RU2559080C1 - Способ получения металлических порошков распылением расплавов - Google Patents

Способ получения металлических порошков распылением расплавов Download PDF

Info

Publication number
RU2559080C1
RU2559080C1 RU2014109340/02A RU2014109340A RU2559080C1 RU 2559080 C1 RU2559080 C1 RU 2559080C1 RU 2014109340/02 A RU2014109340/02 A RU 2014109340/02A RU 2014109340 A RU2014109340 A RU 2014109340A RU 2559080 C1 RU2559080 C1 RU 2559080C1
Authority
RU
Russia
Prior art keywords
gas
plates
stream
frequency
plate
Prior art date
Application number
RU2014109340/02A
Other languages
English (en)
Inventor
Владимир Афанасьевич Архипов
Сергей Сергеевич Бондарчук
Александр Степанович Жуков
Сергей Владиславович Змановский
Алексей Иванович Коноваленко
Андрей Владимирович Литвинов
Михаил Сергеевич Павлов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ)
Priority to RU2014109340/02A priority Critical patent/RU2559080C1/ru
Application granted granted Critical
Publication of RU2559080C1 publication Critical patent/RU2559080C1/ru

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Изобретение относится к области порошковой металлургии. Струю металлического расплава диспергируют окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний. Звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин, расположенных в потоке распыляющего газа параллельно его оси и закрепленных по их ширине. Частоту звуковых колебаний определяют по заданной формуле, затем с учетом полученного ее значения, упругих свойств материала пластин и при заданной длине и ширине определяют толщину пластин из заданного уравнения. Обеспечивается повышение доли мелкодисперсной фракции в пульверизате, образующемся при распылении расплава металла. 2 ил., 1 пр.

