EP0308600B1 - Vorrichtung zum Zerstäuben eines flüssigen Mediums mit Hilfe von Ultraschall - Google Patents

Vorrichtung zum Zerstäuben eines flüssigen Mediums mit Hilfe von Ultraschall Download PDF

Info

Publication number
EP0308600B1
EP0308600B1 EP88111182A EP88111182A EP0308600B1 EP 0308600 B1 EP0308600 B1 EP 0308600B1 EP 88111182 A EP88111182 A EP 88111182A EP 88111182 A EP88111182 A EP 88111182A EP 0308600 B1 EP0308600 B1 EP 0308600B1
Authority
EP
European Patent Office
Prior art keywords
transmitters
ultrasonic
transmitter
standing
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88111182A
Other languages
English (en)
French (fr)
Other versions
EP0308600A1 (de
Inventor
Ernst-Günter Dr. Lierke
Klaus Lühmann
Sigurf Dr. Jönsson
Michael Dipl.-Ing. Hohmann
Lothar Dipl.-Phys. Bendig
Frieder Dipl.-Ing. Hofmann
Reinhard Dipl.-Ing. Gaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Institut eV
Original Assignee
Battelle Institut eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Institut eV filed Critical Battelle Institut eV
Publication of EP0308600A1 publication Critical patent/EP0308600A1/de
Application granted granted Critical
Publication of EP0308600B1 publication Critical patent/EP0308600B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a device for atomizing melts, normal liquids or agglomerated substances, with the aid of ultrasound with a first ultrasound transmitter, to which an ultrasound reflector is mounted at a distance, between which a standing ultrasound wave is formed, into which the medium to be atomized is introduced.
  • German Patent 26 56 330 Such a device, which has proven itself in and of itself, is described in German Patent 26 56 330.
  • the reflector is designed as a passive component there.
  • the distance between the transmitter and the reflector is set there using a suitable mechanism, which only moves the reflector.
  • a gas jet can be blown into the chamber in order to allow the atomized medium to cool down more quickly by spraying it against a cooled metal surface.
  • the object of the invention is to design it in such a way that detuning of the standing sound wave is automatically prevented during operation of the device.
  • the energy of the standing sound wave should be noticeably increased.
  • the invention is characterized in that the reflector is designed as a second ultrasonic transmitter, the electrical and acoustic properties of which are approximately equal to those of the first transmitter.
  • the medium to be atomized should be supplied in the middle between the two transmitters, in a pressure node of the sound wave.
  • the two transmitters are shifted symmetrically, namely by the same distance in the axial direction outwards or inwards.
  • the reflector By designing the reflector as an active ultrasonic transducer, i.e. as a transmitter, the atomized medium is also prevented from settling there because both transducers clean themselves by means of ultrasonic vibrations.
  • the change in distance to adapt to the resonance of the standing sound wave can be carried out by a phase-sensitive or amplitude-sensitive sound pickup, which is preferably attached in the vicinity of the end face of one of the two transmitters, again preferably outside the atomization area.
  • the change in distance can also be checked or regulated automatically or by hand based on the maximum power of the emitted ultrasound, since both transducers have pronounced impedance maxima in the case of standing wave resonance.
  • Both transmitters can be powered by their own or the same frequency generator. If one and the same frequency generator is used, it is ensured without further measures that both transmitters vibrate with the same frequency and amplitude.
  • both transmitters are powered via Own frequency generators can have their frequencies deviated from each other by a small amount, so that the expected beats, which are caused by interference of the waves emitted by both transmitters, occur at a frequency that does not interfere with the atomization.
  • the frequency generator can also be designed as a wobble transmitter, which operates in a narrow frequency band around the natural frequencies of the two transmitters.
  • a housing-fixed, heated tube is provided, which is particularly suitable for the supply of a liquid melt from a corresponding reservoir.
  • the mouth of the tube should be located a few mm in front of the axis connecting the transmitters so that the emerging melt can be atomized under optimal level conditions.
  • the radial distance is, for example, 2 or 3 mm.
  • the diameter of the tube at the outlet should not exceed about 6 to 8 mm.
  • it can be expanded to 20 to 30 mm to accommodate a resistance heating coil in the tube. This ensures that a sufficiently heated melt is released directly into the standing ultrasonic wave.
