EP0234989B1 - Herstellungsverfahren einer feldeffektangeregten Kathodenlumineszenz-Wiedergabevorrichtung - Google Patents

Herstellungsverfahren einer feldeffektangeregten Kathodenlumineszenz-Wiedergabevorrichtung Download PDF

Info

Publication number
EP0234989B1
EP0234989B1 EP87400140A EP87400140A EP0234989B1 EP 0234989 B1 EP0234989 B1 EP 0234989B1 EP 87400140 A EP87400140 A EP 87400140A EP 87400140 A EP87400140 A EP 87400140A EP 0234989 B1 EP0234989 B1 EP 0234989B1
Authority
EP
European Patent Office
Prior art keywords
coating
process according
production process
holes
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87400140A
Other languages
English (en)
French (fr)
Other versions
EP0234989A1 (de
Inventor
Michel Borel
Jean-François Boronat
Robert Meyer
Philippe Rambaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0234989A1 publication Critical patent/EP0234989A1/de
Application granted granted Critical
Publication of EP0234989B1 publication Critical patent/EP0234989B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group

Definitions

  • the present invention relates to a method of manufacturing a display device by cathodoluminescence excited by field emission or cold emission. It applies in particular to the production of simple matrix displays, allowing the viewing of fixed images, and to the production of complex multiplexed screens, allowing the viewing of moving images, of the television image type.
  • This display device comprises a display cell 2, sealed and evacuated, comprising two glass walls 4 and 6, located opposite one another.
  • the lower wall 6 of the cell 2 is equipped with a first series of conductive strips 8, mutually parallel, playing the role of cathodes and a second series of conductive strips 10, parallel to each other, playing the role of grids.
  • the conductive strips 10 are oriented perpendicular to the conductive strips 8 and isolated from the conductive strips 8 by an insulating and continuous layer 12, in particular made of silica.
  • the conductive strips 8 and 10 respectively represent columns and rows. Each crossing of a line and a column corresponds to an elementary display point 14.
  • the conductive strips or grids 10 and the insulating layer 12 are pierced with a large number of holes 16 in which are housed microemitters or electron microchannels.
  • Each elementary display point 14 corresponds to a multitude of micro-transmitters.
  • microemitters each consist of a metal cone 18 emitting electrons when a suitable electric field is applied to them.
  • These metal cones 18 rest by their base directly on the cathodes 8 and the top of these cones is substantially at the level of the conductive strips 10.
  • the base diameter of the cones and their height are for example of the order of 1 lim.
  • the upper wall 4 of the cell 2, as shown in FIG. 1, is provided with a continuous conductive layer 20 acting as an anode.
  • This anode 20 is covered with a layer 22 made of a material emitting light when it is subjected to an electronic bombardment coming from the microemitters 18.
  • the emission of electrons by a microemitter 18 can be achieved by simultaneously polarizing the cathode 8 and the grids 10 located opposite, as well as the anode 20.
  • the anode 20 can in particular be brought to ground, the grids 10 are , either brought to the potential of the anode, or negatively polarized with respect to the latter using a voltage source 24.
  • the cathodes 8 are negatively polarized with respect to the grid using a source voltage 26.
  • the cathodes 8 and the grids 10 can be polarized sequentially in order to make appear a point-by-point image on the display cell 2. The image is observed from the side of the upper wall 4 of the cell.
  • the number of microemitters 18 per display point 14, that is to say by crossing a cathode and a grid, is generally high, which makes it possible to have a more uniform emission characteristic of one display point to another (average effect); this gives a certain redundancy of the microemitters making it possible to tolerate a certain proportion of microemitters not functioning.
  • the number of microemitters is between 10 4 and 10 5 transmitters per mm 2 . Consequently, traditional manufacturing, requiring precise positioning of the microemitters facing the cathodes and grids, would be complex and would increase the cost of the display device.
  • the object of the present invention is precisely a relatively simple and inexpensive method for manufacturing a display device operating by cathodoluminescence excited by field effect as described above.
  • This method has the advantage of simple implementation. In particular, it allows the production of electron microemitters in the holes formed in the second and third layers, distributed over the entire display device, without requiring precise positioning with respect to the cathodes and grids. Only microemitters located at an intersection of a cathode and a grid are effectively active.
  • an insulating intermediate layer is advantageously interposed between the substrate and the first conductive layer, in which the cathodes are made.
  • the first conductive layer In order to minimize the resistance to access to the microemitters, the first conductive layer must be made of a material that conducts electricity well. Furthermore, this first conductive layer must have good compatibility with the second insulating layer and in particular good adhesion and must be inert with respect to the etching method of this second insulating layer.
  • the first conductive layer is made of a material chosen from indium oxide, tin oxide and aluminum. Indium oxide and tin oxide are preferably used for producing screens of small dimensions and of low complexity such as screens used for viewing still images.
  • aluminum is preferably used when producing complex multiplexed screens and of large dimensions used in particular for viewing animated images of the television image type.
  • the second insulating layer In order to minimize the capacitances between the cathodes and the grids, and therefore to minimize the response time of the microemitters, the second insulating layer must have as low a dielectric constant as possible. To this end, this second insulating layer is preferably made of silicon oxide (Si0 2 ) or silica.
  • This silicon oxide layer can be deposited by the chemical vapor deposition (CVD) technique, by sputtering or by vacuum evaporation.
  • CVD chemical vapor deposition
  • the chemical vapor deposition technique is preferably used, a technique which makes it possible to obtain an oxide layer of uniform quality and of constant thickness.
  • the opening of the holes in the insulating layer in particular of silicon oxide, can be carried out by dry or wet etching techniques well known to those skilled in the art.
