EP0589523B1 - Anzeigevorrichtung - Google Patents
Anzeigevorrichtung Download PDFInfo
- Publication number
- EP0589523B1 EP0589523B1 EP19930202700 EP93202700A EP0589523B1 EP 0589523 B1 EP0589523 B1 EP 0589523B1 EP 19930202700 EP19930202700 EP 19930202700 EP 93202700 A EP93202700 A EP 93202700A EP 0589523 B1 EP0589523 B1 EP 0589523B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- display device
- pixel
- pattern
- asymmetric
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J31/00—Cathode ray tubes; Electron beam tubes
- H01J31/08—Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
- H01J31/10—Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
- H01J31/12—Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
- H01J31/123—Flat display tubes
- H01J31/125—Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
- H01J31/127—Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/30—Cold cathodes
- H01J2201/319—Circuit elements associated with the emitters by direct integration
Definitions
- the invention relates to a display device according to the introductory part of claim 1.
- a display device of this type is usually in the form of a flat display device and is suitable, for example, for displaying video information and alpha-numerical information.
- a display device of the type mentioned in the opening paragraph is described in USP 4,857,161.
- the device shown in this document comprises strip-shaped row electrodes on a substrate on which a plurality of tip-shaped (pointed) field emitters are realised per pixel at the location of crossings with column electrodes.
- the column electrodes which also function as grid electrodes in this case, are separated from the row electrodes by means of a layer of insulating material.
- At the location of the pixels apertures in which the field emitters have been realised on the row electrodes are present in the column electrodes and the subjacent insulating material.
- a face plate provided with phosphors to which electrons released by field emission can be accelerated is present opposite the substrate.
- the display device shown (when displaying moving picture) is driven by selecting a row electrode during a row selection period (which is for example 32 ⁇ sec), for example by presenting a sufficiently low voltage. Simultaneously, data voltages are presented to the column electrodes.
- a row selection period which is for example 32 ⁇ sec
- data voltages are presented to the column electrodes.
- the potential difference between the field emitters connected to the row electrodes and the grid electrodes determines the emission of the associated field emitters and hence the light intensity of a pixel.
- the column electrodes are not too far remote from the field emitter, hence from the row electrodes.
- this increases the capacitance associated with such a field emitter and hence the RC time for a presented addressing signal; as a result, the value of the signal, viewed across the length of a selection electrode may decrease reduced, which also gives rise to a non-uniform emission behaviour.
- an object of the invention to provide a display device of the type mentioned in the opening paragraph in which said problems are solved as much as possible. It is based on the recognition that controlled field emission is possible by charge-controlled driving rather than voltage-controlled driving.
- a display device is characterized according to the characteristic part of claim 1.
- an asymmetric two-pole circuit is understood to mean a circuit having an asymmetrical current-voltage characteristic. It may comprise inter alia, a pn-diode, a Schottky diode, or a pin diode.
- the circuit may also comprise one or more of these diodes which, due to redundance or for other reasons, are arranged in series and/or parallel. Instead of a diode, the use of transistors arranged as diodes is alternatively possible.
- the two-pole circuit is conducting during selection (during the row selection period), so that a capacitance associated with the field emitter is charged to a value determined, inter alia by the voltage across the column electrode (data voltage).
- this charging can be performed within a row selection period.
- the capacitance is discharged within the rest of a frame period (for example 20 msec) via the field emitter due to electron emission. The light intensity of a pixel is now determined by the quantity of charge across the capacitance.
- This capacitance which in the voltage-controlled drive mode results in a delay of the signal and is thus minimized as much as possible by very strict tolerances in the manufacturing process may now have a value which occurs in the conventional method of manufacture (due to, inter alia the conventional wide process tolerances). This value is usually such (or may be adapted in such a way) that the capacitance associated with the field emitter is discharged within a frame period.
- JP-A-4,249,026 emission of a single emitter is rendered uniform by controlling the emission by means of a constant-current element.
- a constant-current element a diode is shown, which is interconnected such that its reverse current or leakage current is utilized during emission. The current is not used for charging an associated capacitance.
- the display device Since the stored charge is decisive of the luminance of a pixel, the display device according to the invention is substantially insensitive to fluctuations in the current-voltage characteristics of the separate field emitters. Since the (electron) current can flow in the field emitters for a longer period of time, lower drive voltages are sufficient, dependent on the capacitance and the quantity of charge. This does not only lead to a reduced power consumption but also reduces the risk of damage due to excessive current passage so that a resistance layer under the field emitters can be dispensed with.
