EP0257515B1 - Verfahren zur Härtung proteinartige Bindemittel enthaltender Schichten - Google Patents

Verfahren zur Härtung proteinartige Bindemittel enthaltender Schichten Download PDF

Info

Publication number
EP0257515B1
EP0257515B1 EP87111926A EP87111926A EP0257515B1 EP 0257515 B1 EP0257515 B1 EP 0257515B1 EP 87111926 A EP87111926 A EP 87111926A EP 87111926 A EP87111926 A EP 87111926A EP 0257515 B1 EP0257515 B1 EP 0257515B1
Authority
EP
European Patent Office
Prior art keywords
layers
alkyl
layer
aryl
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87111926A
Other languages
English (en)
French (fr)
Other versions
EP0257515A2 (de
EP0257515A3 (en
Inventor
Heinz Dr. Reif
Prem Dipl.-Ing. Lalvani
Hans Dr. Buschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0257515A2 publication Critical patent/EP0257515A2/de
Publication of EP0257515A3 publication Critical patent/EP0257515A3/de
Application granted granted Critical
Publication of EP0257515B1 publication Critical patent/EP0257515B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/7614Cover layers; Backing layers; Base or auxiliary layers characterised by means for lubricating, for rendering anti-abrasive or for preventing adhesion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/30Hardeners