  • the tube can also be made of BN (boron nitride) to prevent any drops of the melt from sticking.
  • BN boron nitride
  • An important embodiment of the invention is characterized in that the device is installed in a pressure vessel, so that the atomization at feel bar overpressure takes place, for example in the order of magnitude between 3 and 10 bar, possibly also at a higher overpressure. Due to the large surface tension of molten metals, sound levels of over 180 dB are required for atomization. These high sound levels can only be achieved with gas overpressure. An inert gas is usually used as the gas.
  • the atomization of a molten metal at excess gas pressure also has the advantage of achieving high sound levels with relatively small ultrasonic amplitudes of the transducers, so that the transducers have a much longer service life.
  • the gas pressure is increased, the convection cooling of the atomized melt is improved and the solidification time is shortened considerably, so that the metal powder may solidify under amorphous conditions.
  • the dimensions of the pressure vessel are relatively small, so that laboratory systems with dimensions less than 1 m in diameter and 1 to 2 m in height are realizable.
  • an airlock is formed there, which prevents the particles from being transported to these surfaces.
  • the oxygen partial pressure is set to an extremely low value. With deviations This is because spherical powders are produced in the presence of oxygen, while spattering particles are formed at a normal oxygen partial pressure of the air, which may be advantageous during sintering.
  • the device according to the invention is basically suitable for the ultrasonic atomization of all meltable or liquid media. In particular, it is suitable for atomizing metal melts. Further fields of application are listed in the aforementioned German patents 26 56 330 and 28 42 232.
  • the invention is explained in more detail below on the basis of an exemplary embodiment from which further important features result.
  • the figure shows a partially schematic axial section through an atomizing device according to the invention for atomizing a molten metal.
  • a first ultrasonic transmitter 1 and a second ultrasonic transmitter 2 are each mounted on a slide unit 3, which is moved via a stepper motor or DC motor 4. Both transmitters 1, 2 are preferably operated at the same operating frequency, which is, for example, 20 kHz. Both transmitters can be fed by their own frequency generator 5, which works on the principle of the feedback oscillator.
  • Both transmitters 1, 2 are equipped with an airlock 6 as an additional measure to prevent melt from sticking.
  • the movable carriage units 3 adapt the distance between the transmitters 1, 2 to the respective operating conditions, namely symmetrically to a melt beam 7, which transports melt from a melting furnace 16 into the standing ultrasonic field 14 via a heated tube (not shown).
  • a pressure sensor 8 is arranged, which measures the sound pressure of the standing wave 14 and passes it on for maximum electronic tracking.
  • the servomotors 4 receive their actuating impulses from there.
  • the slide units are positioned on the servomotor with the aid of angle encoders 10 or on the slide using linear potentiometers 11.
  • the electronic tracking 9 always searches for the position in which the sound pressure of the sound field 14 has its maximum value.
  • the frequency of the second transmitter 2 can be close to the frequency of the first transmitter 1. In order to prevent beats that are too low in frequency, caused by indifference of the waves emitted by the two transmitters, the two frequencies should differ by at least 0.5%.
  • both ultrasonic transducers 1, 2 with a fre quenzgenerator operated at exactly the same frequency and the same phase position, so that the emitted sound waves are always amplified.
  • the generator can be designed as a wobble transmitter that works in a narrow frequency band around the natural frequencies of the two converters.
  • the two transmitters can be cooled via a direct air connection 12 or via an indirect water connection (cooling coil).
  • the device described is installed in a pressure vessel 13 so that the interior with the standing sound field formed there is pressure-tight to the outside.
  • the internal pressure in the chamber can be increased accordingly and this pressure increase results in a higher energy density of the standing ultrasonic wave 14 with the same amplitude of the ultrasonic transducers. This goes hand in hand with an improvement in the efficiency of atomization while at the same time extending the service life of the transmitters.
  • Air an inert gas or any other gas or gas mixture can be provided in the chamber, and the partial pressure of the oxygen can also be adjusted accordingly.

