EP0254005A1 - Verfahren zum Verbessern des Gleichlaufs mit einer Hubkolbenbrennkraftmaschine und Hubkolbenbrennkraftmaschine zum Ausüben des Verfahrens - Google Patents

Verfahren zum Verbessern des Gleichlaufs mit einer Hubkolbenbrennkraftmaschine und Hubkolbenbrennkraftmaschine zum Ausüben des Verfahrens Download PDF

Info

Publication number
EP0254005A1
EP0254005A1 EP87108248A EP87108248A EP0254005A1 EP 0254005 A1 EP0254005 A1 EP 0254005A1 EP 87108248 A EP87108248 A EP 87108248A EP 87108248 A EP87108248 A EP 87108248A EP 0254005 A1 EP0254005 A1 EP 0254005A1
Authority
EP
European Patent Office
Prior art keywords
shaft
torsional vibrations
internal combustion
combustion engine
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87108248A
Other languages
English (en)
French (fr)
Other versions
EP0254005B1 (de
Inventor
Jean Jenzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer AG
Publication of EP0254005A1 publication Critical patent/EP0254005A1/de
Application granted granted Critical
Publication of EP0254005B1 publication Critical patent/EP0254005B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • the present invention relates to a method for improving the synchronism of a reciprocating piston internal combustion engine with volumetric fuel supply, in the stationary operating state, with three or more cylinders, and a reciprocating piston internal combustion engine for carrying out the method.
  • the control and monitoring of the synchronism of such reciprocating internal combustion engines, such as diesel engines, has hitherto been carried out by monitoring the speed of the output shaft or the shaft of a machine driven by the engine.
  • the regulation itself is carried out by changing the injection quantity of all injection pumps, which are switched on to the individual cylinders in a certain cycle.
  • This known type of regulation takes into account and regulates the constancy of the rotational speed in the sense that with the change in the injection quantity, this is changed in the same way for all cylinders if it is assumed that the injection quantity in each cylinder is the same.
  • the invention provides a remedy here and ensures that the reciprocating piston internal combustion engine has a significantly improved synchronism behavior in this respect.
  • Such a method for improving the same is according to the invention running a three- or multi-cylinder reciprocating internal combustion engine, characterized in that the torsional vibrations of at least one order of the drive shaft are minimized by changing the indicated mean cylinder pressure of at least one cylinder.
  • the invention further relates to a reciprocating piston internal combustion engine for carrying out the method and advantageous special embodiments of the method and the reciprocating piston internal combustion engine.
  • the torsional vibrations or their amplitudes and angular position are measured with the torsional vibration meter 3 measured continuously at the shaft end l23 and fed to the Fourier analyzer 4. In the Fourier analyzer 4, the Fourier decomposition of the torsional vibrations into members of different orders is carried out.
  • the crank star method is a simple approximation method, for example, the torsional vibrations are minimized iteratively, ie in several cycles or steps.
  • correction signals are generated which are fed to the relevant injection pumps 61, 62, 63, 64, 65, 66. Due to the corrections, a new steady state is established in the course of the diesel engine 1. After this is reached the torsional vibrations are measured and analyzed again in a further control cycle and other correction signals are generated on the basis of the analysis results and the torsional vibrations are further minimized.
  • the control cycle advantageously extends over the time of several working cycles (revolutions) of the diesel engine 1. It is thus achieved that the stochastic changes in the indicated cylinder mean pressure from ignition to ignition of the individual cylinders 16l, 1662, 1663, 1664, 1665, 1666 only negligibly affect the torsional vibration signal to be evaluated.
  • torsional vibrations e.g. a device available on the market under the name angle encoder (optical incremental encoder, type G 70 from Litton).
  • An injection pump that is suitable for changing the injection quantity is e.g. described in DE-OS 3l 00 725.2-l3.
  • Fourier analyzers are also known and commercially available (e.g. CAT 25l5 from Genrad).
  • the two-stroke diesel engine l from FIG. 2 with the six cylinders l6l to l66 drives the ship propeller 7 via the shaft 22.
  • the other end of the crankshaft 22 of the diesel engine is connected via a clutch l8 to a transmission gear 8 which drives a hydraulic pump 8l .
  • This pump 8l is part of a hydrostatic transmission, which forms a closed hydraulic pressure medium circuit together with the hydrostatic motor 82.
  • This circuit is supplied with hydrostatic pressure medium, for example oil, through the low-pressure station 83, which contains a pressure medium reservoir, a feed pump, an overflow line with overflow valve, filter, etc.
  • the hydrostatic motor 82 drives the electric generator 9 via a shaft 89.
  • the speed of the shaft 89 and thus of the generator 9 is monitored by the sensor 84, from which the measured actual value is fed to the speed controller 85 and in which the Actual value is compared with the specified target value.
  • the generator 9 delivers the electrical energy to the vehicle electrical system 100.
  • the amount of pressure medium flowing through the hydrostatic motor 82 is changed by the controller signals being fed via the signal line 86 to an actuator in the motor 82.
  • the torsional vibration meter 3 measures the torsional vibrations of the shaft of the generator 9.
  • the determination of the correction signals which are fed to the injection pumps 6l, 62, 63, 64, 65, 66 are carried out in the same way as for the system from FIG. l described, determined.
  • the torsional vibrations generated by the diesel engine 1 are partially transmitted to the engine 82 and the shaft of the generator via the hydrostatic circuit.
  • the shaft l7 of the diesel engine 1 drives the adjustable ship propeller 72 via the coupling 7l and shaft 73.