Definitions

  • the invention relates to a method for hardening layers containing proteinaceous binders by using an immediate hardening agent, in particular hardening agent activating carboxyl groups.
  • Layers containing proteinaceous binders are used in a wide variety of fields, e.g. as protective coatings for objects or as binder layers which contain dispersed reactive substances, for example in materials for analytical or diagnostic purposes or in photographic recording materials. Such layers must be hardened for practical use.
  • a variety of curing agents have been known for this purpose.
  • the hardening agents generally react with free amino, imino or hydroxyl groups of the proteinaceous binder with crosslinking thereof.
  • slow-reacting hardeners are disadvantageous in that, for example, in photographic ones Recording materials important parameters of the cast layers change with increasing storage time.
  • sensitometric data such as sensitivity, gradation and maximum density can drift slowly and the final properties of the layer or layer structure are often only achieved after a considerable period of storage. This necessitates increased testing effort during production.
  • fast-acting hardening agents because with them the final properties are achieved within a short time after the casting, so that the required storage or waiting times can be shortened and the testing effort can be reduced.
  • Very useful fast-acting curing agents hereinafter also called instant hardeners, are described in DE-A-22 25 230, DE-A-23 17 677 and DE-A-24 39 551.
  • Immediate hardeners are understood to mean compounds which crosslink suitable binders in such a way that the hardening is completed immediately after casting or at the latest after 24 hours, preferably after 8 hours, to the extent that no further change in the sensitometry caused by the crosslinking reaction and the swelling of the layer structure occurs.
  • Swelling is understood to mean the difference between the wet layer thickness and the dry layer thickness during the aqueous processing of the film (Photogr. Sci. Eng. 8 (1964), 275; Photogr. Sci. Eng. 16 (1972), 449).
  • instant hardening agents which react very quickly with gelatin are, for example, carbamoylpyridinium salts which presumably are able to react with free carboxyl groups of the proteinaceous binder, so that the latter can react with free amino groups to form peptide bonds and crosslink the binder.
  • the instant hardeners mentioned may generally only be added to casting solutions containing gelatin shortly before the casting, since otherwise the casting properties, in particular the viscosity of the casting solutions, would be changed quickly and sustainably by premature reaction.
  • the immediate hardener is added to the top layer (protective layer) (for example DE-A-3 307 506, Example 2). By diffusion it reaches the other gelatin-containing layers to be hardened and crosslinks the gelatin so quickly that the hardening is almost complete after drying and the parameters characteristic of the physical and photographic properties have reached their final values.
  • the invention has for its object to provide an improved method for hardening layers containing proteinaceous binders using instant hardeners.
  • the invention relates to a method for curing layers containing proteinaceous binders, an instant hardener, in particular a carboxyl group-activating instant hardening agent, being applied to the layers to be hardened, characterized in that a lower layer containing the instant hardener is applied to the layers to be hardened, and at least one further layer, which contains proteinaceous binder, but essentially no instant hardener, is applied simultaneously or in succession.
  • the hardening of the binder layers is thus brought about by overlaying with an at least two-layer hardening system, the instant hardener being essentially contained in the lower part-layer when pouring, while the other part-layers contain practically no instant hardener.
  • the layers to be hardened including those partial layers of the hardening casting which did not contain an instant hardening agent, are hardened rapidly without any intracatenary crosslinking of the binder occurring.
  • the intracatenary crosslinking cannot normally be completely avoided if the partial layer containing the instant hardener also contains hardenable binder, so that a reaction between the binder and the instant hardener occurs even before the coating entry.
  • alkyl is in particular C1-C2 Hydrox-alkyl optionally substituted by halogen, hydroxy, sulfo, C1-C20-alkoxy.
  • Aryl unless otherwise defined, is in particular optionally substituted by halogen, sulfo, C1-C20-alkoxy or C1-C20-alkyl C6-C14-aryl.
  • Aralkyl unless otherwise defined, is in particular C7-C20-aralkyl substituted by halogen, C1-C2-alkoxy, sulfo or C1-C2-alkyl.
  • Alkoxy unless otherwise defined, is a particular C1-C20 alkoxy.
  • X ⁇ is preferably a halide ion such as Cl ⁇ , Br ⁇ or BF4 ⁇ , NO3 ⁇ , (SO42 ⁇ ) 1/2 , ClO4 ⁇ , CH3OSO3 ⁇ , PF6 ⁇ , CF3SO3 ⁇ .
  • Alkenyl is especially C2-C20 alkenyl.
  • Alkylene is especially C2-C20 alkylene; Arylene in particular phenylene, aralkylene in particular benzylene and alkaralkylene in particular xylylene.
  • Suitable N-containing ring systems that can represent Z are shown on the previous page.
  • the pyridine ring is preferred.
  • R36 and R37 together with the nitrogen atom to which they are attached, in particular form a pyrrolidine or piperidine ring bonded by 2 oxo groups in the o- and o ⁇ -position, which may be benzo, cyclohexeno- or [2.2.1] -bicyclohexenocondensed.
  • Acyl is especially C1-C10 alkylcarbonyl or benzoyl; Carbalkoxy is especially C1-C10 alkoxycarbonyl; Carbamoyl is especially mono- or di-C1-C4 alkylaminocarbonyl; Carbaroxy is especially phenoxycarbonyl.
  • Groups R24 which can be split off by nucleophilic agents are, for example, halogen atoms, C1-C15 alkylsulfonyloxy groups, C7-C15 aralkylsulfonyloxy groups, C6-C15 arylsulfonyloxy groups and 1-pyridinyl radicals.
  • Hardeners are preferably listed below:
  • the compounds can be prepared in a simple manner known from the literature.
  • the secondary amines are e.g. with phosgene, the carbamic acid chlorides, which are then reacted with aromatic, heterocyclic nitrogen-containing compounds in the absence of light.
  • the preparation of compound 3 is described in Chemical Reports 40, (1907), page 1831. Further information on the synthesis can be found in DE-OS 2 225 230, DE-OS 2 317 677 and DE-OS 2 439 551.
  • JP-OSs 44 140/82 and 46 538/82 and JP-PS 50 669/83 Methods for the synthesis of these compounds are described in more detail in JP-OSs 44 140/82 and 46 538/82 and JP-PS 50 669/83.
  • the compounds (a) are particularly preferred.
  • the binder to be cured used in the layers which are subjected to the curing process according to the invention is a proteinaceous binder which contains free amino groups and free carboxyl groups.
  • Gelatin is a preferred example. Gelatin is mainly used in photographic recording materials as a binder for the light-sensitive substances, the coloring compounds and, if appropriate, other additives. Such recording materials often have a large number of different layers. Hardening using instant hardeners is usually done in the way carried out that the instant hardening agent is applied in excess as the last layer on the layers to be hardened, it being possible to add further substances, such as UV absorbers, antistatic agents, matting agents and polymeric organic particles, to the hardening coating solution.
  • At least one further binder layer is applied simultaneously with the application of the hardening coating solution or subsequently, which does not contain an instant hardener, but can contain additives which are usually added to the top protective layer of a photographic recording material.
  • the application of the layers containing immediate hardening agent and at least one further binder layer can be done simultaneously or in quick succession using cascade or curtain coaters.
  • the casting temperature can be varied over a wide range, e.g. B. between 45 and 5 ° C, preferably between 38 and 18 ° C. If little binder is used, the casting temperature can be below 25 ° C.
  • the layer additives are divided in such a way that the instant hardening agent is applied with the lower partial layer and the majority of the binder is preferably applied with the upper partial layer or layers.
  • the total layer thickness of the hardening casting is, for example, between 0.2 and 2.5 ⁇ m.
  • Other additives such as UV absorbers, color correction dyes, antistatic agents and inorganic or organic solid particles, which are used, for example, as matting agents or spacers, can be added to the outermost instant hardener-free partial layer of the double- or multilayer hardening casting; however, depending on their function, they can also be contained in whole or in part in the lower partial hardening agent-containing partial layer of the hardening pour.
  • Suitable UV absorbers are described, for example, in US Pat. No. 3,253,921, DE-C-20 36 719 and EP-A-0 057 160.
  • Silicon dioxide, magnesium dioxide, titanium dioxide and calcium carbonate are suitable, for example, as inorganic solid particles which can be incorporated into one of the partial layers of the multilayer hardening casting according to the invention. Such materials are widely used to matt the outermost layers of photographic recording materials and thus reduce their stickiness.
  • Solid particles of an organic nature which can be alkali-soluble or alkali-insoluble, are also suitable for this purpose. Such particles, also referred to as spacers, generally roughen the surface, so that the surface properties, in particular the adhesive or sliding properties, can be modified thereby.
  • Polymethyl methacrylate is about an example of alkali-insoluble spacers. Alkali-soluble spacers are described, for example, in DE-A-34 24 893.
  • Particulate organic polymers with reactive groups in particular those reactive groups which react with the binder, as described, for example, in DE-A-35 44 212, can also be added as so-called hardening agents to one or more partial layers of the multilayer hardening casting according to the invention.
  • the multilayer hardening casting is poured onto the binder layers to be hardened, in particular gelatin layers, by the method according to the invention.
  • the amount of the instant hardening agent contained in the one partial layer should be such that it is sufficient for the hardening of the overlaid layers, including the partial layers of the hardening casting which contain no instant hardening agent, in order for the casting solution for the instant hardening agent-containing partial layer, which contains comparatively little binder, to have the required casting viscosity to lend, it is expedient to add thickeners such as polystyrene sulfonic acid or hydroxyethyl cellulose.
  • the binder layers to be hardened can contain reagents, in particular color reagents for analytical and diagnostic purposes, with which, for example, certain substances in human or animal body fluids can be quickly detected.
  • Photographic, in particular color photographic, recording materials to which the method of the present invention can advantageously be applied are preferably multilayer materials which have a plurality of silver halide emulsion layers or emulsion layer units with different spectral sensitivity.
  • Emulsion layer units are understood to mean laminates of 2 or more silver halide emulsion layers of the same spectral sensitivity.
  • Layers of the same spectral sensitivity do not necessarily have to be arranged adjacent to one another, but can also be separated from one another by other layers, in particular also by layers of different spectral sensitivity.
  • the binder in these layers is usually a protein-like binder with free carboxyl groups and free amino groups, preferably gelatin.
  • the layered binder can contain up to 50% by weight of non-proteinaceous binders such as polyvinyl alcohol, N-vinylpyrrolidone, polyacrylic acid and their derivatives, in particular copolymers, or cellulose derivatives.
  • non-proteinaceous binders such as polyvinyl alcohol, N-vinylpyrrolidone, polyacrylic acid and their derivatives, in particular copolymers, or cellulose derivatives.
  • each of the light-sensitive silver halide emulsion layers or emulsion layer units mentioned is at least one color-imparting compound, as a rule Color coupler, assigned, which is able to react with color developer oxidation product to form a non-diffusing or temporally or locally diffusible dyes.
  • the color couplers are expediently non-diffusing and accommodated in the light-sensitive layer itself or in close proximity to it.
  • the color couplers assigned to the two or more partial layers of an emulsion layer unit do not necessarily have to be identical. They are only intended to give the same color in color development, usually a color that is complementary to the color of the light to which the photosensitive silver halide emulsion layers are sensitive.
  • the red-sensitive silver halide emulsion layers are consequently assigned at least one non-diffusing color coupler for producing the blue-green partial color image, usually a coupler of the phenol or ⁇ -naphthol type.
  • a coupler of the phenol or ⁇ -naphthol type usually a coupler of the phenol or ⁇ -naphthol type.
  • Particularly noteworthy are, for example, cyan couplers as described in US-A-2,474,293, US-A-2,367,531, US-A-2,895,826, US-A-3,772,002, EP-A-0 028 099 , EP-A-0 112 514.
  • the thoroughly sensitive silver halide emulsion layers are generally assigned at least one non-diffusing color coupler for producing the purple partial color image, color couplers of the 5-pyrazolonsi or indazolone type usually being used. Cyanoacetyl compounds, oxazolones and pyrazoloazoles are also suitable as magenta couplers. Especially to be emphasized are, for example, purple couplers, as described in US Pat. Nos. 2,600,788, 4,383,027, 1,557,803, 1,810,464, 24,066,655, DE-A-32 26 163.
  • the blue-sensitive silver halide emulsion layers are normally assigned at least one non-diffusing color coupler to produce the yellow partial color image, usually a color coupler with an obvious ketomethylene grouping.
  • a color coupler with an obvious ketomethylene grouping are particularly noteworthy.
  • yellow couplers as described in US Pat. No. 3,408,194, US Pat. No. 3,933,501, DE-A-23 29 587, DE-A-24 56 976.
  • Color couplers of these types are known in large numbers and are described in a large number of patents. Examples include the publications “Color Coupler” by W. Pelz, "Messages from the research laboratories of Agfa, Leverkusen / Kunststoff", Volume III (1961) p. 111, and by K. Venkataraman in “The Chemistry of Synthetic Dyes” , Vol. 4., 341 to 387, Academic Press (1971).
  • the color couplers can be 4-equivalent couplers, but also 2-equivalent couplers. As is known, the latter are derived from the 4-equivalent couplers in that they contain a substituent in the coupling site which is split off during the coupling.
  • the 2-equivalent couplers include both those that are practically colorless and those that have an intense intrinsic color that disappears when the color is coupled or by the color of the one produced Image dye is replaced (mask coupler).
  • the known white couplers are also to be counted among the 2-equivalent couplers, but they essentially result in colorless products on reaction with color developer oxidation products.
  • the 2-equivalent couplers also include those couplers that contain a cleavable residue in the coupling point, which is released upon reaction with color developer oxidation products and thereby either directly or after one or more further groups have been cleaved from the primarily cleaved residue (e.g. DE-A-27 03 145, DE-A-28 55 697, DE-A-31 05 026, DE-A-33 19 428), a certain desired photographic effectiveness unfolds, e.g. as a development inhibitor or accelerator.
