EP1885649A2 - Verfahren zur herstellung einer emissionskathode - Google Patents
Verfahren zur herstellung einer emissionskathodeInfo
- Publication number
- EP1885649A2 EP1885649A2 EP06820247A EP06820247A EP1885649A2 EP 1885649 A2 EP1885649 A2 EP 1885649A2 EP 06820247 A EP06820247 A EP 06820247A EP 06820247 A EP06820247 A EP 06820247A EP 1885649 A2 EP1885649 A2 EP 1885649A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- cathode
- conductors
- etching
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims description 27
- 239000004020 conductor Substances 0.000 claims abstract description 98
- 239000011347 resin Substances 0.000 claims abstract description 63
- 229920005989 resin Polymers 0.000 claims abstract description 63
- 238000005530 etching Methods 0.000 claims abstract description 57
- 238000000151 deposition Methods 0.000 claims abstract description 25
- 239000003054 catalyst Substances 0.000 claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 238000001459 lithography Methods 0.000 claims abstract description 14
- 238000000059 patterning Methods 0.000 claims abstract 2
- 239000010410 layer Substances 0.000 claims description 286
- 239000000758 substrate Substances 0.000 claims description 13
- 230000008021 deposition Effects 0.000 claims description 11
- 239000012212 insulator Substances 0.000 claims description 10
- 238000001039 wet etching Methods 0.000 claims description 8
- 230000004888 barrier function Effects 0.000 claims description 7
- 239000002071 nanotube Substances 0.000 claims description 7
- 239000002086 nanomaterial Substances 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000002070 nanowire Substances 0.000 claims description 3
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 2
- 239000000615 nonconductor Substances 0.000 claims description 2
- 238000000206 photolithography Methods 0.000 claims description 2
- 239000002344 surface layer Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 10
- 229910052750 molybdenum Inorganic materials 0.000 description 10
- 239000011733 molybdenum Substances 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910017855 NH 4 F Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005136 cathodoluminescence Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
- H01J1/304—Field-emissive cathodes
- H01J1/3048—Distributed particle emitters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J31/00—Cathode ray tubes; Electron beam tubes
- H01J31/08—Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
- H01J31/10—Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
- H01J31/12—Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
- H01J31/123—Flat display tubes
- H01J31/125—Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
- H01J31/127—Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/464—Lateral top-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/481—Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/30—Cold cathodes
- H01J2201/304—Field emission cathodes
- H01J2201/30446—Field emission cathodes characterised by the emitter material
- H01J2201/30453—Carbon types
- H01J2201/30469—Carbon nanotubes (CNTs)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/30—Cold cathodes
- H01J2201/319—Circuit elements associated with the emitters by direct integration
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
Definitions
- the invention relates to a method for manufacturing an emissive cathode comprising a cathode layer structured in columns, a grid layer structured in lines and emissive pads, the emitting pads being self - aligned with the lines of the gate layer. According to a particular embodiment, the emitting pads are also self-aligned with the columns of the cathode layer.
- Cathodic structures are mainly used in field emission excited cathodo-luminescence display devices and particularly in field emission flat screens.
- These field emission display devices comprise a cathode, which emits electrons, and an anode, opposite the cathode, covered with one or more luminescent layers.
- the anode and the cathode are separated by a space kept under vacuum.
- the cathode is either a source based on microtips, or a source based on a low threshold field emissive layer. If it is a low-threshold emissive layer, this layer may consist of nanostructures such as nanotubes, nanowires or nanofilaments; these nanostructures are made of electrically conductive material, such as carbon; they may also consist of multilayers (for example, multilayers of AlN or BN).
- the structure of the cathode may be of the diode or triode type. Triode structures have an additional electrode called a gate that controls the extraction of electrons. For flat screen application, a cathode having a triode structure is used because this particular structure makes it possible to separate the control voltage (gate voltage) from the anode voltage. Indeed, the control voltage must be low in order to minimize the cost of the addressing transistors ("drivers"), while the anode voltage must be as high as possible in order to improve the light output of the cathode and to minimize energy consumption. Triode type cathodes consist of rows and columns, the intersection of a line and a column defining a pixel. During operation of the cathode, the data to be displayed are fed to the columns, while the lines are sequentially scanned in order to address the entire screen, that is to say all the pixels of the screen.
- a triode-type cathode is described in Application FR 2,836,279, filed February 19, 2002, and is illustrated in Figures IA and IB.