Landscapes

  • Special Spraying Apparatus (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Zerstäuben von Schmelzen, normalen Flüssigkeiten oder agglomerier­ten Stoffen, mit Hilfe von Ultraschall mit einem ersten Ultraschallsender, zu dem beabstandet ein Ultraschallre­flektor angebracht ist, zwischen denen eine stehende Ultraschallwelle ausgebildet wird, in die das zu zer­stäubende Medium eingebracht wird.
  • Eine derartige Vorrichtung, die sich an und für sich bewährt hat, ist in der deutschen Patentschrift 26 56 330 beschrieben. Der Reflektor ist dort als passives Bauteil ausgebildet. Der Abstand zwischen Sender und Reflektor wird dort über eine geeignete Mechanik eingestellt, die aber lediglich den Reflektor verschiebt. In dieser Druck­schrift wird auch schon erwähnt, daß eine Erhöhung des statischen Gasdrucks in der die stehende Ultraschallwelle umgebenden Kammer zu einer proportionalen Erhöhung des Schallpegels führt. Weiterhin wird dort erwähnt, daß man einen Gasstrahl in die Kammer einblasen kann, um das zer­stäubte Medium dadurch schneller abkühlen zu lassen, daß es gegen ein gekühlte Metallfläche gespritzt wird.
  • Einen ähnlichen Stand der Technik beschreibt im übrigen die DE-PS 28 42 232, der auch noch der Gedanke entnommen werden kann, das zu zerstäubende Medium in die Druckkno­ten der stehenden Ultraschallwelle einzubringen.
  • Bedingt durch die geringen Abstände zwischen Sender und Reflektor beim geschilderten Stand der Technik wird aller dings der Reflektor während des Zerstäubungsvorganges mit flüssiger Schmelze beaufschlagt und setzt sich daher nach einer gewissen Betriebszeit zu. Der Sender dagegen bleibt durch die Vibration des Sendertellers und durch die damit verbundene Erzeugung des Ultraschallwindes frei.
  • Weitere Beeinträchtigungen ergeben sich bei dieser be­kannten Vorrichtung durch Veränderungen im Schallfeld, insbesondere bedingt durch Temperaturschwankungen beim Einbringen des Schmelzstrahls in das Schallfeld. Hier­durch ändern sich die Parameter des Schallfeldes, so daß zur Aufrechterhaltung der stehenden Welle der Re­flektor ständig nachgeführt werden muß. Wie erwähnt er­folgt diese Nachführung unsymmetrisch bezüglich der gehäusefesten Zufuhrstelle für die Schmelze bzw. das zu zerstäubende Medium.
  • Ausgehend von einer Vorrichtung mit den eingangs genannten Merkmalen liegt daher der Erfindung die Aufgabe zugrunde, diese so auszugestalten, daß eine Verstimmung der stehen­den Schallwelle im Betrieb der Vorrichtung selbsttätig verhindert wird. Außerdem soll die Energie der stehenden Schallwelle fühlbar erhöht werden können.
  • Zur Lösung dieser Aufgabe ist die Erfindung dadurch ge­kennzeichnet, daß der Reflektor als ein zweiter Ultra­schallsender ausgebildet ist, dessen elektrische und akustische Eigenschaften etwa gleich denjenigen des ersten Senders sind.
  • Durch den hiermit vorgesehenen Einsatz zweier gleich starker, aktiver Ultraschallwandler oder Ultraschall­sender, die gleichzeitig als Sender und Reflektor wir­ ken, ergibt sich neben einer Erhöhung des Schallpegels eine thermische und akustische Symmetrie im Bereich der stehenden Schallwelle, die eine automatische Abstimmung der Schallwelle bei einer Änderung der Temperatur oder anderer Betriebsparameter ermöglicht.
  • Die Zufuhr für das zu zerstäubende Medium soll in der Mitte zwischen den beiden Sendern erfolgen, und zwar in einem Druckknoten der Schallwelle. Die beiden Sender werden dann dazu symmetrisch verschoben, und zwar um einander gleiche Wegstrecken in axialer Richtung nach außen oder innen gefahren.
  • Durch die Ausbildung des Reflektors als aktiver Ultra­schallwandler, d.h. als Sender, wird auch dort ein An­setzen des zerstäubten Mediums verhindert, weil beide Wandler sich durch Ultraschallschwingungen selbst reinigen.
