EP0254005B1 - Verfahren zum Verbessern des Gleichlaufs mit einer Hubkolbenbrennkraftmaschine und Hubkolbenbrennkraftmaschine zum Ausüben des Verfahrens - Google Patents

Verfahren zum Verbessern des Gleichlaufs mit einer Hubkolbenbrennkraftmaschine und Hubkolbenbrennkraftmaschine zum Ausüben des Verfahrens Download PDF

Info

Publication number
EP0254005B1
EP0254005B1 EP19870108248 EP87108248A EP0254005B1 EP 0254005 B1 EP0254005 B1 EP 0254005B1 EP 19870108248 EP19870108248 EP 19870108248 EP 87108248 A EP87108248 A EP 87108248A EP 0254005 B1 EP0254005 B1 EP 0254005B1
Authority
EP
European Patent Office
Prior art keywords
shaft
torsional vibrations
engine
torsional
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19870108248
Other languages
English (en)
French (fr)
Other versions
EP0254005A1 (de
Inventor
Jean Jenzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Sulzer AG filed Critical Gebrueder Sulzer AG
Publication of EP0254005A1 publication Critical patent/EP0254005A1/de
Application granted granted Critical
Publication of EP0254005B1 publication Critical patent/EP0254005B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • the present invention relates to a method for improving the synchronism with a three- or multi-cylinder reciprocating piston internal combustion engine in the stationary operating state, in which the indicated mean pressure of at least one cylinder is changed, and to a reciprocating piston internal combustion engine for practicing the method.
  • the control and monitoring of the synchronism of such reciprocating internal combustion engines has hitherto been carried out by monitoring the speed of the output shaft or the shaft of a machine driven by the engine.
  • the regulation itself is carried out by changing the injection quantity of all injection pumps, which are connected to the individual cylinders in a certain cycle.
  • the invention provides a remedy here and ensures that the reciprocating piston internal combustion engine has a significantly improved synchronism behavior in this respect.
  • such a method for improving the synchronism of a three- or multi-cylinder reciprocating piston internal combustion engine is characterized in that the torsional vibrations of at least one order of the drive shaft system are minimized by:
  • the torsional vibrations on the drive shaft or on a shaft kinematically connected to the drive shaft are measured with a torsional vibration measuring device
  • the measured torsional vibrations are subjected to a Fourier analysis for torsional vibrations
  • correction factors for the change in the indicated mean cylinder pressure of at least two cylinders are determined from the determined amounts and phase positions of the torsional vibration amplitudes and from the comparison with predetermined torsional vibrations caused by the individual cylinders,
  • the correction factors cause a change in the injection quantity per injection process of the injection pump in at least one of these two cylinders.
  • the invention further relates to a reciprocating piston internal combustion engine according to claim 5 for carrying out the method and advantageous special embodiments of the method and the reciprocating piston internal combustion engine.
  • the six-cylinder two-stroke diesel engine 1 with turbocharger 11 and with the shaft 12 drives a generator 2, the rotor of the generator, such as drawn, mounted directly on the extension of the shaft 12 or the rotor shaft can be coupled to the shaft 12 of the diesel engine 1.
  • the torsional vibrations or their amplitudes and angular position are continuously measured with the torsional vibration meter 3 at the shaft end 123 and fed to the Fourier analyzer 4.
  • the Fourier decomposition of the torsional vibrations into members of different orders is carried out.
  • the cranking method is a simple approximation method, for example, the torsional vibrations are minimized iteratively, i.e. in several cycles or steps. Correction signals are generated at each step and are supplied to the relevant injection pumps 61, 62, 63, 64, 65, 66. Due to the corrections, a new steady state is established in the course of the diesel engine 1. After this has been reached, the torsional vibrations are measured and analyzed again in a further control cycle, and other correction signals are generated on the basis of the analysis results and the torsional vibrations are further minimized.
  • the control cycle advantageously extends over the time of several working cycles (revolutions) of the diesel engine 1. This ensures that the stochastic changes in the indicated cylinder mean pressure from ignition to ignition of the individual cylinders 161, 162, 163, 164, 165, 166 are the ones to be evaluated Only negligibly affect the torsional vibration signal.
  • torsional vibrations e.g. a device available on the market under the name angle encoder (optical incremental encoder, type G 70 from Litton).