- This cathode comprises the following elements: a first conductive level consisting of a structured cathode layer in the form of columns 7,
- a resistive layer 2 for example an amorphous silicon layer
- a layer of insulating material 6 placed between the resistive layer 2 and a second conducting level 10; a second conducting level consisting of a grid layer 8 structured in the form of lines 9, potential of this second level to control the extraction of electrons,
- a cavity 16 is made by etching the gate layer 8 and the layer of insulating material 6.
- a cavity 16 has a width of 10 to 15 microns and the grids are arranged with a pitch of 20 to 25 microns between the lines.
- FIG. 1A it can be seen that the lines 9 are engraved with cavities 16 at the intersection of the lines 9 and the columns 7, and that the lines are also etched outside these intersections to form thinner lines 11 .
- the columns 7 of the cathode layer have a particular perforated structure 13, forming sub-columns 4, on which the resistive layer 2 is deposited.
- the studs 14 must be positioned in the cavities between the sub-columns so that the electrical connection of the sub-columns 4 to the pads 14 is done through the resistive layer 2.
- the disadvantage of this method is that it requires two precise alignments, a first alignment of the cavities 16 with respect to the sub-columns 4, with an accuracy of the order of 1 to 2 ⁇ m (FIG. second alignment of the emitting pads 14, with respect to the grids 10, with an accuracy of at least 0.5 microns (Figure 2D).
- An off-centering of the cavities 16 with respect to the sub-columns 4 leads to a variation of the access resistance of the sub-columns to the emissive pads by the resistive layer. This variation remains second-order as long as the decentering does not exceed 2 ⁇ m.
- the object of the invention is to improve the known method so as to reduce the number of necessary alignments. This and other objects are achieved according to the invention by a method of producing a triode-type cathode structure comprising:
- deposition steps on a face of a substrate, of a cathode layer of electrically conductive material, of a resistive layer, of an electric insulating layer, of a grid layer of electrically conductive material , so as to form a stack, the gate layer forming the surface layer of the stack and being adjacent to the insulating layer,
- the cathode layer for structuring it into cathode conductors arranged in a form chosen from one of the line form and the column form,
- the gate layer for structuring it into gate conductors arranged in a form selected from the other between the line form and the column form,
- the method being characterized in that the etching steps of the structured gate layer in grid conductors and the electrical insulating layer are performed by: a) depositing a layer of resin on the grid layer structured in grid conductors, b) lithography and development of the resin layer to obtain openings in the resin layer arranged in a pattern intended to form emitting studs at the bottom of the cavities, c) etching of the grid layer structured in grid conductors, according to the pattern, d) etching of the layer of insulator under to the grid layer structured in grid conductors by widening the etching beyond the patterns of emissive pads to obtain a cavity width
- the structuring of the cathode layer, to structure it in cathode conductors, and the etching of said cathode layer structured in cathode conductors, to give it a perforated structure are carried out before the deposit of the resistive layer.
- the structuring of the cathode layer, to structure it in cathode conductors is carried out before the deposition of the insulating layer and, the insulator layer and the cathode layer structured in conductors of cathode being located between the grid layer structured in grid conductors and the resistive layer, step e) is completed by an etching of the cathode layer structured in cathode conductors, at the level of the areas exposed by the etching of the layer of insulation to reach the resistive layer, so as to provide a perforated structure to the cathode layer structured in cathode conductors.
- a diffusion barrier layer of the catalyst is deposited in the openings of the resin layer.
- the structuring of the cathode layer into cathode conductors or / and the structuring of the gate conductor layer is (are) carried out by etching through a mask obtained by photolithography.
- the structuring of the cathode layer to structure it into cathode conductors is completed by the etching of at least a portion of the thickness of the resistive layer at the areas exposed by the structuring from the cathode layer structured into cathode conductors.
- the resistive layer can thus be etched, for example, during the same lithography step as that used to etch the cathode layer into cathode conductors, which makes it possible to perfectly isolate the cathode conductors from each other and to avoid the leakage currents between the cathode leads during the operation of the screen.
- This embodiment is particularly interesting when it is desired to minimize the power consumption. It is specified that the resistive layer is etched between the columns, but not inside a column.
- the structuring of the cathode layer into cathode conductors and / or the structuring of the gate conductor layer is (are) carried out by depositing through a metal mask.
- step g) of removing the resin layer is carried out by "lift-off” or by dissolving the resin layer.
- the method of production further comprises a step of growing nanostructures of the nanotube, nanowire or nanofilament type on the catalyst layer to form the emitting pads.
- step d) of etching the insulating layer is an isotropic wet etching.
- Isotropic etching makes it possible to obtain a cavity centered in the insulator layer with respect to the pattern of the pads defined in the resin layer.