  • the shaft l7 ⁇ of the diesel engine l drives the generator via a transmission 9l 9, which delivers the electrical current to the vehicle electrical system 100.
  • the torsional vibrations and their amplitudes and Angular positions are measured with the torsional vibration meter 3 on the shaft of the generator 9 and continuously fed to the Fourier analyzer 4.
  • the Fourier decomposition of the torsional vibrations into members of different orders is carried out.
  • the correction signals for the change in the injection quantity of the injection pumps 6l, 62, 63, 64, 65, 66 are in the injection pump controller 5, which includes a computer, for example on the basis of the elements of the first and second order, for example according to the crank star method, which is based on Fig. 3 is explained.
  • the shaft l7 of the diesel engine drives, via the clutch 71, the shaft 73 with the adjustable marine propeller 72.
  • the gear 92 is connected as a secondary gear to the shaft of the diesel engine 1 and drives the generator via a clutch 94 9.
  • the generator 9 supplies electrical energy to the vehicle electrical system 100.
  • the torsional vibrations of the shaft of the generator 9 are continuously determined with the torsional vibration meter 3 according to their amplitude and angular position and fed to the Fourier analyzer 4.
  • the torsional vibrations are broken down into links of different orders in the Fourier analyzer 4.
  • the shaft l7 of the diesel engine 1 drives the shaft 73 with the adjustable ship propeller 72 via the clutch 71.
  • the gear 93 is driven directly by the shaft 73 and in turn drives via the clutch 94, the generator 9.
  • the generator 9 supplies electrical energy to the vehicle electrical system 100.
  • the amplitude and angular position of the torsional vibrations are continuously measured on the shaft of the generator 9 and the Fourier analyzer 4 fed.
  • the Fourier analyzer 4 the Fourier decomposition of the torsional vibrations into members of different orders takes place.
  • the correction signals for the injection pumps 61, 62, 63, 64, 65 and 66 can be determined in the systems of FIGS. 2A, 2B and 2C in the same way as described for FIG. 1.
  • crank star method for determining the correction factors for correcting the injection quantity for minimizing the torsional vibrations of the first order is explained.
  • the simplifying assumptions are made that - The average indicated cylinder pressure of a cylinder does not deviate from the target value by more than 5%.
  • the disturbance amplitude changes linearly with the disturbance and the phase remains the same.
  • the measured disturbance, ie a measured torsional vibration can be minimized by correcting the mean indicated cylinder pressure of two or, in special cases, one cylinder, ie the disturbance is generated by the corresponding cylinder.
  • the firing order of the engine is l, 6, 2, 4, 3, 5.
  • the pole diagram l9 are the calculated torsional vibration vectors l9l to l96, first order of the shaft of a six-cylinder engine for all six cases that one of the cylinders has a 5% reduction in the yields mean indicated cylinder pressure, shown in dashed lines.
  • These vectors l9l to l96 form the so-called first-order correction crank stars.
  • the ends of these vectors l9l to l96 lie on a circle whose center M is not in the zero point P of the pole diagram, but is shifted by a vector l90.
  • This vector l90 corresponds to the torsional vibration vector of the ideal, i.e. fully balanced engine.
  • crank star l9l ⁇ to l96 ⁇ is now used to determine the corrections to the mean indicated cylinder pressure in one or two cylinders.
  • a torsional vibration S (amplitude and phase) is measured on the shaft and the vector is drawn in the shifted correction crank star
  • S lies between two vectors of the shifted correction crank star, in our example between the vectors l9l ⁇ and l96 ⁇ , or falls in the direction of one of the vectors l9l ⁇ to l96 ⁇ .
  • the decomposition of the amplitude vector S into the two vectors S1 and S6 in the direction of the two vectors of the correction crank star is interpreted as a disturbance of the two cylinders 1 and 2. Since the correction crank star is based on the assumption of underperformance of the disturbed cylinders, but the cylinders could also perform too much, this decomposition must be calculated in the correct vector basis.
  • This base is a pair of the vectors Z1, Z6, Z3 and Z4. The correction factor for the two cylinders of a pair combination thus results directly from the correction crank star.
  • each fault can be attributed to two faulty cylinders, for example, usually makes it necessary to iteratively minimize the to carry out in several steps.
  • a single correction factor for only one cylinder is obtained if the vector of the measured disturbance coincides with one of the vectors l9l ⁇ to l96 ⁇ .
  • the described way of minimizing the torsional vibrations has proven to be very favorable in practice.
  • the invention is in no way limited to the exemplary embodiments described, but rather comprises any method for improving the synchronism of reciprocating piston internal combustion engines, in which correction factors acting on the indicated medium pressure are determined in a different way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Bei diesem Verfahren wird der Gleichlauf der Motorwelle (l2, 22) verbessert, indem die Torsionsschwingungen der Motorwelle minimiert werden, wobei der indizierte Zylindermitteldruck und damit die anregenden Momente eines oder mehrerer Zylinder verändert werden. Diese Veränderung erfolgt durch Verändern der Brennstoff-Einspritzmenge eines oder mehrerer Zylinder mit Hilfe von Korrektursignalen, die aus der Fourier-Analyse der Torsionsschwingungen bestimmt werden. Das Verfahren ist besonders wirksam bei dieselgetriebenen elektrischen Generatoren, wo die Erregungsfrequenz für Torsionsschwingungen erster und zweiter Ordnung in der Nähe der elektrischen Eigenfrequenz des Generators liegen. Im Verbundnetz kann damit vermieden werden, dass das mechanische Wellensystem gegen das starre Netz schwingt. Es treten keine Leistungspendelungen auf.