  • An injection pump that is suitable for changing the injection quantity is e.g. described in DE-OS 31 00 725.2-13.
  • Fourier analyzers are also known and commercially available (e.g. CAT 2515 from Genrad).
  • the two-stroke diesel engine 1 from FIG. 2 with the six cylinders 161 to 166 drives the marine propeller 7 via the shaft 22.
  • the other end of the crankshaft 22 of the diesel engine is connected via a clutch 18 to a transmission gear 8, which drives a hydraulic pump 81 .
  • This pump 81 is part of a hydrostatic transmission which, together with the hydrostatic motor 82, forms a closed hydraulic pressure medium circuit.
  • the supply of this circuit with hydrostatic pressure medium, e.g. Oil is carried out by the low pressure station 83, which contains a pressure medium reservoir, a feed pump, an overflow line with an overflow valve, filter, etc.
  • the hydrostatic motor 82 drives the electric generator 9 via a shaft 89.
  • the speed of the shaft 89 and thus of the generator 9 is monitored by the sensor 84, from which the measured actual value is fed to the speed controller 85 and in which the actual value is also included the specified target value is compared.
  • the generator delivers the electrical energy to the vehicle electrical system 100.
  • the quantity of pressure medium flowing through the hydrostatic motor 82 is prevented by the control signals being fed via the signal line 86 to an actuator in the motor 82.
  • the torsional vibration meter 3 measures the torsional vibrations of the shaft of the generator 9.
  • the determination of the correction signals which are fed to the injection pumps 61, 62, 63, 64, 65, 66 are carried out in the same way as for the system from FIG. 1 described, determined.
  • the torsional vibrations generated by the diesel engine 1 are partially transmitted to the engine 82 and the shaft of the generator via the hydrostatic circuit.
  • the shaft 17 drives the diesel engine 1 via the coupling 71 and shaft 73 the adjustable ship propeller 72.
  • the shaft 17 of the diesel engine 1 on the other side of the diesel engine drives the generator 9 via a transmission 91, which outputs the electrical current to the electrical system 100.
  • the torsional vibrations or their amplitudes and angular position are measured with the torsional vibration meter 3 on the shaft of the generator and continuously fed to the Fourier analyzer 4.
  • the Fourier decomposition of the torsional vibrations into links of different orders is carried out in the Fourier analyzer 4 and a comparison with predefined target values then takes place.
  • the correction signals for the change in the injection quantity of the injection pumps 61, 62, 63, 64, 65, 66 are in the injection pump controller 5, which comprises a computer, on the basis of, for example, the elements of the first and second order, e.g. determined by the Kurbeister method, which is explained with reference to FIG. 3.
  • the shaft 17 of the diesel engine drives over the Coupling 71, the shaft 73 with the adjustable ship propeller 72.
  • the gear 92 is connected as a secondary gear to the shaft of the diesel engine 1 and drives the generator 9 via a coupling 94.
  • the generator supplies electrical energy to the vehicle electrical system 100.
  • the torsional vibrations of the Shaft of the generator with the torsional vibration meter 3 continuously determined according to amplitude and angular position and fed to the Fourier analyzer 4.
  • the torsional vibrations are broken down into links of different orders in the Fourier analyzer 4 and then compared with predetermined target values.
  • the shaft 17 of the diesel engine 1 drives the shaft 73 with the adjustable ship propeller 72 via the coupling 71.
  • the transmission 93 is driven directly by the shaft 73 and in turn drives the generator via the coupling 94 9.
  • the generator 9 supplies electrical energy to the vehicle electrical system 100.
  • the amplitude and angular position of the torsional vibrations are continuously measured on the shaft of the generator 9 and fed to the Fourier analyzer 4.
  • the torsion vibrations are broken down into the members of different orders, and then a comparison with predetermined target values takes place.
  • the correction signals for the injection pumps 61, 62, 63, 64, 65 and 66 can be determined in the systems of FIGS. 2A, 2B and 2C in the same way as described for FIG. 1.
  • the firing order of the engine is 1, 6, 2, 4, 3, 5.
  • the calculated torsional vibration vectors 191 to 196 are first order of the shaft of a six-cylinder engine for all six cases that one of the cylinders has a 5% reduction in yields mean indicated cylinder pressure, shown in dashed lines.
  • These vectors 191 to 196 form the so-called first-order correction crank stars.
  • the ends of these vectors 191 to 196 lie on a circle whose center M does not lie in the zero point P of the pole diagram, but is shifted by a vector 190.
  • This vector 190 corresponds to the ideal torsional vibration vector, i.e. fully balanced engine.