- the method according to the invention makes it possible to produce cathode structures that can be used in particular in flat-field emission displays and / or in backlighting ("backlight") for liquid crystal display LCDs (liquid crystal display LCDs). in English) .
- FIG. described is a top view of a cathode structure of triode type according to the prior art
- FIG. 1B is a sectional view of an enlarged portion of the cathode structure shown in FIG. 1A along the dashed lines;
- FIGS. 2A to 2F already described, illustrate a method of producing a triode type cathode structure according to the prior art
- FIGS. 3A to 3F illustrate a first embodiment of the method according to the invention
- FIGS. 4A to 4F illustrate a second embodiment of the method according to the invention.
- the originality of the production method according to the invention is based on the use of a single layer of resin for etching the grid layer, structured in grid conductors, through openings made in the resin layer, etching the insulating layer by extending the etching laterally under the grid layer to obtain cavities, etching the exposed grid layer under the resin layer and depositing a catalyst layer on the resistive layer at the bottom of the cavities, in the openings made in the resin layer.
- the embodiment method according to the invention allows, according to a first variant, to self-align the emitting pads with respect to the grid conductors, that is to say to position the emitting pads with respect to the grid conductors without having aligning the pads on the cavities formed in the gate layer, which eliminates one of the constraints of the prior art.
- the method also allows, according to a second variant, to self-align the emitting pads with respect to the gate conductors and with respect to the cathode conductors; the two alignment constraints of the prior art are thus removed.
- the different steps of the first variant are illustrated in FIGS. 3A to 3F.
- a layer of conductive material for example a molybdenum layer having a thickness of 0.2 ⁇ m.
- cleaning of the support substrate may optionally be carried out by known means of the basic laundry type.
- This conducting layer is then lithographed and etched so as to structure this layer in columns and sub-columns: a structured cathode layer 24 is then obtained (in FIG. 3A only two sub-columns are visible ).
- the columns are arranged in a pitch of 350 ⁇ m, with a space of 50 ⁇ m between the columns and the sub-columns have widths between 5 to 10 microns and are spaced from 10 to 15 microns.
- the sub-columns are etched to obtain perforated structures at locations that correspond to the superposition of the cathode conductors (columns) and the grid conductors (lines).
- the sub-columns are made for example parallel to the columns.
- etching of the cathode layer as it is a molybdenum layer, reactive ion etching (RIE) is etched with an SF 6 type gas,
- RIE reactive ion etching
- a resistive layer 22 is deposited (for example a phosphor doped amorphous silicon layer deposited by cathode sputtering and having a thickness of 1 ⁇ m).
- insulator 26 for example a 1 ⁇ m layer of silica deposited by chemical vapor deposition (CVD)
- a gate layer 30 for example a 0.2 ⁇ m thick layer of molybdenum deposited by electron gun evaporation
- the gate layer 30 is then lithographed and etched so as to form lines in a pitch of 350 ⁇ m and spaced by 50 ⁇ m, according to the same principle explained above for the etching of the columns in the cathode layer: a structured grid layer 300.
- a resin layer 27 of 1.2 ⁇ m thick is deposited on the structured grid layer 300 and this layer is lithographed.
- resin 27 in a pattern having the shape of the emitting pads 34 that it is desired to form on the resistive layer 22.
- the patterns may for example be rectangles 3 to 10 microns wide.
- the patterns of the pads must be centered with an accuracy of the order of 1 to 2 microns in the space of 10 to 15 microns which separates the column conductors 300.
- a lithography is carried out to obtain studs 34 of 4 , 5 x 4.5 ⁇ m on the side.
- Insolation of the resin layer 27 is carried out with proximity lithography equipment, then the resin is developed.
- the structured grid layer 300 is then etched according to the pattern.
- the structured grid layer 300 may be etched by wet etching or dry etching; in this example, the molybdenum layer is etched with RIE.
- the insulating layer 26 undergoes wet etching. This etching is done until the insulating layer is etched over a width L greater than the width of the patterns intended to form the emitting pads 34, but less than or equal to the distance separating two adjacent sub-columns 24 (FIG. 3C).
- the etching time of the insulating layer 26 determines the width L of the cavity 36 in the insulator.
- the nature of the insulation is chosen so that an isotropic etching is obtained chemically.
- the cavity 36 of width L is centered with respect to the pattern of the pads 34 defined in the resin layer 27.
- the silica insulating layer 26 is etched with the NH 4 F mixture, HF.