Description

Изобретение относится к области порошковой металлургии, в частности к способам получения порошков алюминия, магния и их сплавов распылением расплавленных металлов газовым потоком.
Известен способ распыления расплавленных металлов, включающий диспергирование расплава металла внешним потоком газа, концентричным струе расплава [1]. Известны способы распыления расплавов металлов, обеспечивающие повышение дисперсности получаемого порошка (пульверизата) дополнительным нагревом вспомогательного газа [2], снижением давления в камере распыления [3], дополнительным рассредоточенным вводом горячего газа в зону распыления [4] или в металлопровод [5], установкой рассекателей-дестабилизаторов в зоне распыления [6].
Наиболее близким по технической сущности является способ распыления жидких металлов диспергированием струи расплава окружающим ее концентрическим потоком газа с наложенными звуковыми колебаниями [7]. Звуковые колебания с несколькими дискретными частотами генерируют кольцевой резонансной полостью, расположенной в канале для подачи распыляющего газа. Недостатком данного способа является отсутствие взаимосвязи частот генерируемых звуковых колебаний с собственной частотой колебаний струи расплава при ее взаимодействии с распыляющим газом.
Техническим результатом изобретения является повышение массовой доли высокодисперсной фракции в пульверизате, образующемся при распылении расплава металла.
Технический результат достигается тем, что разработан способ получения металлических порошков распылением расплавов, включающий диспергирование струи металлического расплава окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний, отличающийся тем, что звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин, расположенных в потоке распыляющего газа параллельно его оси и закрепленных по их ширине, при этом частоту звуковых колебаний f определяют по формуле (кГц):
Figure 00000001
где u - относительная скорость потока распыляющего газа и струи расплава металла, м/с;
ρ - плотность распыляющего газа в потоке, кг/м3;
σ - коэффициент поверхностного натяжения расплава металла, Н/м;
а с учетом полученного значения частоты звуковых колебаний f, упругих свойств материала пластин и при заданной длине и ширине определяют толщину пластин из уравнения
Figure 00000002
где f - частота звуковых колебаний, кГц;
Е - модуль упругости материала пластины, Па;
ν - коэффициент Пуассона материала пластины;
ρр - плотность материала пластины, кг/м3;
а - длина пластины, м;
b - ширина пластины, м;
h - толщина пластины, м.
Полученный положительный эффект изобретения связан со следующими факторами.
1. При движении газа вдоль пластины, закрепленной с одного края, пластина начинает вибрировать с частотой, равной частоте ее собственных колебаний. Колебания пластины, в свою очередь, передаются обтекающему ее потоку газа, что приводит к нестационарности поля скоростей в газовом потоке. Если наложенная частота колебаний газового потока совпадает с наиболее неустойчивой частотой струи жидкости, то амплитуда малых возмущений на поверхности струи быстро нарастает (явление резонанса), что приводит к отрыву мелких капель с поверхности струи и, следовательно, улучшает условия распыла.
2. Явление распыления жидкости (разрушение ее поверхности с образованием большого числа мелких капель) связано с возрастанием амплитуды и появлением неустойчивости коротких волн на поверхности жидкости при динамическом воздействии газового потока. Анализ задачи о распаде струи жидкости высокоскоростным обдувающим потоком газа показал [8], что инкремент колебаний поверхности жидкости имеет максимум при значении волнового числа
Figure 00000003
где ug - относительная скорость газа и струи у поверхности жидкости;
λmax - длина волны наиболее неустойчивых колебаний.
Из уравнения (1) следует выражение для частоты колебаний наиболее неустойчивых коротких волн:
Figure 00000004
При частоте колебаний поверхности жидкости fmax достигается максимальное значение инкремента колебаний:
Figure 00000005
где ρж - плотность жидкости.
За время t, равное t max = α max 1
Figure 00000006
, амплитуда колебаний ζ поверхности жидкости увеличивается в е раз, поскольку ζ~ехр(α·t).
При движении газа относительно поверхности жидкости в газе образуется турбулентный пограничный слой. Амплитуда волн (шероховатостей) на поверхности жидкости ζ и скорость газа в ядре потока и (равная скорости газа на выходе из сопла форсунки) связаны со скоростью газа у поверхности жидкости соотношением
Figure 00000007
где δ - характерный размер струи жидкости. Амплитуда начальных возмущений на поверхности жидкости обычно не превосходит ζ=10-2δ [8], поэтому скорость газа у поверхности жидкости ug=0.217 u. Подставляя это значение в (1), получим значение частоты колебаний, оказывающих максимальное возмущающее воздействие на струю жидкости (расплава)
Figure 00000008
3. При движении газа вдоль пластины она начинает колебаться с собственной частотой, определяемой ее размерами и физическими свойствами материала [9]:
Figure 00000009
где
Figure 00000010
- цилиндрическая жесткость пластины;
Gx, Gy, Нх, Ну,Jx, Jy - коэффициенты, зависящие от условий закрепления пластины и моды колебаний.
Для продольных колебаний защемленной с одного края пластины и первой моды выражение (5) упрощается (Gx=0.597, Нх=-0.087, Gyу=0, Jx=0.471, Jy=12/π2) и имеет следующий вид:
Figure 00000011
Для практических расчетов формула (6) может быть представлена в виде
Figure 00000012
Выбором материала пластины (Е, ρр, ν) и ее геометрических размеров (a, b, h) можно добиться, чтобы частотный диапазон собственных колебаний пластины располагался в области частот, близких к частоте максимального возмущающего воздействия на поверхность струи расплава (4), тем самым обеспечивая ее эффективное разрушение (диспергирование).