Description

  • Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Verbessern des Gleichlaufs einer Hubkolbenbrennkraft­maschine mit volumetrischer Brennstoffzufuhr, im stationä­ren Betriebszustand,mit drei oder mehr Zylindern, sowie einer Hubkolbenbrennkraftmaschine zum Ausüben des Ver­fahrens.
  • Die Steuerung und Ueberwachung des Gleichlaufs derartiger Hubkolbenbrennkraftmaschinen, wie beispielsweise Dieselmo­toren, erfolgt bisher mit der Ueberwachung der Drehzahl der Abtriebswelle oder der Welle einer vom Motor ange­triebenen Maschine. Die Regelung selbst erfolgt über die Aenderung der Einspritzmenge aller Einspritzpumpen, wel­che in enem bestimmten Zyklus den einzelnen Zylindern zugeschaltet werden.
  • Diese bekannte Art der Regelung berücksichtigt und regelt die Konstanz der Drehzahl in dem Sinne, dass mit der Ver­änderung der Einspritzmenge diese für sämtliche Zylinder in gleicher Weise verändert wird, wenn man davon aus geht, dass die Einspritzmenge in jedem Zylinder gleich gross ist.
  • Eine derartige Regelung nimmt keinerlei Rücksicht auf Torsionsschwingungen der Wellen, die somit bei bisher be­kannten Drehzahlregelungen unberücksichtigt bleiben.
  • Es gibt Fälle, wo diese Art der Regelung nicht ausreichend ist und bei denen die durch Torsionsschwingungen der Wellen entstehenden Drehzahlunterschiede oder dadurch entstehende Aenderungen der Winkelgeschwindigkeit innerhalb einer Um­drehung schon störend sein können. Beispielsweise kann dieser durch Torsionsschwingungen erzeugte Ungleichlauf in dieselgetriebenen elektrischen Maschinen wie Generato­ren sich störend auswirken. Bei derartigen Anlagen, die etwa mit langsamlaufenden Zweitakt-Dieselmotoren, (z.B. 80 bis l20/Min.) angetrieben werden, liegt in vielen Fällen die Erregungsfrequenz für Torsionsschwingungen erster und zweiter Ordnung der Welle (einfache oder doppel­te Drehfrequenz) in der Nähe der elektrischen Eigenfrequenz des Generators. Dabei kann der Fall eintreten, dass die Amplituden der Torsionsschwingungen dieser Ordnungen dynamisch mehrfach vergrössert werden, wobei im Verbundbe­trieb das mechanische Wellensystem als Ganzes gegen das starre Verbundnetz schwingt, was beispielsweise zu Lei­stungspendelungen führen kann. In einem selbständigen Netz (Inselbetrieb) wiederum kann dies Lichtflimmern zur Folge haben. Die Erfindung schafft hier Abhilfe und gewährleistet ein in dieser Hinsicht wesentlich verbessertes Gleichlaufver­halten der Hubkolbenbrennkraftmaschine. Erfindungsgemäss ist ein derartiges Verfahren zum Verbessern des Gleich­ laufs einer drei- oder mehrzylindrigen Hubkolbenbrenn­kraftmaschine, dadurch gekennzeichnet, dass die Torsions­schwingungen wenigstens einer Ordnung der Antriebswelle minimiert werden, indem der indizierte Zylindermittel­druck wenigstens eines Zylinders verändert wird. Die Er­findung betrifft ferner eine Hubkolbenbrennkraftmaschine zur Ausführung des Verfahrens sowie vorteilhafte besondere Ausführungsformen des Verfahrens bzw. der Hubkolbenbrenn­kraftmaschine.
  • Die Erfindung wird am Beispiel der Zeichnungen näher er­läutert. Es zeigen:
    • Fig. l schematisch einen sechszylindrigen Die­selmotor mit Generator und erfindungsge­mässer Anlage für die Verbesserung des Gleichlaufs des Dieselmotors,
    • Fig. 2, 2A, 2B und 2C je schematisch einen sechszylindrigen Schiffsdieselmotor mit nebengeschaltetem Bordnetz-Generator und erfindungsgemässer Anlage für die Verbesserung des Gleich­laufs des Dieselmotors,
    • Fig. 3 das Poldiagramm der Torsionsschwingungen erster Ordnung der Welle eines Sechszy­linder-Dieselmotors bzw. einer vom Die­selmotor angetriebenen Welle.
  • Der sechszylindrige Zweitakt-Dieselmotor l mit Auflade­gruppe ll und mit der Welle l2 treibt einen Generator 2, wobei der Rotor des Generators, wie gezeichnet, direkt auf der Verlängerung der Welle l2 montiert oder die Rotorwelle mit der Welle l2 des Dieselmotors l gekuppelt sein kann. Die Torsionsschwingungen bzw. deren Amplituden und Winkellage werden mit dem Torsionsschwingungsmesser 3 am Wellenende l23 laufend gemessen und dem Fourier-­Analysator 4 zugeführt. Im Fourier-Analysator 4 wird die Fourierzerlegung der Torsionsschwingungen in die Glieder verschiedener Ordnung durchgeführt.
  • Vorerst spritzen die Einspritzpumpen 6l, 62, 63, 64, 65, 66, von denen je eine einem Zylinder l6l, l62, l63, l64, l65, l66 zugeordnet ist, vorbestimmte, unter sich glei­che Mengen Brennstoff in die Zylinder. Sobald der Diesel­motor den stationären Betriebszustand erreicht hat, wird der Schalter 45 geschlossen, und die Fouriersignale des Fourier-Analysators gelangen nun zur Einspritzpumpen-­Steuerung 5, welche einen Rechner umfasst, der aufgrund beispielsweise der Glieder erster und zweiter Ordnung nach z.B. der Kurbelsternmethode, die anhand von Fig. 3 erklärt wird, bestimmt:
    • 1. welcher oder welche der Zylinder l6l, l62, l63, l64, l65, l66, die Anregung der Torsionsschwingungen dieser Ordnung verursachen,
      und
    • 2. welche Korrektur der Einspritzmenge in welchen Zylindern erforderlich ist, um die Torsionsschwingungen dieser Ordnung zu minimieren.
  • Da es sich bei der Kurbelsternmethode beispielsweise um ein einfaches Näherungsverfahren handelt, erfolgt die Mini­mierung der Torsionsschwingungen iterativ, d.h. in mehreren Zyklen oder Schritten. Bei jedem Schritt werden Korrektur­signale erzeugt, die den betreffenden Einspritzpumpen 6l, 62, 63, 64, 65, 66 zugeführt werden. Aufgrund der Korrek­turen stellt sich im Lauf des Dieselmotors l ein neuer stationärer Zustand ein. Nachdem dieser erreicht ist, werden in einem weiteren Regelzyklus wieder die Torsions­schwingungen gemessen und analysiert und aufgrund der Analyseergebnisse andere Korrektursignale erzeugt und die Torsionsschwingungen weiter minimiert.
  • In der Regel wird ein günstiger stationärer Betriebszu­stand mit minimalen, nicht mehr störenden Torsionsschwin­gungen z.B. erster und zweiter Ordnung der Welle l2 oder auch höherer Ordnungen, nach einigen Regelzyklen der be­schriebenen Art erreicht.
  • Der Regelzyklus erstreckt sich dabei mit Vorteil über die Zeit mehrerer Arbeitszyklen (Umdrehungen) des Dieselmotors l. Damit wird erreicht, dass die stochastischen Aenderungen des indizierten Zylindermitteldrucks von Zündung zu Zün­dung der einzelnen Zylinder l6l, l62, l63, l64, l65, l66, das auszuwertende Torsionsschwingungssignal nur in ver­nachlässigbarer Weise beeinträchtigen.