  • Examples of such 2-equivalent couplers are the known DIR couplers as well as DAR and FAR couplers.
  • Suitable DIR couplers are described, for example, in GB-A-953 454, DE-A-1 800 420, DE-A-20 15 867, DE-A-24 14 006, DE-A-28 42 063, DE-A -34 27 235.
  • Suitable DAR or FAR couplers are described, for example, in DE-A-32 09 110, EP-A-0 089 834, EP-A-0 117 511, EP-A-0 118 087.
  • DIR, DAR or FAR couplers Since with DIR, DAR or FAR couplers the effectiveness of the residue released during coupling is mainly desired and the color-forming properties of these couplers are less important, such DIR, DAR or FAR couplers are also suitable, who at the Coupling essentially colorless products, as described, for example, in DE-A-1 547 640.
  • the cleavable residue can also be a ballast residue, so that when reacting with color developer oxidation products coupling products e.g. Dyes can be obtained which are diffusible or at least have a weak or restricted mobility, as described, for example, in US Pat. No. 4,420,556.
  • High molecular weight color couplers are described for example in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A- 33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-0 027 284, US-A-4 080 211.
  • the high molecular weight color couplers are generally obtained by polymerizing ethylenically unsaturated monomeric color couplers produced. However, they can also be obtained by polyaddition or polycondensation.
  • the layers of the color photographic recording material to be hardened by the process according to the invention may contain further additives, for example antioxidants, dye-stabilizing agents and agents for influencing the mechanical and electrostatic properties.
  • the layers to be hardened can also contain compounds which absorb UV light.
  • the total layer thickness of all applied layers was 24.3 ⁇ m.
  • the wet scratch resistance, the parallel breaking strength, the coefficient of friction and the torque were determined.
  • a metal tip of a defined size was passed over the wet layer and loaded with increasing weight.
  • the wet scratch resistance is indicated by the weight [N] at which the tip leaves a visible scratch mark on the layer.
  • a high weight corresponds to a high wet scratch resistance.
  • the measurement was carried out with a sample of the respective material which had previously been at 38 ° C. for 5 min. was swollen in water with a hardness of 10 ° DH.
  • the parallel breaking strength was characterized by the parameters breaking diameter [mm] and breaking strength [N].
  • breaking diameter is the distance between the two jaws and breaking force is the force with which the two jaws act on the loop at the moment when the loop breaks along the perforation line. The method is described in Research Disclosure 25254 (April 1985).
  • coefficient of friction tensile force / normal force x 100
  • the rewinding torque [mN ⁇ cm] during forward and backward transport was determined as follows.
  • the ready-made films were matched to the test climate (35 ° C, 90% r.h.) in the cartridge without a container for 7 d, then placed in an Orthomat cassette from Leitz and transported further by one small picture length every second.
  • the torque required for the transport, from which the contribution to the friction of the cassette mechanism was subtracted, is given as a measure of the pre-transport.
  • the film was transported back within 7 s. The torque from the beginning of the transport and the maximum torque occurring at the end of the transport are measured and specified as a measure of the return transport.
  • Example 1 As in Example 1, the wet scratch resistance, the coefficient of friction and the rewinding torque were determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Peptides Or Proteins (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Härtung proteinartige Bindemittel enthaltender Schichten durch Verwendung eines Soforthärtungsmittels, insbesondere carboxylgruppen-aktivierenden Härtungsmittels.
  • Proteinartige Bindemittel enthaltende Schichten werden auf den verschiedensten Gebieten der Technik verwendet, z.B. als Schutzüberzüge von Gegenständen oder als Bindemittelschichten, die reaktive Stoffe dispergiert enthalten wie etwa in Materialien für analytisch oder diagnostische Zwecke oder in fotografischen Aufzeichnungsmaterialien. Für den praktischen Gebrauch müssen solche Schichten gehärtet sein. Eine Vielzahl von Härtungsmitteln sind für diesen Zweck bekannt geworden. Die Härtungsmittel reagieren in der Regel mit freien Amino-, Imino- oder Hydroxylgruppen des proteinartigen Bindemittels unter Vernetzung desselben.
  • Die Verwendung langsam reagierenden Härtungsmittel ist insofern nachteilig als beispielsweise in fotografischen Aufzeichnungsmaterialien wichtige Parameter der gegossenen Schichten sich mit zunehmender Lagerungszeit verändern. Insbesondere können sensitometrische Daten wie Empfindlichkeit, Gradation und Maximaldichte langsam driften und die endgültigen Eigenschaften der Schicht oder des Schichtverbandes werden oft erst nach einer beträchtlichen Lagerungsdauer erreicht. Dies macht bei der Produktion einen erhöhten Prüfaufwand erforderlich. Es ist daher sehr erwünscht schnell wirkende Härtungsmittel zu verwenden, weil mit ihnen die endgültigen Eigenschaften innerhalb kurzer Zeit nach dem Beguß erreicht sind, so daß die erforderlichen Lagerungs- bzw. Wartezeiten abgekürzt werden können und der Prüfaufwand reduziert werden kann. Sehr brauchbare schnellwirkende Härtungsmittel, im folgenden auch Soforthärter genannt, sind in DE-A-22 25 230, DE-A-23 17 677 und DE-A-24 39 551 beschrieben.
  • Unter Soforthärtern werden Verbindungen verstanden, die geeignete Bindemittel so vernetzen, daß unmittelbar nach Beguß bzw. spätestens nach 24 Stunden, vorzugsweise nach 8 Stunden die Härtung soweit abgeschlossen ist, daß keine weitere durch die Vernetzungsreaktion bedingte Änderung der Sensitometrie und der Quellung des Schichtverbandes auftritt. Unter Quellung wird die Differenz von Naßschichtdicke und Trockenschichtdicke bei der wäßrigen Verarbeitung des Films verstanden (Photogr. Sci. Eng. 8 (1964), 275; Photogr. Sci. Eng. 16 (1972), 449).
  • Bei diesen mit Gelatine sehr schnell reagierenden Soforthärtungsmitteln handelt es sich z.B. um Carbamoylpyridiniumsalze, die vermutlich mit freien Carboxylgruppen des proteinartigen Bindemittels zu reagieren vermögen, so daß letztere mit freien Aminogruppen unter Ausbildung von Peptidbindungen und Vernetzung des Bindemittels reagieren können. Wegen dieser schnellen Wirkung dürfen die erwähnten Soforthärter gelatinehaltigen Gießlösungen im allgemeinen erst kurz vor dem Beguß zugesetzt werden, da anderenfalls durch vorzeitige Reaktion die Gießeigenschaften inbesondere die Viskosität der Gießlösungen rasch und nachhaltig verändert würden. Im allgemeinen wird der Soforthärter der obersten Schicht (Schutzschicht) zugesetzt (z.B. DE-A-3 307 506 , Beispiel 2). Durch Diffusion gelangt er in die anderen zu härtenden gelatinehaltigen Schichten und vernetzt darin die Gelatine so schnell, daß bereits nach erfolgter Trocknung die Härtung nahezu abgeschlossen ist und die für die physikalischen und fotografischen Eigenschaften charakteristischen Parameter ihre endgültigen Werte erreicht haben.
  • Mit der Verwendung von Soforthärtern sind jedoch auch Nachteile verbunden, die darauf beruhen, daß der Soforthärter, der in der betreffenden Gießlösung in beträchtlichem Überschuß vorliegt, bereits vor dem Vergießen mit der Gelatine reagiert, wodurch ein Teil der Gelatinemoleküle intrakatenar vernetzt wird, wodurch die Gelatine ihre Gelierfähigkeit verliert, so daß sie selbst nach optimierter Trocknung im wesentlichen in der Solform vorliegt. Die Solform erhöht in bekannter Weise die Brüchigkeit und reduziert die Naßkratzfestigkeit. Außerdem neigt eine solche Schutzschicht, in der wesentliche Teile der Gelatine in der Solform vorliegen, besonders unter Tropenbedingungen zum Kleben, was beispielsweise in modernen Motorkameras zum Funktionsausfall durch Stocken des Filmtransports führen kann.
  • Der Erfindung liegt die Aufgabe zugrunde, ein verbessertes Verfahren zur Härtung proteinartige Bindemittel enthaltender Schichten unter Verwendung von Soforthärtern anzugeben.
  • Gegenstand der Erfindung ist ein Verfahren zur Härtung proteinartiger Bindemittel enthaltender Schichten, wobei auf die zu härtenden Schichten ein Soforthärter, insbesondere ein carboxylgruppen-aktivierendes Soforthärtungsmittel aufgetragen wird, dadurch gekennzeichnet, daß auf die zu härtenden Schichten eine untere Schicht, die den Soforthärter enthält, und mindestens eine weitere Schicht, die proteinartiges Bindemittel, aber im wesentlichen keinen Soforthärter enthält, gleichzeitig oder nacheinander aufgetragen werden.
  • Nach vorliegender Erfindung wird somit die Härtung der Bindemittelschichten durch Überschichten mit einem mindestens zweischichtigen Härtungssystem bewirkt, wobei das Soforthärtungsmittel beim Beguß im wesentlichen in der unteren Teilschicht enthalten ist, während die anderen Teilschichten praktisch kein Soforthärtungsmittel enthalten. Auf diese Weise wird erreicht, daß die zu härtenden Schichten einschließlich derjenigen Teilschichten des Härtungsbegusses, die kein Soforthärtungsmittel enthielten, rasch gehärtet werden, ohne daß hierbei in merklichem Ausmaß intrakatenare Vernetzung des Bindemittels eintritt. Die intrakatenare Vernetzung läßt sich im Normalfall nicht vollständig vermeiden, wenn die das Soforthärtungsmittel enthaltende Teilschicht auch härtbares Bindemittel enthält, so daß eine Reaktion zwischen Bindemittel und Soforthärtungsmittel bereits vor dem Beguß eintritt. Tatsächlich kann in der das Soforthärtungsmittel enthaltenden Schicht im Regelfall nicht völlig auf Bindemittel verzichtet werden, wenn ein gleichmäßiger Antrag des Soforthärtungsmittels sichergestellt werden soll. Ein Vorteil wird jedoch schon dann erreicht, wenn die meist unvermeidbare intrakatenare Vernetzung nur in einer Teilschicht des Härtungbegusses auftritt.
  • Geeignete Beispiele für Sofort-Härtungsmittel sind Verbindungen der folgenden allgemeinen Formeln:
    • (a)
      Figure imgb0001
      worin
      R₁
      Alkyl, Aryl oder Aralkyl bedeutet,
      R₂
      die gleiche Bedeutung wie R₁ hat oder Alkylen; Arylen, Aralkylen oder Alkaralkylen bedeutet, wobei die zweite Bindung mit einer Gruppe der Formel
      Figure imgb0002
      verknüpft ist, oder
      R₁ und R₂
      zusammen die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome bedeuten, wobei der Ring z.B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann,
      R₃
      für Wasserstoff, Alkyl, Aryl, Alkoxy, -NR₄-COR₅, -(CH₂)m-NR₈R₉, -(CH₂)n-CONR₁₃R₁₄ oder
      Figure imgb0003
      oder ein Brückenglied oder eine direkte Bindung an eine Polymerkette steht, wobei
      R₄, R₆, R₇, R₉, R₁₄, R₁₅, R₁₇, R₁₈, und R₁₉
      Wasserstoff oder C₁-C₄-Alkyl,
      R₅
      Wasserstoff, C₁-C₄-Alkyl oder NR₆R₇,
      R₈
      -COR₁₀
      R₁₀
      NR₁₁R₁₂
      R₁₁
      C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
      R₁₂
      Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
      R₁₃
      Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
      R₁₆
      Wasserstoff, C₁-C₄-Alkyl, COR₁₈ oder CONHR₁₉,
      m
      eine Zahl 1 bis 3
      n
      eine Zahl 0 bis 3
      p
      eine Zahl 2 bis 3 und
      Y
      O oder NR₁₇ bedeuten oder
      R₁₃ und R₁₄
      gemeinsam die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome dargestellen, wobei der Ring z.B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann,
      Z
      die zur Vervollständigung eines 5- oder 6-gliedrigen aromatischen heterocyclischen Ringes, gegebenenfalls mit anelliertem Benzolring, erforderlichen C-Atome und
      X
      ein Anion bedeuten, das entfällt, wenn bereits eine anionische Gruppe mit dem übrigen Molekül verknüpft ist;
    • (b)
      Figure imgb0004
      worin
      R₁, R₂, R₃ und X
      die für Formel (a) angegebene Bedeutung besitzen;
    • (c)
      Figure imgb0005
      worin
      R₂₀, R₂₁, R₂₂, R₂₃
      C₁-C₂₀-Alkyl, C₆-C₂₀-Aralkyl, C₅-C₂₀-Aryl, jeweils unsubstituiert oder durch Halogen, Sulfo, C₁-C₂₀-Alkoxy, N,N-Di-C₁-C₄-alkyl-substituiertes Carbamoyl und, im Falle von Aralkyl und Aryl durch C₁-C₂₀-Alkyl substituiert,
      R₂₄
      eine durch ein nucleophiles Agens abspaltbare Gruppe bedeuten und
      X
      die für Formel (a) angegebene Bedetung besitzt, wobei
      2 oder 4 der Substituenten R₂₀, R₂₁, R₂₂ und R₂₃ zusammen mit einem Stickstoffatom oder der Gruppe
      Figure imgb0006
      gegebenenfalls unter Einschluß weiterer Heteroatome wie O oder N auch zu einem oder zwei gesättigten, 5 - 7-gliedrigen Ringen vereint sein können;
    • (d) R₂₅―N=C=N―R₂₆
      worin
      R₂₅
      C₁-C₁₀-Alkyl, C₅-C₈-Cycloalkyl, C₃-C₁₀-Alkoxyalkyl oder C₇-C₁₅-Aralkyl bedeutet,
      R₂₆
      die Bedeutung von R₂₅ besitzt oder für einen Rest der Formel
      Figure imgb0007
      steht, wobei
      R₂₇
      C₂-C₄-Alkylen und
      R₂₈, R₂₉ und R₃₀
      C₁-C₆-Alkyl bedeuten, wobei einer der Reste R₂₈, R₂₉ und R₃₀ durch eine Carbamoylgruppe oder eine Sulfogruppe substituiert sein kann und zwei der Reste R₂₈, R₂₉ und R₃₀ zusammen mit dem Stickstoffatom zu einem gegebenenfalls substituierten heterocyclischen Ring, beispielsweise einen Pyrrolidin-, Piperazin- oder Morpholinring verknüpft sein können, wobei der Ring z.B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann, und
      X
      die für Formel (a) angegebene Bedeutung besitzt;
    • (e)
      Figure imgb0008
      worin
      X
      die für Formel (a) angegebene Bedeutung hat,
      R₂₄
      die für Formel (c) angegebene Bedeutung besitzt,
      R₃₁
      C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl oder C₇-C₁₅-Aralkyl, jeweils unsubstituiert oder durch Carbamoyl, Sulfamoyl oder Sulfo substituiert,
      R₃₂ und R₃₃
      Wasserstoff, Halogen, Acylamino, Nitro, Carbamoyl, Ureido, Alkoxy, Alkyl, Alkenyl, Aryl oder Aralkyl oder gemeinsam die restlichen Glieder eines mit dem Pyridiniumring kondensierten Ringes, insbesondere eines Benzoringes, bedeuten,
      wobei
      R₂₄ und R₃₁ miteinander verknüpft sein können, wenn R₂₄ eine Sulfonyloxygruppe ist;
    • (f)
      Figure imgb0009
      worin
      R₁, R₂ und X
      die für Formel (a) angegebene Bedeutung besitzen und
      R₃₄
      C₁-C₁₀-Alkyl, C₆-C₁₄-Aryl oder C₇-C₁₅-Aralkyl bedeutet;
    • (g)
      Figure imgb0010
      worin
      R₁, R₂ und X
      die für Formel (a) angegebene Bedeutung besitzen,
      R₃₅
      Wasserstoff, Alkyl, Aralkyl, Aryl, Alkenyl, R₃₈O-, R₃₉R₄₀N, R₄₁R₄₂C=N- oder R₃₈S-,
      R₃₆ und R₃₇
      Alkyl,Aralkyl, Aryl, Alkenyl,
      Figure imgb0011
      R₄₄-SO₂ oder
      R₄₅-N=N- oder gemeinsam mit dem Stickstoffatom die restlichen Glieder eines heterocyclischen Ringes oder die Gruppierung
      Figure imgb0012
      R₃₈, R₃₉, R₄₀, R₄₁, R₄₂, R₄₃, R₄₄ und R₄₅
      Alkyl, Aralkyl, Alkenyl, R₄₁ und R₄₂ darüberhinaus Wasserstoff, R₃₉ und R₄₀ bzw. R₄₁ und R₄₂ darüberhinaus die restlichen Glieder eines 5-oder 6-gliedrigen, gesättigten carbocyclischen oder heterocyclischen Ringes bedeuten.
    • (h)
      Figure imgb0013
      worin
      R₄₆
      Wasserstoff, Alkyl oder Aryl
      R₄₇
      Acyl, Carbalkoxy, Carbamoyl oder Aryloxycarbonyl;
      R₄₈
      Wasserstoff oder R₄₇
      R₄₉ und R₅₀
      Alkyl, Aryl, Aralkyl oder gemeinsam mit dem Stickstoffatom die restlichen Glieder eines gegebenenfalls substiuierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes bedeuten, wobei der Ring z.B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann, und
      X
      die für Formel (a) angegebene Bedeutung besitzt;
    • (i)
      Figure imgb0014
      worin
      R₅₁
      einen gegebenenfalls substituierten heteroaromatischen Ring, der mindestens q Ring-C-Atome und mindestens ein Ring-O-, Ring-S- oder Ring-N-Atom enthält, und
      q
      eine ganze Zahl ≧ 2 bedeuten.