  • the third conductive layer in which the grids are formed must be made of a material having good adhesion to the second insulating layer, for example made of silicon oxide, as well as good chemical resistance to the various products used to make the microemitters.
  • the third conductive layer is preferably made of a metal chosen from niobium, tantalum and aluminum.
  • this third conductive layer of a size close to one micron, the formation of these holes is advantageously carried out by an anisotropic dry etching technique.
  • the fourth layer playing the role of mask for the deposition of the fifth layer is made of metal and in particular nickel.
  • the deposition of this fourth layer of nickel is advantageously carried out by evaporation under vacuum at a grazing incidence so as not to cover the holes made in the second and third layers.
  • the elimination of this metallic layer is advantageously carried out by electrochemical dissolution.
  • the choice of the material of the fifth layer is essentially dictated by these properties with respect to the emission by field effect or cold emission as well as by its chemical resistance to the techniques of deposition and elimination of the fourth layer serving the production of microemitters.
  • the electron-emitting material can be hafnium, niobium, molybdenum, zirconium, lanthanum hexaboride (LaB s ), titanium carbide, tantalum carbide, hafnium carbide, carbide zirconium, etc. We choose for example molybdenum.
  • the cleaning of the lower substrate 6 is first of all carried out in order to obtain good flatness and a good surface condition to allow optimized production of the microemitters.
  • the substrate 6 can be a glass or ceramic plate.
  • a layer of silicon oxide (Si0 2 ) 7 of approximately 100 nm is then deposited by sputtering.
  • the insulating layer 7 is then covered with a conductive layer 8a of indium oxide in which the cathodes 8 will be produced.
  • This layer of indium oxide has a thickness of 160 nm, and can be deposited by sputtering.
  • a positive resin mask 11 representing the image of the cathodes to be produced.
  • the layer of indium oxide 8a is etched to form, as shown in FIG. 4, cathodes 8 0.7 mm wide at a pitch P of 1 mm.
  • the etching of the layer 8a is carried out by chemical attack with orthophosphoric acid brought to 110 ° C.
  • the etching of the layer of indium oxide 8a is carried out over the entire thickness of the layer.
  • the resin mask is then removed by chemical dissolution. 1 0
  • the silicon oxide layer 12 is then deposited, as shown in FIG. 5, by the technique chemical vapor deposition from silane, phosphine and oxygen gases.
  • This oxide layer 12 has a thickness of 1 li m.
  • the oxide layer 12 is then completely covered with a conductive layer 10a in which the grids will be produced subsequently. 20 this layer 10a is deposited by vacuum evaporation. It has a thickness of 0.4 ⁇ m and is made of niobium.
  • a resin mask 13 is then formed on the conductive layer 10a by the conventional photolithography methods 25 (resin deposition, irradiation, development). This resin mask 13 represents the positive image of the holes to be produced in the grid layer 10a and the insulating layer 12.
  • the holes 16 are made in the layer of grid material 10a and the insulating layer 12. These holes 16 pass right through the layers 10a and 12.
  • the etchings of layers 10a and 12 are produced successively.
  • the etching of the layer 10a is carried out by a reactive ion etching (GIR) process using a sulfur hexafluoride plasma (SF 6 ).
  • GIR reactive ion etching
  • SF 6 sulfur hexafluoride plasma
  • the holes 16 made in the conductive layer 10a have a diameter equal to 50 1.31 ⁇ m to ⁇ 0.1 ⁇ m.
  • the holes in the silica layer 12 are produced, for example by chemical attack by immersing the structure in an attack solution of hydrofluoric acid and ammonium fluoride.
  • the resin mask 55 is chemically removed 55.
  • the profile of the holes 16 thus produced is illustrated in FIG. 7.
  • a layer of 60 nickel 23 is deposited by evaporation under vacuum at a grazing incidence relative to the surface of the structure; the angle a formed between the axis of evaporation and the surface of the layer 10a is close to 15 ° .
  • the nickel layer 23 has a thickness of 150 nm. 6 5 This deposition technique makes it possible not to plug the holes 16.
  • a layer of molybdenum 18a is deposited on the entire structure.
  • This layer 18a has a thickness of 1.8 ⁇ m. It is deposited under normal incidence relative to the surface of the structure; this deposition technique makes it possible to obtain cones 18 of molybdenum housed in the 1 holes 16 having a height of 1.2 to 1.5 ⁇ m.
  • the nickel layer 23 is then selectively dissolved by an electrochemical process so as to release, as shown in FIG. 9, the perforated niobium layer 10a and to reveal the 15 electron-emitting microtips 18.
  • etching the layer 10a and an etching of the insulating layer 12 in order to disengage the ends 9 of the cathode 8 to allow a later 20 ment the electrical contacting of these cathodes.
  • This etching is carried out through a resin mask (not shown), obtained according to conventional photolithography methods, the resin forming the mask must have a sufficiently high viscosity 25 in order to cover all the holes 16 formed in the niobium layer 10a and the silicon oxide layer 12.
  • the etching of the niobium layer 10a is performed as above by a reactive ion etching process 30 and the etching of the silica layer 12 by etching.
  • a resin mask 25 is then produced on the structure obtained representing the image of the grids 10 to be produced in the niobium layer 10a.
  • This mas- 35 as resin is formed using conventional photolithography methods. Then carried out, through the mask 25, a dry etching of the reactive ionic type with SF 6 so as to release the conductive strips 10 perpendicular to the 40 conductive strips 8.
  • the resin mask 25 is then removed by chemical attack.
  • the structure obtained after elimination of the mask 25 is that shown in FIG. 11.
  • a conductive layer 20 is made of indium oxide (In 2 0 3 ) or tin oxide (Sn0 2 ) by sputtering corresponding to the anode of the display cell 2.
  • This layer 20 has a thickness of 50 of the order of 100 nm.
  • the anode 20 is then covered with a cathodoluminescent layer 22 by sputtering.
  • This layer 22 is made of zinc oxide and has a thickness of 1 wm.
  • the substrate 4 covered with the anode 20 and the cathodoluminescent material 55 is then presented above the grids 10.
  • a space of 30 to 50 ⁇ m is maintained between the cathodoluminescent material 22 and the grids 10 by means of spacers glass 27 randomly distributed.
  • the periphery of the anode 20 is hermetically welded to the lower part of the cell, by means of a fusible glass 29. The assembly obtained is then placed under vacuum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Claims (11)