- the power consumption is even further reduced in that the column electrodes are now capacitively loaded to a much lesser extent.
- the capacitance of a single diode is much smaller than that of a complete pixel. Since this capacitance is smaller, it is also possible to provide an extra capacitance which functions as an auxiliary capacitance.
- An embodiment of the display device with pixels arranged in rows and columns and comprising a substrate having a first pattern of strips of conducting material and a layer of insulating material across which a second pattern of strips of conducting material extends, in which the strips of the first and the second pattern constitute a crossbar system and in which, at the location of a pixel, parts of the second pattern and the subjacent insulating material have at least one aperture in which a field emitter is realised is characterized by the characterizing part of claim 6.
- the two-pole circuit may be connected to the field emitters (possibly via a resistance layer), in which the first pattern is formed by column electrodes which are directly or not directly provided on the substrate.
- the first pattern is formed by column electrodes which are directly or not directly provided on the substrate.
- a short-circuit protection may be built in a simple manner by separating the first pattern laterally from the areas where field emission occurs.
- the grid electrodes associated with the second pattern are usually integrated to form strip-shaped row electrodes.
- Fig. 1 shows diagrammatically a part of a known display device 1, based on field emission.
- This device comprises two facing glass substrates 2 and 3.
- the substrate 2 comprises a first pattern of parallel conductors of, for example tungsten or molybdenum which function as row electrodes 4 in this case.
- the entire device is coated with an insulating layer 5 of silicon oxide.
- Column electrodes 6 of, for example molybdenum having a plurality of apertures 7 at the location of the crossings extend across the insulating layer 5 perpendicularly to the row electrodes 4.
- a plurality of field emitters is realised on the row electrodes 4. These field emitters are usually tip-shaped, conical or pointed.
- the pixels 8 are present at the locations of the crossings of the row and column electrodes.
- the substrate 3 has a conducting layer 9 which is provided with a layer 10 having, for example a pattern of phosphors or (in a monochrome display device) a single phosphor layer.
- a conducting layer 9 which is provided with a layer 10 having, for example a pattern of phosphors or (in a monochrome display device) a single phosphor layer.
- Fig. 2 is a simplified representation of an equivalent circuit diagram of the display device of Fig. 1.
- Pixels 8 are present at the location of the crossings of row electrodes 4 and column electrodes 6.
- the pixels 8 are shown by means of triodes 11, a cathode 12 of which is always formed by the field emitters associated with a pixel, while a grid is formed by the part of a column electrode which is provided with apertures 7 at the location of a crossing with a row electrode.
- the anode 9 is common for all triodes 11, which is diagrammatically shown in Fig. 2 by means of a plane 9' in broken lines.
- the row electrodes 4 a , 4 b are selected during successive selection periods while a data signal is presented to the column electrode 6 a , which together with the signal at the row electrodes 4 a , 4 b defines the voltage across the field emitters at the location of the crossings and hence the field emission and consequently the light intensity of the pixels 8 aa , 8 ab .
- the row electrodes receive a voltage of (for example) 0 Volt, so no longer any field emission in the relevant rows occurs.
- the quantity of emitted electrons should be sufficient to cause the pixels 8 to luminesce in the correct way. Since the selection period (32 ⁇ sec) is short with respect to a frame period (20 msec), a high emission should be used so as to realise the light intensity required within the selection period for the relevant frame period.
- the high voltages required not only increase the risk of breakdown (for example, between a field emitter and a grid) but also increase the power required for operation. Another problem is the variation of the current-voltage characteristics of the field emitters, which variation is greatly dependent on the method of manufacture.
- the use of high voltages influences the behaviour of the phosphors, because the phosphor saturation increases with the value of the electron current, notably for red phosphors. Due to this phosphor saturation, a disproportionately large electron current is required for an increasing brightness. This does not only require a higher voltage and more power, but a much larger number of electrons also impinges upon the phosphor, which reduces its lifetime.
- the display device of Fig. 3 shows a plurality of pixels 8 (triodes 11) arranged in the form of a matrix.
- the cathodes 12, i.e. the associated field emitter(s) are now connected in an electrically conducting manner to column electrodes 14 via diodes 13 or other suitable two-pole circuits, while the grids of the triodes 11 are connected in an electrically conducting manner to row electrodes 14.