  • Für die Erfassung der Torsionsschwingungen eignet sich z.B. eine unter der Bezeichnung Winkelkodierer (optical incremental encoder, Typ G 70 der Firma Litton) im Markt erhältliche Vorrichtung. Eine Einspritzpumpe, die sich für die Aenderung der Einspritzmenge eignet, ist z.B. in der DE-OS 3l 00 725.2-l3 beschrieben. Fourier-Analysa­toren sind ebenfalls bekannt und im Handel erhältlich (z.B. CAT 25l5 der Firma Genrad).
  • Der Zweitakt-Dieselmotor l von Fig. 2 mit den sechs Zylin­dern l6l bis l66 treibt über die Welle 22 den Schiffsan­triebspropeller 7. Das andere Ende der Kurbelwelle 22 des Dieselmotors ist über eine Kupplung l8 mit einem Ueber­setzungsgetriebe 8 verbunden, welches eine hydraulische Pumpe 8l antreibt. Diese Pumpe 8l ist ein Teil eines hydrostatischen Getriebes, das zusammen mit dem hydro­statischen Motor 82 einen geschlossenen hydraulischen Druckmittelkreislauf bildet. Die Versorgung dieses Kreis­laufs mit hydrostatischem Druckmittel, z.B. Oel erfolgt durch die Niederdruckstation 83, die ein Druckmittel­reservoir, eine Zubringerpumpe, eine Ueberströmleitung mit Ueberströmventil, Filter usw. enthält. Der hydrosta­tische Motor 82 treibt über eine Welle 89 den elektri­schen Generator 9. Die Drehzahl der Welle 89 und damit des Generators 9, wird mit dem Messfühler 84 überwacht, von welchem der gemessene Ist-Wert dem Drehzahl-Regler 85 zugeführt, und in welchem der Ist-Wert mit dem vorgegebenen Soll-Wert verglichen wird. Der Generator 9 gibt die elek­trische Energie an das Bordnetz l00 ab. Bei Abweichungen von Ist- und Soll-Wert wird die Menge des den hydrostati­schen Motor 82 durchströmenden Druckmittels verändert, indem die Reglersignale über die Signalleitung 86, einem Stellorgan im Motor 82 zugeführt werden. In diesem Beispiel misst der Torsionsschwingungsmesser 3 die Torsions­schwingungen der Welle des Generators 9. Die Bestimmung der Korrektursignale, welche den Einspritzpumpen 6l, 62, 63, 64, 65, 66 zugeführt werden, werden in gleicher Weise, wie oben für die Anlage von Fig. l beschrieben, bestimmt. Die vom Dieselmotor l erzeugten Torsionsschwingungen, werden über den hydrostatischen Kreislauf auf den Motor 82 und die Welle des Generators teilweise übertragen.
  • Bei der in Fig. 2A dargestellten Schiffsdieselanlage,treibt die Welle l7 des Dieselmotors l,über die Kupplung 7l und Welle 73 den verstellbaren Schiffsantriebspropeller 72. Die Welle l7ʹ des Dieselmotors l, auf der anderen Seite des Dieselmotors, treibt über ein Getriebe 9l den Genera­tor 9, der den elektrischen Strom an das Bordnetz l00 ab­gibt. Die Torsionsschwingungen bzw. deren Amplituden und Winkellage werden mit dem Torsionsschwingungsmesser 3, an der Welle des Generators 9 gemessen und laufend dem Fourier-Analysator 4 zugeführt. Im Fourier-Analysator 4 wird die Fourier-Zerlegung der Torsionsschwingungen in die Glieder verschiedener Ordnung durchgeführt. Die Korrek­tursignale für die Veränderung der Einspritzmenge der Ein­spritzpumpen 6l, 62, 63, 64, 65, 66, werden in der Ein­spritzpumpen-Steuerung 5, welche einen Rechner umfasst, aufgrund beispielsweise der Glieder erster und zweiter Ordnung z.B. nach der Kurbelsternmethode, die anhand von Fig. 3 erklärt wird, bestimmt.
  • Bei der in Fig. 2B dargestellten Schiffsdieselanlage,treibt die Welle l7 des Dieselmotors, über die Kupplung 7l die Welle 73 mit dem verstellbaren Schiffsantriebspropeller 72. Das Getriebe 92 ist als Nebengetriebe an der Welle des Dieselmotors l angeschlossen und treibt über eine Kupplung 94 den Generator 9. Der Generator 9 liefert elektrische Energie an das Bordnetz l00. Auch hier werden die Torsions­schwingungen der Welle des Generators 9 mit dem Torsions­schwingungsmesser 3 nach Amplitude und Winkellage dauernd bestimmt und dem Fourier-Analysator 4 zugeführt. Auch hier erfolgt im Fourier-Analysator 4 die Zerlegung der Torsions­schwingungen in die Glieder verschiedener Ordnung.
  • Bei der in Fig. 2C dargestellten Schiffsdieselanlage, treibt die Welle l7 des Dieselmotors l, über die Kupplung 7l die Welle 73 mit den verstellbaren Schiffsantriebspropeller 72. In dieser Anlage wird das Getriebe 93 direkt von der Welle 73 angetrieben und treibt seinerseits, über die Kupplung 94, den Generator 9. Der Generator 9 liefert elektrische Ener­gie an das Bordnetz l00. Wiederum werden an der Welle des Generators 9 Amplitude und Winkellage der Torsions­schwingungen laufend gemessen und dem Fourier-Analysator 4 zugeführt. Im Fourier-Analysator 4 erfolgt die Fourier-­Zerlegung der Torsionsschwingungen in die Glieder ver­schiedener Ordnung. Die Bestimmung der Korrektursignale für die Einspritzpumpen 6l, 62, 63, 64, 65 und 66 kann bei den Anlagen von Fig. 2A, 2B und 2C in gleicher Weise, wie zu Fig. l beschrieben, erfolgen.
  • Die Verbesserung des Gleichlaufs des Dieselmotors l und auch der vom Dieselmotor angetriebenen Generatoren 9 er­fordert, dass sich der Dieselmotor im wesentlichen in einem stationären Betriebszustand befindet. Dies ist bei Schiffsdieselan­lagen allgemein, und vermehrt noch bei Schiffsdieselan­lagen mit verstellbaren Schiffsantriebspropeller, im Fahr­betrieb über grössere Zeiträume der Fall. Die hydraulischen oder mechanischen Getriebe 9l, 92, 93 vermögen beispiels­weise die Drehzahl des Rotors 9 innerhalb gewisser Grenzen von Drehzahländerungen, wie dies bei Schiffsantrieben mit nichtverstellbarem Schiffsantriebspropeller der Fall sein kann, konstant zu halten. Da ein Schiff über mehrere Bord­generatoren verfügt, wird häufig die vom Antriebsdiesel­motor getriebene Gruppe dem Bordnetz nur im Fahrbetrieb auf offener See, wo der Antriebsmotor mit konstanter Dreh­zahl läuft, zugeschaltet.
  • Es ist auch möglich, den Rotor des Generators 9 direkt auf die Welle 73 zu setzen und den Generator für eine bestimmte Drehzahl auszulegen, die der Drehzahl des Dieselmotors bei Dauerbetrieb entspricht. Damit würde dann beispielsweise in einer Anlage, wie in Fig. 2C dargestellt, das Getriebe 93 und die Kupplung 94 entfallen. Die Torsionsschwingungen würden in diesem Falle mit dem Torsionsschwingungsmesser 3 an der Welle 73, oder an der Welle l7 gemessen.
  • Anhand von Fig. 3 wird die Kurbelsternmethode für die Be­stimmung der Korrekturfaktoren zur Korrektur der Ein­spritzmenge für die Minimierung der Torsionsschwingungen erster Ordnung erläutert. Im Kurbelsternverfahren geht man beispielsweise von den vereinfachenden Annahmen aus, dass
    - der mittlere indizierte Zylinderdruck eines Zylinders nicht mehr als 5 % vom Soll-Wert abweicht.