4. Поток распыляющего газа имеет кольцевую форму, поэтому для равномерного распределения наложенных на поток распыляющего газа звуковых колебаний количество пластин должно быть не менее двух, при этом пластины должны быть равномерно расположены по периметру кольцевой полости и направлены параллельно оси потока распыляющего газа. При большем количестве пластин эффективность их воздействия на газовый поток и, следовательно, на струю расплава повышается.
Сущность изобретения поясняется следующими чертежами.
Фиг. 1. Схема форсунки для распыления расплавов.
Фиг. 2. Схема размещения пластин в кольцевом канале форсунки.
Пример реализации способа
На фиг. 1 показан пример реализации заявленного способа получения металлических порошков распылением расплавов. Форсунка для распыления расплавов состоит из корпуса 1, крышки 2, ниппеля с центральным каналом для подачи расплава 3, защитного стального чехла 4, трубопровода 5 для подачи горячего сжатого газа и патрубка 6 для подачи расплава. В корпусе 1 выполнена кольцевая полость 7 для подачи сжатого газа в кольцевое сопло 8, образованное выходными конусами крышки 2 и ниппеля 3. В кольцевой полости 7 установлены пластины 9, равномерно расположенные по сечению кольцевой полости (фиг. 2) и жестко закрепленные со стороны входной части 10 кольцевой полости 7 (на фиг. 2 приведен вариант выполнения форсунки с шестью пластинами). На внешней поверхности защитного стального чехла 4 выполнен кольцевой прилив 11, высота которого не менее ширины щели кольцевого сопла 8, способствующий развитию колебаний пластин за счет отклонения газового потока.
Форсунка работает следующим образом. По трубопроводу 5 через входную часть 10 кольцевой полости 7 газ поступает в пространство между пластинами 9. При движении газа вдоль пластин и обтекании кольцевого прилива 11 пластины начинают вибрировать с собственной частотой, определяемой формулой (7). Колебания пластин, в свою очередь, передаются обтекающему их потоку распыляющего газа, что способствует более эффективному диспергированию расплава.
Проведем оценку эффективности заявленного способа на примере получения порошка алюминия по технологии ООО «СУАЛ-ПМ» [10]. Для получения пульверизата используется распыление расплава алюминия горячим газом - азотом. Распыление проводится эжекционной форсункой с массовым расходом расплава алюминия 0.04 кг/с через сопло диаметром 4 мм при температуре 900°C (σ=0.84 Н/м) и массовым расходом азота 0.2 кг/с при температуре 600°C и давлении 6 МПа. Подача распыляющего газа осуществляется через кольцевое сопло с шириной щели 0.8 мм. Форсунка имеет кольцевую газовую полость с внешним и внутренним диаметрами 42 мм и 26 мм и длиной 40 мм.
Для указанных условий распыления скорость газа на выходе из сопла форсунки u=550 м/с, скорость струи расплава um=1.3 м/с, плотность распыляющего газа в потоке ρ=0.4 кг/м3. Рассчитанное по формуле (4) значение частоты, обеспечивающей максимальное воздействие на процесс диспергирования, составляет f~87 кГц.
С учетом размеров кольцевой полости для подачи распыляющего газа (фиг. 2) выбираем размеры пластин: b=12 мм, а=25 мм. В качестве материала пластин можно использовать сталь марки 1Х18Н9Т (модуль упругости E=200 ГПа, плотность ρр=7800 кг/м3, коэффициент Пуассона ν=0.3) [11].
Подставляя в формулу (7) выбранные значения размеров пластины (а, b) и характеристики материала (E=200 ГПа, ρр=7800 кг/м3, ν=0.3), получим соотношение для определения толщины пластины h, обеспечивающей необходимое значение частоты собственных колебаний f=87 кГц. Расчетное значение h=1.92 мм.
Пластины с приведенными характеристиками создают наложенные звуковые колебания на поток распыляющего газа с частотой, обеспечивающей оптимальные условия распыления струи алюминия.
Таким образом, заявляемый способ получения металлических порошков распылением расплавов увеличивает динамическое воздействие распыляющего газового потока на струю расплава за счет резонансного усиления колебаний поверхности жидкости, что обеспечивает достижение заявленного положительного эффекта - повышение массовой доли высокодисперсной фракции в пульверизате, образующемся при распылении расплава металла.
Литература
1. Федорченко И.М., Андриевский Р. А. Основы порошковой металлургии. - Киев: Изд-во АН УССР, 1963. - 420 с.
2. Пат. РФ 2022715, МПК B22F 9/08. Способ получения высокодисперсного сферического алюминиевого порошка / В.Н. Буньков, В.А. Кондырев, Л.С. Голубцов, Н.Т. Филимонов, В.А. Ковалев. - №4936976/02; заявл. 16.05.1991; опубл. 15.11.1994.
3. Пат. РФ 2026157, МПК B22F 9/08. Способ получения алюминиевого порошка / В.Н. Буньков, В.А. Кондырев, Н.Т. Филимонов, В.А. Ковалев, Л.С. Голубцов. - №4841131/02; заявл. 19.06.1990; опубл. 09.01.1995.
4. Пат. РФ 2296648, МПК B22F 9/08. Форсунка для распыления расплавленных металлов / А.В. Кукса, А.В. Мольков, А.В. Губанов. - №2005132356/02; заявл. 19.10.2005; опубл. 10.04.2007.
5. Пат. РФ 2283728, МПК B22F 9/08. Форсунка для распыления расплавленных металлов / А.В. Кукса, А.В. Мольков, М.П. Кононов, А.В. Губанов, С.В. Линьков. - №2005105853; заявл. 02.03.2005; опубл. 20.09.2006.
6. Пат. РФ 2321475, МПК B22F 9/08. Форсунка для распыления расплавленных металлов / А.В. Кукса, А.В. Мольков, А.В. Губанов, С.В. Линьков. - №2006115192/02; заявл. 02.05.2006; опубл. 10.04.2008.
7. Patent US №4640806, МПК B22F 9/08. Process for atomizing liquid metals to produce finely granular powder / Thomas Duerig, Marcel Escudier, Jakob Keller, Killwangen. - заявл. 01.10.1985; опубл. 03.02.1987.
8. Левич В.Г. Физико-химическая гидродинамика. - М.: Физматгиз, 1950. - 699 с.
9. Гонткевич B.C. Собственные колебания пластинок и оболочек. - Киев: Наукова думка, 1964. - 278 с.
10. Технологическая инструкция по производству сферического дисперсного, высокодисперсного и с присадками титана и кремния пульверизатов распылением расплавленного алюминия в отделении №2 предприятия ООО «СУАЛ-ПМ». - ТИ 48-0106-36-1-10, г. Шелехов, 2010.
11. Справочник машиностроителя в 6-ти т. Т. 1-6. Под. ред. Ачеркана Н.С. - Л.: Машгиз, 1960. - 740 с.