- a barrier layer 25 and a catalyst layer 29 are deposited through the resin mask, that is to say on the resin layer 27 and in the openings present in this resin layer 27 (FIG. 3E).
- the barrier layer 25, deposited between the resistive layer 22 and the catalyst layer 29, is not essential, but it makes it possible to better control the growth of the nanotubes (by avoiding, among other things, the diffusion of the catalyst) and / or improve the electrical contacts between the nanotubes and the resistive layer.
- Emissive pads 34 on the resistive layer 22 located at equal distances from the gate conductors of the structured gate layer 300 are thus obtained.
- a 80 nm thick TiN barrier layer is deposited by cathode sputtering.
- a triode-type cathode structure comprising a support substrate 21 on which a cathode layer 24 structured in columns and sub-columns is arranged, a resistive layer 22 covering this structured cathode layer 24, an insulating layer 26 having cavities 36 between two adjacent sub-columns, this insulating layer being covered with a structured grid layer 300, structured in lines, emitting pads 34 being located in the cavities 36 on the resistive layer 22.
- a resistive layer 22 is first deposited on the face of the support substrate 21, then a cathode layer is deposited and etched to structure it according to columns 40.
- the openwork structure columns formation of the sub-columns
- the openwork structure columns is obtained by etching through the openings made in the resin layer 27, once the insulating layer 26 has been etched.
- This second variant thus makes it possible to obtain a totally self-aligned method: the emitting pads 34 are centered both with respect to the lines of the structured grid layer 300 and by relative to the sub-columns of the structured cathode layer 400. This method makes it possible to eliminate the constraint related to the obligation to perform an alignment of the order of a micrometer.
- FIGS. 4A to 4F The steps of this variant of the embodiment method are illustrated in FIGS. 4A to 4F.
- a support substrate 21 of borosilicate glass 1.1 mm thick is used.
- the support substrate 21 may optionally be cleaned by known means of the basic laundry type.
- a resistive layer 22 is deposited in phosphor doped amorphous silicon 1 ⁇ m thick, for example by sputtering.
- a layer of electrically conductive material for forming the cathode layer for example a layer of 0.2 microns molybdenum by evaporation electron gun.
- the cathode layer is then lithographed and etched, for example by RIE etching, so as to form columns arranged in a pitch of 350 microns and spaced 50 microns, according to the same principle explained above (deposition of the resin, insolation and development of the resin, etching of the cathode layer, dissolution of the resin): a cathode layer structured as cathode conductors 40 (columns) is thus obtained.
- the columns are solid, that is to say without the perforated structure characteristic of the first variant: the perforated structure of the columns will be obtained later during the process.
- the etching of the resistive layer 22 is interesting when the problem of the electrical consumption is critical.
- an insulator layer 26 is then deposited on the cathode layer structured in cathode conductors 40 (for example a 1 ⁇ m silica layer deposited by CVD), then a layer of electrically conductive material to form the cathode layer.
- gate layer for example a molybdenum layer deposited by electron-gun evaporation and having a thickness of 0.2 ⁇ m.
- the gate layer is lithographed and etched to form gate conductors (lines) arranged at a pitch of 350 ⁇ m and spaced 50 ⁇ m according to the same principle explained for the etching of the cathode conductors (columns) in the cathode layer : thus, a structured grid layer 300 is obtained.
- a 1.2 ⁇ m thick resin layer 27 is deposited on the structured grid layer 300, and this resin layer 27 is lithographed and etched in a pattern designed to form emitting pads 34, for example studs. 4.5 x 4.5 ⁇ m side on the resistive layer.
- the layer of structured grid 300 is etched, by dry or wet etching, according to the pattern of the resin layer 27.
- the structured molybdenum grid layer 300 is etched by RIE.
- wet etching of the insulating layer 26 during an etching time which determines, as in the first variant, the width L of the cavity 36 ( Figure 4C).
- the sub-columns and the perforated structure of the cathode conductors are thus formed: a structured cathode layer 400 is obtained in columns and in sub-columns. These layers are in molybdenum and are etched with a "Cr Etch" type bath for 2 minutes, then the structure is rinsed with deionized water and dried.
- a catalyst layer, or a barrier layer 25 and a catalyst layer 29, is deposited through the resin mask, that is to say on the resin layer 27 and in the openings formed in this layer of resin. resin.
- a 80 nm thick TiN barrier layer is first deposited by sputtering through the resin mask, and then a layer of 10 nm nickel catalyst 29 by evaporation with an electron gun (FIG. 4E).
- emissive pads 34 are obtained on the resistive layer 22 located at equal distances from the grid layer structured in grid conductors 300.