  • Die Abstandsänderung zur Anpassung an die Resonanz der stehenden Schallwelle kann durch einen phasensensitiven oder amplitudensensitiven Schallaufnehmer erfolgen, der vorzugsweise in der Nähe der Stirnfläche eines der beiden Sender angebracht wird, abermals vorzugsweise außerhalb des Zerstäubungsbereiches. Die Abstandsänderung kann aber auch anhand des Leistungsmaximums des abgestrahlten Ultraschalls automatisch oder von hand kontrolliert bzw. geregelt werden, da beide Wandler bei Stehwellenresonanz ausgeprägte Impedanzmaxima besitzen.
  • Beide Sender können über eigene oder über denselben Fre­quenzgenerator gespeist werden. Bei Verwendung ein und desselben Frequenzgenerators wird ohne weitere Maßnahmen sichergestellt, daß beide Sender mit derselben Frequenz und Amplitude schwingen. Bei Speisung beider Sender über eigene Frequenzgeneratoren kann man deren Frequenzen um ein geringes Maß voneinander abweichen lassen, so daß die zu erwartenden Schwebungen, die durch Interferenz der von beiden Sendern abgestrahlten Wellen entstehen mit einer Frequenz erfolgen, die die Zerstäubung nicht stört. Zu demselben Zweck kann auch der Frequenzgenerator als Wobbelsender ausgebildet sein, der in einem schmalen Fre­quenzband um die Eigenfrequenzen der beiden Sender arbeitet.
  • Für die Zufuhr des zu zerstäubenden Mediums zu der stehenden Schallwelle wird ein gehäusefestes, beheiztes Röhrchen vorgesehen, das insbesondere für die Zufuhr einer flüssigen Schmelze aus einem entsprechenden Re­servoir geeignet ist. Die Mündung des Röhrchens sollte wenige mm vor der die Sender verbindenden Achse ange­ordnet sein, damit die austretende Schmelze unter op­timalen Pegelbedingungen zerstäubt werden kann. Der radiale Abstand liegt beispielsweise bei 2 oder 3 mm. Der Durchmesser des Röhrchens sollte am Auslauf etwa 6 bis 8 mm nicht überschreiten. In einem Abstand von ca. 20 mm von der Zerstäuberachse kann er aber auf 20 bis 30 mm erweitert werden, um eine Widerstands-Heizwicklung im Röhrchen unterbringen zu können. Dadurch wird sicher­gestellt, daß eine ausreichend erhitzte Schmelze direkt in die stehende Ultraschallwelle abgegeben wird.
  • Das Röhrchen kann auch aus BN (Bornitrid) gefertigt werden, um ggf. ein Anhaften von Tropfen der Schmelze zu verhindern.
  • Eine wichtige Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß die Vorrichtung in einem Druckbe­hälter eingebaut ist, so daß die Zerstäubung bei fühl­ barem Überdruck stattfindet, beispielsweise in der Größenordnung zwischen 3 und 10 bar, ggfs. auch bei einem höheren überdruck. Wegen der großen Oberflächenspannung von Metallschmelzen sind zum Zerstäuben Schallpegel von über 180 dB erforderlich. Diese hohen Schallpegel können nur bei Gasüberdruck erreicht werden. Als Gas nimmt man üblicherweise ein Inertgas.
  • Die Zerstäubung einer Metallschmelze bei Gasüberdruck hat auch den Vorteil, hohe Schallpegel bei relativ kleinen Ultraschallamplituden der Wandler zu erreichen, so daß man zu sehr viel größeren Standzeiten der Wandler kommt.
  • Bei einem erhöhten Gasdruck ist die Konvektionskühlung der zerstäubten Schmelze verbessert und damit wird die Erstarrungszeit erheblich verkürzt, so daß man unter Umständen zu einer amorphen Erstarrung der Metallpulver kommt.
  • Wegen der bei extrem schneller Erstarrung und relativ geringen Fluggeschwindigkeit der Tröpfchen (um 1 m/s) zu erwartenden kurzen Flugstrecke in der schmelzflüssigen Phase sind die Abmessungen des Druckbehälters relativ klein, so daß Laboranlagen mit Abmessungen unter 1 m Durchmesser und 1 bis 2 m Höhe realisierbar sind.
  • Um ein Anhaften der zerstäubten Teilchen an den Sendern bzw. an der Wand des Druckbehälters zu verhindern, wird es weiterhin bevorzugt, wenn dort eine Luftschleuse aus­gebildet wird, die den Transport der Teilchen zu diesen Flächen verhindert.
  • Weiterhin wird es bevorzugt, den Sauerstoff-Partialdruck auf einen extrem niedrigen Wert einzustellen. Bei Abwe­ senheit von Sauerstoff entstehen nämlich kugelige Pulver, während bei einem normalen Sauerstoff-Partialdruck der Luft spratzige Teilchen entstehen, die ggf. beim Sintern vorteilhaft sind.