  • This calculated Kurbeistern 191 'to 196' is now used to determine the corrections to the mean indicated cylinder pressure in one or two cylinders.
  • each fault can be attributed to two faulty cylinders, for example, generally makes it necessary to carry out the iteration iteratively, ie in several steps.
  • a single correction factor for only one cylinder results when the Vek the measured disturbance coincides with one of the vectors 191 'to 196'.
  • correction factors for the first-order disturbances has been explained here for the sake of clarity using a graphic example, it is expedient to calculate the correction factors in the injection pump control 5 arithmetically, i.e. to be determined numerically.
  • the correction factors for minimizing the second-order torsional vibrations can also be determined in an analogous manner.
  • the described way of minimizing the torsional vibrations has proven to be very favorable in practice.
  • the invention is in no way limited to the exemplary embodiments described, but rather comprises any method for improving the synchronism of reciprocating piston internal combustion engines, in which correction factors acting on the indicated medium pressure are determined in a different way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Verbessern des Gleichlaufs mit einer drei- oder mehrzylindrigen Hubkolbenbrennkraftmaschine im stationären Betriebszustand, bei der der indizierte Mitteldruck mindestens eines Zylinders verändert wird, sowie auf eine Hubkolbenbrennkraftmaschine zum Ausüben des Verfahrens.
  • Die Steuerung und Ueberwachung des Gleichlaufs derartiger Hubkolbenbrennkraftmaschinen, wie beispielsweise Dieselmotoren, erfolgt bisher mit der Ueberwachung der Drehzahl der Abtriebswelle oder der Welle einer vom Motor angetriebenen Maschine. Die Regelung selbst erfolgt über die Aenderung der einspritzmenge aller Einspritzpumpen, welche in einem bestimmten Zylus den einzelnen Zylindem zugeschaltet werden.
  • Diese bekannte Art der Regelung berücksichtigt und regelt die Konstanz der Drehzahl in dem Sinne, dass mit der Veränderung der Einspritzmenge diese für sämtliche Zylinder in gleicher Weise verändert wird, wenn man davon ausgeht, dass die Einspritzmenge in jedem Zylinder gleich gross ist. Die Publikation C33/85 der Institution of Mechanical Engineers Conference 1985-2, Seite 15-24, (Mechanical Engineering Publications Limited, London) zeigt mit dem Beitrag "Vehicle Condition Monitoring and Fault Diagnosis" ein Messmodell und die Möglichkeit, um fehlbare Zylinder eines mehrzylindrigen Dieselmotors im stationären Zustand eines Kurbelwellenumgangs festzustellen. Drehzahlschwankungen werden dabei mittels Fourier-Analyse beobachtet.
  • Eine weitere Art der Drehzahlregelung wird in EP-A 0 113510 beschrieben, indem bezogen auf eine gemittelte Betriebsdrehzahl die Drehzahlabweichung respektive der Zeitunterschied für ein vorbestimmtes Drehwinkelintervall an der Motorwelle gemessen wird, diese Drehzahlabweichung jeweils zyklisch mit der Zündfolge einem bestimmten Zylinder zugeteilt wird und indem entgegen zur Drehzahlabweichung auf die Einspritzzeit und damit die Einspritzmenge an den zugeteilten Zylindern eine Regelung einwirkt, um eine gleichgrosse Drehzahlschwankung über alle an der Motorwelle gemessenen Drehwinkelintervalle zu erreichen.
  • Derartige Regelungen nehmen kaum Rücksicht auf die Torsionsschwingungen des beteiligten Wellensystems und deren Auswirkungen auf die angetriebenen Aggregate, die somit bei bisher bekannten Drehzahlregelung unberücksichtigt bleiben.
  • Es gibt Fälle, wo diese Art der Regelung nicht ausreichend ist und bei denen die durch Torsionsschwingungen der Wellen entstehenden Drehzahlunterschiede oder dadurch entstehende Aenderungen der Winkelgeschwindigkeit innerhalb einer Umdrehung schon störend sein können. Beispielsweise kann dieser durch Torsionsschwingungen erzeugte Ungleichlauf in dieselgetriebenen elektrischen Maschinen, wie Generatoren, sich störend auswirken. Bei derartigen Anlagen, die etwa mit langsamlaufenden Zweitakt-Dieselmotoren (z.B. 80 bis 120/min) angetrieben werden, liegt in vielen Fällen die Erregungsfrequenz für Torsionsschwingungen erster und zweiter Ordnung der Welle (einfache oder doppelte Drehfrequenz) in der Nähe der elektrischen Eigenfrequenz des Generators. Dabei kann der Fall eintreten, dass die Amplituden der Torsionsschwingungen dieser Ordnungen dynamisch mehrfach vergrössert werden, wobei im Verbundbetrieb das mechanische Wellensystem als Ganzes gegen das starre Verbundnetz schwingt, was beispielsweise zu Leistungspendelungen führen kann. In einem selbständigen Netz (Inselbetrieb) wiederum kann dies Lichtflimmern zur Folge haben. Die Erfindung schafft hier Abhilfe und gewährleistet ein in dieser Hinsicht wesentlich verbessertes Gleichlaufverhalten der Hubkolbenbrennkraftmaschine. Erfindungsgemäss ist ein derartiges Verfahren zum Verbessern des Gleichlaufs einer drei- oder mehrzylindrigen Hubkolbenbrennkraftmaschine dadurch gekennzeichnet, dass die Torsionsschwingungen wenigstens einer Ordnung des Antriebswellensystems minimiert werden, indem