1. Verfahren zum Herstellen einer feldangeregten Kathodenlumineszenz-Wiedergabevorrichtung, das folgende, sukzessive Schritte aufweist:
- Abscheiden einer ersten, leitfähigen Schicht (8a) auf einem isolierenden Substrat,
- Atzen der ersten Schicht (8a) zur Herstellung leitfähiger, paraleler Bänder (8), die die Rolle der Kathoden spielen,
- Abscheiden einer zweiten, isolierenden Schicht (12) auf die erhaltene Struktur,
- Abscheiden einer dritten, leitfähigen Schicht (10a) auf die zweiten Schicht (12),
- Öffnen von Löchern (16) in die dritte Schicht (10a), die auf der zweiten (12) und ersten (8) Schicht enden, wobei diese Löcher (16) auf der gesamten Oberfläche der dritten Schicht verteilt sind,
- Abscheiden einer vierten Schicht (23) auf die dritte, geätzte Schicht (10a), wobei die vierte Schicht (23) die Löcher weder bedeckt noch verstopft,
- Abscheiden einer fünften Schicht (18a) eines Elektronen emittierenden Materials, das auch in die Löcher bis auf deren Boden eindringt, über die gesamte, erhaltene Struktur,
- Entfernen der vierten Schicht (23), wodurch das Entfernen des Elektronen emittierenden Materials, das die vierte Schicht überlagert, und das Belassen dieses Emittermaterials in dem Löchern bewirkt wird,
- Ätzen der dritten (10a) und zweiten (12) Schicht, um wenigstens eines der Enden (9) der ersten, leitfähigen Bänder (8) offenzulegen,
- Ätzen der dritten Schicht (10a), um zweite parallele, leitfähige Bänder herzustellen, die als Gitter (10) dienen, wobei sich die ersten und zweiten Bänder kreuzen, und
- Herstellen einer Anode (20) und einer Schicht aus Kathodenlumineszenzmaterial (22) gegenüber den zweiten, leitfähigen Bändern (10).
2. Herstellungsversfahren nach Anspruch 1, dadurch gekennzeichnet, daß man zwischen das Substrat (6) und die erste Schicht (8a) eine isolierende Zwischenschicht (7) einfügt.
3. Herstellungsverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die erste Schicht aus einem Material besteht, das aus Indiumoxyd, Zinnoxyd und Aluminium ausgewählt ist.
4. Herstellungsvefahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die zweite Schicht (12) aus Siliziummoxyd (SI02) besteht.
5. Herstellungsverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die zweite Schicht (12) mittels chemischer Dampfphasenabscheidung abgeschieden wird.
6. Herstellungsverfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die dritte Schicht (10a) aus einem aus Niob, Tantal und Aluminium ausgewählten Metall besteht.
7. Herstellungsverfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man die Löcher (16) in der dritten Schicht (10a) durch ein anisotropes Trockenätzverfahren herstellt.
8. Herstellungsverfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die vierte Schicht (23) aus Nickel besteht und daß das Entfernen dieser vierten Schicht (23) durch elektromechanische Lösung durchgeführt wird.
9. Herstellungsverfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die vierte Schicht (23) durch Vakuumverdampfung unter einem flachen Winkel (a) bezüglich der Oberfläche der Struktur aufgebracht wird.
10. Herstellungsverfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die fünfte Schicht (18a) durch Vakuumverdampfung von Molybdän erhalten wird.
11. Herstellungsverfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Anode (20) aus einer kontinuierlichen, leitfähigen Schicht besteht, die mit einer kontinuierlichen, aus einem kathodenlumineszierenden Material (22) bestehenden Schicht bedeckt ist, wobei die Anode (20) auf einem transparanten, isolierenden Träger (4) abgeschieden wird.
EP87400140A 1986-01-24 1987-01-21 Herstellungsverfahren einer feldeffektangeregten Kathodenlumineszenz-Wiedergabevorrichtung Expired - Lifetime EP0234989B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8601024 1986-01-24
FR8601024A FR2593953B1 (fr) 1986-01-24 1986-01-24 Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ

Publications (2)

Publication Number Publication Date
EP0234989A1 EP0234989A1 (de) 1987-09-02
EP0234989B1 true EP0234989B1 (de) 1990-09-05

Family

ID=9331463

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400140A Expired - Lifetime EP0234989B1 (de) 1986-01-24 1987-01-21 Herstellungsverfahren einer feldeffektangeregten Kathodenlumineszenz-Wiedergabevorrichtung

Country Status (5)

Country Link
US (1) US4857161A (de)
EP (1) EP0234989B1 (de)
JP (1) JPH07111869B2 (de)
DE (1) DE3764668D1 (de)
FR (1) FR2593953B1 (de)