    - sich die Störamplitude linear mit der Störung ändert und die Phase gleich bleibt.

    - die gemessene Störung, d.h. eine gemessene Torsions­schwingung durch Korrektur des mittleren indizierten Zylinderdrucks von zwei oder in Sonderfällen einem Zylinder minimiert werden kann, d.h. die Störung durch die entsprechenden Zylinder erzeugt wird.
  • Die Zündfolge des Motors sei l, 6, 2, 4, 3, 5. Im Pol­diagramm l9 sind die berechneten Torsionsschwingungsvekto­ren l9l bis l96, erster Ordnung der Welle eines sechszylindri­gen Motors für alle sechs Fälle, dass einer der Zylinder eine 5 %ige Reduktion des mittleren indizierten Zylinder­drucks erbringt, gestrichelt eingezeichnet. Diese Vektoren l9l bis l96 bilden den sogenannten Korrekturkurbelstern erster Ordnung. Die Enden dieser Vektoren l9l bis l96 liegen auf einem Kreis, dessen Mittelpunkt M nicht im Nullpunkt P des Poldiagramms liegt, sondern um einen Vektor l90 ver­schoben ist. Dieser Vektor l90 entspricht dem Torsions­schwingungsvektor des idealen, d.h. vollständig ausge­glichenen Motors.
  • Subtrahiert man von den einzelnen Vektoren l9l bis l96 je diesen Vektor l90, so erhält man den verschobenen Korrektur­kurbelstern l9lʹ bis l96ʹ.
  • Dieser berechnete Kurbelstern l9lʹ bis l96ʹ dient nun für die Bestimmung der Korrekturen des mittleren indizierten Zylinderdrucks in einem oder zwei Zylindern.
  • Wird nun beispielsweise an der Welle eine Torsionschwingung S (Amplitude und Phase) gemessen und der Vektor in den ver­schobenen Korrekturkurbelstern eingezeichnet, so liegt S zwischen zwei Vektoren des verschobenen Korrekturkurbel­sterns, in unserem Beispiel zwischen den Vektoren l9lʹ und l96ʹ, oder fällt in die Richtung eines der Vektoren l9lʹ bis l96ʹ. Die Zerlegung des Amplituden-Vektors S in die beiden Vektoren S₁ und S₆ in Richtung der beiden Vektoren des Korrekturkurbelsterns, wird also als Störung der beiden Zylinder l und 2 interpretiert. Da der Korrek­turkurbelstern auf der Annahme von Minderleistungen der gestörten Zylinder basiert, aber die Zylinder auch zuviel leisten könnten, muss diese Zerlegung in der richtigen Vektorbasis gerechnet werden. Diese Basis ist ein Paar aus den Vektoren Z₁, Z₆, Z₃ und Z₄. Der Korrekturfaktor für die zwei Zylinder einer Paarkombination ergibt sich somit direkt aus dem Korrekturkurbelstern.
  • In Wirklichkeit können einer, oder mehrere Zylinder ge­stört sein. Die vereinfachte Annahme, jede Störung auf beispielsweise zwei gestörte Zylinder zurückzuführen, macht es in der Regel notwendig, die Minimierung iterativ, d.h. in mehreren Schritten durchzuführen. Ein einziger Korrekturfaktor für nur einen Zylinder ergibt sich dann, wenn der Vektor der gemessenen Störung mit einem der Vektoren l9lʹ bis l96ʹ zusammenfällt.
  • Obschon die Berechnung der Korrekturfaktoren für die Stö­rungen erster Ordnung hier aus Gründen der Anschaulichkeit an einem graphischen Beispiel erläutert wurde, ist es zwecksmässig, die Korrekturfaktoren in der Einspritzpumpen­steuerung 5 rechnerisch, d.h. numerisch zu ermitteln. In analoger Weise können auch die Korrekturfaktoren für die Minimierung der Torsionsschwingungen zweiter Ordnung be­stimmt werden.
  • Die beschriebene Art der Minimierung der Torsionsschwin­gungen hat sich in der Praxis als sehr günstig erwiesen. Die Erfindung ist keineswegs auf die beschriebenen Aus­führungsbeispiele beschränkt, sondern umfasst irgend­welche Verfahren zur Verbesserung des Gleichlaufs von Hubkolbenbrennkraftmaschinen, bei denen auf den indizier­ten Mitteldruck einwirkende Korrekturfaktoren in anderer Weise ermittelt werden.
  • Die Erfindung wurde anhand von Beispielen, die sich auf Dieselmotoren beziehen erläutert. Prinzipiell ist das Verfahren aber für jede Hubkolbenbrennkraftmaschine mit volumetrischer Brennstoffzufuhr zu den Zylindern anwendbar.