  • in einem ersten Verfahrensschritt die Torsionsschwingungen an der Antriebswelle oder an eine kinematisch mit der Antriebswelle verbundenen Welle mit einer Torsionsschwingungs-Messvorrichtung gemessen werden,
  • in einem zweiten Verfahrensschritt die gemessenen Torsionsschwingungen einer Fourier-Analyse für Torsionsschwingungen unterworfen werden,
  • in einem dritten Verfahrensschritt in einem Rechner aus den ermittelten Beträgen und Phasenlagen der Torsionsschwingungsamplituden und aus dem Vergleich mit vorbestimmten Torsionsschwingungen, die durch die einzelnen Zylinder hervorgerufen werden, Korrekturfaktoren für die Veränderung des indizierten Zylindermitteldrucks mindestens zweier Zylinder bestimmt werden,
  • in einem vierten Verfahrensschritt die Korrekturfaktoren eine Veränderung der Einspritzmenge pro Einspritzvorgang der Einspritzpumpe bei mindestens einem dieser zwei Zylinder bewirken.
  • Die Erfindung betrifft ferner eine Hubkolbenbrennkraftmaschine nach Anspruch 5 zur Ausführung des Verfahrens sowie vorteilhafte besondere Ausführungsformen des Verfahrens bzw. der Hubkolbenbrennkraftmaschine.
  • Die Erfindung wird am Beispiel der Zeichnungen näher erläutert. Es zeigen:
    • Fig. 1 schematisch einen sechszylindrigen Dieselmotor mit Generator und erfindungsgemässer Anlage für die Verbesserung des Gleichlaufs des Dieselmotors;
    • Fig. 2, 2A, 2B, 2C je schematisch einen sechszylindigen Schiffsdieselmotor mit nebengeschaltetem Bordnetz-Generator und erfindungsgemisser Anlage für die Verbesserung des Gleichlaufs des Dieselmotors;
    • Fig. 3 das Poldiagramm der Torsionsschwingungen erster Ordnung der Welle eines Sechszylinder-Dieselmotors bzw. einer vom Dieselmotor angetriebenen Welle.
  • Der sechszylindrige Zweitakt-Dieselmotor 1 mit Aufladegruppe 11 und mit der Welle 12 treibt einen Generator 2, wobei der Rotor des Generators, wie gezeichnet, direkt auf der Verlängerung der Welle 12 montiert oder die Rotorwelle mit der Welle 12 des Dieselmotors 1 gekuppelt sein kann. Die Torsionsschwingungen bzw. deren Amplituden und Winkellage werden mit dem Torsionsschwingungsmesser 3 am Wellenende 123 laufend gemessen und dem Fourier-Analysator 4 zugeführt. Im Fourier-Analysator 4 wird die Fourier-Zerlegung der Torsionsschwingungen in die Glieder verschiedener Ordnung durchgeführt.
  • Vorerst spritzen die Einspritzpumpen 61, 62, 63, 64, 65, 66, von denen je eine einem Zylinder 161, 162, 163, 164, 165, 166 zugeordnet ist, vorbestimmte, unter sich gleiche Mengen Brennstoff in die Zylinder. Sobald der Dieselmotor den stationären Betriebszustand erreicht hat, wird der Schalter 45 geschlossen und die Fourier-Signale des Fourier-Analysators gelangen nun zur Einspritzpumpensteuerung 5, welche einen Rechner umfasst, der aufgrund beispielsweise der Glieder erster und zweiter Ordnung nach z.B. der Kurbelsternmethode, die anhand von Fig. 3 erklärt wird, und durch Vergleich mit einem Sollzustand bestimmt:
    • 1. welcher oder welche der Zylinder 161, 162, 163, 164, 165, 166 die Anregung der Torsionsschwingungen dieser Ordnung verursachen und
    • 2. welche Korrektur der Einspritzmenge in welchen Zylindem erforderlich ist, um die Torsionsschwingungen dieser Ordnung zu minimieren.
  • Da es sich bei der Kurbelstemmethode beispielsweise um ein einfaches Näherungsverfahren handelt, erfolgt die Minimierung der Torsionsschwingungen iterativ, d.h. in mehreren Zyklen oder Schritten. Bei jedem Schritt werden Korrektursignale erzeugt, die den betreffenden Einspritzpumpen 61, 62, 63, 64, 65, 66 zugeführt werden. Aufgrund der Korrekturen stellt sich im Lauf des Dieselmotors 1 ein neuer stationärer Zustand ein. Nachdem dieser erreicht ist, werden in einem weiteren Regelzyklus wieder die Torsionsschwingungen gemessen und analysiert und aufgrund der Analyseergebnisse andere Korrektursignale erzeugt und die Torsionsschwingungen weiter minimiert.
  • In der Regel wird ein günstiger stationärer Betriebszustand mit minimalen, nicht mehr störenden Torsionsschwingungen z.B. erster und zweiter Ordnung der Welle 12 oder auch höhrer Ordnungen nach einigen Regelzyklen der beschriebenen Art erreicht.
  • Der Regelzyklus erstreckt sich dabei mit Vorteil über die Zeit mehrerer Arbeitszyklen (Umdrehungen) des Dieselmotors 1. Damit wird erreicht, dass die stochastischen Aenderungen des indizierten Zylindermitteldrucks von Zündung zu Zündung der einzelnen Zylinder 161, 162, 163, 164, 165, 166 das auszuwertende Torsionsschwingungssignal nur in vernachlässigbarer Weise beeinträchtigen.
  • Für die Erfassung der Torsionsschwingungen eignet sich z.B. eine unter der Bezeichnung Winkelkodierer (optical incremental encoder, Typ G 70 der Firma Litton) im Markt erhältliche Vorrichtung. Eine Einspritzpumpe, die sich für die Änderung der Einspritzmenge eignet, ist z.B. in der DE-OS 31 00 725.2-13 beschrieben. Fourier-Analysatoren sind ebenfalls bekannt und im Handel erhältlich (z.B. CAT 2515 der Firma Genrad).