Families Citing this family (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8720792D0 (en) * 1987-09-04 1987-10-14 Gen Electric Co Plc Vacuum devices
FR2623013A1 (fr) * 1987-11-06 1989-05-12 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source
FR2634059B1 (fr) * 1988-07-08 1996-04-12 Thomson Csf Microcomposant electronique autoscelle sous vide, notamment diode, ou triode, et procede de fabrication correspondant
FR2637123B1 (fr) * 1988-09-26 1995-12-15 Commissariat Energie Atomique Vidicon plat a lecture matricielle par cathodes a micropointes
GB8908871D0 (en) * 1989-04-19 1989-06-07 Hugle William B Manufacture of flat panel displays
FR2647580B1 (fr) * 1989-05-24 1991-09-13 Clerc Jean Dispositif d'affichage electroluminescent utilisant des electrons guides et son procede de commande
US5160871A (en) * 1989-06-19 1992-11-03 Matsushita Electric Industrial Co., Ltd. Flat configuration image display apparatus and manufacturing method thereof
US5007873A (en) * 1990-02-09 1991-04-16 Motorola, Inc. Non-planar field emission device having an emitter formed with a substantially normal vapor deposition process
US5047830A (en) * 1990-05-22 1991-09-10 Amp Incorporated Field emitter array integrated circuit chip interconnection
FR2663462B1 (fr) * 1990-06-13 1992-09-11 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
US5103145A (en) * 1990-09-05 1992-04-07 Raytheon Company Luminance control for cathode-ray tube having field emission cathode
JP2656851B2 (ja) * 1990-09-27 1997-09-24 工業技術院長 画像表示装置
US5332627A (en) * 1990-10-30 1994-07-26 Sony Corporation Field emission type emitter and a method of manufacturing thereof
GB9027618D0 (en) * 1990-12-20 1991-02-13 Smiths Industries Plc Displays
FR2716571B1 (fr) * 1994-02-22 1996-05-03 Pixel Int Sa Procédé de fabrication de cathode d'écran fluorescent à micropointes et produit obtenu par ce procédé .
US5245248A (en) * 1991-04-09 1993-09-14 Northeastern University Micro-emitter-based low-contact-force interconnection device
US5220725A (en) * 1991-04-09 1993-06-22 Northeastern University Micro-emitter-based low-contact-force interconnection device
US5660570A (en) * 1991-04-09 1997-08-26 Northeastern University Micro emitter based low contact force interconnection device
DE69208154T2 (de) * 1991-06-10 1996-08-29 Motorola Inc Anzeigesystem für elektronische Einrichtungen
CA2070478A1 (en) * 1991-06-27 1992-12-28 Wolfgang M. Feist Fabrication method for field emission arrays
FR2679653B1 (fr) * 1991-07-23 1993-09-24 Commissariat Energie Atomique Vacumetre a ionisation.
US5227699A (en) * 1991-08-16 1993-07-13 Amoco Corporation Recessed gate field emission
US5536193A (en) * 1991-11-07 1996-07-16 Microelectronics And Computer Technology Corporation Method of making wide band gap field emitter
US5696028A (en) * 1992-02-14 1997-12-09 Micron Technology, Inc. Method to form an insulative barrier useful in field emission displays for reducing surface leakage
US5548185A (en) * 1992-03-16 1996-08-20 Microelectronics And Computer Technology Corporation Triode structure flat panel display employing flat field emission cathode
US6127773A (en) * 1992-03-16 2000-10-03 Si Diamond Technology, Inc. Amorphic diamond film flat field emission cathode
US5679043A (en) * 1992-03-16 1997-10-21 Microelectronics And Computer Technology Corporation Method of making a field emitter
US5675216A (en) * 1992-03-16 1997-10-07 Microelectronics And Computer Technololgy Corp. Amorphic diamond film flat field emission cathode
US5449970A (en) * 1992-03-16 1995-09-12 Microelectronics And Computer Technology Corporation Diode structure flat panel display
US5763997A (en) * 1992-03-16 1998-06-09 Si Diamond Technology, Inc. Field emission display device
US5686791A (en) * 1992-03-16 1997-11-11 Microelectronics And Computer Technology Corp. Amorphic diamond film flat field emission cathode
US5543684A (en) 1992-03-16 1996-08-06 Microelectronics And Computer Technology Corporation Flat panel display based on diamond thin films
EP0564028B1 (de) * 1992-04-02 1997-07-16 Koninklijke Philips Electronics N.V. Verfahren zum Herstellen einer zugespitzten Elektrode
US5278475A (en) * 1992-06-01 1994-01-11 Motorola, Inc. Cathodoluminescent display apparatus and method for realization using diamond crystallites
JPH06310043A (ja) * 1992-08-25 1994-11-04 Sharp Corp 電子放出デバイス
EP0589523B1 (de) * 1992-09-25 1997-12-17 Koninklijke Philips Electronics N.V. Anzeigevorrichtung
US5347292A (en) * 1992-10-28 1994-09-13 Panocorp Display Systems Super high resolution cold cathode fluorescent display
CA2112180C (en) * 1992-12-28 1999-06-01 Yoshikazu Banno Electron source and manufacture method of same, and image forming device and manufacture method of same
US5717285A (en) * 1993-03-17 1998-02-10 Commissariat A L 'energie Atomique Microtip display device having a current limiting layer and a charge avoiding layer
FR2707795B1 (fr) * 1993-07-12 1995-08-11 Commissariat Energie Atomique Perfectionnement à un procédé de fabrication d'une source d'électrons à micropointes.
US5378182A (en) * 1993-07-22 1995-01-03 Industrial Technology Research Institute Self-aligned process for gated field emitters
US5814367A (en) 1993-08-13 1998-09-29 General Atomics Broadband infrared and signature control materials and methods of producing the same
US5462467A (en) * 1993-09-08 1995-10-31 Silicon Video Corporation Fabrication of filamentary field-emission device, including self-aligned gate
US5404070A (en) * 1993-10-04 1995-04-04 Industrial Technology Research Institute Low capacitance field emission display by gate-cathode dielectric
FR2711450B1 (fr) * 1993-10-18 1996-01-05 Pixel Int Sa Installation et procédé pour la fabrication d'écrans plats de visualisation.
CN1134754A (zh) * 1993-11-04 1996-10-30 微电子及计算机技术公司 制作平板显示系统和元件的方法
US5461009A (en) * 1993-12-08 1995-10-24 Industrial Technology Research Institute Method of fabricating high uniformity field emission display
US5445550A (en) * 1993-12-22 1995-08-29 Xie; Chenggang Lateral field emitter device and method of manufacturing same
US5394006A (en) * 1994-01-04 1995-02-28 Industrial Technology Research Institute Narrow gate opening manufacturing of gated fluid emitters
US5451830A (en) * 1994-01-24 1995-09-19 Industrial Technology Research Institute Single tip redundancy method with resistive base and resultant flat panel display
FR2717304B1 (fr) * 1994-03-09 1996-04-05 Commissariat Energie Atomique Source d'électrons à cathodes émissives à micropointes.
FR2718269B1 (fr) * 1994-03-31 1996-06-28 Pixel Int Sa Procédé d'amélioration de la conductivité des conducteurs colonnes des écrans plats à micropointes, et écrans ainsi obtenus.
FR2719155B1 (fr) * 1994-04-25 1996-05-15 Commissariat Energie Atomique Procédé de réalisation de sources d'électrons à micropointes et source d'électrons à micropointes obtenue par ce procédé.
FR2719156B1 (fr) * 1994-04-25 1996-05-24 Commissariat Energie Atomique Source d'électrons à micropointes, les micropointes comportant deux parties.