Claims (13)

1. Verfahren zum Verbessern des Gleichlaufs einer drei- ­oder mehrzylindrigen Hubkolbenbrennkraftmaschine im stationären Betriebszustand, dadurch gekenn­zeichnett, dass die Torsionsschwingungen wenigstens einer Ordnung der Antriebswelle (l2, 22) minimiert werden, indem der indizierte Zylindermittel­druck und damit die anregenden Momente wenigstens eines Zylinders (l6l, l62, l63, l64, l65, l66) verändert werden.
2. Verfahren nach Anspruch l, dadurch gekennzeichnet, dass der indizierte Zylindermitteldruck durch Verändern der Einspritzmenge verändert wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Torsionsschwingungen der Antriebswelle oder einer mit ihr gekoppelten weiteren Welle (l2, 22) mit einer Torsionsschwingungs-Messvorrichtung (3) laufend ge­messen wird, dass die Fourier-Analyse der Torsions­schwingungen ermittelt wird, und dass in einem Rechner (5) aus Betrag und Phase der Torsionsschwingungsampli­tude verschiedener Ordnung Korrekturfaktoren für die Veränderung des indizierten Zylindermitteldrucks minde­stens zweier Zylinder bestimmt werden, und dass diese Korrekturfaktoren die Einspritzmenge pro Einspritzvor­gang der Einspritzpumpe (6l, 62, 63, 64, 65, 66) mindestens einer dieser zwei Zylinder ändert.
4. Verfahren nach Anspruch l, 2 oder 3, dadurch gekenn­zeichnet, dass die Torsionsschwingungen erster und zweiter Ordnung minimiert werden.
5. Verfahren nach einem der Ansprüche l bis 4, dadurch ge­kennzeichnet, dass die Minimierung der Torsionsschwin­gungen iterativ, in mehreren Schritten erfolgt.
6. Verfahren nach einem der Ansprüche l bis 5, dadurch ge­kennzeichnet, dass die Torsionsschwingungen an der Welle (l23) eines elektrischen Generators (2, 9; 9l, 92, 93), welche von der Welle (l2) der Hubkolbenbrennkraft­maschine (l) direkt oder über ein Getriebe (8, 8l, 82, 83) angetrieben ist, oder welche eine Verlängerung (l23) der Welle (l2) der Hubkolbenbrennkraftmaschine ist, ge­messen wird, und dass mit der Minimierung der Torsions­schwingungen der Generatorwelle (l23, 89) auch die Tor­sionsschwingungen der Welle (l2) der Hubkolbenbrenn­kraftmaschine minimiert werden.
7. Hubkolbenbrennkraftmaschine zur Ausübung des Verfahrens nach Anspruch l, gekennzeichnet durch eine Vorrichtung (3) zum Messen der Torsionsschwingungen der Antriebs­welle oder einer mit dieser gekoppelten weiteren Welle, durch einen Fourier-Analysator (4), dem die Torsions­schwingungs-Messwerte zugeführt werden, durch einen Rechner (5), der aus Phase und Amplitude von Gliedern der Fourier-Analyse, Korrektursignale für die Kraft­stoff-Einspritzmenge wenigstens eines Zylinders bestimmt und einer Einspritzvorrichtung (6l, 62, 63, 64, 65, 66), welcher die Korrektursignale zugeführt werden, und wel­che die aufgrund der Korrektursignale veränderte Kraft­stoffmenge in die Zylinder eingespritzt und damit den indizierten Zylindermitteldruck dieser Zylinder ändert.
8. Hubkolbenbrennkraftmaschine nach Anspruch 7, dadurch gekennzeichnet, dass diese 3 bis l2 Zylinder aufweist.
9. Hubkolbenbrennkraftmaschine nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass diese ein langsamlaufen­der Zweitakt-Dieselmotor ist.
l0. Hubkolbenbrennkraftmaschine nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass eine axiale Verlängerung der Welle der Hubkolbenbrennkraftmaschi­ne als Welle eines elektrischen Generators ausgebildet ist und die Vorrichtung (3) zum Messen der Torsions­schwingungen derart angeordnet ist, dass die Torsions­schwingungen der Generatorwelle (l23) misst.
11. Hubkolbenbrennkraftmaschine nach einem der Ansprüche 7 bis l0, dadurch gekennzeichnet, dass zwischen der Hauptwelle (l2) der Hubkolbenbrennkraftmaschine (l) und einer Nebenwelle (89) ein Getriebe (8, 8l, 82, 83; 9l, 92, 93) angeordnet ist, und dass die Vorrichtung (3) zum Messen der Torsionsschwingungen derart angeordnet ist, dass die Torsonsschwingungen der Nebenwelle (9, 89) misst.
12. Hubkolbenbrennkraftmaschine nach einem der Ansprüche 7 bis ll, dadurch gekennzeichnet, dass ein gemeinsamer Rechner für die Fourier-Analyse der Torsionsschwingungen und die Bestimmung des Korrektursignals für die Ver­änderung des Einspritzvorgangs der Einspritzvorrich­tung (6l, 62, 63, 64, 65, 66) vorhanden ist.
13. Hubkolbenbrennkraftmaschine nach einem der Ansprüche 7 bis l2, dadurch gekennzeichnet, dass zwischen der Hauptwelle (l2) der Hubkolbenbrennkraftmaschine (l) und einer Nebenwelle ein Getriebe angeordnet ist, und dass die Vor­richtung zum Messen der Torsionsschwingungen derart angeordnet ist, dass sie die Torsionsschwingungen der Nebenwelle (9, 89) misst.
EP19870108248 1986-06-23 1987-06-06 Verfahren zum Verbessern des Gleichlaufs mit einer Hubkolbenbrennkraftmaschine und Hubkolbenbrennkraftmaschine zum Ausüben des Verfahrens Expired - Lifetime EP0254005B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH252486A CH674398A5 (de) 1986-06-23 1986-06-23
CH2524/86 1986-06-23