- the resin layer 27 is removed, for example by dissolving the resin (FIG. 4F).
- This variant of the method has the advantage that the cavities 36 in the grid layer structured in grid conductors 300 and in the insulating layer 26, the formation of the perforated structure of the cathode conductors (formation of the structured layer 400 to from the cathode layer structured in cathode conductors 40), as well as the deposition of the emitting pads 34 through the resin mask are made with the same level of lithography, that is to say with the same mask obtained by lithography of the resin layer 27 to form the patterns of the emitting pads ( Figure 4C to 4E).
- the distance between the pads 34 and the grid conductors (lines) of the structured grid layer 300, on the one hand, and between the pads 34 and the sub-columns of the structured cathode layer 400, on the other hand, is determined by the etching time of the insulating layer 26.
- the emitting pads 34 are automatically centered with respect to the grid conductors (lines) and the sub-columns of the conductors cathode (columns). This eliminates the two alignment constraints of the prior art.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Cold Cathode And The Manufacture (AREA)
- Carbon And Carbon Compounds (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Chemical Vapour Deposition (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0551412A FR2886284B1 (fr) | 2005-05-30 | 2005-05-30 | Procede de realisation de nanostructures |
PCT/FR2006/050490 WO2007026086A2 (fr) | 2005-05-30 | 2006-05-29 | Procede de fabrication d'une cathode emissive |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1885649A2 true EP1885649A2 (de) | 2008-02-13 |
Family
ID=35520555
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06820247A Withdrawn EP1885649A2 (de) | 2005-05-30 | 2006-05-29 | Verfahren zur herstellung einer emissionskathode |
EP06794468.6A Not-in-force EP1885648B1 (de) | 2005-05-30 | 2006-05-29 | Verfahren zur herstellung von nanostrukturen |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06794468.6A Not-in-force EP1885648B1 (de) | 2005-05-30 | 2006-05-29 | Verfahren zur herstellung von nanostrukturen |
Country Status (5)
Country | Link |
---|---|
US (2) | US7993703B2 (de) |
EP (2) | EP1885649A2 (de) |
JP (2) | JP5247438B2 (de) |
FR (1) | FR2886284B1 (de) |
WO (2) | WO2007003826A2 (de) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2873852B1 (fr) | 2004-07-28 | 2011-06-24 | Commissariat Energie Atomique | Structure de cathode a haute resolution |
WO2007114655A1 (en) * | 2006-04-05 | 2007-10-11 | Industry Academic Cooperation Foundation Of Kyunghee University | Field emission display and manufacturing method of the same having selective array of electron emission source |
KR100803194B1 (ko) * | 2006-06-30 | 2008-02-14 | 삼성에스디아이 주식회사 | 탄소나노튜브 구조체 형성방법 |
US9353287B2 (en) | 2006-12-19 | 2016-05-31 | Basf Coatings Gmbh | Coating agents having high scratch resistance and weathering stability |
DE102007061856A1 (de) | 2007-12-19 | 2009-06-25 | Basf Coatings Ag | Beschichtungsmittel mit hoher Kratzbeständigkeit und Witterungsstabilität |
DE102007061855A1 (de) | 2007-12-19 | 2009-06-25 | Basf Coatings Ag | Beschichtungsmittel mit hoher Kratzbeständigkeit und Witterungsstabilität |
DE102007061854A1 (de) | 2007-12-19 | 2009-06-25 | Basf Coatings Ag | Beschichtungsmittel mit hoher Kratzbeständigkeit und Witterungsstabilität |
JP5187689B2 (ja) * | 2008-08-08 | 2013-04-24 | 学校法人 関西大学 | ナノワイヤ構造体、ナノワイヤ結合体、およびその製造方法 |
JP5572944B2 (ja) * | 2008-12-18 | 2014-08-20 | 富士通株式会社 | 配線構造体の製造方法及び配線構造体 |