US5538450A (en) * 1994-04-29 1996-07-23 Texas Instruments Incorporated Method of forming a size-arrayed emitter matrix for use in a flat panel display
US5629583A (en) * 1994-07-25 1997-05-13 Fed Corporation Flat panel display assembly comprising photoformed spacer structure, and method of making the same
US5504385A (en) * 1994-08-31 1996-04-02 At&T Corp. Spaced-gate emission device and method for making same
FR2724264B1 (fr) * 1994-09-06 1996-10-18 Commissariat Energie Atomique Antenne cylindrique utilisable pour generer un plasma dans les conditions de resonance cyclotronique electronique
EP0706164A1 (de) 1994-10-03 1996-04-10 Texas Instruments Incorporated Leistungssteuerung für Anzeigegeräte
FR2725558B1 (fr) 1994-10-10 1996-10-31 Commissariat Energie Atomique Procede de formation de trous dans une couche de resine photosensible application a la fabrication de sources d'electrons a cathodes emissives a micropointes et d'ecrans plats de visualisation
FR2726122B1 (fr) * 1994-10-19 1996-11-22 Commissariat Energie Atomique Procede de fabrication d'une source d'electrons a micropointes
FR2726688B1 (fr) * 1994-11-08 1996-12-06 Commissariat Energie Atomique Source d'electrons a effet de champ et procede de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence
FR2726689B1 (fr) * 1994-11-08 1996-11-29 Commissariat Energie Atomique Source d'electrons a effet de champ et procede de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence
US5557159A (en) * 1994-11-18 1996-09-17 Texas Instruments Incorporated Field emission microtip clusters adjacent stripe conductors
EP0713236A1 (de) 1994-11-18 1996-05-22 Texas Instruments Incorporated Elektron-emittierenden Vorrichtung
US5541466A (en) * 1994-11-18 1996-07-30 Texas Instruments Incorporated Cluster arrangement of field emission microtips on ballast layer
US5536993A (en) * 1994-11-18 1996-07-16 Texas Instruments Incorporated Clustered field emission microtips adjacent stripe conductors
US5569975A (en) * 1994-11-18 1996-10-29 Texas Instruments Incorporated Cluster arrangement of field emission microtips
US5608286A (en) * 1994-11-30 1997-03-04 Texas Instruments Incorporated Ambient light absorbing face plate for flat panel display
US6235105B1 (en) 1994-12-06 2001-05-22 General Atomics Thin film pigmented optical coating compositions
US5566011A (en) * 1994-12-08 1996-10-15 Luncent Technologies Inc. Antiflector black matrix having successively a chromium oxide layer, a molybdenum layer and a second chromium oxide layer
KR100343222B1 (ko) * 1995-01-28 2002-11-23 삼성에스디아이 주식회사 전계방출표시소자의제조방법
US5537738A (en) * 1995-02-10 1996-07-23 Micron Display Technology Inc. Methods of mechanical and electrical substrate connection
US5766053A (en) * 1995-02-10 1998-06-16 Micron Technology, Inc. Internal plate flat-panel field emission display
US5612256A (en) * 1995-02-10 1997-03-18 Micron Display Technology, Inc. Multi-layer electrical interconnection structures and fabrication methods
US5594297A (en) * 1995-04-19 1997-01-14 Texas Instruments Incorporated Field emission device metallization including titanium tungsten and aluminum
US5601466A (en) * 1995-04-19 1997-02-11 Texas Instruments Incorporated Method for fabricating field emission device metallization
US5628659A (en) * 1995-04-24 1997-05-13 Microelectronics And Computer Corporation Method of making a field emission electron source with random micro-tip structures
US6296740B1 (en) 1995-04-24 2001-10-02 Si Diamond Technology, Inc. Pretreatment process for a surface texturing process
FR2733253B1 (fr) 1995-04-24 1997-06-13 Commissariat Energie Atomique Dispositif pour deposer un materiau par evaporation sur des substrats de grande surface
US5630741A (en) * 1995-05-08 1997-05-20 Advanced Vision Technologies, Inc. Fabrication process for a field emission display cell structure
US5644188A (en) * 1995-05-08 1997-07-01 Advanced Vision Technologies, Inc. Field emission display cell structure
US5543691A (en) * 1995-05-11 1996-08-06 Raytheon Company Field emission display with focus grid and method of operating same
US5686782A (en) * 1995-05-30 1997-11-11 Texas Instruments Incorporated Field emission device with suspended gate
US5621272A (en) * 1995-05-30 1997-04-15 Texas Instruments Incorporated Field emission device with over-etched gate dielectric
US5589728A (en) * 1995-05-30 1996-12-31 Texas Instruments Incorporated Field emission device with lattice vacancy post-supported gate
US5759078A (en) * 1995-05-30 1998-06-02 Texas Instruments Incorporated Field emission device with close-packed microtip array
US5811929A (en) * 1995-06-02 1998-09-22 Advanced Vision Technologies, Inc. Lateral-emitter field-emission device with simplified anode
US5666024A (en) * 1995-06-23 1997-09-09 Texas Instruments Incorporated Low capacitance field emission device with circular microtip array
FR2737928B1 (fr) * 1995-08-17 1997-09-12 Commissariat Energie Atomique Dispositif d'insolation de zones micrometriques et/ou submicrometriques dans une couche photosensible et procede de realisation de motifs dans une telle couche
FR2737927B1 (fr) * 1995-08-17 1997-09-12 Commissariat Energie Atomique Procede et dispositif de formation de trous dans une couche de materiau photosensible, en particulier pour la fabrication de sources d'electrons
US5635791A (en) * 1995-08-24 1997-06-03 Texas Instruments Incorporated Field emission device with circular microtip array
US5818165A (en) * 1995-10-27 1998-10-06 Texas Instruments Incorporated Flexible fed display
US5669802A (en) * 1995-10-30 1997-09-23 Advanced Vision Technologies, Inc. Fabrication process for dual carrier display device
US5672933A (en) * 1995-10-30 1997-09-30 Texas Instruments Incorporated Column-to-column isolation in fed display
US5831384A (en) * 1995-10-30 1998-11-03 Advanced Vision Technologies, Inc. Dual carrier display device
US6680489B1 (en) 1995-12-20 2004-01-20 Advanced Technology Materials, Inc. Amorphous silicon carbide thin film coating
US6031250A (en) * 1995-12-20 2000-02-29 Advanced Technology Materials, Inc. Integrated circuit devices and methods employing amorphous silicon carbide resistor materials
US6252347B1 (en) 1996-01-16 2001-06-26 Raytheon Company Field emission display with suspended focusing conductive sheet
US20010045794A1 (en) * 1996-01-19 2001-11-29 Alwan James J. Cap layer on glass panels for improving tip uniformity in cold cathode field emission technology
US6027632A (en) * 1996-03-05 2000-02-22 Candescent Technologies Corporation Multi-step removal of excess emitter material in fabricating electron-emitting device
US5766446A (en) * 1996-03-05 1998-06-16 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
US5893967A (en) * 1996-03-05 1999-04-13 Candescent Technologies Corporation Impedance-assisted electrochemical removal of material, particularly excess emitter material in electron-emitting device
FR2751785A1 (fr) * 1996-07-29 1998-01-30 Commissariat Energie Atomique Procede et dispositif de formation de motifs dans une couche de resine photosensible par insolation laser continue, application a la fabrication de sources d'electrons a cathodes emissives a micropointes et d'ecrans plats