Publications (2)

Publication Number Publication Date
EP0254005A1 true EP0254005A1 (de) 1988-01-27
EP0254005B1 EP0254005B1 (de) 1990-01-31

Family

ID=4235730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870108248 Expired - Lifetime EP0254005B1 (de) 1986-06-23 1987-06-06 Verfahren zum Verbessern des Gleichlaufs mit einer Hubkolbenbrennkraftmaschine und Hubkolbenbrennkraftmaschine zum Ausüben des Verfahrens

Country Status (6)

Country Link
EP (1) EP0254005B1 (de)
JP (1) JP2686261B2 (de)
CH (1) CH674398A5 (de)
DE (1) DE3761577D1 (de)
DK (1) DK162853C (de)
FI (1) FI89404C (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0447697A2 (de) * 1990-03-23 1991-09-25 Mitsubishi Jukogyo Kabushiki Kaisha Vorrichtung zur Unterdrückung der Torsionsschwingungen einer Dieselmotorkurbelwelle
WO1994029580A1 (en) * 1993-06-04 1994-12-22 Man B & W Diesel A/S Internal combustion engine
EP0710841A2 (de) * 1994-11-07 1996-05-08 Eaton Corporation Analysator für Vibrationen in Kraftübertragungsorganen
WO2000055484A1 (de) * 1999-03-12 2000-09-21 Continental Isad Electronic Systems Gmbh & Co. Ohg Vorrichtung zum dämpfen von ungleichförmigkeiten im antriebsstrang eines verbrennungsmotorgetriebenen kraftfahrzeuges
EP1435446A2 (de) * 2003-01-02 2004-07-07 FERRARI S.p.A. Verfahren zur Reduzierung von Resonanzen in einem Antriebstrang eines Fahrzeuges mit Verbrennungsmotor
WO2005124132A1 (en) * 2004-06-17 2005-12-29 Man B & W Diesel A/S Vibration reduction in large diesel engines
US7082932B1 (en) * 2004-06-04 2006-08-01 Brunswick Corporation Control system for an internal combustion engine with a supercharger
EP1739296A1 (de) * 2005-06-30 2007-01-03 Wärtsilä Schweiz AG Verfahren zur Optimierung eines Betriebsparameters einer Hubkolbenbrennkraftmaschine, sowie Hubkolbenbrennkraftmaschine
CN115031978A (zh) * 2022-04-07 2022-09-09 哈尔滨工程大学 一种基于连杆瞬态应力的柴油机曲轴扭振模型标定方法
CN115217664A (zh) * 2021-06-07 2022-10-21 广州汽车集团股份有限公司 一种气缸压力控制方法、装置及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI121150B (fi) 2005-11-30 2010-07-30 Waertsilae Finland Oy Mäntäpolttomoottorisysteemin laitteisto ja menetelmä tunnistamaan epäyhtenäinen sylinteriteho-osuus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0113510A2 (de) * 1982-12-09 1984-07-18 General Motors Corporation Dieselkraftstoff-Einspritzpumpe mit adaptiver Momentausgleichssteuerung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026131A (ja) * 1983-07-22 1985-02-09 Toyota Motor Corp 内燃機関のトルク制御装置
JPH0650080B2 (ja) * 1984-05-30 1994-06-29 日本電装株式会社 内燃機関用燃料噴射量制御方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0113510A2 (de) * 1982-12-09 1984-07-18 General Motors Corporation Dieselkraftstoff-Einspritzpumpe mit adaptiver Momentausgleichssteuerung