      Der durch R₅₁ dargestellte heteroaromatische Ring ist beispielsweise ein Triazol-, Thiadiazol-, Oxadiazol-, Pyridin-, Pyrrol-, Chinoxalin-, Thiophen-, Furan-, Pyrimidin- oder Triazinring. Er kann außer den mindestens zwei Vinylsulfonylgruppen gegebenenfalls weitere Substituenten sowie gegebenenfalls ankondensierte Benzolringe enthalten, die ihrerseits ebenfalls substituiert sein können. Beispiele von heteroaromatischen Ringen (R₅₁) sind im folgenden aufgeführt.
      Figure imgb0015
      worin
      r
      eine Zahl 0 bis 3 und
      R₅₂
      C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Phenyl bedeutet.
  • Als Soforthärtungsmittel eignen sich schließlich die in den japanischen Offenlegungsschriften 38 540/75, 93 470/77, 43 353/81 und 113 929/83 sowie in der US-PS 3 321 313 beschriebenen Verbindungen.
  • Alkyl, sofern nicht anders definiert, ist insbesondere gegebenenfalls durch Halogen, Hydroxy, Sulfo, C₁-C₂₀-Alkoxy substituiertes C₁-C₂₀-Alkyl.
  • Aryl, sofern nicht anders definiert, ist insbesondere gegebenenfalls durch Halogen, Sulfo, C₁-C₂₀-Alkoxy oder C₁-C₂₀-Alkyl substituiertes C₆-C₁₄-Aryl. Aralkyl, sofern nicht anders definiert, ist insbesondere durch Halogen, C₁-C₂-Alkoxy, Sulfo oder C₁-C₂-Alkyl substituiertes C₇-C₂₀-Aralkyl. Alkoxy, sofern nicht anders definiert, ist besondere C₁-C₂₀-Alkoxy.
  • X ist vorzugsweise ein Halogenidion wie Cl, Br oder BF₄, NO₃, (SO₄²)1/2, ClO₄, CH₃OSO₃, PF₆, CF₃SO₃.
  • Alkenyl ist insbesondere C₂-C₂₀-Alkenyl. Alkylen ist insbesondere C₂-C₂₀-Alkylen; Arylen insbesondere Phenylen, Aralkylen insbesondere Benzylen und Alkaralkylen insbesondere Xylylen.
  • Geeignete N-haltige Ringsysteme, die für Z stehen können, sind auf der vorigen Seite dargestellt. Bevorzugt ist der Pyridinring.
  • R₃₆ und R₃₇ bilden zusammen mit dem Stickstoffatom, an das sie gebunden sind, insbesondere einen durch 2 in o-und oʹ-Stellung gebundene Oxogruppen Pyrrolidin- oder Piperidinring, der benzo-, cyclohexeno- oder [2.2.1]-bicyclohexenokondensiert sein kann.
  • Acyl ist insbesondere C₁-C₁₀-Alkylcarbonyl oder Benzoyl; Carbalkoxy ist insbesondere C₁-C₁₀-Alkoxycarbonyl; Carbamoyl ist insbesondere Mono- oder Di-C₁-C₄-Alkylaminocarbonyl; Carbaroxy ist insbesondere Phenoxycarbonyl.
  • Durch nucleophile Agentien abspaltbare Gruppen R₂₄ sind beispielsweise Halogenatome, C₁-C₁₅-Alkylsulfonyloxygruppen, C₇-C₁₅-Aralkylsulfonyloxygruppen, C₆-C₁₅-Arylsulfonyloxygruppen und 1-Pyridinylreste.
  • Nachfolgend sind bevorzugt Härter aufgeführt:
  • Verbindungen der Formel (a)
  • Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
    Figure imgb0025
    Figure imgb0026
  • Die Verbindungen sind in einfacher und aus der Literatur bekannter Weise darstellbar. Aus den sekundären Aminen stellt man z.B. mit Phosgen die Carbaminsäurechloride her, die dann unter Lichtabschluß mit aromatischen, heterocyclischen stickstoffhaltigen Verbindungen umgesetzt werden. Die Herstellung der Verbindung 3 wird in den Chemischen Berichten 40, (1907), Seite 1831, beschrieben. Weiterer Angaben zur Synthese finden sich in DE-OS 2 225 230, DE-OS 2 317 677 und DE-OS 2 439 551.
  • Verbindungen der Formel (b)
  • Verfahren zur Synthese dieser Verbindungen sind beispielsweise in der DE-A 2 408 814 beschrieben:
    Figure imgb0027
    Figure imgb0028
  • Verbindungen der Formel (c)
  • Methoden zur Synthese dieser Verbindungen werden genauer beschrieben in Chemistry Letters (The Chemical Society of Japan), Seite 1891-1894 (1982). Weitere Angaben zur Synthese finden sich auch in der EP-A-162 308.
    Figure imgb0029
    Figure imgb0030
  • Verbindungen der Formel (d)
  • Methoden zur Synthese dieser Verbindungen werden genauer beschrieben in den JP-OS'en 126 125/76 und 48 311/77.
    Figure imgb0031
    Figure imgb0032
  • Verbindungen der Formel (a)
  • Methoden zur Synthese dieser Verbindungen werden genauer beschrieben in den JP-OS'en 44 140/82 und 46 538/82 und der JP-PS 50 669/83.
    Figure imgb0033
    Figure imgb0034
  • Verbindungen der Formel (f)
  • Methode zur Synthese dieser Verbindungen werden genauer beschrieben in der JP-OS 54 427/77.
    Figure imgb0035
    Figure imgb0036
  • Verbindungen der Formel (g)
  • Die Synthese dieser Verbindungen ist in US-PS 4 612 280 beschrieben.
    Figure imgb0037
    Figure imgb0038
    Figure imgb0039
    Figure imgb0040
    Figure imgb0041
  • Verbindungen der Formeln (h)
  • Die Herstellung dieser Verbindungen ist in der DD 232 564 A 1 beschrieben.
    Figure imgb0042
    Figure imgb0043
  • Verbindungen der Formel (i)
  • Methoden zur Herstellung dieser Verbindungen sind in DE-OS 35 23 360 beschrieben.
    Figure imgb0044
  • Weitere geeignete Soforthärtungsmittel entsprechen folgenden Formeln
    Figure imgb0045
    Figure imgb0046
    Figure imgb0047
    Figure imgb0048
  • Die Verbindungen (a) sind besonders bevorzugt.
  • Das verwendete zu härtende Bindemittel in den Schichten, die dem erfindungsgemäßen Härtungsverfahren unterworfen werden, ist ein proteinartiges Bindemittel, das freie Aminogruppen und freie Carboxylgruppen enthält. Gelatine ist ein bevorzugtes Beispiel. In fotografischen Aufzeichnungsmaterialien wird hauptsächlich Gelatine als Bindemittel für die lichtempfindlichen Substanzen, die farbgebenden Verbindungen und gegebenenfalls weitere Zusätze verwendet. Häufig weisen solche Aufzeichnungsmaterialien eine Vielzahl verschiedener Schichten auf. Die Härtung mittels Soforthärter wird meist in der Weise durchgeführt, daß das Soforthärtungsmittel im Überschuß als letzte Schicht auf die zu härtenden Schichten aufgetragen wird, wobei der Härtungsbeschichtungslösung weitere Substanzen, wie UV-Absorber, Antistatika, Mattierungsmittel und polymere organische Teilchen zugesetzt werden können.
  • Beim erfindungsgemäßen Verfahren wird gleichzeitig mit dem Auftragen der Härtungsbeschichtungslösung oder im Anschluß daran mindestens eine weitere Bindemittelschicht aufgetragen, die kein Soforthärtungsmittel enthält, aber Zusätze enthalten kann, die üblicherweise der obersten Schutzschicht eines fotografischen Aufzeichnungsmaterials zugesetzt werden.
  • Das Auftragen des aus Soforthärtungsmittel enthaltenden Schichten und mindestens einer weiteren Bindemittelschicht bestehenden Härtungsbegusses kann gleichzeitig oder kurz nacheinander mittels Kaskaden- oder Vorhanggießern erfolgen. Die Gießtemperatur kann dabei in weiten Bereichen variiert werden, z. B. zwischen 45 und 5°C vorzugsweise zwischen 38 und 18°C. Bei Anwendung von wenig Bindemittel kann die Gießtemperatur unterhalb von 25°C liegen.
  • Die Aufteilung der Schichtzusätze erfolgt in der Weise, daß das Soforthärtungsmittel mit der unteren Teilschicht und die Hauptmenge des Bindemittels bevorzugt mit der oder den oberen Teilschichten aufgebracht werden. Die Gesamtschichtdicke des Härtungsbegusses liegt beispielsweise zwischen 0,2 und 2,5 µm. Weitere Zusätze wie UV-Absorber, Farbkorrekturfarbstoffe, Antistatika und anorganische oder organische feste Teilchen, die beispielsweise als Mattierungsmittel oder Abstandshalter verwendet werden, können der äußersten soforthärtungsmittelfreien Teilschicht des doppel- oder mehrschichtigen Härtungsbegusses zugesetzt werden; sie können aber auch je nach Funktion ganz oder teilweise in der unteren soforthärtungsmittelhaltigen Teilschicht des Härtungsbegusses enthalten sein. Geeignete UV-Absorber sind beispielsweise in US-A-3 253 921, DE-C-20 36 719 und EP-A-0 057 160 beschrieben.
  • Als anorganische feste Teilchen, die in eine der Teilschichten des erfindungsgemäßen mehrschichtigen Härtungsbegusses eingearbeitet werden können, eignet sich beispielsweise Siliziumdioxid, Magnesiumdioxid, Titandioxid und Calciumcarbonat. Solche Materialien werden vielfach verwendet um die äußersten Schichten von fotografischen Aufzeichnungsmaterialien zu mattieren und auf diese Weise ihre Klebrigkeit zu vermindern. Auch feste Teilchen organischer Natur, die alkalilöslich oder alkaliunlöslich sein können, eignen sich für diesen Zweck. Durch solche Teilchen, auch als Abstandshalter bezeichnet, wird in der Regel die Oberfläche aufgerauht, so daß hierdurch die Oberflächeneigenschaften, insbesondere die Haft- bzw. Gleiteigenschaften modifiziert werden können. Polymethylmethacrylat ist etwa ein Beispiel für alkaliunlösliche Abstandshalter. Alkalilösliche Abstandshalter sind beispielsweise in DE-A-34 24 893 beschrieben. Auch teilchenförmige organische Polymere mit reaktiven Gruppen, insbesondere solchen reaktiven Gruppen, die mit dem Bindemittel reagieren, wie beispielsweise in DE-A-35 44 212 beschrieben, können als sogenannte Hartmacher einer oder mehreren Teilschichten des erfindungsgemäßen mehrschichtigen Härtungsbegusses zugefügt werden.
  • Der mehrschichtige Härtungsbeguß wird nach dem erfindungsgemäßen Verfahren auf die zu härtenden Bindemittelschichten, insbesondere Gelatineschichten aufgegossen. Die Menge des in der einen Teilschicht enthaltenen Soforthärtungsmittels soll dabei so bemessen sein, daß sie für die Härtung der überschichteten Schichten einschließlich der kein Soforthärtungsmittel enthaltenden Teilschichten des Härtungsbegusses ausreicht, Um der Gießlösung für die soforthärtungsmittelhaltige Teilschicht, die vergleichsweise wenig Bindemittel enthält, die erforderliche Gießviskosität zu verleihen, ist es zweckmäßig, ihr Verdickungsmittel wie Polystyrolsulfonsäure oder Hydroxyethylcellulose zuzusetzen.
  • Die zu härtenden Bindemittelschichten können Reagentien, insbesondere Farbreagentien für analytische und diagnostische Zwecke enthalten, mit denen beispielsweise bestimmte Stoffe in menschlichen oder tierischen Körperflüssigkeiten rasch nachgewiesen werden können.