EP0834897B1 (de) 1996-10-04 2002-05-02 STMicroelectronics S.r.l. Herstellungsverfahren einer flachen Feldemissionsanzeige und nach diesem Verfahren hergestellte Anzeige
US6022256A (en) 1996-11-06 2000-02-08 Micron Display Technology, Inc. Field emission display and method of making same
US5836799A (en) * 1996-12-06 1998-11-17 Texas Instruments Incorporated Self-aligned method of micro-machining field emission display microtips
US5780960A (en) * 1996-12-18 1998-07-14 Texas Instruments Incorporated Micro-machined field emission microtips
US5938493A (en) * 1996-12-18 1999-08-17 Texas Instruments Incorporated Method for increasing field emission tip efficiency through micro-milling techniques
FR2757999B1 (fr) * 1996-12-30 1999-01-29 Commissariat Energie Atomique Procede d'auto-alignement utilisable en micro-electronique et application a la realisation d'une grille de focalisation pour ecran plat a micropointes
DE19811899A1 (de) * 1997-03-19 1998-09-24 Furukawa Electric Co Ltd Stromverteilungsanlage und Stromquellengerät für ein Fahrzeug
US6215243B1 (en) 1997-05-06 2001-04-10 St. Clair Intellectual Property Consultants, Inc. Radioactive cathode emitter for use in field emission display devices
US6323594B1 (en) 1997-05-06 2001-11-27 St. Clair Intellectual Property Consultants, Inc. Electron amplification channel structure for use in field emission display devices
US5982082A (en) * 1997-05-06 1999-11-09 St. Clair Intellectual Property Consultants, Inc. Field emission display devices
US6120674A (en) * 1997-06-30 2000-09-19 Candescent Technologies Corporation Electrochemical removal of material in electron-emitting device
US6007695A (en) * 1997-09-30 1999-12-28 Candescent Technologies Corporation Selective removal of material using self-initiated galvanic activity in electrolytic bath
FR2769751B1 (fr) 1997-10-14 1999-11-12 Commissariat Energie Atomique Source d'electrons a micropointes, a grille de focalisation et a densite elevee de micropointes, et ecran plat utilisant une telle source
US5949185A (en) * 1997-10-22 1999-09-07 St. Clair Intellectual Property Consultants, Inc. Field emission display devices
US6255772B1 (en) 1998-02-27 2001-07-03 Micron Technology, Inc. Large-area FED apparatus and method for making same
US6174449B1 (en) 1998-05-14 2001-01-16 Micron Technology, Inc. Magnetically patterned etch mask
FR2779243B1 (fr) 1998-05-26 2000-07-07 Commissariat Energie Atomique Procede de realisation par photolithographie d'ouvertures auto-alignees sur une structure, en particulier pour ecran plat a micropointes
US7002287B1 (en) * 1998-05-29 2006-02-21 Candescent Intellectual Property Services, Inc. Protected substrate structure for a field emission display device
US6710538B1 (en) * 1998-08-26 2004-03-23 Micron Technology, Inc. Field emission display having reduced power requirements and method
US6391670B1 (en) 1999-04-29 2002-05-21 Micron Technology, Inc. Method of forming a self-aligned field extraction grid
JP3600126B2 (ja) * 1999-07-29 2004-12-08 シャープ株式会社 電子源アレイ及び電子源アレイの駆動方法
US7052350B1 (en) * 1999-08-26 2006-05-30 Micron Technology, Inc. Field emission device having insulated column lines and method manufacture
US6384520B1 (en) * 1999-11-24 2002-05-07 Sony Corporation Cathode structure for planar emitter field emission displays
US6989631B2 (en) * 2001-06-08 2006-01-24 Sony Corporation Carbon cathode of a field emission display with in-laid isolation barrier and support
EP1266321A4 (de) * 2000-02-25 2003-05-21 Telecomm Systems Inc Kurznachrichten mit vorbezahlung
US6849856B1 (en) * 2001-04-17 2005-02-01 Si Diamond Technology, Inc. Electron beam duplication lithography method and apparatus
US6682382B2 (en) * 2001-06-08 2004-01-27 Sony Corporation Method for making wires with a specific cross section for a field emission display
US6756730B2 (en) * 2001-06-08 2004-06-29 Sony Corporation Field emission display utilizing a cathode frame-type gate and anode with alignment method
US7002290B2 (en) * 2001-06-08 2006-02-21 Sony Corporation Carbon cathode of a field emission display with integrated isolation barrier and support on substrate
US6791278B2 (en) * 2002-04-16 2004-09-14 Sony Corporation Field emission display using line cathode structure
US6873118B2 (en) * 2002-04-16 2005-03-29 Sony Corporation Field emission cathode structure using perforated gate
US7012582B2 (en) * 2002-11-27 2006-03-14 Sony Corporation Spacer-less field emission display
US20040145299A1 (en) * 2003-01-24 2004-07-29 Sony Corporation Line patterned gate structure for a field emission display
US20040189552A1 (en) * 2003-03-31 2004-09-30 Sony Corporation Image display device incorporating driver circuits on active substrate to reduce interconnects
US7071629B2 (en) * 2003-03-31 2006-07-04 Sony Corporation Image display device incorporating driver circuits on active substrate and other methods to reduce interconnects
US20050246493A1 (en) * 2004-04-29 2005-11-03 International Business Machines Corporation Detachable programmable memory card for a computer controlled instrument with an indicator on the memory card displaying that a predetermined level of the card memory has been used
FR2886284B1 (fr) 2005-05-30 2007-06-29 Commissariat Energie Atomique Procede de realisation de nanostructures
US20070226705A1 (en) * 2006-02-15 2007-09-27 Microsoft Corporation Wrap-up reads for logless persistent components
FR2897718B1 (fr) 2006-02-22 2008-10-17 Commissariat Energie Atomique Structure de cathode a nanotubes pour ecran emissif
JP4303308B2 (ja) 2007-11-20 2009-07-29 シャープ株式会社 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、電子線硬化装置、および電子放出素子の製造方法
JP4314307B1 (ja) * 2008-02-21 2009-08-12 シャープ株式会社 熱交換装置
US8299700B2 (en) 2009-02-05 2012-10-30 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
CN101814405B (zh) 2009-02-24 2012-04-25 夏普株式会社 电子发射元件及其制造方法、使用电子发射元件的各装置
JP4777448B2 (ja) 2009-05-19 2011-09-21 シャープ株式会社 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、及び電子線硬化装置
JP5073721B2 (ja) * 2009-05-19 2012-11-14 シャープ株式会社 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、電子線硬化装置、電子放出素子の製造方法
JP4932873B2 (ja) * 2009-05-19 2012-05-16 シャープ株式会社 自発光素子、自発光装置、画像表示装置、自発光素子駆動方法、および自発光素子の製造方法
JP4732534B2 (ja) * 2009-05-19 2011-07-27 シャープ株式会社 電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置、自発光デバイス、画像表示装置、送風装置、冷却装置
JP4732533B2 (ja) * 2009-05-19 2011-07-27 シャープ株式会社 電子放出素子及びその製造方法、並びに、電子放出装置、帯電装置、画像形成装置、電子線硬化装置、自発光デバイス、画像表示装置、送風装置、冷却装置
CN101930884B (zh) * 2009-06-25 2012-04-18 夏普株式会社 电子发射元件及其制造方法、电子发射装置、自发光设备、图像显示装置
JP4927152B2 (ja) * 2009-11-09 2012-05-09 シャープ株式会社 熱交換装置
JP4880740B2 (ja) * 2009-12-01 2012-02-22 シャープ株式会社 電子放出素子及びその製造方法、並びに、電子放出装置、帯電装置、画像形成装置、電子線硬化装置、自発光デバイス、画像表示装置、送風装置、冷却装置
CN104078293B (zh) * 2013-03-26 2017-11-24 上海联影医疗科技有限公司 一种场发射电子源及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0172089A1 (de) * 1984-07-27 1986-02-19 Commissariat à l'Energie Atomique Bildanzeigevorrichtung mittels feldemissions angeregter Kathodolumineszenz