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTERNATIONAL CONFERENCE ON VEHICLE CONDITION MONITORING AND FAULT DIAGNOSIS, London, 6.-7. März 1985, Seiten 15-24, Mechanical Engineering Publications Ltd, London, GB; J.W. FREESTONE et al.: "The diagnosis of cylinder power faults in diesel engines by flywheel speed measurement" *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 63 (M-365)[1786], 20. März 1985; & JP-A-59 196 950 (MITSUBISHI JIDOSHA KOGYO K.K.) 08-11-1984 *
RESEARCH DISCLOSURE, Nr. 180, April 1979, Nr. 18002, Havant., Hants., GB; "Adaptive balance control for injection system" *
SAE TRANSACTIONS, INDEX ABSTRACTS, 1976, Seite 36, Nr. 760146, Society of Automotive Engineers, US; S.C. HADDEN et al.: "Non-contact diagnosis of internal combustion engine faults through remote sensing" *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0447697A2 (de) * 1990-03-23 1991-09-25 Mitsubishi Jukogyo Kabushiki Kaisha Vorrichtung zur Unterdrückung der Torsionsschwingungen einer Dieselmotorkurbelwelle
EP0447697A3 (en) * 1990-03-23 1992-03-04 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus for suppressing torsional vibration of a crank shaft of a diesel engine
WO1994029580A1 (en) * 1993-06-04 1994-12-22 Man B & W Diesel A/S Internal combustion engine
CN1044732C (zh) * 1993-06-04 1999-08-18 曼·B及W柴油机公司 内燃机
EP0710841A2 (de) * 1994-11-07 1996-05-08 Eaton Corporation Analysator für Vibrationen in Kraftübertragungsorganen
EP0710841A3 (de) * 1994-11-07 1998-11-18 Dana Corporation Analysator für Vibrationen in Kraftübertragungsorganen
WO2000055484A1 (de) * 1999-03-12 2000-09-21 Continental Isad Electronic Systems Gmbh & Co. Ohg Vorrichtung zum dämpfen von ungleichförmigkeiten im antriebsstrang eines verbrennungsmotorgetriebenen kraftfahrzeuges
EP1435446A3 (de) * 2003-01-02 2005-01-26 FERRARI S.p.A. Verfahren zur Reduzierung von Resonanzen in einem Antriebstrang eines Fahrzeuges mit Verbrennungsmotor
EP1435446A2 (de) * 2003-01-02 2004-07-07 FERRARI S.p.A. Verfahren zur Reduzierung von Resonanzen in einem Antriebstrang eines Fahrzeuges mit Verbrennungsmotor
US7212900B2 (en) 2003-01-02 2007-05-01 Ferrari S.P.A. Method of reducing resonance phenomena in a transmission train of a vehicle internal combustion engine
US7082932B1 (en) * 2004-06-04 2006-08-01 Brunswick Corporation Control system for an internal combustion engine with a supercharger
WO2005124132A1 (en) * 2004-06-17 2005-12-29 Man B & W Diesel A/S Vibration reduction in large diesel engines
KR100940528B1 (ko) * 2004-06-17 2010-02-10 맨 디젤 필리얼 아프 맨 디젤 에스이, 티스크랜드 대형 디젤 엔진의 진동 감소
CN1977099B (zh) * 2004-06-17 2010-09-01 曼B与W狄赛尔公司 十字头式大型活塞发动机的操作方法及相应构造的发动机
EP1739296A1 (de) * 2005-06-30 2007-01-03 Wärtsilä Schweiz AG Verfahren zur Optimierung eines Betriebsparameters einer Hubkolbenbrennkraftmaschine, sowie Hubkolbenbrennkraftmaschine
CN115217664A (zh) * 2021-06-07 2022-10-21 广州汽车集团股份有限公司 一种气缸压力控制方法、装置及存储介质
CN115217664B (zh) * 2021-06-07 2023-09-29 广州汽车集团股份有限公司 一种气缸压力控制方法、装置及存储介质
CN115031978A (zh) * 2022-04-07 2022-09-09 哈尔滨工程大学 一种基于连杆瞬态应力的柴油机曲轴扭振模型标定方法

Also Published As

Publication number Publication date
JPS6312864A (ja) 1988-01-20
JP2686261B2 (ja) 1997-12-08
DK162853C (da) 1995-12-04
DK150087D0 (da) 1987-03-24
EP0254005B1 (de) 1990-01-31
DK162853B (da) 1991-12-16
DK150087A (da) 1987-12-24
DE3761577D1 (de) 1990-03-08
CH674398A5 (de) 1990-05-31
FI89404C (fi) 1993-09-27
FI89404B (fi) 1993-06-15
FI871638A (fi) 1987-12-24
FI871638A0 (fi) 1987-04-14

Similar Documents

Publication Publication Date Title
EP1242738B1 (de) Rundlaufregelung für dieselmotoren
EP3374617B1 (de) Verfahren zur kombinierten identifizierung einer kolbenhub-phasendifferenz, einer einlassventilhub-phasendifferenz und einer auslassventilhub-phasendifferenz eines verbrennungsmotors
EP3523528B1 (de) Verfahren zur kombinierten identifizierung einer einlassventilhub-phasendifferenz und einer auslassventilhub-phasendifferenz eines verbrennungsmotors mit hilfe von linien gleicher amplitude
DE3336028C2 (de)
EP3523529B1 (de) Verfahren zur kombinierten identifizierung von phasendifferenzen des einlassventilhubs und des auslassventilhubs eines verbrennungsmotors mittels linien gleicher phasenlagen und amplituden
DE3341200C2 (de) Verfahren und Anordnung zum Regeln des Luft/Brennstoff-Verhältnisses bei einem Verbrennungsmotor
EP1664512B1 (de) Verfahren zur steuerung und regelung einer brennkraftmaschine
DE19633066C2 (de) Verfahren zur zylinderselektiven Steuerung einer selbstzündenden Brennkraftmaschine
EP0254005B1 (de) Verfahren zum Verbessern des Gleichlaufs mit einer Hubkolbenbrennkraftmaschine und Hubkolbenbrennkraftmaschine zum Ausüben des Verfahrens
DE3116552A1 (de) Kraftstoffeinspritzeinrichtung
DE102004054711A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1568874A2 (de) Verfahren und Vorrichtung zur Steuerung des Volumenstroms in einem Kraftstoff-Einspritzsystem einer Brennkraftmaschine
DE19745765B4 (de) Mehrzylindriger Verbrennungsmotor mit einem elektronischen Steuersystem
DE102017120838A1 (de) Automatisches kalibrierungssystem und verfahren für einen dualkraftstoff-verbrennungsmotor
DE4021886A1 (de) Kraftstoff-einspritzsystem fuer eine brennkraftmaschine
DE3403260C2 (de)
DE3622814C2 (de)
DE4143094A1 (de) Anordnung fuer eine elektronische steuerung von brennstoffinjektoren fuer einen verbrennungsmotor
DE3919778C2 (de)
DE102011077698A1 (de) Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
AT508410A1 (de) Schwingungskompensierter freikolbenmotor
DE3511432A1 (de) Verfahren und anordnung zur brennraumidentifikation bei einer brennkraftmaschine
DE3223433A1 (de) Verfahren und vorrichtung zur regelung von brennkraftmaschinen
EP0406765B1 (de) Verfahren und Vorrichtung zur Drehzahlregelung eines langsamlaufenden, mehrzylindrischen Dieselmotors
EP0463537A2 (de) Verfahren zur prüfstandslosen Ermittlung technischer Kennwerte von Verbrennungsmotoren und deren Einzelzylindern und Vorrichtung zum Durchführen dieses Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19880720

17Q First examination report despatched

Effective date: 19890118

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3761577

Country of ref document: DE

Date of ref document: 19900308

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920505

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930606

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060614

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060616

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070606

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20070606