  • Der Zweitakt-Dieselmotor 1 von Fig. 2 mit den sechs Zylindern 161 bis 166 treibt über die Welle 22 den Schiffsantriebsporpeller 7. Das andere Ende der Kurbelwelle 22 des Dieselmotors ist über eine Kupplung 18 mit einem Uebersetzungsgetriebe 8 verbunden, welches eine hydraulische Pumpe 81 antreibt. Diese Pumpe 81 ist ein Teil eines hydrostatischen Getriebes, das zusammen mit dem hydrostatischen Motor 82 einen geschlossenen hydraulischen Druckmittelkreislauf bildet. Die Versorgung dieses Kreislaufs mit hydrostatischem Druckmittel, z.B. Oel, erfolgt durch die Niederdruckstation 83, die ein Druckmittelreservoir, eine Zubringerpumpe, eine Ueberströmleitung mit Ueberströmventil, Filter usw. enthält. Der hydrostatische Motor 82 treibt über eine Welle 89 den elektrischen Generator 9. Die Drehzahl der Welle 89 und damit des Generators 9 wird mit dem Messfühler 84 überwacht, von welchem der gemessene Ist-Wert dem DrehzahlRegler 85 zugeführt und in weichem der Ist-Wert mit dem vorgegebenen Soll-Wert verglichen wird. Der Generator gibt die elektrische Energie an das Bordnetz 100 ab. Bei Abweichungen von Ist- und Soll-Wert wird die Menge des den hydrostatischen Motor 82 durchströmenden Druckmittels verhindert, indem die Reglersignale über die Singalleitung 86 einem Stellorgan im Motor 82 zugeführt werden. In diesem Beispiel misst der Torsionsschwingungsmesser 3 die Torsionsschwingungen der Welle des Generators 9. Die Bestimmung der Korrektursignale, welche den Einspritzpumpen 61, 62, 63, 64, 65, 66 zugeführt werden, werden in gleicher Weise, wie oben für die Anlage von Fig. 1 beschrieben, bestimmt. Die vom Dieselmotor 1 erzeugten Torsionsschwingungen werden über den hydrostatischen Kreislauf auf den Motor 82 und die Welle des Generators teilweise übertragen.
  • Bei der in Fig. 2A dargestellten Schiffsdieselanlage treibt die Welle 17 den Dieselmotor 1 über die Kupplung 71 und Welle 73 den verstellbaren Schiffsantriebspropeller 72. Die Welle 17, des Dieselmotors 1 auf der anderen Seite des Dieselmotors treibt über ein Getriebe 91 den Generator 9, der den elektrischen Strom an das Bordnetz 100 abgibt. Die Torsionsschwingungen bzw. deren Amplituden und Winkellage werden mit dem Torsionsschwingungsmesser 3 an der Welle des Generators gemessen und laufend dem Fourier-Analysator 4 zugeführt. Im FourierAnalysator 4 wird die Fourier-Zerlegung der Torsionsschwingungen in die Glieder verschiedener Ordnung durchgeführt und anschliessend findet ein Vergleich mit vorgegebenen Sollwerten statt. Die Korrektursignale für die Veränderung der Einspritzmenge der Einspritzpumpen 61, 62, 63, 64, 65, 66 werden in der EinspritzpumpenSteuerung 5, welche einen Rechner umfasst, aufgrund beispielsweise der Glieder erster und zweiter Ordnung, z.B. nach der Kurbeisternmethode, die anhand von Fig. 3 erklärt wird, bestimmt.
  • Bei der in Fig. 2B dargestellten Schiffsdieselanlage treibt die Welle 17 des Dieselmotors über die Kupplung 71 die Welle 73 mit dem verstellbaren Schiffsantriebspropeller 72. Das Getriebe 92 ist als Nebengetriebe an der Welle des Dieselmotors 1 angeschlossen und treibt über eine Kupplung 94 den Generator 9. Der Generator liefert elektrische Energie an das Bordnetz 100. Auch hier werden die Torsionsschwingungen der Welle des Generators mit dem Torsionsschwingungsmesser 3 nach Amplitude und Winkellager dauernd bestimmt und dem Fourier-Analysator 4 zugeführt. Auch hier erfolgt im Fourier-Analysator 4 die Zerlegung der Torsionsschwingungen in die Glieder verschiedener Ordnung und anschliessend der Vergleich mit vorgegebenen Sollwerten.
  • Bei der in Fig. 2C dargestellten Schiffsdieselanlage treibt die Welle 17 des Dieselmotors 1 über die Kupplung 71 die Welle 73 mit dem verstellbaren Schiffsantriebspropeller 72. In dieser Anlage wird das Getriebe 93 direkt von der Welle 73 angetrieben und treibt seinerseits über die Kupplung 94 den Generator 9. Der Generator 9 liefert elektrische Energie an das Bordnetz 100. wiederum werden an der Welle des Generators 9 Amplitude und Winkellage der Torsionsschwingungen laufend gemessen und dem Fourier-Analysator 4 zugeführt. Im Fourier-Analysator 4 erfolgt die Fourier-Zerlegung der Torsionsschwingungen in die Glieder verschiedener Ordnung und anschliessend findet ein Vergleich mit vorgegebenen Sollwerten statt. Die Bestimmung der Korrektursignale für die Einspritzpumpen 61, 62, 63, 64, 65 und 66 kann bei den Anlagen von Fig. 2A, 2B und 2C in gleicher Weise wie zu Fig. 1 beschrieben erfolgen.
  • Die Verbesserung des Gleichlaufs des Dieselmotors 1 und auch der vom Dieselmotor angetriebenen Generatoren 9 erfordert, dass sich der Dieselmotor im wesentlichen in einem stationären Betriebszustand befindet. Dies ist bei Schiffsdieselanlagen allgemein, und vermehrt noch bei Schiffsdieselanlagen mit verstellbaren Schiffsantriebspropeller, im Fahrbetrieb über grössere Zeiträume der Fall. Die hydraulischen oder mechanischen Getriebe 91, 92, 93 vermögen beispielsweise die Drehzahl des Rotors innerhalb gewisser Grenzen von Drehzahländerungen, wie dies bei Schiffsantrieben mit nichtverstellbarem Schiffsantriebspropeller der Fall sein kann, konstant zu halten. Da ein Schiff über mehrere Bordgeneratoren verfügt, wird häufig die vom Antriebsdieselmotor getriebene Gruppe dem Bordnetz nur im Fahrbetrieb auf offener See, wo der Antriebsmotor mit konstanter Drehzahl läuft, zugeschaltet.