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453478A (en) * 1966-05-31 1969-07-01 Stanford Research Inst Needle-type electron source
US3755704A (en) * 1970-02-06 1973-08-28 Stanford Research Inst Field emission cathode structures and devices utilizing such structures
JPS5325632B2 (de) * 1973-03-22 1978-07-27
JPS5436828B2 (de) * 1974-08-16 1979-11-12
US4513308A (en) * 1982-09-23 1985-04-23 The United States Of America As Represented By The Secretary Of The Navy p-n Junction controlled field emitter array cathode
DE3243596C2 (de) * 1982-11-25 1985-09-26 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Verfahren und Vorrichtung zur Übertragung von Bildern auf einen Bildschirm
US4485158A (en) * 1983-10-17 1984-11-27 Rca Corporation Method for preparing a mosaic luminescent screen using a mosaic precoating
DE3340777A1 (de) * 1983-11-11 1985-05-23 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Verfahren zur herstellung von duennfilm-feldeffekt-kathoden
KR900002364B1 (ko) * 1984-05-30 1990-04-12 후지쓰가부시끼가이샤 패턴 형성재의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0172089A1 (de) * 1984-07-27 1986-02-19 Commissariat à l'Energie Atomique Bildanzeigevorrichtung mittels feldemissions angeregter Kathodolumineszenz