  • Bei fotografischen, insbesondere farbfotografischen Aufzeichnungsmaterialien, auf die das Verfahren der vorliegenden Erfindung mit Vorteil angewendet werden kann, handelt es sich bevorzugt um mehrschichtige Materialien, die mehrere Silberhalogenidemulsionsschichten oder Emulsionsschichteneinheiten mit unterschiedlicher Spektralempfindlichkeit aufweisen. Als Emulsionsschichteneinheiten werden dabei Laminate von 2 oder mehr Silberhalogenidemulsionsschichten gleicher Spektralempfindlichkeit verstanden. Schichten gleicher Spektralempfindlichkeit müssen aber nicht notwendigerweise benachbart zueinander angeordnet sein, sondern können auch durch andere Schichten, insbesondere auch durch Schichten anderer Spektralempfindlichkeit voneinander getrennt sein. Das Bindemittel in diesen Schichten ist in der Regel ein proteinartiges Bindemittel mit freien Carboxylgruppen und freien Aminogruppen, bevorzugt Gelatine. Das Schichtbindemittel kann aber neben dem proteinartigen Bindemittel bis zu 50 Gew.-% nicht proteinartige Bindemittel wie Polyvinylalkohol, N-Vinylpyrrolidon, Polyacrylsäure und deren Derivate, insbesondere Mischpolymerisate, oder Cellulosederivate enthalten.
  • In farbfotografischen Aufzeichungsmaterialien ist jeder der genannten lichtempfindlichen Silberhalogenidemulsionsschichten bzw. Emulsionsschichteneinheiten mindestens eine farbgebende Verbindung, in der Regel ein Farbkuppler, zugeordnet, die mit Farbentwickleroxidationsprodukt unter Bildung eines nichtdiffundierenden oder zeitlich oder örtlich beschränkt diffusionsfähigen Farbstoffe zu reagieren vermag. Zweckmäßigerweise sind die Farbkuppler nichtdiffundierend und in der lichtempfindlichen Schicht selbst oder in enger Nachbarschaft hierzu untergebracht. Die den zwei oder mehr Teilschichten einer Emulsionsschichteneinheit zugeordneten Farbkuppler brauchen nicht notwendigerweise identisch zu sein. Sie sollen lediglich bei der Farbentwicklung die gleiche Farbe ergeben, normalerweise eine Farbe, die komplementär ist zu der Farbe des Lichtes, gegen das die lichtempfindlichen Silberhalogenidemulsionsschichten empfindlich sind.
  • Den rotempfindlichen Silberhalogenidemulsionsschichten ist folglich mindestens ein nichtdiffundierender Farbkuppler zur Erzeugung des blaugrünen Teilfarbenbildes zugeordnet, in der Regel ein Kuppler vom Phenol- oder α-Naphtholtyp. Besonders hervorzuheben sind beispielsweise Blaugrünkuppler, wie sie beschrieben sind in US-A-2 474 293, US-A-2 367 531, US-A-2 895 826, US-A-3 772 002, EP-A-0 028 099, EP-A-0 112 514.
  • Den gründempfindlichen Silberhalogenidemulsionsschichten ist in der Regel mindestens ein nichtdiffundierender Farbkuppler zur Erzeugung des purpurnen Teilfarbbildes zugeordnet, wobei üblicherweise Farbkuppler vom Typ des 5-Pyrazolonsi oder des Indazolons Verwendung finden. Weiter kommen als Purpurkuppler auch Cyanacetylverbindungen, Oxazolone, und Pyrazoloazole in Frage. Besonders hervorzuheben sind beispielsweise Purpurkuppler, wie sie beschrieben sind in US-A-2 600 788, US-A-4 383 027, DE-A-1 547 803, DE-A-1 810 464, DE-A-24 08 665, DE-A-32 26 163.
  • Den blauempfindlichen Silberhalogenidemulsionschichten schließlich ist normalerweise mindestens ein nichtdiffundierender Farbkuppler zur Erzeugung des gelben Teilfarbenbildes zugeordnet, in der Regel ein Farbkuppler mit einer offenkeitigen Ketomethylengruppierung. Besonders hervorzuheben sind beispielsweise Gelbkuppler, wie sie beschrieben sind in US-A-3 408 194, US-A-3 933 501, DE-A-23 29 587, DE-A-24 56 976.
  • Farbkuppler dieser Arten sind in großer Zahl bekannt und in einer Vielzahl von Patentschriften beschrieben. Beispielhaft sei hier ferner auf die Veröffentlichungen "Farbkuppler" von W. Pelz, "Mitteilungen aus den Forschungslaboratorien der Agfa, Leverkusen/München", Band III (1961) S. 111, und von K. Venkataraman in "The Chemistry of Synthetic Dyes", Vol. 4., 341 bis 387, Academic Press (1971), verwiesen.
  • Bei den Farbkupplern kann es sich um 4-Äquivalentkuppler, aber auch um 2-Äquivalentkuppler handeln. Letztere leiten sich bekanntlich von den 4-Äquivalentkupplern dadurch ab, daß sie in der Kupplungsstelle einen Substituenten enthalten, der bei der Kupplung abgespalten wird. Zu den 2-Äquivalentkupplern sind sowohl solche zu rechnen, die praktisch farblos sind, als auch solche, die eine intensive Eigenfarbe aufweisen, die bei der Farbkupplung verschwindet bzw. durch die Farbe des erzeugten Bildfarbstoffes ersetzt wird (Maskenkuppler). Zu den 2-Äquivalentkupplern sind im Prinzip auch die bekannten Weißkuppler zu rechnen, die jedoch bei Reaktion mit Farbentwickleroxidationsprodukten im wesentlichen farblose Produkte ergeben. Zu den 2-Äquivalentkupplern sind ferner solche Kuppler zu rechnen, die in der Kupplungsstelle einen abspaltbaren Rest enthalten, der bei Reaktion mit Farbentwickleroxidationsprodukten in Freiheit gesetzt wird und dabei entweder direkt oder nachdem aus dem primär abgespaltenen Rest eine oder mehrere weitere Gruppen abgespalten worden sind (z.B. DE-A-27 03 145, DE-A-28 55 697, DE-A-31 05 026, DE-A-33 19 428), eine bestimmte erwünschte fotografische Wirksamkeit entfaltet, z,B. als Entwicklungsinhibitor oder -accelerator. Beispiele für solche 2-Äquivalentkuppler sind die bekannten DIR-Kuppler wie auch DAR- bzw. FAR-Kuppler.
  • Geeignete DIR-Kuppler sind beispielsweise beschrieben in GB-A-953 454, DE-A-1 800 420, DE-A-20 15 867, DE-A-24 14 006, DE-A-28 42 063, DE-A-34 27 235.
  • Geeignete DAR- bzw. FAR-Kuppler sind beispielsweise beschrieben in DE-A-32 09 110, EP-A-0 089 834, EP-A-0 117 511, EP-A-0 118 087.
  • Da bei den DIR-, DAR- bzw. FAR-Kupplern hauptsächlich die Wirksamkeit des bei der Kupplung freigesetzten Restes erwünscht ist und es weniger auf die farbbildenden Eigenschaften dieser Kuppler ankommt, sind auch solche DIR-, DAR- bzw. FAR-Kuppler geeignet, die bei der Kupplung im wesentlichen farblose Produkte ergeben wie beispielsweise beschrieben in DE-A-1 547 640.
  • Der abspaltbare Rest kann auch ein Ballastrest sein, so daß bei der Reaktion mit Farbentwickleroxidationsprodukten Kupplungsprodukte z.B. Farbstoffe erhalten werden können, die diffusionsfähig sind oder zumindest eine schwache bzw. eingeschränkte Beweglichkeit aufweisen wie beispielsweise in US-A-4 420 556 beschrieben.
  • Hochmolekulare Farbkuppler sind beispielsweise beschrieben in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-0 027 284, US-A-4 080 211. Die hochmolekularen Farbkuppler werden in der Regel durch Polymerisation von ethylenisch ungesättigten monomeren Farbkupplern hergestellt. Sie können aber auch durch Polyaddition oder Polykondensation erhalten werden.
  • Über die genannten Bestandteile hinaus können die Schichten des nach dem erfindungsgemäßen Verfahren zu härtenden farbfotografischen Aufzeichnungsmaterials weitere Zusätze enthalten, zum Beispiel Antioxidantien, farbstoffstabilisierende Mittel und Mittel zur Beeinflussung der mechanischen und elektrostatischen Eigenschaften. Um die nachteilige Einwirkung von UV-Licht auf die mit dem erfindungsgemäßen farbfotografischen Aufzeichnungsmaterial hergestellten Farbbilderzu vermindern oder zu vermeiden, können auch die zu härtenden Schichten UV-Licht absorbierende Verbindungen enthalten.
  • Beispiel 1
  • Ein farbfotografisches Aufzeichnungsmaterial für die Colornegativentwicklung wurde hergestellt, indem auf einen transparenten Schichtträger aus Cellulosetriacetat die folgenden Schichten in der angegebenen Reihenfolge aufgetragen wurden. Die Mengenangaben beziehen sich jeweils auf 1 m². Für den Silberhalogenidauftrag werden die entsprechenden Mengen AgNO₃ angegeben. Alle Silberhalogenidemulsionen waren pro 100 g AgNO₃ mit 0,5 g 4-Hydroxy-6-methyl-1,3,3a,7-tetraazainden stabilisiert.
  • Schicht 1
    (Antihaloschicht)
    Schwarzes kolloidales Silbersol mit
    0,5 g Ag, 0,2 g Octylhydrochinon und 15 g Gelatine.
    Schicht 2
    (Zwischenschicht)
    1,0 g Gelatine
    0,05 Octylhydrochinon
    Schicht 3
    (1. rotsensibilisierte Schicht)
    rotsensibilisierte Silberbromidiodidemulsion aus 3,5 g AgNO₃, mit
    1,7 g Gelatine und 0,7 g eines Gemisches verschiedener Kuppler zur Erzeugung eines blaugrünen Teilfarben bildes*)
    Schicht 4
    (2. rotsensibilisierte Schicht)
    rotsensibilisierte Silberbromidiodidemulsion aus 2,0 g AgNO₃, mit
    2,0 g Gelatine und
    0,2 g eines Blaugrünkupplers*)
    Schicht 5
    (Zwischenschicht)
    0,7 g Gelatine und
    0,09 g 2,5-Diisooctylhydrochinon
    Schicht 6
    (1. grünsensibilisierte Schicht)
    grünsensibilisierte Silberbromidiodidemulsion aus 2,2 g AgNO₃, mit
    1,7 g Gelatine und
    0,5 g eines Gemisches mehrerer Kuppler zur Erzeugung eines purpurnen Teilfarbenbildes*)
    Schicht 7
    (2. grünsensibilisierte Schicht)
    grünsensibilisierte Silberbromidiodidemulsion
    aus 1,5 g AgNO₃, mit
    1,7 Gelatine und 0,2 g eines Purpurkupplers*)
    Schicht 8
    (Zwischenschicht)
    0,5 g Gelatine und
    0,06 g 2,5-Diisooctylhydrochinon
    Schicht 9
    (Gelbfilterschicht)
    gelbes kolloidales Silbersol mit
    0,1 g Ag
    0,35 g Gelatine und
    0,2 g Verbindung WM-1
    Schicht 10
    (1. blauempfindliche Schicht)
    Silberbromidiodidemulsion
    aus 0,6 g AgNO₃, mit
    1,4 g Gelatine und 0,85 g eines Gemisches verschiedener Kuppler zur Erzugung des gelben Teilfarbenbildes*)
    Schicht 11
    (2. blauempfindliche Schicht)
    Silberbromidiodidemulsion
    aus 1,0 g AgNO₃ mit
    0,6 Gelatine und 0,3 g des Gelbkupplergemisches aus Schicht 10
    Schicht 12
    (UV-Absorberschicht)
    1,5 g Gelatine und
    0,8 g Verbindung UV-1
    Schicht 13
    (Zwischenschicht)
    0,9 g Gelatine
    0,45 g Verbindung WM-1