  • Es ist auch möglich, den Rotor des Generators 9 direkt auf die Welle 73 zu setzen und den Generator für eine bestimmte Drehzahl auszulegen, die der Drehzahl des Dieselmotors bei Dauerbetrieb entspricht. Damit würde dann beispielsweise in einer Anlage, wie in Fig. 2C dargestellt, das Getriebe 93 und die Kupplung 94 entfallen. Die Torsionsschwingungen würden in diesem Fall mit dem Torsionsschwingungsmesser 3 an der Welle 73 oder an der Welle 17 gemessen.
  • Anhand von Fig. 3 wird die Kurbelsternmethode für die Bestimmung der Korrekturfaktoren zur Korrektur der Einspritzmenge für die Minimierung der Torsionsschwingungen erster Ordnung erläutert. Im Kurbelsternverfahren geht man beispielsweise von den vereinfachenden Annahmen aus, dass
    • - der mittlere indizierte Zylinderdruck eines Zylinders nicht mehr als 5 % vom Soll-Wert abweicht;
    • - sich die Störamplitude linear mit der Störung ändert und die Phase gleich bleibt;
    • - die gemessene Störung, d.h. eine gemessene Torsionsschwingung durch Korrektur des mittleren indizierten Zylinderdrucks von zwei oder in Sonderfällen einem Zylinder minimiert werden kann, d.h. die Störung durch die entsprechenden Zylinder erzeugt wird.
  • Die Zündfolge des Motors sei 1, 6, 2, 4, 3, 5. Im Poldiagramm 19 sind die berechneten Torsionsschwingungsvektoren 191 bis 196 erster Ordnung der Welle eines sechszylindrigen Motors für alle sechs Fälle, dass einer der Zylinder eine 5%-ige Reduktion des mittleren indizierten Zylinderdrucks erbringt, gestrichelt eingezeichnet. Diese Vektoren 191 bis 196 bilden den sogenannten Korrekturkurbelstern erster Ordnung. Die Enden dieser Vektoren 191 bis 196 liegen auf einem Kreis, dessen Mittelpunkt M nicht im Nullpunkt P des Poldiagramms liegt, sondern um einen Vektor 190 verschoben ist. Dieser Vektor 190 entspricht dem Torsionsschwingungsvektor des idealen, d.h. vollständig ausgeglichenen Motors.
  • Subtrahiert man von den einzelnen Vektoren 191 bis 196 je diesen Vektor 190, so erhält man den verschobenen Korrekturkurbeistern 191' bis 196'.
  • Dieser berechnete Kurbeistern 191' bis 196' dient nun für die Bestimmung der Korrekturen des mittleren indizierten Zylinderdrucks in einem oder zwei Zylindern.
  • wird nun beispielsweise an der Welle eine Torsionsschwingung S (Amplitude und Phase) gemessen und der Vektor in den verschobenen Korrekturkurbelstern eingezeichnet, so liegt S zwischen zwei Vektoren des verschobenen Korrekturkurbelsterns, in unserem Beispiel zwischen den Vektoren 191' und 196' oder fällt in die Richtung eines der Vektoren 191' bis 196'. Die Zerlegung des Amplituden-Vektors S in die beiden Vektoren si und s6 in Richtung der beiden Vektoren des Korrekturkurbelsterns wird also als Störung der beiden Zylinder 1 und 2 interpretiert. Da der Korrekturkurbeistem auf der Annahme von Minderleistungen der gestörten Zylinder basiert, aber die Zylinder auch zuviel leisten könnten, muss diese Zerlegung in der richtigen Vektorbasis gerechnet werden. Diese Basis ist ein Paar aus den Vektoren zi, zε, z3 und z4. Der Korrekturfaktor für die zwei Zylinder einer Paarkombination ergibt sich somit direkt aus dem Korrekturkurbeistern.
  • In Wirklichkeit können einer oder mehrere Zylinder gestört sein. Die vereinfachte Annahme, jede Störung auf beispielsweise zwei gestörte Zylinder zurückzuführen, macht es in der Regel notwendig, die Minimierung iterativ, d.h. in mehreren Schritten durchzuführen. Ein einziger Korrekturfaktor für nur einen Zylinder ergibt sich dann, wenn der Vektor der gemessenen Störung mit einem der Vektoren 191' bis 196' zusammenfällt.
  • Obschon die Berechnung der Korrekturfaktoren für die Störungen erster Ordnung hier aus Gründen der Anschaulichkeit an einem graphischen Beispiel erläutert wurde, ist es zweckmäßig, die Korrekturfaktoren in der Einspritzpumpensteuerung 5 rechnerisch, d.h. numerisch zu ermitteln. In analoger Weise können auch die Korrekturfaktoren für die Minimierung der Torsionsschwingungen zweiter Ordnung bestimmt werden.
  • Die beschriebene Art der Minimierung der Torsionsschwingungen hat sich in der Praxis als sehr günstig erwiesen. Die Erfindung ist keineswegs auf die beschriebenen Ausführungsbeispiele beschränkt, sondern umfasst irgendwelche Verfahren zur Verbesserung des Gleichlaufs von Hubkolbenbrennkraftmaschinen, bei denen auf den indizierten Mitteldruck einwirkende Korrekturfaktoren in anderer Weise ermittelt werden.
  • Die Erfindung wurde anhand von Beispielen, die sich auf Dieselmotoren beziehen, erläutert. Prinzipiell ist das Verfahren aber für jede Hubkolbenbrennkraftmaschine mit volumetrischer Brennstoffzufuhr zu den Zylindern anwendbar.