  • Die Erhöhung des Schallpegels infolge einer Erhöhung der Schallamplitude und/oder des Gasdrucks führt insgesamt zu feineren Pulvern, ohne daß, wie dies sonst bei der Ultra­schallzerstäubung der Fall ist, die Frequenz geändert werden muß.
  • Die erfindungsgemäße Vorrichtung eignet sich grundsätzlich für die Ultraschall-Zerstäubung aller schmelzbaren oder flüssigen Medien. Insbesondere ist sie zur Zerstäubung von Metallschmelzen geeignet. Weitere Anwendungsgebiete sind in den eingangs erwähnten deutschen Patentschriften 26 56 330 und 28 42 232 aufgeführt.
  • Die Erfindung wird im folgenden anhand eines Ausführungs­beispiels näher erläutert, aus dem sich weitere wichtige Merkmale ergeben. Die Figur zeigt einen teilweise sche­matischen Axialschnitt durch eine erfindungsgemäße Zer­stäubungsvorrichtung zum Zerstäuben einer Metallschmelze.
  • Ein erster Ultraschallsender 1 und ein zweiter Ultra­schallsender 2 sind je auf einer Schlitteneinheit 3 mon­tiert, die über einen Schrittmotor oder Gleichstrommotor 4 bewegt wird. Beide Sender 1, 2 werden vorzugsweise mit derselben Betriebsfrequenz betrieben, die beispielsweise bei 20 kHz liegt. Beide Sender können durch einen ei­genen Frequenzgenerator 5 gespeist werden, der nach dem Prinzip des rückgekoppelten Oszillators arbeitet.
  • Beide Sender 1,2 sind mit einer Luftschleuse 6 als zu­sätzliche Maßnahme zur Verhinderung des Anhaftens von Schmelze ausgerüstet.
  • Durch die beweglichen Schlitteneinheiten 3 wird der Ab­stand zwischen den Sendern 1,2 den jeweiligen Betriebs­bedingungen angepaßt, und zwar symmetrisch zu einem Schmelzenstrahl 7, der über ein - nicht gezeigtes - be­heiztes Röhrchen Schmelze aus einem Schmelzofen 16 in das stehende Ultraschallfeld 14 transportiert.
  • In der Nähe eines der beiden Sender 1,2 ist ein Druck­sensor 8 angeordnet, der den Schalldruck der stehenden Welle 14 mißt und anhand eines Maximums zur elektroni­schen Nachführung weitergibt. Von dort erhalten die Stellmotoren 4 ihre Stellimpulse.
  • Die Schlitteneinheiten werden mit Hilfe von Winkelko­dierern 10 am Stellmotor oder von Linearpotentiometern 11 am Schlitten positioniert.
  • Die elektronische Nachführung 9 sucht immer diejenige Position, in der der Schalldruck des Schallfeldes 14 seinen maximalen Wert hat.
  • Die Frequenz des zweiten Senders 2 kann nahe bei der Frequenz des ersten Senders 1 liegen. Zur Verhinderung von zu niederfrequenten Schwebungen, die durch Indif­ferenz der von den beiden Sendern abgestrahlten Wellen entsteht, sollen sich beide Frequenzen um wenigstens 0,5% unterscheiden.
  • Bei einer abgeänderten Ausführungsform der Erfindung werden beide Ultraschallwandler 1,2 mit einem Fre­ quenzgenerator bei exakt der gleichen Frequenz und gleicher Phasenlage betrieben, so daß die abgestrahl­ten Schallwellen sich immer verstärken.
  • Der Generator kann als Wobbelsender ausgebildet sein, der in einem schmalen Frequenzband um die Eigenfrequenzen der beiden Wandler arbeitet.
  • Die beiden Sender können über einen direkten Luftanschluß 12 oder über einen indirekten Wasseranschluß (Kühlschlange) gekühlt werden.
  • Die beschriebene Vorrichtung ist in einem Druckbehälter 13 eingebaut, so daß der Innenraum mit dem dort ausge­bildeten stehenden Schallfeld druckdicht nach außen ist. Dadurch kann der Innendruck in der Kammer entsprechend erhöht werden und durch diese Druckerhöhung erhält man eine höhere Energiedichte der stehenden Ultraschallwelle 14 bei gleicher Amplitude der Ultraschallwandler. Damit geht eine Verbesserung des Wirkungsgrades der Zerstäu­bung bei gleichzeitiger Verlängerung der Lebensdauer der Sender einher.
  • In der Kammer kann Luft, ein Inertgas oder auch ein beliebiges anderes Gas oder Gasgemisch vorgesehen sein, wobei man auch den Partialdruck des Sauerstoffs ent­sprechend einstellen kann.