    *) emulgiert mit Trikresylphosphat im Gewichtsverhältnis 1:1.
    *) emulgiert mit Trikresylophoshat im Gewichtsverhältnis 1:1,
  • Die Gesamtschichtdicke aller aufgetragenen Schichten betrug 24,3 µm.
  • Der beschriebene Schichtaufbau (Schichten 1 - 13) wurde durch Überschichten wie folgt gehärtet:
  • Material 1 (gemäß der Erfindung)
  • Schicht 14
    (Härtungsschicht)
    0,150 g Gelatine
    0,024 g Verbindung VI - 1
    0,700 g Soforthärtungsmittel 55
    Schicht 15
    (Schutzschicht)
    0,17 g Gelatine
    0,025 g Verbindung VI - 1
    0,150 g Verbindung HM - 1
    0,150 g Hydroxypropylmethylcellulosehexahydrophthalat
    0,065 g Dimethylpolysiloxan
    Material 2 (gemäß der Erfindung) wie Material 1, jedoch mit folgender
  • Schicht 15
    (Schutzschicht)
    0,170 g Gelatine
    0,025 g Verbindung VI - 1
    0,152 g Polymethylmethacrylat
    0,150 g Hydroxypropylmethylcellulosehexahydrophthalat
    0,065 g Dimethylpolysiloxan
    Material 3 (nicht erfindungsgemäß)
  • Schicht 14
    (Härtungsschutzschicht)
    0,200 g Gelatine
    0,150 g Verbindung HM - 1
    0,150 g Hydroxypropylmethylcellulosehexahydrophthalat
    0,024 g Verbindung VI - 1
    0,060 g Dimethylpolysiloxan
    0,700 g Soforthärtungsmittel 55
    Material 4 (nicht erfindungsgemäß)
  • Schicht 14
    (Härtungsschutzschicht)
    0,200 g Gelatine
    0,152 g Polymethylmethacrylat
    0,150 g Hydroxypropylmethylcellulosehexahydrophthalat
    0,025 g Verbindung VI - 1
    0,063 g Dimethylpolysiloxan
    0,700 g Soforthärtungsmittel 55
    Folgende Verbindungen wurden verwendet
  • WM - 1
    handelsübliche wäßrige Dispersion eines anionisch modifizierten Polyurethans, Impranil® DLN-Dispersion
    (Handelsprodukt der BAYER AG, Leverkusen)
    Figure imgb0049
  • Nach dem Trocknen wurde dei Naßkratzfestigkeit, die Parallelbruchfestigkeit, der Reibwert und das Drehmoment bestimmt. Zur Bestimmung der Naßkratzfestigkeit wurde eine Metallspitze definierte Größe über die nasse Schicht geführt und mit zunehmendem Gewicht belastet. Die Naßkratzfestigkeit wird durch das Gewicht [N] angegeben, bei dem die Spitze eine sichtbare Kratzspur auf der Schicht hinterläßt. Ein hohes Gewicht entspricht einer hohen Naßkratzfestigkeit. Die Messung wurde durchgeführt mit einer Probe des jeweiligen Materials die zuvor bei 38° C 5 min. in Wasser mit einer Härte von 10° DH gequollen war.
  • Die Parallelbruchfestigkeit wurde durch die Parameter Bruchdurchmesser [mm] und Bruchkraft [N] charakterisiert. Hierbei wurde ein 35 mm breiter Streifen des betreffenden Materials, der längs einer Querlinie perforiert war, zu einer Schleife geformt und diese zwischen zwei parallelen, einander stetig annähernden Backen zusammengepreßt. Bruchdurchmesser ist der Abstand der beiden Backen und Bruchkraft ist die Kraft, mit der die beiden Backen auf die Schleife einwirken, und zwar in dem Moment, wo die Schleife entlang der Perforationslinie bricht. Die Methode ist beschrieben in Research Disclosure 25254 (April 1985).
  • Der Reibwert (Reibwert = Zugkraft/Normalkraft x 100) ist ein Maß für die Haftreibung, wenn das Material mit der Beschichtungsseite unter der Einwirkung einer Zugkraft über eine Oberfläche aus V2A-Stahl (V2A/S) bzw. über die Rückseite des gleichen Material (R/S) zu gleiten beginnt.
  • Das Umspuldrehmoment [mN · cm] bei Vor- und Rücktransport wurde wie folgt bestimmt.
  • Die fertig konfektionierten Filme wurden in der Patrone ohne Umdose 7 d an das Prüfklima (35° C, 90 % r.F.) angeglichen, danach in eine Orthomat-Kassette der Firma Leitz eingelegt und im Sekundenrhythmus um je eine Kleinbildlänge weitertransportiert. Das für den Transport benötigte Drehmoment, von dem der Beitrag für die Reibung der Kassettenmechanik subtrahiert wurde, wird als Maßgröße für den Vortransport angegeben. Sofort nach Beendigung des Vortransportes wurde der Film innerhalb 7 s rücktransportiert. Als Maßgröße für den Rücktransport wird das Drehmoment von Anfang des Transportes und das maximal auftretende Drehmoment am Ende des Transportes gemessen und angegeben.
  • Die Ergebnisse sind in Tabelle 1 (siehe Beispiel 2) zusammen gestellt.
  • Beispiel 2
  • Ein farbfotografisches Aufzeichnungsmaterial für die Umkehrfarbentwicklung wurde hergestellt, indem auf einen transparenten Schichträger aus Cellulosetriacetat die folgenden Schichten in der angegebenen Reinhenfolge aufgetragen wurden. Die Mengenangaben beziehen sich jeweils auf 1 m². Für den Silberhalogenidauftrag werden die entsprechenden Mengen AgNO₃ angegeben. Alle Silberhalogenidemulsionen waren pro 100 g AgNO₃ mit 0,5 g 4-Hydroxy-6-methoxy-1,3,3a,7-tetraazainden stabilisiert.
  • Schicht 1
    (Antihaloschicht)
    Schwarzes kolloidales Silbersol mit
    0,5 g Ag
    1,5 g Gelatine.
    Schicht 2
    (Zwischenschicht)
    0,9 g Gelatine
    0,33 g AgNO₃ (Mikrat)
    0,33 Octylhydrochinon
    Schicht 3
    (1. rotsensibilisierte Schicht)
    rotsensibilisierte Silberbromidiodidemulsion (5,5 mol-% Iodid;
    mittlerer Korndurchmesser 0,25 µm) aus 0,98 g AgNO₃, mit
    0,81 g Gelatine und
    0,26 g Kuppler C - 1
    Schicht 4
    (2. rotsensibilisierte Schicht)
    rotsensibilisierte Silberbromidiodidemulsion (6,5 mol-% Iodid;
    mittlerer Korndurchmesser 0,6 µm) aus 0,85 g AgNO₃, mit
    0,7 g Gelatine und
    0,58 g Kuppler C - 1
    Schicht 5
    (Zwischenschicht)
    1,5 g Gelatine
    0,2 g Octylhydrochinon
    0,4 g Verbindung WM-1
    Schicht 6
    (1. grünsensibilisierte Schicht)
    grünsensibiliserte Silberbromidiodidemulsion (4,8 mol-% Iodid;
    mittlerer Korndurchmesser 0,28 µm) aus 0,94 g AgNO₃, mit
    0,77 g Gelatine und
    0,30 g Kuppler M - 1
    Schicht 7
    (2. grünsensibiliserte Schicht)
    grünsensibiliserte Silberbromidiodidemulsion (4,3 mol-% Iodid;
    mittlerer Korndurchmesser 0,65 µm) aus 0,94 g AgNO₃, mit
    0,87 Gelatine und
    0,64 g Kuppler M - 1
    Schicht 8
    (Zwischenschicht)
    0,6 g Gelatine
    0,15 g Ethylendiharnstoff
    0,08 Verbindung WM - 1
    Schicht 9
    (Gelbfilterschicht)
    gelbes kolloidales Silbersol mit
    0,2 g Ag
    0,5 g Gelatine und
    0,12 g Verbindung WM - 1
    Schicht 10
    (1. blauempfindliche Schicht)
    Silberbromidiodidemulsion (4,9 mol-% Iodid;
    mittlerer Korndurchmesser 0,35 µm) aus 0,76 g AgNO₃, mit
    0,56 g Gelatine
    0,47 g Kuppler Y-1
    0,4 g Verbindung WM - 1
    Schicht 11
    (2. blauempfindliche Schicht)
    Silberbromidiodidemulsion (3,3 mol-% Iodid;
    mittlerer Korndurchmesser 0,78 µm) aus 1,3 g AgNO₃, mit
    0,76 g Gelatine
    1,42 g Kuppler Y-1
    0,3 g Verbindung WM - 1
    Schicht 12
    (UV-Absorberschicht)
    1,5 g Gelatine
    0,8 g Verbindung UV - 1
    Schicht 13
    (Zwischenschicht)
    0,9 g Gelatine
    0,4 g Ethylendiharnstoff
  • Der beschriebene Schichtaufbau (Schichten 1 - 13) wurde durch Überschichten wie folgt gehärtet:
  • Material 5 (gemäß der Erfindung)
  • Schicht 14
    (Härtungsschicht)
    0,200 g Gelatine
    0,020 g Verbindung VI - 1
    0,700 g Soforthärtungsmittel 55
    Schicht 15
    (Schutzschicht)
    0,200 g Gelatine
    0,020 g Verbindung VI-1
    0,150 g Verbindung HM - 1
    0,150 g Hydroxypropylmethylcellulosehexahydrophthalat
    0,065 g Dimethylpolysiloxan
    Material 6 (nicht erfindungsgemäß)
  • Schicht 14
    (Härtungsschutzschicht)
    0,300 g Gelatine
    0,150 g Verbindung HM - 1
    0,100 g Hydroxypropylmethylcellulosehexahydrophthalat
    0,030 g Verbindung VI - 1
    0,018 g Dimethylpolysiloxan
    0,700 g Soforthärtungsmittel 55
    Folgende Verbindungen wurden verwendet:
  • Figure imgb0050
  • M-1
    Kuppler 7 aus US-A-2 000 788
    Y-1
    Kuppler 16 aus US-A-3 933 501
  • Wie in Beispiel 1 wurde die Naßkratzfestigkeit, der Reibwert und das Umspuldrehmoment bestimmt.
  • Die Ergebnisse sind aus Tabelle 1 zu ersehen.
    Figure imgb0051