- the capacitance between a grid and a column electrode 16 is denoted by the reference numeral 15. This capacitance which detrimentally influences the operation of the circuit in the device of Fig. 1 plays an essential role in the device according to the invention, as will be described hereinafter.
- the anode 9' is again shown as common for all triodes 11.
- the display device of Fig. 3 is driven as follows (see Fig. 4).
- t 0 positive selection voltage V s is presented to the row electrode 14 a during a selection period T s (see Fig. 4 a ).
- a data signal V d is presented to the column electrode 16 a (see Fig. 4 d ) which, together with the signal at the row electrode 14 a , defines the voltage across the field emitter(s) and hence the field emission of the pixel 8 aa .
- the row electrode 14 a receives a voltage V ns of (for example) 0 Volt at which no field emission occurs in the relevant row.
- the selection voltage V s is presented to the row electrodes 14 b during a selection period T s (see Fig. 4 b ).
- a data signal V d is presented to the column electrode 16 a (see Fig. 4 d ) which, together with the signal at the row electrode 14 b defines the voltage across the field emitter(s) and hence the field emission of the pixel 8 ab .
- the row electrode 14 b receives a voltage V ns , etc .
- a demultiplex circuit (or shift register) 30 which in this example selects the row electrodes consecutively, while data voltages are presented to the column electrodes 16 via a register 31.
- an incoming signal 32 is sampled via a control circuit 33 and applied to the register 31.
- the control circuit 33 also ensures the mutual synchronization.
- V gc V s -V d -V on , in which V on is the voltage across the diodes 13.
- the series resistance of the diodes 15 is much smaller than that of the field emitters of a pixel which can be considered as a diode (these conduct (emit) only when V gc is positive).
- V gc in which C is the value of the capacitance 15, while the field emitters already emit electrons.
- the voltage across the capacitance 15 is maintained.
- the voltage at the grid of the triode (or row electrode 14 a ) will then be 0 Volt, while the voltage at the cathode of the triode will acquire a negative value of -V gc .
- the capacitance 15 is then discharged during the rest of a frame period because the triode 11 aa continues to conduct (or the associated field emitters continue to emit).
- this emission takes place during a period of slightly less than a frame period (20 msec) whereafter the capacitance 15 is again charged in the manner described hereinbefore (dependent on the signal across the column).
- the selection period T s can be reduced to the period required to charge this capacitance 15. This period is usually shorter than 32 ⁇ sec. As a result, variations in the current-voltage characteristics of field emitters of different pixels are compensated for by contradistinctive variations in discharge time of the associated capacitances. Since the emission takes place for a longer time, lower voltages may be sufficient. This reduces the phosphor saturation and renders a high brightness possible because, spread in time, the same quantity of electrons impinges upon the phosphor. Since the phosphors are now less driven in saturation, higher drive voltages may be used, if necessary, to achieve a higher brightness.
- an extra resistance layer which is usually present to avoid breakdown may be dispensed with.
- Fig. 5 shows diagrammatically a part of a display device according to the invention.
- the display device comprises two facing substrates 2, 3 of, for example glass.
- island-shaped metal regions 17 of, for example niobium or molybdenum which contact semiconductor regions 18 and 19 are present on the first substrate 2.
- the semiconductor region 18 is present on the substrate 2 in this embodiment, but the metal region 17 may also extend completely under this region 18.
- the lower sub-layer 19 a of the semiconductor layer is very weakly doped or substantially intrinsic so that the subjacent metal 17 forms a Schottky diode with this sub-layer.
- the upper sub-layer 19 b is of the n + type and constitutes an ohmic connection with a metal column conductor of, for example molybdenum.
- the column electrodes 16 extend parallel to each other. Column electrodes 16 and semiconductor regions 18, also of the n + type are coated with a layer of insulating material 5 across which parallel row electrodes 14 extend transversely to the direction of the column electrodes
- the row electrodes as well as the subjacent insulating material 5 are provided with apertures which extend as far as the surface of the semiconductor region 18.
- Tip-shaped or conical field emitters are provided on this surface in known manner via the afore-mentioned apertures, which emitters are indicated diagrammatically by means of the reference numeral 20 in one of the pixels of Fig. 6.
- the semiconductor region 18 constitutes a cathode connection for the field emitters with which there are connected in an electrically conducting manner.