Claims (15)

1. Vorrichtung zum Zerstäuben von Schmelzen, normalen Flüssigkeiten oder agglomerierten Stoffen, mit Hilfe von Ultraschall mit einem ersten Ultraschallsender, zu dem beabstandet ein Ultraschallreflektor ange­bracht ist, zwischen denen eine stehende Ultra­schallwelle ausgebildet wird, in die das zu zer­stäubende Medium eingebracht wird, dadurch gekennzeichnet, daß der Reflektor als ein zweiter Ultraschallsender (2) ausgebildet ist, dessen elektrische und akustische Eigenschaften etwa gleich denjenigen des ersten Sen­ders (1) sind.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß eine Einrichtung (3, 4) vorgesehen ist, die beide Sender (1, 2) in axialer Richtung symmetrisch zueinan­der verschiebt.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Zufuhr des zu zerstäubenden Mediums gehäuse­fest und mittig zu den beiden Sendern (1, 2) im Druck­knoten der Schallwelle (14) erfolgt.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein Schallaufnehmer (8) im Schallfeld (14) vorgesehen ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein Meßgerät vorgesehen ist, das die Leistungs­aufnahme wenigstens eines der Sender (1, 2) mißt.
6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Ausgangssignale des Schallaufnehmers (8) bzw. des Meßgerätes den Abstand der Sender (1, 2) voneinander steuern.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß beide Sender (1, 2) über eigene Frequenzgene­ratoren (5) gespeist werden.
8. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß beide Sender (1, 2) über denselben Frequenzgene­rator (5) gespeist werden.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Grundfrequenzen der beiden Sender (1, 2) von­einander um ein geringes Maß verschieden sind.
10. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Grundfrequenzen der beiden Sender (1, 2) einander gleich sind.
11. Vorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß der Frequenzgenerator (5) als Wobbelsender ausgebildet ist.
12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß ein gehäusefestes, beheiztes Röhrchen für die Zufuhr des Mediums zu der stehenden Schallwelle (14) vorgesehen ist, dessen Mündung wenige mm vor der die Sender verbindenden Achse angeordnet ist.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß sie in einem Druckbehälter (13) eingebaut ist.
14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß vor den Sendern (1,2) und/oder vor der Innenwand des Druckbehälters (13) eine Luftschleuse (6) ausge­bildet ist.
15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß eine Einrichtung zur Einstellung des Sauerstoff-­Partialdrucks in der die stehende Schallwelle (14) umgebenden Kammer (13) vorgesehen ist.
EP88111182A 1987-09-25 1988-07-13 Vorrichtung zum Zerstäuben eines flüssigen Mediums mit Hilfe von Ultraschall Expired - Lifetime EP0308600B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873732325 DE3732325A1 (de) 1987-09-25 1987-09-25 Vorrichtung zum zerstaeuben eines fluessigen mediums mit hilfe von ultraschall
DE3732325 1987-09-25

Publications (2)

Publication Number Publication Date
EP0308600A1 EP0308600A1 (de) 1989-03-29
EP0308600B1 true EP0308600B1 (de) 1991-03-06

Family

ID=6336861

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88111182A Expired - Lifetime EP0308600B1 (de) 1987-09-25 1988-07-13 Vorrichtung zum Zerstäuben eines flüssigen Mediums mit Hilfe von Ultraschall

Country Status (4)