Claims (9)

  1. Verfahren zur Härtung proteinartige Bindemittel enthaltender Schichten, wobei auf die zu härtenden Schichten ein ein Soforthärtungsmittel enthaltender Härtungsbeguß aufgetragen wird, dadurch gekennzeichnet, daß auf die zu härtenden Schichten eine untere Schicht, die das Soforthärtungsmittel enthält, und mindestens eine weitere Schicht, die proteinartiges Bindemittel, aber im wesentlichen kein Soforthärtungsmittel enthält, gleichzeitig oder nacheinander aufgetragen werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei den zu härtenden Schichten um Schichten eines mehrschichtigen fotografischen Aufzeichnungsmaterials handelt.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß es sich bei den zu härtenden Schichten um Schichten eines mehrschichtigen farbfotografischen Aufzeichnungsmaterials handelt.
  4. Verfahren nach einem der Ansprüche 1, 2 und 3, dadurch gekennzeichnet, daß es sich bei den zu härtenden Schichten um Gelatineschichten handelt.
  5. Verfahren nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß mindestens eine Teilschicht des mehrschichtigen Härtungsbegusses anorganische oder organische feste Teilchen enthält.
  6. Verfahren nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß die das Soforthärtungsmittel enthaltende Teilschicht des mehrschichtigen Härtungsbegusses mindestens eine viskositätserhöhende Verbindung enthält.
  7. Verfahren nach einem der Ansprüche 1-6, dadurch gekennzeichnet, daß die soforthärtungsmittelfreien Teilschichten des mehrschichtigen Härtungsbegusses vor dem Eintrocknen der das Soforthärtungsmittel enthaltenden Teilschicht auf jene aufgetragen wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Teilschichten des mehrschichtigen Härtungsbegusses gleichzeitig auf die zu härtenden Schichten aufgetragen werden.
  9. Verfahren nach einem der Ansprüche 1-8, dadurch gekennzeichnet, daß das Soforthärtungsmittel der folgenden Formel verwendet wird:
    Figure imgb0052
    worin
    R₁   Alkyl, Aryl oder Aralkyl bedeutet,
    R₂   die gleiche Bedeutung wie R₁ hat oder Alkylen, Arylen, Aralkylen oder Alkaralkylen bedeutet, wobei die zweite Bindung mit einer Gruppe der Formel.
    Figure imgb0053
    verknüpft ist, oder
    R₁ und R₂   zusammen die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, erforderlichen Atome bedeuten,
    R₃   für Wasserstoff, Alkyl, Aryl, Alkoxy, -NR₄-COR₅, -(CH₂)m- NR₈R₉, -(CH₂)n-CONR₁₃R₁₄ oder
    Figure imgb0054
    oder ein Brückenglied oder eine direkte Bindung an eine Polymerkette steht, wobei
    R₄, R₆, R₇, R₉, R₁₄, R₁₅, R₁₇, R₁₈, und R₁₉   Wasserstoff oder C₁-C₄-Alkyl,
    R₅   Wasserstoff, C₁-C₄-Alkyl oder NR₆R₇,
    R₈   -COR₁₀
    R₁₀   NR₁₁R₁₂
    R₁₁   C₁-C₄-Alkyl oder Aryl,
    R₁₂   Wasserstoff, C₁-C₄-Alkyl oder Aryl,
    R₁₃   Wasserstoff, C₁-C₄-Alkyl oder Aryl,
    R₁₆   Wasserstoff, C₁-C₄-Alkyl, COR₁₈ oder CONHR₁₉,
    m   eine Zahl 1 bis 3
    n   eine Zahl 0 bis 3
    p   eine Zahl 2 bis 3 und
    Y   O oder NR₁₇ bedeuten oder
    R₁₃ und R₁₄   gemeinsam die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, erforderlichen Atome darstellen,
    Z   die zur Vervollständigung eines 5- oder 6-gliedrigen aromatischen heterocyclischen Ringes, gegebenenfalls mit anelliertem Benzolring, erforderlichen C-Atome und
    X   ein Anion bedeuten, das entfällt, wenn bereits eine anionische Gruppe mit dem übrigen Molekül verknüpft ist.
EP87111926A 1986-08-29 1987-08-18 Verfahren zur Härtung proteinartige Bindemittel enthaltender Schichten Expired - Lifetime EP0257515B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3629388 1986-08-29
DE19863629388 DE3629388A1 (de) 1986-08-29 1986-08-29 Verfahren zur haertung proteinartige bindemittel enthaltender schichten