DE102009024103A1 (de) | 2009-06-06 | 2010-12-09 | Basf Coatings Gmbh | Beschichtungsmittel und daraus hergestellte Beschichtungen mit hoher Kratzfestigkeit und hoher Kocherstabilität |
CN102064063B (zh) * | 2010-12-24 | 2012-08-29 | 清华大学 | 场发射阴极装置及其制备方法 |
EP2541581A1 (de) * | 2011-06-29 | 2013-01-02 | Khalid Waqas | Vorrichtung mit Nanostrukturen und Herstellungsverfahren dafür |
WO2013037951A1 (en) * | 2011-09-16 | 2013-03-21 | Danmarks Tekniske Universitet | Catalyst deposition for the preparation of carbon nanotubes |
CN105984862B (zh) * | 2015-02-16 | 2018-08-28 | 北京大学深圳研究生院 | 用于生长碳纳米管的方法 |
JP7556246B2 (ja) | 2020-09-23 | 2024-09-26 | セイコーエプソン株式会社 | 発光装置、発光装置の製造方法およびプロジェクター |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2593953B1 (fr) | 1986-01-24 | 1988-04-29 | Commissariat Energie Atomique | Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ |
FR2687839B1 (fr) * | 1992-02-26 | 1994-04-08 | Commissariat A Energie Atomique | Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ utilisant cette source. |
EP0700063A1 (de) * | 1994-08-31 | 1996-03-06 | International Business Machines Corporation | Aufbau und Verfahren zur Herstellung einer Feldemissionsanordnung |
JPH08115654A (ja) * | 1994-10-14 | 1996-05-07 | Sony Corp | 粒子放出装置、電界放出型装置及びこれらの製造方法 |
US5872422A (en) * | 1995-12-20 | 1999-02-16 | Advanced Technology Materials, Inc. | Carbon fiber-based field emission devices |
JP2000067736A (ja) * | 1998-08-14 | 2000-03-03 | Sony Corp | 電子放出素子およびその製造方法、ならびにこれを用いたディスプレイ装置 |
JP2000123713A (ja) * | 1998-10-15 | 2000-04-28 | Sony Corp | 電子放出素子およびその製造方法、ならびにこれを用いたディスプレイ装置 |
JP2000323012A (ja) * | 1999-05-10 | 2000-11-24 | Futaba Corp | 電界放出素子 |
JP2001023506A (ja) * | 1999-07-07 | 2001-01-26 | Sony Corp | 電子放出源およびその製造方法ならびにディスプレイ装置 |
US6062931A (en) * | 1999-09-01 | 2000-05-16 | Industrial Technology Research Institute | Carbon nanotube emitter with triode structure |
FR2798508B1 (fr) | 1999-09-09 | 2001-10-05 | Commissariat Energie Atomique | Dispositif permettant de produire un champ electrique module au niveau d'une electrode et son application aux ecrans plats a emission de champ |
FR2798507B1 (fr) | 1999-09-09 | 2006-06-02 | Commissariat Energie Atomique | Dispositif permettant de produire un champ electrique module au niveau d'une electrode et son application aux ecrans plats a emission de champ |
KR100480773B1 (ko) * | 2000-01-07 | 2005-04-06 | 삼성에스디아이 주식회사 | 카본 나노 튜브를 이용한 3극 전계방출소자의 제작방법 |
JP2002117791A (ja) * | 2000-10-06 | 2002-04-19 | Hitachi Ltd | 画像表示装置 |
JP3737696B2 (ja) * | 2000-11-17 | 2006-01-18 | 株式会社東芝 | 横型の電界放出型冷陰極装置の製造方法 |
WO2002080280A1 (en) * | 2001-03-30 | 2002-10-10 | The Regents Of The University Of California | Methods of fabricating nanostructures and nanowires and devices fabricated therefrom |
US6541906B2 (en) * | 2001-05-23 | 2003-04-01 | Industrial Technology Research Institute | Field emission display panel equipped with a dual-layer cathode and an anode on the same substrate and method for fabrication |
US6920680B2 (en) * | 2001-08-28 | 2005-07-26 | Motorola, Inc. | Method of making vacuum microelectronic device |
FR2829873B1 (fr) * | 2001-09-20 | 2006-09-01 | Thales Sa | Procede de croissance localisee de nanotubes et procede de fabrication de cathode autoalignee utilisant le procede de croissance de nanotubes |
JP2003115257A (ja) * | 2001-10-03 | 2003-04-18 | Sony Corp | 冷陰極電界電子放出素子の製造方法、及び、冷陰極電界電子放出表示装置の製造方法 |
JP2003115259A (ja) * | 2001-10-03 | 2003-04-18 | Sony Corp | 電子放出装置及びその製造方法、冷陰極電界電子放出素子及びその製造方法、冷陰極電界電子放出表示装置及びその製造方法、並びに、薄膜のエッチング方法 |