Country Link
US (1) US4981425A (de)
EP (1) EP0308600B1 (de)
JP (1) JPH01151967A (de)
DE (1) DE3732325A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3939178A1 (de) * 1989-11-27 1991-05-29 Branson Ultraschall Vorrichtung zum zerstaeuben von fluessigen und festen stoffen, vorzugsweise geschmolzenen metalls
US5259593A (en) * 1990-08-30 1993-11-09 University Of Southern California Apparatus for droplet stream manufacturing
US5268018A (en) * 1991-11-05 1993-12-07 General Electric Company Controlled process for the production of a spray of atomized metal droplets
DE4328088B4 (de) * 1993-08-20 2005-05-25 Artur Prof. Dr. Goldschmidt Verfahren zum Beschichten von Werkstücken mit organischen Beschichtungsstoffen
US5669433A (en) * 1995-09-08 1997-09-23 Aeroquip Corporation Method for creating a free-form metal three-dimensional article using a layer-by-layer deposition of a molten metal
US5787965A (en) * 1995-09-08 1998-08-04 Aeroquip Corporation Apparatus for creating a free-form metal three-dimensional article using a layer-by-layer deposition of a molten metal in an evacuation chamber with inert environment
US5718951A (en) * 1995-09-08 1998-02-17 Aeroquip Corporation Method and apparatus for creating a free-form three-dimensional article using a layer-by-layer deposition of a molten metal and deposition of a powdered metal as a support material
US5617911A (en) * 1995-09-08 1997-04-08 Aeroquip Corporation Method and apparatus for creating a free-form three-dimensional article using a layer-by-layer deposition of a support material and a deposition material
US5746844A (en) * 1995-09-08 1998-05-05 Aeroquip Corporation Method and apparatus for creating a free-form three-dimensional article using a layer-by-layer deposition of molten metal and using a stress-reducing annealing process on the deposited metal
DE10059594A1 (de) * 2000-11-30 2002-06-06 Solarworld Ag Verfahren und Vorrichtung zur Erzeugung globulärer Körner aus Reinst-Silizium mit Durchmessern von 50 mum bis 300 mum und ihre Verwendung
JP2004533317A (ja) 2001-05-09 2004-11-04 ノーベル テクニカル ソリューションズ リミテッド 液状材料を微粒化する方法および装置
DE10245326A1 (de) * 2002-09-27 2004-04-08 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10245324A1 (de) * 2002-09-27 2004-04-08 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10252437A1 (de) * 2002-11-12 2004-05-27 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
JP2004290877A (ja) * 2003-03-27 2004-10-21 Toyota Motor Corp 回転霧化塗装装置
DE10327430A1 (de) * 2003-06-18 2005-01-05 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10327431A1 (de) * 2003-06-18 2005-01-05 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10327429A1 (de) * 2003-06-18 2005-01-05 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
EP1857188A1 (de) * 2006-05-16 2007-11-21 Sika Technology AG Verfahren zum Auftragen einer Haftvermittlerzusammensetzung mit einem Ultraschallzerstäuber
TWI340677B (en) * 2008-06-06 2011-04-21 Ind Tech Res Inst Scrap removal method and apparatus
JP6615860B2 (ja) * 2014-07-23 2019-12-04 マイクロドース セラピューテクス,インコーポレイテッド 乾燥粉末噴霧器
US20160228991A1 (en) * 2015-02-05 2016-08-11 Siemens Energy, Inc. Acoustic manipulation and laser processing of particles for repair and manufacture of metallic components
CN109622980A (zh) * 2019-01-28 2019-04-16 哈尔滨工业大学 一种熔融金属超声驻波非接触式雾化制粉装置及方法
CN110076346A (zh) * 2019-04-22 2019-08-02 中科音瀚声学技术(上海)有限公司 一种适用于制造金属细粉的超声驻波雾化装置
JP6839227B2 (ja) * 2019-05-31 2021-03-03 Dgshape株式会社 液滴付着装置
CN113263182B (zh) * 2021-05-20 2023-04-25 杭州电子科技大学 一种金属液滴内腔定点声空化成型方法及设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1099239B (de) * 1958-07-07 1961-02-09 Philips Nv Ultraschall-Vibrator zum Dispergieren von Fluessigkeiten in einem Gas
US3397258A (en) * 1965-12-15 1968-08-13 Sinclair Koppers Co Process for extruding spherical expandable particles
DE2352678A1 (de) * 1973-10-20 1975-04-30 Reimar Prof Dr Phil Pohlman Vorrichtung zum pressen von kunststofffolien, formteilen, pulvern u.a.m
DE2656330C2 (de) * 1976-12-13 1984-03-15 Battelle-Institut E.V., 6000 Frankfurt Verfahren und Vorrichtung zur Herstellung von Pulvern oder Granulaten aus Metallen und Legierungen
US4264641A (en) * 1977-03-17 1981-04-28 Phrasor Technology Inc. Electrohydrodynamic spraying to produce ultrafine particles
DE2842232C2 (de) * 1978-09-28 1985-04-18 Battelle-Institut E.V., 6000 Frankfurt Verfahren und Vorrichtung zum Zerstäuben von Flüssigkeiten, Suspensionen und Emulsionen, agglomerierten Stäuben bzw. Pulvern sowie Mischungen derselben
IT1148877B (it) * 1980-06-30 1986-12-03 Francesco Mario Vota Apparecchiatura adatta per la generazione e la regolazione automatica di onde ultrasoniche, impiegate nei processi di trattamento dei fluidi
GB2098498B (en) * 1980-10-27 1984-08-22 Secr Defence Separating particles from fluid
US4455268A (en) * 1981-07-09 1984-06-19 Applied Polymer Technology, Inc. Control system for processing composite materials
US4553917A (en) * 1982-12-21 1985-11-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling
GB8417241D0 (en) * 1984-07-06 1984-08-08 Unilever Plc Transducers and control means
JPS6178626A (ja) * 1984-09-26 1986-04-22 Inoue Japax Res Inc 樹脂加工装置
JPS61221310A (ja) * 1985-03-26 1986-10-01 Agency Of Ind Science & Technol 金属或は合金等の微粉末製造方法とその装置
US4659014A (en) * 1985-09-05 1987-04-21 Delavan Corporation Ultrasonic spray nozzle and method
JPS6393809A (ja) * 1986-10-07 1988-04-25 Ishikawajima Harima Heavy Ind Co Ltd 粉末鋳造方法