Claims (11)

1. Verfahren zum Verbessern des Gleichlaufs einer drei- oder mehrzylindrigen Hubkolbenbrennkraftmaschine im stationären Betriebszustand, bei der der indizierte Mitteldruck mindestens eines Zylinders verändert wird, dadurch gekennzeichnet, dass Torsionsschwingungen wenigstens einer Ordnung des Antriebssystems minimiert werden, indem
in einem ersten Verfahrensschritt die Torsionsschwingungen an der Antriebswelle oder an einer kinematisch mit der Antriebswelle verbundenen Welle (12, 22) mit einer Torsionsschwingungs-Messvorrichtung (3) gemessen werden,
in einem zweiten Verfahrensschritt die gemessenen Torsionsschwingungen einer Fourier-Analyse für Torsionsschwingungen unterworfen werden,
in einem dritten Verfahrensschritt in einem Rechner aus den ermittelten Beträgen und Phasenlagen der Torsionsschwingungsamplituden und aus dem Vergleich mit vorbestimmten Torsionsschwingungen, die durch die einzelen Zylinder (161, 162, 163, 164, 165, 166) hervorgerufen werden, Korrekturfaktoren für die Veränderung des indizierten Zylindermitteidrucks mindestens zweier Zylinder bestimmt werden,
in einem vierten Verfahrensschritt die Korrekturfaktoren eine Veränderung der Einspritzmenge pro Einspritzvorgang der Einspritzpumpe (61, 62, 63, 64, 65, 66) bei mindestens einem dieser zwei Zylinder bewirken.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Torsionsschwingungen erster und zweiter Ordnung minimiert werden.
3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die Minimierung der Torsionsschwingungen iterativ, in mehreren Schritten erfolgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Torsionsschwingungen an der Welle (123) eines elektrischen Generators (2, 9; 91, 92, 93), welche von der Welle (12) der Hubkolbenbrennkraftmaschine (1) direkt oder über ein Getriebe (8, 81, 82, 83) angetrieben ist, oder welche eine Verlängerung (123) der Welle (12) der Hubkolbenbrennkraftmaschine ist, gemessen wird, und dass mit der Minimierung der Torsionsschwingungen der Generatorwelle (123, 89) auch die Torsionsschwingungen der Welle (12) der Hubkolbenbrennkraftmaschine minimiert werden.
5. Hubkolbenbrennkraftmaschine zur Ausübung des Verfahrens nach Anspruch 1, gekennzeichnet durch eine Vorrichtung (3) zum Messen der Torsionsschwingungen der Antriebswelle oder einer mit dieser gekoppelten weiteren Welle, durch einen Fourier-Analysator (4), dem die Torsionsschwingungs-Messwerte zugeführt werden, durch einen Rechner (5), der aus Phase und Amplitude von Gliedern der Fourer-Analyse und aus dem Vergleich mit vorbestimmten Torsionsschwingungen, die durch die Zylinder (161,162,163,164,165,166) hervorgerufen werden, Korrektursignale für die KraftstoffEinspritzmenge wenigstens eines Zylinders bestimmt, und gekennzeichnet durch eine Einspritzvorrichtung (61, 62, 63, 64, 65, 66), welcher die Korrektursignale zugeführt werden und welche die aufgrund der Korrektursignale veränderte Kraftstoffmenge in die Zylinder einspritzt und damit den indizierten Zylindermitteldruck dieser Zylinder ändert.
6. Hubkolbenbrennkraftmaschine nach Anspruch 5, dadurch gekennzeichnet, dass diese drei bis zwölf Zylinder aufweist.
7. Hubkolbenbrennkraftmaschine nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass diese ein langsamlaufender Zweitakt-Dieselmotor ist.
8. Hubkolbenbrennkraftmaschine nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass eine axiale Verlängerung der Welle der Hubkolbenbrennkraftmaschine als Welle eines elektrischen Generators ausgebildet ist und die Vorrichtung (3) zum Messen der Torsionsschwingungen derart angeordnet ist, dass sie die Torsionsschwingungen der Generatorwelle (123) misst.
9. Hubkolbenbrennkraftmaschine nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass zwischen der Hauptwelle (12) der Hubkolbenbrennkraftmaschine (1) und einer Nebenwelle (89) ein Getriebe (8, 81, 82, 83; 91, 92, 93) angeordnet ist, und dass die Vorrichtung (3) zum Messen der Torsionsschwingungen derart angeordnet ist, dass sie die Torsionsschwingungen der Nebenwelle (9, 89) misst.
10. Hubkolbenbrennkraftmaschine nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass ein gemeinsamer Rechner für die Fourier-Analyse der Torsionsschwingungen für den Vergleich mit vorgegebenen Sollwerten und für die Bestimmung des Korrektursignals zur Veränderung des Einspritzvorgangs der Einspritzvorrichtung (61, 62, 63, 64, 65, 66) vorhanden ist.
11. Hubkolbenbrennkraftmaschine nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass zwischen der Hauptwelle (12) der Hubkolbenbrennkraftmaschine (1) und einer Nebenwelle ein Getriebe angeordnet ist, und dass die Vorrichtung zum Messen der Torsionsschwingungen derart angeordnet ist, dass sie die Torsionsschwingungen der Nebenwelle (9, 89) misst.
EP19870108248 1986-06-23 1987-06-06 Verfahren zum Verbessern des Gleichlaufs mit einer Hubkolbenbrennkraftmaschine und Hubkolbenbrennkraftmaschine zum Ausüben des Verfahrens Expired - Lifetime EP0254005B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH252486A CH674398A5 (de) 1986-06-23 1986-06-23
CH2524/86 1986-06-23