KR100449071B1 (ko) * | 2001-12-28 | 2004-09-18 | 한국전자통신연구원 | 전계 방출 소자용 캐소드 |
FR2836280B1 (fr) | 2002-02-19 | 2004-04-02 | Commissariat Energie Atomique | Structure de cathode a couche emissive formee sur une couche resistive |
FR2836279B1 (fr) | 2002-02-19 | 2004-09-24 | Commissariat Energie Atomique | Structure de cathode pour ecran emissif |
CN100407362C (zh) * | 2002-04-12 | 2008-07-30 | 三星Sdi株式会社 | 场发射显示器 |
GB2389959B (en) * | 2002-06-19 | 2006-06-14 | Univ Dundee | Improved field emission device |
JP3890470B2 (ja) * | 2002-07-16 | 2007-03-07 | 日立造船株式会社 | カーボンナノチューブを用いた電子放出素子用電極材料およびその製造方法 |
US20040037972A1 (en) * | 2002-08-22 | 2004-02-26 | Kang Simon | Patterned granulized catalyst layer suitable for electron-emitting device, and associated fabrication method |
US7175494B1 (en) * | 2002-08-22 | 2007-02-13 | Cdream Corporation | Forming carbon nanotubes at lower temperatures suitable for an electron-emitting device |
US6803708B2 (en) * | 2002-08-22 | 2004-10-12 | Cdream Display Corporation | Barrier metal layer for a carbon nanotube flat panel display |
US6984535B2 (en) * | 2002-12-20 | 2006-01-10 | Cdream Corporation | Selective etching of a protective layer to form a catalyst layer for an electron-emitting device |
US7064475B2 (en) * | 2002-12-26 | 2006-06-20 | Canon Kabushiki Kaisha | Electron source structure covered with resistance film |
KR100884527B1 (ko) * | 2003-01-07 | 2009-02-18 | 삼성에스디아이 주식회사 | 전계 방출 표시장치 |
EP1582501A4 (de) * | 2003-01-09 | 2009-01-28 | Sony Corp | Herstellungsverfahren für röhrenförmiges kohlenstoffmolekül und röhrenförmiges kohlenstoffmolekül, herstellungsverfahren für aufzeichnungsvorrichtung und aufzeichnungsvorrichtung, herstellungsverfahren für feldelektronenemissionselement und feldelektronenemissionselement und herstellungsverfahren für anzeigeeinheit und anzeigeeinheit |
JP3900094B2 (ja) * | 2003-03-14 | 2007-04-04 | 三菱電機株式会社 | 電子放出素子及びその製造方法ならびに表示装置 |
JP2004281308A (ja) * | 2003-03-18 | 2004-10-07 | Mitsubishi Electric Corp | 冷陰極電子源及びその製造方法 |
US20070003472A1 (en) * | 2003-03-24 | 2007-01-04 | Tolt Zhidan L | Electron emitting composite based on regulated nano-structures and a cold electron source using the composite |
JP4083611B2 (ja) * | 2003-03-25 | 2008-04-30 | 三菱電機株式会社 | 冷陰極電子源の製造方法 |
JP2004362960A (ja) * | 2003-06-05 | 2004-12-24 | Akio Hiraki | 電子放出素子およびその製造方法 |
JP2005078850A (ja) * | 2003-08-28 | 2005-03-24 | Ulvac Japan Ltd | 炭素系超微細冷陰極およびその製造方法 |
JP4448356B2 (ja) * | 2004-03-26 | 2010-04-07 | 富士通株式会社 | 半導体装置およびその製造方法 |
US20050236963A1 (en) * | 2004-04-15 | 2005-10-27 | Kang Sung G | Emitter structure with a protected gate electrode for an electron-emitting device |
FR2873852B1 (fr) | 2004-07-28 | 2011-06-24 | Commissariat Energie Atomique | Structure de cathode a haute resolution |
KR100682863B1 (ko) * | 2005-02-19 | 2007-02-15 | 삼성에스디아이 주식회사 | 탄소나노튜브 구조체 및 그 제조방법과, 탄소나노튜브 구조체를 이용한 전계방출소자 및 그 제조방법 |
KR100697656B1 (ko) * | 2005-04-28 | 2007-03-22 | 이승호 | 다중 전자 공급원을 구비한 평면 발광 소자 |
FR2897718B1 (fr) | 2006-02-22 | 2008-10-17 | Commissariat Energie Atomique | Structure de cathode a nanotubes pour ecran emissif |
-
2005
- 2005-05-30 FR FR0551412A patent/FR2886284B1/fr not_active Expired - Fee Related
-
2006
- 2006-05-29 WO PCT/FR2006/050489 patent/WO2007003826A2/fr not_active Application Discontinuation
- 2006-05-29 EP EP06820247A patent/EP1885649A2/de not_active Withdrawn
- 2006-05-29 JP JP2008514165A patent/JP5247438B2/ja active Active
- 2006-05-29 JP JP2008514166A patent/JP2008543008A/ja active Pending
- 2006-05-29 US US11/915,238 patent/US7993703B2/en not_active Expired - Fee Related