Also Published As

Publication number Publication date
US4981425A (en) 1991-01-01
DE3732325A1 (de) 1989-04-13
EP0308600A1 (de) 1989-03-29
JPH01151967A (ja) 1989-06-14

Similar Documents

Publication Publication Date Title
EP0308600B1 (de) Vorrichtung zum Zerstäuben eines flüssigen Mediums mit Hilfe von Ultraschall
DE69210096T2 (de) Ultraschallzerstäuber
EP0308933B1 (de) Verfahren und Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen Stoffs, vorzugsweise geschmolzenen Metalls
EP1954388B1 (de) Vorrichtung zur beschallung von flüssigkeiten mit niederfrequenz-leistungs-ultraschall
EP3894087B1 (de) Reinigungsvorrichtung
CH653924A5 (de) Vorrichtung zur zerstaeubung von fluessigkeiten.
DE2725849C3 (de) Vorrichtung zur Herstellung von kugelförmigen Teilchen
DE2409362A1 (de) Verfahren zum prillen
DE2415481C3 (de) Ultraschallgenerator
DE2842232C2 (de) Verfahren und Vorrichtung zum Zerstäuben von Flüssigkeiten, Suspensionen und Emulsionen, agglomerierten Stäuben bzw. Pulvern sowie Mischungen derselben
DE10012792B4 (de) Verfahren zum Schneiden von Bauteilen, bei dem durch einen lokalen Energieeintrag eine schmelzflüssige Phase erzeugt wird
EP0434980B1 (de) Vorrichtung zum Zerstäuben von flüssigen und festen Stoffen, vorzugsweise geschmolzenen Metalls
EP0590164B1 (de) Verfahren und Vorrichtung zur Herstellung von Druckschablonen
DE2656330C2 (de) Verfahren und Vorrichtung zur Herstellung von Pulvern oder Granulaten aus Metallen und Legierungen
EP2611548A1 (de) VORRICHTUNG UND VERFAHREN ZUM VERNEBELN ODER ZERSTÄUBEN VON FLIEßFÄHIGEN MEDIEN
DE4219549C2 (de) Verfahren zum Schweißen von Werkstücken
DE2259521C3 (de) Vorrichtung zum Zerteilen einer Hochgeschwindigkeitsflüssigkeitsstrahls
DE3112339C2 (de)
DE19801832C2 (de) Verfahren und Vorrichtung zur Herstellung von kugelförmigen Teilchen nahezu gleichen Durchmessers
EP0772495A1 (de) Verfahren und vorrichtung zur erzeugung und dosierung eines pulveraerosols
CN103212510A (zh) 一种雾滴可控的低频超声雾化装置
DE2741996B2 (de) Vorrichtung zum Zerstäuben von Flüssigkeitsstrahlen oder -tropfen
DE10053826A1 (de) Vorrichtung zum Auftragen von zerstäubten Fluiden
EP1633493B1 (de) Ultraschall-stehwellen-zerstäuberanordnung
CN218650263U (zh) 雾化喷头及雾化装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT NL SE

17P Request for examination filed

Effective date: 19890407

17Q First examination report despatched

Effective date: 19900222

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920527

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920629

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920710

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920731

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930713

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 88111182.7

Effective date: 19940210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050713