Claims (1)

  1. Способ получения металлических порошков распылением расплавов, включающий диспергирование струи металлического расплава окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний, отличающийся тем, что звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин, расположенных в потоке распыляющего газа параллельно его оси и закрепленных по их ширине, при этом частоту звуковых колебаний f определяют по формуле (кГц):
    Figure 00000013
    ,
    где u - относительная скорость потока распыляющего газа и струи расплава металла, м/с;
    ρ - плотность распыляющего газа в потоке, кг/м3;
    σ - коэффициент поверхностного натяжения расплава металла, Н/м;
    а с учетом полученного значения частоты звуковых колебаний f, упругих свойств материала пластин и при заданной длине и ширине определяют толщину пластин из уравнения
    Figure 00000014

    где f - частота звуковых колебаний, кГц;
    Е - модуль упругости материала пластины, Па;
    ν - коэффициент Пуассона материала пластины;
    ρр - плотность материала пластины, кг/м3;
    а - длина пластины, м;
    b - ширина пластины, м;
    h - толщина пластины, м.
RU2014109340/02A 2014-03-11 2014-03-11 Способ получения металлических порошков распылением расплавов RU2559080C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014109340/02A RU2559080C1 (ru) 2014-03-11 2014-03-11 Способ получения металлических порошков распылением расплавов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014109340/02A RU2559080C1 (ru) 2014-03-11 2014-03-11 Способ получения металлических порошков распылением расплавов

Publications (1)

Publication Number Publication Date
RU2559080C1 true RU2559080C1 (ru) 2015-08-10

Family

ID=53796201

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014109340/02A RU2559080C1 (ru) 2014-03-11 2014-03-11 Способ получения металлических порошков распылением расплавов

Country Status (1)

Country Link
RU (1) RU2559080C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2756902C1 (ru) * 2021-02-24 2021-10-06 Публичное акционерное общество "Электромеханика" Регулируемая форсунка для двухпоточного диспергирования металлического расплава