- the substrate 3 has a conducting layer 9 of, for example indium-tin oxide which is provided with a layer 10 having, for example a pattern of phosphors.
- Fig. 6 is a diagrammatic cross-section of a modification of the device of Fig. 5.
- the column electrodes 16 are now present on the substrate 2.
- the column electrodes are coated with a thin layer of amorphous silicon 19 in which (Schottky) diodes are realised by forming the lower sub-layers 19 b as highly doped n + layers and the upper sub-layers 19 a as intrinsic layers which are contacted by metal strips 17 of, for example molybdenum.
- the metal strips constitute a Schottky diode together with the subjacent intrinsic amorphous silicon; if necessary, a pn diode may be realised in this case by giving the sub-layer 19 a a p-type doping.
- the other reference numerals refer to the same components as those in Fig. 5.
- Fig. 7 shows a modification of the device of Fig. 6.
- extra insulating layers 21 and metal faces 22 constituting extra capacitances together with the n + type semiconductor regions are present below these regions, as is shown for one pixel in the equivalent circuit diagram of Fig. 8; the extra capacitance is denoted by the reference numeral 23.
- the layer 18 may be formed as a metal layer due to the reduced risk of breakdown at a lower voltage.
- series circuits and/or parallel circuits may be used instead of single diodes 13 or other two-pole circuits for reasons of redundancy.
- the switching unit 13 in Fig. 9 a comprises two series-arranged diodes 25, while the switching unit 13 in Fig. 9 b comprises two parallel-arranged diodes 26.
- a pixel 8 semiconductor region 18 may be divided into sub-pixels (sub-regions), also for reasons of redundancy.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
Claims (7)
- Wiedergabevorrichtung (1) mit einer Anzahl Bildelemente (8), die reihen- und spaltenweise gegliedert sind und mit Reihenelektroden (4, 14) und Spaltenelektroden (6, 16), wobei jedes Bildelement wenigstens einen Feldemitter und eine Gitterelektrode aufweist, dadurch gekennzeichnet, daß jedes Bildelement zwischen einer Spaltenelektrode (6, 16) und einem Feldemitter eine asymmatrische Zweipolschaltung (13) aufweist mit einer oder mehreren Dioden, wobei die asymmetrische Zweipolschaltung derart vorgesehen ist, daß in der Vorwärtsrichtung von dem Feldemitter zu der Spaltenelektrode (6, 16) eine Diode vorgesehen ist.
- Wiedergabevorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Wiedergabevorrichtung Mittel (30) aufweist zum Selektieren von Reihenelektroden (4, 14) und Mittel (31) zum Zuführen von Spannungen zu Spaltenelektroden (6,16) zum Laden einer Kapazität 15 zwischen einer Gitterelektrode und einer Spaltenelektrode, wobei die Ladung der Kapazität die Emission der Feldemitter eines Bildelementes bestimmt.
- Wiedergabevorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß jede Bildperiode während einer Selektionsperiode ein Bildelement (8) selektiert wird, während die Emission während hauptsächlich des restlichen Teils der Bildperiode stattfindet.
- Wiedergabevorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die asymmetrische Zweipolschaltung reihengeschaltete Dioden (25) aufweist.
- Wiedergabevorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die asymmetrische Zweipolschaltung eine Parallelschaltung von Dioden (26) aufweist.
- Wiedergabevorrichtung nach einem der Ansprüche 1 bis 5, mit einem Träger (2) mit einem ersten Muster von Streifen (16) aus leitenden Material als Spaltenelektroden und mit einer Schicht aus Isoliermaterial (5), über die sich ein zweites Muster aus leitendem Material (14) als Reihenelektroden erstreckt, wobei die Streifen des ersten und des zweiten Musters ein Kreuzstangensystem bilden und wobei an der Stelle eines Bildelementes Teile des zweiten Musters und das unterliegende Isoliermaterial mindestens eine Öffnung (7) aufweisen, in dem ein Feldemitter vorgesehen ist, wobei jeder einem Bildelement zugeordnete Feldemitter mit einem Bildelement auf elektrisch leitende Weise mit einem ersten Anschluß einer asymmetrischen Zweipolschaltung mit Dioden verbunden ist, während der zweite Anschluß der asymmetrischen Zweipolschaltung auf eine elektrisch leitende Weise mit einem Streifen (16) des ersten Musters verbunden ist.
- Wiedergabevorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß das erste Muster auf dem ersten Träger vorgesehen und von leitenden Gebieten für Bildelementen zugeordnete Feldemitter lateral getrennt ist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19930202700 EP0589523B1 (de) | 1992-09-25 | 1993-09-17 | Anzeigevorrichtung |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP92202948 | 1992-09-25 | ||
EP92202948 | 1992-09-25 | ||
EP19930202700 EP0589523B1 (de) | 1992-09-25 | 1993-09-17 | Anzeigevorrichtung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0589523A1 EP0589523A1 (de) | 1994-03-30 |
EP0589523B1 true EP0589523B1 (de) | 1997-12-17 |
Family
ID=26131710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19930202700 Expired - Lifetime EP0589523B1 (de) | 1992-09-25 | 1993-09-17 | Anzeigevorrichtung |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP0589523B1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3278375B2 (ja) * | 1996-03-28 | 2002-04-30 | キヤノン株式会社 | 電子線発生装置、それを備える画像表示装置、およびそれらの駆動方法 |
US5844370A (en) * | 1996-09-04 | 1998-12-01 | Micron Technology, Inc. | Matrix addressable display with electrostatic discharge protection |
US5945968A (en) * | 1997-01-07 | 1999-08-31 | Micron Technology, Inc. | Matrix addressable display having pulsed current control |
FR2809862B1 (fr) | 2000-05-30 | 2003-10-17 | Pixtech Sa | Ecran plat de visualisation a memoire d'adressage |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2593953B1 (fr) * | 1986-01-24 | 1988-04-29 | Commissariat Energie Atomique | Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ |
FR2641108A1 (en) * | 1988-12-23 | 1990-06-29 | Thomson Csf | Display device having a cathode ray tube screen |
JPH04221990A (ja) * | 1990-12-25 | 1992-08-12 | Sony Corp | 画像表示装置 |
JP2626276B2 (ja) * | 1991-02-06 | 1997-07-02 | 双葉電子工業株式会社 | 電子放出素子 |
-
1993
- 1993-09-17 EP EP19930202700 patent/EP0589523B1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0589523A1 (de) | 1994-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2728739B2 (ja) | マイクロドット三原色蛍光スクリーンとその製造方法及びそのアドレス方法 | |
US5986399A (en) | Display device | |
USRE41828E1 (en) | Image display and a manufacturing method of the same | |
US6873309B2 (en) | Display apparatus using luminance modulation elements | |
US20070222394A1 (en) | Black matrix for flat panel field emission displays | |
US4081716A (en) | Fluorescent display elements | |
US5589738A (en) | Field emission type display device | |
US6285135B2 (en) | Field emission display having circuit for preventing emission to grid | |
EP0589523B1 (de) | Anzeigevorrichtung | |
US5742267A (en) | Capacitive charge driver circuit for flat panel display | |
KR100558665B1 (ko) | 전계 방출 디스플레이에서 전하의 누적을 감소시키는 방법 | |
US7116291B1 (en) | Image display and method of driving image display | |
US5537007A (en) | Field emitter display device with two-pole circuits | |
KR20000069960A (ko) | 펄스 전류 제어를 행하는 매트릭스 어드레스가능 디스플레이 | |
US6118417A (en) | Field emission display with binary address line supplying emission current | |
US5739642A (en) | Low power consumption driving method for field emitter displays | |
US6002209A (en) | Field emission device with auto-activation feature | |
US20020030646A1 (en) | Highly bright field emission display device | |
US5873760A (en) | Method of forming an electroluminescent array | |
US5550426A (en) | Field emission device | |
US5909200A (en) | Temperature compensated matrix addressable display | |
US6028576A (en) | Matrix addressable display having compensation for activation-to-emission variations | |
JP3420729B2 (ja) | フィールドエミッション型表示装置 | |
US5742266A (en) | Image display device using high-voltage electrodes and method of driving same | |
US6542136B1 (en) | Means for reducing crosstalk in a field emission display and structure therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN |
|
17P | Request for examination filed |
Effective date: 19940908 |
|
17Q | First examination report despatched |
Effective date: 19960228 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19971217 |
|
REF | Corresponds to: |
Ref document number: 69315783 Country of ref document: DE Date of ref document: 19980129 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V. |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020926 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020927 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20020906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20021119 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: D6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040401 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040528 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |