metallen,
    • Fig. 2 einen Längsschnitt durch die Zerstäubungszone der Vorrichtung gemäss Fig. 1 in vergrössertem Massstab,
    • Fig. 3 ein Diagramm der gasdynamischen Verhältnisse in der Zerstäubungszone: Schallintensität des Gasstrahls in Funktion der Frequenz.
  • In Fig. 1 ist ein schematischer Längsschnitt durch eine Vorrichtung zur Zerstäubung von flüssigen Metallen dargestellt. 1 ist ein rotationssymmetrisches Gehäuse mit vorzugsweise zylindrischen Begrenzungsflächen. Das Gehäuse 1 weist einen ringförmigen Kühlkanal 2 zur Aufnahme eines flüssigen oder gasförmigen Kühlmittels auf. Im mittleren Teil des Gehäuses 1 ist eine ringförmige Kammer 3 vorgesehen, welche der Gaszuführung (Zerstäubungsmittel) dient. Die Kammer 3 geht in eine konisch ausgebildete, zur Längsachse des Gehäuses 1 koaxial verlaufende schmale Ringspalt-Düse 4 über. Auf der Austrittseite der Ringspalt-Düse 4 ist das Gehäuse 1 mit einem abgesetzten Flansch (Endplatte) 5 abgeschlossen. Letzterer weist auf seiner innenliegenden (Bohrungs-) Seite eine scharfe ringförmige Kante 6 sowie einen ringförmigen Resonanzraum 7 auf. In der zentralen Längsbohrung des Gehäuses 1 befindet sich eine Hülse 8, deren Austrittsende konisch zugeschnitten ist und eine scharfe Austrittskante 9 aufweist. Die mit einer Bohrung 10 zur Aufnahme des flüssigen, zu zerstäubenden Metalls versehene Hülse 8 besitzt an ihrem eintrittseitigen Ende ein Gewinde 11, über welches sie mittels einer Rundmutter 12 am Gehäuse 1 festgehalten ist. Mittels dieses Mechanismus ist die Hülse 8 in ihrer Längsrichtung gegenüber dem Gehäuse 1 verschiebbar und kann somit in jeder relativen Lage zum letzteren festgeklemmt werden. Dadurch kann insbesondere ihre Austrittskante 9 gegenüber der Lage der Ringspalt-Düse 4 und der ringförmigen Kante 6 variiert werden. Die Bauelemente 1,5,8 und 12 werden vorteilhafterweise aus meta!lischen Werkstoffen mit abgestufter Warmfestigkeit und unterschiedlicher Wärmeleitfähigkeit gefertigt. Je nach Schmelztemperatur des zu zerstäubenden Metalls kann jedoch insbesondere die Hülse 8 auch aus einem hitzebeständigen Werkstoff wie beispielsweise Keramikmaterial bestehen. Die Erfindung ist jedoch in keiner Weise werkstoffspezifisch; ihre charakteristische Geometrie lässt sich prinzipiell auf alle geeigneten Werkstoffkombinationen übertragen.
  • Fig. 2 zeigt einen Längsschnitt durch eine Zerstäubungszone der Vorrichtung in einem vergrösserten Masstab. Die Bezugszeichen entsprechen genau denjenigen der Fig. 1. Aus der Fig. 2 ist insbesondere ersichtlich, dass die Austrittskante 9 der Hülse 8 mit Vorteil gegenüber der gedachten Fortsetzung der konischen Bewegungsfläche der Ringspalt-Düse 4 zurückversetzt ist, so dass der Austrittskegel der Hülse 8 nicht mit dem Kegel der Ringspalt-Düse in einer Flucht liegt.
  • In Fig. 3 ist ein Diagramm der gasdynamischen Verhältnisse in der Zerstäubungszone dargestellt. Die Schallintensität in Dezibel ist in Funktion der Frequenz in kHz aufgetragen. Als Zerstäubungsmittel wurde Stickstoff unter einem Druck von 80 bar verwendet.
  • Ausführungsbeispiel: Siehe Fig. 1 bis 31
  • Aus Stahl wurden die Bauelemente 1, 5, 8 und 12 gemäss Fig. 1 gefertigt, wobei die wirklichen Dimensionen ungefähr halb so gross waren wie in der Fig. 1 eingezeichnet. Die Hülse 8 wurde derart eingestellt, dass ihre Austrittskante 9 ca. 1,2 mm gegenüber dem gedachten Schnitt der Verlängerung des der Ringspalt-Düse 4 entsprechenden Kegelmantels mit dem Mantel der zylindrischen Bohrung 10 der Hülse 8 zurückversetzt war (siehe Fig. 2!). Der ringförmige Kühlkanal 2 des Gehäuses 1 wurde mit Wasser gekühlt, während die der Gaszuführung dienende ringförmige Kammer 3 mit Stickstoff von 80 bar Druck als Zerstäubungsmittel beaufschlagt wurde. Wie aus dem Diagramm der Fig. 3 hervorgeht, traten neben einem annähernd kontinuierlichen, als "Geräusch" zu interpretierenden Frequenzband von durchschnittlich ca. 30 Dezibel Schallintensität noch 3 weitere charakteristische diskrete Frequenzen im Ultraschallbereich von ca. 40, 80 und 130 kHz auf, welche in ihrer Intensität das kontinuierliche Band um ca. 15 bis 25 Dezibel überragten. Diese diskreten "Töne" können hauptsächlich für den vorteilhaften Desintegrationsmechanismus in der Zerstäubungszone des flüssigen Metalls herangezogen werden.
  • Die Erfindung erschöpft sich nicht in der Figurenbeschreibung noch im vorgenannten Ausführungsbeispiel. Bei der Durchführung des Verfahrens ist wesentlich, dass mindestens eine diskrete Schallfrequenz vorhanden ist, deren Intensität um mindestens 5 Dezibel über dem Durchschnitt des kontinuierlichen Bandes liegt, wobei die Druckamplitude mindestens den gleichen Wert erreichen soll wie der zur Erzeugung des Gasstrahles aufgewendete Stillstandsdruck des treibenden Gases. Als letzteres kann neben Stickstoff selbstverständlich auch ein Edelgas, z. B. Argon oder Helium verwendet werden. Vorteilhafterweise sollen mindestens 3 diskrete Schallfrequenzen mit mindestens 10 Dezibel Überhöhung gegenüber dem kontinuierlichen Band im Frequenzbereich von ca. bis 200 kHz vorhanden sein. Der mittlere totale Öffnungswinkel des gedachten Kegels des Gasstrahles soll dabei ca. 35 bis 55° betragen.
  • Die vorteilhafte Wirkung der neuen Zerstäubungsvorrichtung besteht in der Erzeugung eines mindestens unter Schallgeschwindigkeit sich gegen den flüssigen Metallstrahl hin fortbewegenden Gasstrahls, welches ausser einem mehr oder weniger kontinuierlichen Band deutlich wahrnehmbare diskrete Schallfrequenzen hoher Intensität besitzt. Dies wird durch eine besondere Ausbildung eines Resonanzraumes sowie eine gezielte Führung der Gasstrahler erreicht.

Claims (3)

1. Vorrichtung zur Zerstäubung von flüssigen Metallen zwecks Erzeugung eines feinkörnigen Pulvers, bestehend aus einem zentralsymmetrischen, Kanäle für die Zufuhr des flüssigen zu zerstäubenden Metalls sowie des zur Zerstäubung dienenden Gases enthaltenden, mit einem ringförmigen Kühlkanal (2) und einer der Gaszuführung dienenden ringförmigen Kammer (3) versehenen Körper, dadurch gekennzeichnet, dass in einem durch zylindrische Mantelflächen begrenzten Gehäuse (1) eine mit in Strömungsrichtung sich verengenden konischen Begrenzungsflächen versehene Ringspalt-Düse (4) mit einem mittleren totalen Öffnungswinkel des gedachten Kegels von 35 bis 55° zur Erzeugung eines in Strömungsrichtung des flüssigen Metalls sich verjüngenden hohlkegelförmigen Gasstrahls vorgesehen ist, dass ferner das Gehäuae (1) auf seiner dem Gasaustritt aus der Düse (4) zugewandten Stirnseite an der Stelle nach dem engsten Gasquerschnitt in Strömungsrichtung mit einem einen hohlkegelförmigen, aussen auf dem Gasstrahl annähernd senkrecht stehenden ringförmigen Resonanzraum (7) mit einer aussen liegenden scharfen ringförmigen Kante (6) aufweisenden Flansch (5) abgeschlossen ist, und dass sich in der zentralen Längsbohrung des Gehäuses (1) eine an ihrem unteren Ende mit einer Austrittskante (9) mit kegelförmiger Begrenzungsfläche und an ihrem oberen Ende mit einem Gewinde (11) versehene, in Längsrichtung verschiebbare, einstellbare und mit einer Rundmutter (12) am Gehäuse (1) festgehaltene Hülse (8) zur Aufnahme des die Bohrung (10) durchfliessenden flüssigen Metallstrahls befindet.
2. Verfahren zur Zerstäubung von flüssigen Metallen zwecks Erzeugung eines feinkörnigen Pulvers, wobei ein Strahl flüssigen Metalls durch einen zu ihm konzentrisch verlaufenden und nach seinem Innern gerichteten, einen einhüllenden Mantel bildenden, ringförmigen, mit Schallschwingungen überlagerten Gasstrahl desintegriert wird, dadurch gekennzeichnet, dass der Gasstrahl ausser einem kontinuierlichen Band von Schallfrequenzen mindestens noch eine diskrete Schallfrequenz enthält, deren Intensität mindestens um 5 Dezibel über dem Durchschnitt derjenigen des kontinuierlichen Bandes liegt und deren Druckamplitude mindestens den gleichen Wert erreicht wie der zur Erzeugung des Gasstrahles aufgewendete statische Stillstandsdruck des treibenden Gases und dass der Gasstrahl fächerförmig um einen gedachten, sich in Strömungsrichtung verjüngenden Kegelmantel nach dessen Spitze und nach der Achse des Strahles flüssigen Metalles hin geführt wird, wobei der gedachte Kegel einen totalen Öffnungswinkel von 35 bis 55° aufweist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Gasstrahl mindestens 3 diskrete Schallfrequenzen von mindestens 10 Dezibel Überhöhung gegenüber dem kontinuierlichen Band im Frequenzbereich von 10 kHz bis 200 kHz enthält.
EP84104377A 1983-05-03 1984-04-18 Vorrichtung und Verfahren zur Zerstäubung von flüssigen Metallen zwecks Erzeugung eines feinkörnigen Pulvers Expired EP0124023B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH238983 1983-05-03
CH2389/83 1983-05-03

Publications (2)

Publication Number Publication Date
EP0124023A1 EP0124023A1 (de) 1984-11-07
EP0124023B1 true EP0124023B1 (de) 1987-11-25

Family

ID=4232642

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84104377A Expired EP0124023B1 (de) 1983-05-03 1984-04-18 Vorrichtung und Verfahren zur Zerstäubung von flüssigen Metallen zwecks Erzeugung eines feinkörnigen Pulvers

Country Status (5)

Country Link
US (2) US4575325A (de)
EP (1) EP0124023B1 (de)
JP (1) JPS59206067A (de)
CA (1) CA1228459A (de)
DE (2) DE3319508A1 (de)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801412A (en) * 1984-02-29 1989-01-31 General Electric Company Method for melt atomization with reduced flow gas
CH664515A5 (en) * 1984-12-20 1988-03-15 Bbc Brown Boveri & Cie Powder metallurgical prodn. of shape memory article - of beta brass type copper alloy contg. metal oxide dispersoid
US4778516A (en) * 1986-11-03 1988-10-18 Gte Laboratories Incorporated Process to increase yield of fines in gas atomized metal powder
US4784302A (en) * 1986-12-29 1988-11-15 Gte Laboratories Incorporated Gas atomization melt tube assembly
US4780130A (en) * 1987-07-22 1988-10-25 Gte Laboratories Incorporated Process to increase yield of fines in gas atomized metal powder using melt overpressure
DE3735787A1 (de) * 1987-09-22 1989-03-30 Stiftung Inst Fuer Werkstoffte Verfahren und vorrichtung zum zerstaeuben mindestens eines strahls eines fluessigen stoffs, vorzugsweise geschmolzenen metalls
US4946105A (en) * 1988-04-12 1990-08-07 United Technologies Corporation Fuel nozzle for gas turbine engine
DE4022648C2 (de) * 1990-07-17 1994-01-27 Nukem Gmbh Verfahren und Vorrichtung zur Herstellung von kugelförmigen Teilchen aus flüssiger Phase
US5226948A (en) * 1990-08-30 1993-07-13 University Of Southern California Method and apparatus for droplet stream manufacturing
US5125574A (en) * 1990-10-09 1992-06-30 Iowa State University Research Foundation Atomizing nozzle and process
US5228620A (en) * 1990-10-09 1993-07-20 Iowa State University Research Foundtion, Inc. Atomizing nozzle and process
US5149063A (en) * 1991-04-17 1992-09-22 The United States Of America As Represented By The Secretary Of The Army Collision centrifugal atomization unit
US5268018A (en) * 1991-11-05 1993-12-07 General Electric Company Controlled process for the production of a spray of atomized metal droplets
US5280884A (en) * 1992-06-15 1994-01-25 General Electric Company Heat reflectivity control for atomization process
US5366204A (en) * 1992-06-15 1994-11-22 General Electric Company Integral induction heating of close coupled nozzle
US5468133A (en) * 1992-07-27 1995-11-21 General Electric Company Gas shield for atomization with reduced heat flux
CA2107421A1 (en) * 1992-10-16 1994-04-17 Steven Alfred Miller Atomization with low atomizing gas pressure
US5348566A (en) * 1992-11-02 1994-09-20 General Electric Company Method and apparatus for flow control in electroslag refining process
US5310165A (en) * 1992-11-02 1994-05-10 General Electric Company Atomization of electroslag refined metal
DE4242645C2 (de) * 1992-12-17 1997-12-18 Deutsche Forsch Luft Raumfahrt Verfahren und Einrichtung zur Herstellung von Metallkügelchen annähernd gleichen Durchmessers
US5617911A (en) * 1995-09-08 1997-04-08 Aeroquip Corporation Method and apparatus for creating a free-form three-dimensional article using a layer-by-layer deposition of a support material and a deposition material
US5787965A (en) * 1995-09-08 1998-08-04 Aeroquip Corporation Apparatus for creating a free-form metal three-dimensional article using a layer-by-layer deposition of a molten metal in an evacuation chamber with inert environment
US5718951A (en) * 1995-09-08 1998-02-17 Aeroquip Corporation Method and apparatus for creating a free-form three-dimensional article using a layer-by-layer deposition of a molten metal and deposition of a powdered metal as a support material
US5746844A (en) * 1995-09-08 1998-05-05 Aeroquip Corporation Method and apparatus for creating a free-form three-dimensional article using a layer-by-layer deposition of molten metal and using a stress-reducing annealing process on the deposited metal
US5649993A (en) * 1995-10-02 1997-07-22 General Electric Company Methods of recycling oversray powder during spray forming
US5649992A (en) * 1995-10-02 1997-07-22 General Electric Company Methods for flow control in electroslag refining process
US6250522B1 (en) 1995-10-02 2001-06-26 General Electric Company Systems for flow control in electroslag refining process
US5683653A (en) * 1995-10-02 1997-11-04 General Electric Company Systems for recycling overspray powder during spray forming
US8891583B2 (en) 2000-11-15 2014-11-18 Ati Properties, Inc. Refining and casting apparatus and method
US6496529B1 (en) * 2000-11-15 2002-12-17 Ati Properties, Inc. Refining and casting apparatus and method
EP1385634A1 (de) * 2001-05-09 2004-02-04 Novel Technical Solutions Limited Verfahren und vorrichtung zum zerstäuben von medien
US7776503B2 (en) * 2005-03-31 2010-08-17 Ricoh Company, Ltd. Particles and manufacturing method thereof, toner and manufacturing method thereof, and developer, toner container, process cartridge, image forming method and image forming apparatus
US7578960B2 (en) * 2005-09-22 2009-08-25 Ati Properties, Inc. Apparatus and method for clean, rapidly solidified alloys
US7803211B2 (en) * 2005-09-22 2010-09-28 Ati Properties, Inc. Method and apparatus for producing large diameter superalloy ingots
US7803212B2 (en) * 2005-09-22 2010-09-28 Ati Properties, Inc. Apparatus and method for clean, rapidly solidified alloys
US8381047B2 (en) * 2005-11-30 2013-02-19 Microsoft Corporation Predicting degradation of a communication channel below a threshold based on data transmission errors
US8748773B2 (en) * 2007-03-30 2014-06-10 Ati Properties, Inc. Ion plasma electron emitters for a melting furnace
BRPI0809581A2 (pt) 2007-03-30 2019-03-12 Ati Properties Inc fornalha de fusão incluindo emissor de elétrons de plasma de íon descarregado por filamento
US7827822B2 (en) * 2007-07-25 2010-11-09 Schott Corporation Method and apparatus for spray-forming melts of glass and glass-ceramic compositions
US7798199B2 (en) 2007-12-04 2010-09-21 Ati Properties, Inc. Casting apparatus and method
US8747956B2 (en) 2011-08-11 2014-06-10 Ati Properties, Inc. Processes, systems, and apparatus for forming products from atomized metals and alloys
RU2606674C2 (ru) * 2013-07-11 2017-01-10 Общество с ограниченной ответственностью "СУАЛ-ПМ" (ООО "СУАЛ-ПМ") Эжекционная форсунка для распыления расплавов
RU2539512C1 (ru) * 2013-09-23 2015-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ) Устройство для распыления расплавленных металлов
RU2554257C1 (ru) * 2014-03-11 2015-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский университет" (ТГУ) Форсунка для распыления расплавленных металлов
RU2559080C1 (ru) * 2014-03-11 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ) Способ получения металлических порошков распылением расплавов
CN110181069B (zh) * 2019-07-08 2023-01-31 华北理工大学 采用气雾化法制备高氮钢粉末的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2510574A (en) * 1947-06-07 1950-06-06 Remington Arms Co Inc Process of forming spherical pellets
DE839438C (de) * 1950-10-18 1952-05-19 Mannesmann Ag Ringschlitzduese zum Verblasen von fluessigen Metallen
US2997245A (en) * 1958-01-17 1961-08-22 Kohlswa Jernverks Ab Method and device for pulverizing and/or decomposing solid materials
US3041672A (en) * 1958-09-22 1962-07-03 Union Carbide Corp Making spheroidal powder
GB961773A (en) * 1962-01-31 1964-06-24 Brennan Lab Inc Metal spraying apparatus
US3253783A (en) * 1964-03-02 1966-05-31 Federal Mogul Bower Bearings Atomizing nozzle
US4369919A (en) * 1980-10-31 1983-01-25 Npk Za Kontrolno Zavarachni Raboti Plasma torch for processing metals in the air and under water

Also Published As

Publication number Publication date
DE3467726D1 (en) 1988-01-07
CA1228459A (en) 1987-10-27
JPH049105B2 (de) 1992-02-19
DE3319508A1 (de) 1984-11-08
US4640806A (en) 1987-02-03
US4575325A (en) 1986-03-11
JPS59206067A (ja) 1984-11-21
EP0124023A1 (de) 1984-11-07

Similar Documents

Publication Publication Date Title
EP0124023B1 (de) Vorrichtung und Verfahren zur Zerstäubung von flüssigen Metallen zwecks Erzeugung eines feinkörnigen Pulvers
EP3083107B1 (de) Vorrichtung und verfahren zum tiegelfreien schmelzen eines materials und zum zerstäuben des geschmolzenen materials zum herstellen von pulver
DE4102101C2 (de) Einrichtung zum Herstellen von Pulvern aus Metallen
DE3505660A1 (de) Vorrichtung und verfahren zum zerstaeuben instabiler schmelzstroeme
DE1834839U (de) Flammspritzpistole.
DE19881316B4 (de) Verfahren und Vorrichtung zur Herstellung von Metallpulver durch Zerstäubung
EP0156760B1 (de) Verfahren und Vorrichtung zur Herstellung eines warmarbeitswerkzeuges
DE2043882C3 (de) Verfahren zur Herstellung eines Stahlgußblockes, insbesondere einer Bramme aus unberuhigtem Stahl und Vorrichtung zur Durchführung des Verfahrens
WO2008011851A1 (de) Flämmbrenner und verfahren zum brennflämmen einer metallischen oberfläche
DE19758111C2 (de) Verfahren und Vorrichtung zur Herstellung feiner Pulver durch Zerstäubung von Schmelzen mit Gasen
EP4034320B1 (de) Vorrichtung zur verdüsung eines schmelzstromes mittels eines gases
DE2555715A1 (de) Verfahren und vorrichtung zur pulverherstellung durch verspruehen eines geschmolzenen materials
EP0043987A1 (de) Vorrichtung zum Stranggiessen von Metall in einem geschlossenen Eingiessystem
DE1458080B2 (de) Ringlochdüse
EP1765551A1 (de) Verfahren und vorrichtung zur erzeugung eines strahls von trockeneispartikeln
DE1114987B (de) Verfahren zum Giessen von Metallfasern und -faeden
DE2656330C2 (de) Verfahren und Vorrichtung zur Herstellung von Pulvern oder Granulaten aus Metallen und Legierungen
CH442939A (de) Brennschneideverfahren unter Verwendung von Schutzgas und eine Vorrichtung zur Durchführung dieses Verfahrens
DE4019563C2 (de)
DE3345983A1 (de) Verfahren und vorrichtung zur herstellung von kugelfoermigen metallischen partikeln
DE1918964B2 (de) Verfahren und vorrichtung zum bohren von loechern mit flammstrahlen
DE2057862C3 (de) Verfahren und Vorrichtung zur Herstellung eines Metallpulvers
DE2818720C2 (de) Verfahren und Vorrichtung zur Herstellung von Metallpulver
DE2260868A1 (de) Verfahren und vorrichtung zur herstellung von metallpulvern
DE3721686C2 (de) Vorrichtung zum mischen zweier gase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19850401

17Q First examination report despatched

Effective date: 19860204

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC BROWN BOVERI AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 3467726

Country of ref document: DE

Date of ref document: 19880107

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890430

BERE Be: lapsed

Owner name: BBC BROWN BOVERI A.G.

Effective date: 19890430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920312

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920316

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920323

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920710

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930430

Ref country code: CH

Effective date: 19930430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84104377.1

Effective date: 19931110