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640806A (en) * 1983-05-03 1987-02-03 Bbc Brown, Boveri & Company, Limited Process for atomizing liquid metals to produce finely granular powder
SU1348063A1 (ru) * 1986-04-28 1987-10-30 Научно-производственное объединение "Тулачермет" Пневматическое устройство дл получени порошков распылением расплавов
SU1745106A3 (ru) * 1988-09-27 1992-06-30 Ойропеише Атомгемайншафт (Ойратом) (Фирма) Способ изготовлени порошка, преимущественно аморфного, и установка дл его осуществлени
RU2508964C1 (ru) * 2012-11-26 2014-03-10 Общество с ограниченной ответственностью "СУАЛ-ПМ" (ООО "СУАЛ-ПМ") Способ распыления расплавленных металлов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640806A (en) * 1983-05-03 1987-02-03 Bbc Brown, Boveri & Company, Limited Process for atomizing liquid metals to produce finely granular powder
SU1348063A1 (ru) * 1986-04-28 1987-10-30 Научно-производственное объединение "Тулачермет" Пневматическое устройство дл получени порошков распылением расплавов
SU1745106A3 (ru) * 1988-09-27 1992-06-30 Ойропеише Атомгемайншафт (Ойратом) (Фирма) Способ изготовлени порошка, преимущественно аморфного, и установка дл его осуществлени
RU2508964C1 (ru) * 2012-11-26 2014-03-10 Общество с ограниченной ответственностью "СУАЛ-ПМ" (ООО "СУАЛ-ПМ") Способ распыления расплавленных металлов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2756902C1 (ru) * 2021-02-24 2021-10-06 Публичное акционерное общество "Электромеханика" Регулируемая форсунка для двухпоточного диспергирования металлического расплава

Similar Documents

Publication Publication Date Title
JPS59206067A (ja) 溶融金属を霧化する方法および装置
FI118677B (fi) Hiukkasmaisten aineiden tuotanto
US7712680B2 (en) Ultrasonic atomizing nozzle and method
US10137456B1 (en) Reactor configured to facilitate chemical reactions and/or comminution of solid feed materials
JP2014240077A5 (ru)
JP2582223B2 (ja) ほぼ等しい直径の金属小球を製造するための方法及び装置
JPH01151967A (ja) 液状媒質の超音波アトマイズ化装置
Khmelev et al. Study of the process of liquid atomization from the ultrasonic disk radiator
ZA202000731B (en) Method for cost-effective production of ultrafine spherical powders at largescale using thruster-assisted plasma atomization
Wisutmethangoon et al. Production of SAC305 powder by ultrasonic atomization
RU2559080C1 (ru) Способ получения металлических порошков распылением расплавов
CN101818279B (zh) 一种用金属液发泡法制备多孔泡沫金属的设备及其方法
RU2719820C1 (ru) Устройство для ультразвуковой обработки расплава легких сплавов
RU2670629C1 (ru) Способ ультразвуковой газолазерной резки листового металла и устройство ультразвуковой газолазерной резки листового металла (Варианты)
CN115338426B (zh) 一种强化3d打印工件的装置及方法
Shaydullin Experimental investigation of highly non-linear fluctuations of gas of an open pipe in the vicinity resonances
RU2478438C2 (ru) Способ и комбинированное устройство для генерирования колебаний давления в потоке жидкости
Tzanakis et al. Comparison of cavitation intensity in water and in molten aluminium using a high-temperature cavitometer
SU782960A1 (ru) Устройство дл получени порошков распылением расплавов
JP5641761B2 (ja) 連続鋳造装置
Li et al. Numerical simulation of flow in Hartmann resonance tube and flow in ultrasonic gas atomizer
JP2021532988A (ja) 直接チル鋳造材料の超音波強化
RU2021103070A (ru) Ультразвуковое улучшение материалов, получаемых литьем с прямым охлаждением
Pozdeeva et al. Acoustic relaxation of the hydro-mechanical system under critical expiration of swirl flow
CN110076346A (zh) 一种适用于制造金属细粉的超声驻波雾化装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190312