- 2006-05-29 WO PCT/FR2006/050490 patent/WO2007026086A2/fr not_active Application Discontinuation
- 2006-05-29 US US11/915,222 patent/US7785164B2/en not_active Expired - Fee Related
- 2006-05-29 EP EP06794468.6A patent/EP1885648B1/de not_active Not-in-force
Non-Patent Citations (1)
Title |
---|
See references of WO2007026086A2 * |
Also Published As
Publication number | Publication date |
---|---|
FR2886284A1 (fr) | 2006-12-01 |
WO2007003826A3 (fr) | 2007-04-12 |
FR2886284B1 (fr) | 2007-06-29 |
JP2008543008A (ja) | 2008-11-27 |
US20080197766A1 (en) | 2008-08-21 |
JP5247438B2 (ja) | 2013-07-24 |
WO2007026086A2 (fr) | 2007-03-08 |
EP1885648B1 (de) | 2018-08-29 |
US7785164B2 (en) | 2010-08-31 |
WO2007003826A2 (fr) | 2007-01-11 |
EP1885648A2 (de) | 2008-02-13 |
JP2008546146A (ja) | 2008-12-18 |
WO2007026086A3 (fr) | 2007-05-31 |
US7993703B2 (en) | 2011-08-09 |
US20080194168A1 (en) | 2008-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007026086A2 (fr) | Procede de fabrication d'une cathode emissive | |
EP0234989B1 (de) | Herstellungsverfahren einer feldeffektangeregten Kathodenlumineszenz-Wiedergabevorrichtung | |
EP0461990B1 (de) | Elektronenquelle mit Mikropunktkathoden | |
EP0511360B1 (de) | Elektronenquelle und herstellungsverfahren | |
FR2723255A1 (fr) | Dispositif d'affichage a emission de champ et procede pour fabriquer de tels dispositifs | |
FR2725558A1 (fr) | Procede de formation de trous dans une couche de resine photosensible application a la fabrication de sources d'electrons a cathodes emissives a micropointes et d'ecrans plats de visualisation | |
FR2705830A1 (fr) | Procédé de fabrication de dispositifs d'affichage à micropointes, utilisant la lithographie par ions lourds. | |
EP0708473B1 (de) | Verfahren zur Herstellung einer Mikrospitzen-Elektronenquelle | |
EP1000433B1 (de) | Verfahren zur herstellung einer mikrospitzen-elektronenquelle, mit selbstjustierter fokussierelektrode | |
EP0697710B1 (de) | Herstellungsverfahren einer Mikrospitzen-Elektronenquelle | |
FR2736203A1 (fr) | Dispositif d'affichage a emission de champ lateral et procede de fabrication de ce dernier | |
WO1998025291A1 (fr) | Ecran d'affichage comprenant une source d'electrons a micropointes, observable a travers le support des micropointes, et procede de fabrication de cette source | |
EP1023741B1 (de) | Mikrospitzen-elektronenquelle mit fokussierungsgitter und hoher mikrospitzendichte und flachschirm unter verwendung einer solchen quelle | |
EP0851451B1 (de) | Ein in der Mikroelektronik verwendbares Verfahren zur selbstausrichtung und Verwendung bei der Herstellung eines Fokussierungsgitters für einen flachen Mikrospitzen-Bildschirm | |
KR100257568B1 (ko) | 전계방출표시 소자의 필드 에미터 어레이 형성방법 | |
FR2779243A1 (fr) | Procede de realisation par photolithographie d'ouvertures auto-alignees sur une structure, en particulier pour ecran plat a micropointes | |
EP1029338A1 (de) | Vefahren zur herstellung einer mikrospitzen-elektronenquelle | |
US20060006780A1 (en) | Electron emission source of field emission display and method for making the same | |
KR100257569B1 (ko) | 화산형 금속필드 에미터 어레이 형성방법 | |
FR2786026A1 (fr) | Procede de formation de reliefs sur un substrat au moyen d'un masque de gravure ou de depot | |
KR20040069539A (ko) | 전계 방출 소자 및 제조 방법 | |
WO2008074825A1 (fr) | Structure de cathode pour ecran plat avec grille de refocalisation | |
FR2788879A1 (fr) | Ecran a emission de champ equipe de microcanaux |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071102 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20090702 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20130424 |