Also Published As

Publication number Publication date
US4857161A (en) 1989-08-15
FR2593953A1 (fr) 1987-08-07
EP0234989A1 (de) 1987-09-02
DE3764668D1 (de) 1990-10-11
FR2593953B1 (fr) 1988-04-29
JPS62172631A (ja) 1987-07-29
JPH07111869B2 (ja) 1995-11-29

Similar Documents

Publication Publication Date Title
EP0234989B1 (de) Herstellungsverfahren einer feldeffektangeregten Kathodenlumineszenz-Wiedergabevorrichtung
EP0461990B1 (de) Elektronenquelle mit Mikropunktkathoden
EP0222668B1 (de) Verfahren zum Herstellen eines Dünnschichttransistors mit in Bezug auf Source und Drain selbstausrichtendem Gate durch stufenweises Ätzen und danach hergestellter Transistor
EP0350378B1 (de) Unter Vakuum versiegeltes elektronisches Mikrobauteil, insbesondere Diode oder Triode, und dessen Herstellungsverfahren
EP1885649A2 (de) Verfahren zur herstellung einer emissionskathode
FR2713394A1 (fr) Source d'électron de type à émission de champ.
EP0696045A1 (de) Kathode eines flachen Bildschirmes mit konstantem Zugriffswiderstand
EP0246945B1 (de) Elektro-optischer Anzeigeschirm und sein Herstellungsverfahren
FR2506036A1 (fr) Masque pour lithographie par rayonnement et procede de realisation de ce masque
EP0202150A1 (de) Nichtlineares Steuerelement für elektrooptische Anzeigeschirmplatte und Verfahren zu dessen Herstellung
FR2723255A1 (fr) Dispositif d'affichage a emission de champ et procede pour fabriquer de tels dispositifs
FR2748847A1 (fr) Procede de fabrication d'une cathode froide a emission de champ
FR2742578A1 (fr) Cathode a emission de champ et son procede de fabrication
FR2733253A1 (fr) Dispositif pour deposer un materiau par evaporation sur des substrats de grande surface
FR2518788A1 (fr) Dispositif a resistance dependant de la tension, son procede de fabrication et sa mise en oeuvre dans un ecran de visualisation a commande electrique
EP0362017A1 (de) Vorrichtung, wie Diode, Triode oder flache und integrierte kathodolumineszierende Anzeigevorrichtung und Herstellungsverfahren
EP0697710B1 (de) Herstellungsverfahren einer Mikrospitzen-Elektronenquelle
FR2756969A1 (fr) Ecran d'affichage comprenant une source d'electrons a micropointes, observable a travers le support des micropointes, et procede de fabrication de cette source
EP0668604A1 (de) Verfahren zur Herstellung einer Kathode eines Mikrospitzen-Fluoreszenzbildschirm und daraus hergestelltes Produkt
EP0616356B1 (de) Mikrospitzebildwiedergabeanordnung und Herstellungsverfahren
EP1000433A1 (de) Verfahren zur herstellung einer mikrospitzen-elektronenquelle, mit selbstjustierter fokussierelektrode
EP0884753A1 (de) Verfahren zur Herstellung von Abstandshaltern für einen flachen Bildschirm
EP0709741B1 (de) Photolithographisches Verfahren zur Herstellung von kreisförmigen Strukturen mit hoher Dichte
FR2779243A1 (fr) Procede de realisation par photolithographie d'ouvertures auto-alignees sur une structure, en particulier pour ecran plat a micropointes
FR2719155A1 (fr) Procédé de réalisation de sources d'électrons à micropointes et source d'électrons à micropointes obtenue par ce procédé.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI NL

17P Request for examination filed

Effective date: 19880204

17Q First examination report despatched

Effective date: 19891123

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL

REF Corresponds to:

Ref document number: 3764668

Country of ref document: DE

Date of ref document: 19901011

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970110

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970129

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980801

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060118

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070120

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20