Publications (3)

Publication Number Publication Date
EP0257515A2 EP0257515A2 (de) 1988-03-02
EP0257515A3 EP0257515A3 (en) 1990-02-07
EP0257515B1 true EP0257515B1 (de) 1992-05-13

Family

ID=6308453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87111926A Expired - Lifetime EP0257515B1 (de) 1986-08-29 1987-08-18 Verfahren zur Härtung proteinartige Bindemittel enthaltender Schichten

Country Status (4)

Country Link
US (1) US5034249A (de)
EP (1) EP0257515B1 (de)
JP (1) JPS6361243A (de)
DE (2) DE3629388A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3730319C2 (de) * 1987-09-10 1996-05-09 Agfa Gevaert Ag Fotografisches Aufzeichnungsmaterial
DE4001784C2 (de) * 1990-01-23 1994-11-10 Agfa Gevaert Ag Farbfotografisches Silberhalogenidmaterial
WO1992011570A1 (en) * 1990-12-20 1992-07-09 Eastman Kodak Company Thickener for delivery of photographic emulsions
US5229260A (en) * 1991-03-13 1993-07-20 Konica Corporation Silver halide photographic light sensitive material
US5601971A (en) * 1991-06-18 1997-02-11 Sterling Diagnsotic Imaging, Inc. Hardening of hydrophilic colloids with imidazolium and triazine combinations
DE4119982C2 (de) * 1991-06-18 1993-09-30 Du Pont Deutschland 1,3-Bis-carbamoylimidazoliumverbindungen und Verfahren zum Härten von Gelatine enthaltenden Schichten
US5547832A (en) * 1992-07-07 1996-08-20 Eastman Kodak Company Method for hardening photographic materials
US5368894A (en) * 1993-06-08 1994-11-29 Minnesota Mining And Manufacturing Company Method for producing a multilayered element having a top coat
US5378842A (en) * 1993-12-21 1995-01-03 E. I. Du Pont De Nemours And Company Imidazolium hardeners for proteinaceous materials
US6100381A (en) * 1998-11-03 2000-08-08 Eastman Kodak Company Enzyme method of manufacturing gelatin
US5919906A (en) * 1998-11-05 1999-07-06 Eastman Kodak Company Protease produced gelatin
US6419987B1 (en) * 1999-12-17 2002-07-16 Eastman Kodak Company Method for providing a high viscosity coating on a moving web and articles made thereby
ATE283767T1 (de) * 2002-07-01 2004-12-15 Ilford Imaging Ch Gmbh Verfahren zur beschichtung eines bewegten trägers

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880665A (en) * 1972-05-24 1975-04-29 Agfa Gevaert Ag Hardening with a heterocyclic carbamoyl ammonium compound of a photographic material containing a silver halide layer
US4055427A (en) * 1974-02-23 1977-10-25 Agfa-Gevaert Aktiengesellschaft Process of hardening a silver halide photographic material with a 1-carbamoyloxypyridinium salt
DE2439551C2 (de) * 1974-08-17 1985-11-21 Agfa-Gevaert Ag, 5090 Leverkusen Verfahren zur Härtung photographischer Schichten
DE2439553A1 (de) * 1974-08-17 1976-02-26 Agfa Gevaert Ag Verfahren zur haertung photographischer schichten
GB1528163A (en) * 1975-02-10 1978-10-11 Agfa Gevaert Process for the hardening of photographic layers
DE2545755A1 (de) * 1975-10-11 1977-04-21 Agfa Gevaert Ag Verfahren zur haertung photographischer schichten
DE2547589A1 (de) * 1975-10-24 1977-04-28 Agfa Gevaert Ag Haertung photographischer schichten
DE2625026A1 (de) * 1976-06-03 1977-12-22 Agfa Gevaert Ag Verfahren zur haertung photographischer gelatinehaltiger schichten
JPS5473871A (en) * 1977-11-24 1979-06-13 Fuji Photo Film Co Ltd Undercoating of polyester film
JPS5565949A (en) * 1978-11-13 1980-05-17 Fuji Photo Film Co Ltd Subbing method for photographic material
DE2924035A1 (de) * 1979-06-13 1981-01-08 Agfa Gevaert Ag Verfahren zur kettenverlaengerung von gelatine durch partielle haertung
JPS57207243A (en) * 1981-06-16 1982-12-18 Fuji Photo Film Co Ltd Photographic sensitive silver halide material

Also Published As

Publication number Publication date
EP0257515A2 (de) 1988-03-02
DE3629388A1 (de) 1988-03-03
DE3779014D1 (de) 1992-06-17
JPS6361243A (ja) 1988-03-17
US5034249A (en) 1991-07-23
EP0257515A3 (en) 1990-02-07

Similar Documents

Publication Publication Date Title
EP0257515B1 (de) Verfahren zur Härtung proteinartige Bindemittel enthaltender Schichten
EP0395956A2 (de) Fotografisches Aufzeichnungsmaterial
EP0027988B1 (de) Lichtempfindliches photographisches Silberhalogenidmaterial
EP0282865B1 (de) Härtungsmittel für Proteine, eine damit gehärtete Bindemittelschicht und ein eine solche Schicht enthaltendes fotografisches Aufzeichnungsmaterial
DE3626221A1 (de) Farbfotografisches aufzeichnungsmaterial zur herstellung farbiger aufsichtsbilder
EP0345514B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0237887B1 (de) Verfahren zur Herstellung eines fotografischen Aufzeichnungsmaterials.
EP0317825B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0286913B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0207399B1 (de) Gehärtete Bindemittelschicht
DE3730319C2 (de) Fotografisches Aufzeichnungsmaterial
DE3836945A1 (de) Fotografisches silberhalogenidmaterial und verfahren zu seiner verarbeitung
DE4318438A1 (de) Fotografisches Aufzeichnungsmaterial
DE4001784C2 (de) Farbfotografisches Silberhalogenidmaterial
EP0267523B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0262504B1 (de) Herstellung eines mehrschichtigen fotografischen Materials
DE4213869A1 (de) Fotografisches material
DE3835467A1 (de) Farbfotografisches silberhalogenidmaterial
EP0257452A2 (de) Härtungsmittel für Proteine, eine damit gehärtete Bindemittelschicht und eine solche Schicht enthaltendes fotografisches Aufzeichnungsmaterial
DE4320828A1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0318799B1 (de) Farbfotografisches Aufzeichnungsmaterial mit einem phenolischen Blaugrünkuppler
DE3936827A1 (de) Farbfotografisches silberhalogenidmaterial
DE3913404A1 (de) Farbfotografisches aufzeichnungsmaterial mit einem farbkuppler vom pyrazoloazol-typ
DE3721503A1 (de) Fotografisches aufzeichnungsmaterial
DE3914947A1 (de) Fotografisches silberhalogenidmaterial und verfahren zu seiner verarbeitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870818

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB

17Q First examination report despatched

Effective date: 19910812

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB

REF Corresponds to:

Ref document number: 3779014

Country of ref document: DE

Date of ref document: 19920617

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930729

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930730

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930818

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940714

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940831

BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19940831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960501