Publications (2)

Publication Number Publication Date
EP0254005A1 EP0254005A1 (de) 1988-01-27
EP0254005B1 true EP0254005B1 (de) 1990-01-31

Family

ID=4235730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870108248 Expired - Lifetime EP0254005B1 (de) 1986-06-23 1987-06-06 Verfahren zum Verbessern des Gleichlaufs mit einer Hubkolbenbrennkraftmaschine und Hubkolbenbrennkraftmaschine zum Ausüben des Verfahrens

Country Status (6)

Country Link
EP (1) EP0254005B1 (de)
JP (1) JP2686261B2 (de)
CH (1) CH674398A5 (de)
DE (1) DE3761577D1 (de)
DK (1) DK162853C (de)
FI (1) FI89404C (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004307B2 (ja) * 1990-03-23 2000-01-31 三菱重工業株式会社 ディーゼル機関のクランク軸ねじり振動抑制装置
DK9300283U4 (da) * 1993-06-04 1994-10-14 Man B & W Diesel Gmbh Forbrændingsmotor
AR000059A1 (es) * 1994-11-07 1997-05-21 Eaton Corp Disposicion y metodo para medir y analizar la operacion de un componentegiratorio en la linea de transmision de un vehiculo.
DE19911096C2 (de) * 1999-03-12 2001-03-01 Gruendl & Hoffmann Vorrichtung zum Dämpfen von Ungleichförmigkeiten im Antriebsstrang eines verbrennungsmotorgetriebenen Kraftfahrzeuges
ITBO20030001A1 (it) * 2003-01-02 2004-07-03 Ferrari Spa Metodo per la riduzione dei fenomeni di risonanza in una linea
US7082932B1 (en) * 2004-06-04 2006-08-01 Brunswick Corporation Control system for an internal combustion engine with a supercharger
WO2005124133A1 (en) * 2004-06-17 2005-12-29 Man B & W Diesel A/S Vibration reduction by combustion parameter control of large diesel engines
EP1739296B1 (de) * 2005-06-30 2013-03-06 Wärtsilä Schweiz AG Verfahren zur Optimierung eines Betriebsparameters einer Hubkolbenbrennkraftmaschine, sowie Hubkolbenbrennkraftmaschine
FI121150B (fi) 2005-11-30 2010-07-30 Waertsilae Finland Oy Mäntäpolttomoottorisysteemin laitteisto ja menetelmä tunnistamaan epäyhtenäinen sylinteriteho-osuus
CN115217664B (zh) * 2021-06-07 2023-09-29 广州汽车集团股份有限公司 一种气缸压力控制方法、装置及存储介质
CN115031978A (zh) * 2022-04-07 2022-09-09 哈尔滨工程大学 一种基于连杆瞬态应力的柴油机曲轴扭振模型标定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539956A (en) * 1982-12-09 1985-09-10 General Motors Corporation Diesel fuel injection pump with adaptive torque balance control
JPS6026131A (ja) * 1983-07-22 1985-02-09 Toyota Motor Corp 内燃機関のトルク制御装置
JPH0650080B2 (ja) * 1984-05-30 1994-06-29 日本電装株式会社 内燃機関用燃料噴射量制御方法

Also Published As

Publication number Publication date
JPS6312864A (ja) 1988-01-20
JP2686261B2 (ja) 1997-12-08
DK162853C (da) 1995-12-04
DK150087D0 (da) 1987-03-24
DK162853B (da) 1991-12-16
DK150087A (da) 1987-12-24
DE3761577D1 (de) 1990-03-08
CH674398A5 (de) 1990-05-31
FI89404C (fi) 1993-09-27
FI89404B (fi) 1993-06-15
EP0254005A1 (de) 1988-01-27
FI871638A (fi) 1987-12-24
FI871638A0 (fi) 1987-04-14

Similar Documents

Publication Publication Date Title
EP1242738B1 (de) Rundlaufregelung für dieselmotoren
EP0254005B1 (de) Verfahren zum Verbessern des Gleichlaufs mit einer Hubkolbenbrennkraftmaschine und Hubkolbenbrennkraftmaschine zum Ausüben des Verfahrens
DE102020104290B4 (de) Fehlzündungs-Erfassungsvorrichtung für einen Verbrennungsmotor, Fehlzündungs-Erfassungssystem für einen Verbrennungsmotor, Datenanalysevorrichtung, Controller für einen Verbrennungsmotor, Verfahren zum Erfassen einer Fehlzündung eines Verbrennungsmotors und Empfangsausführungsvorrichtung
EP3374617B1 (de) Verfahren zur kombinierten identifizierung einer kolbenhub-phasendifferenz, einer einlassventilhub-phasendifferenz und einer auslassventilhub-phasendifferenz eines verbrennungsmotors
EP3523529B1 (de) Verfahren zur kombinierten identifizierung von phasendifferenzen des einlassventilhubs und des auslassventilhubs eines verbrennungsmotors mittels linien gleicher phasenlagen und amplituden
EP3523528B1 (de) Verfahren zur kombinierten identifizierung einer einlassventilhub-phasendifferenz und einer auslassventilhub-phasendifferenz eines verbrennungsmotors mit hilfe von linien gleicher amplitude
EP1664512B1 (de) Verfahren zur steuerung und regelung einer brennkraftmaschine
DE102016117342B4 (de) Vorrichtung zum Detektieren einer Fehlzündung
DE102008021581B3 (de) Verfahren zur Bestimmung des Raildruckes in einem Common-Rail-System und Common-Rail-Einspritzsystem
DE19633066A1 (de) Verfahren zur zylinderselektiven Steuerung einer selbstzündenden Brennkraftmaschine
DE19745765B4 (de) Mehrzylindriger Verbrennungsmotor mit einem elektronischen Steuersystem
DE4021886A1 (de) Kraftstoff-einspritzsystem fuer eine brennkraftmaschine
DE102011077698B4 (de) Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
DE102012110028B4 (de) Lernvorrichtung für eine Verbrennungsmaschine
DE102011008907B4 (de) Kraftstoffeinspritzungs-Steuervorrichtung und zugehöriges Verfahren
DE3919778C2 (de)
DE19926982C2 (de) Motordrehzahl-Berechnungsvorrichtung
AT516669B1 (de) Verfahren zur Steuerung einer Brennkraftmaschine
DE102016204263B4 (de) Verfahren zum Gleichstellen von Zylindern einer Brennkraftmaschine
EP0463537B1 (de) Verfahren zur prüfstandslosen Ermittlung technischer Kennwerte von Verbrennungsmotoren und deren Einzelzylindern und Vorrichtung zum Durchführen dieses Verfahrens
WO1991017350A1 (de) Verfahren und vorrichtung zur bestimmung der einer brennkraftmaschine mit intermittierender einspritzung während des betriebs zuzuführenden kraftstoffmenge
DE3233486A1 (de) Brennstoffeinspritzanlage fuer eine brennkraftmaschine
DE3223433A1 (de) Verfahren und vorrichtung zur regelung von brennkraftmaschinen
EP0406765B1 (de) Verfahren und Vorrichtung zur Drehzahlregelung eines langsamlaufenden, mehrzylindrischen Dieselmotors
EP1058108B1 (de) Verfahren und Vorrichtung zur Diagnose bzw. Steuerung von Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19880720

17Q First examination report despatched

Effective date: 19890118

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3761577

Country of ref document: DE

Date of ref document: 19900308

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920505

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930606

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060614

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060616

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070606

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20070606