EP0225280A1 - Verfahren zur Veredlung von textilen Flächengebilden - Google Patents

Verfahren zur Veredlung von textilen Flächengebilden Download PDF

Info

Publication number
EP0225280A1
EP0225280A1 EP86810493A EP86810493A EP0225280A1 EP 0225280 A1 EP0225280 A1 EP 0225280A1 EP 86810493 A EP86810493 A EP 86810493A EP 86810493 A EP86810493 A EP 86810493A EP 0225280 A1 EP0225280 A1 EP 0225280A1
Authority
EP
European Patent Office
Prior art keywords
reaction
crosslinked
starting radiation
weight
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86810493A
Other languages
English (en)
French (fr)
Other versions
EP0225280B1 (de
Inventor
Bruno Dr. Felder
Jean-Pierre Feron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Publication of EP0225280A1 publication Critical patent/EP0225280A1/de
Application granted granted Critical
Publication of EP0225280B1 publication Critical patent/EP0225280B1/de
Expired legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/02Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/26Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of synthetic origin
    • D06M14/30Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of synthetic origin of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M14/34Polyamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/20Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin
    • D06M14/22Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin of vegetal origin, e.g. cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/20Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin
    • D06M14/24Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin of animal origin, e.g. wool or silk
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/26Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of synthetic origin
    • D06M14/28Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of synthetic origin of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/26Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of synthetic origin
    • D06M14/30Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of synthetic origin of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M14/32Polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2139Coating or impregnation specified as porous or permeable to a specific substance [e.g., water vapor, air, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2221Coating or impregnation is specified as water proof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2221Coating or impregnation is specified as water proof
    • Y10T442/2246Nitrogen containing

Definitions

  • the present invention relates to a new method for finishing textile fabrics.
  • the method according to the invention is characterized in that a connection which can be crosslinked by reaction-starting radiation is applied to the top of the textile fabrics, then exposed from the back with reaction-starting radiation and the non-crosslinked connection is removed.
  • Reaction-starting radiation is understood here to mean radiation with such a wavelength that changes in the irradiated connection such as e.g. May cause cross-linking reactions.
  • Such radiations are e.g. visible light, UV light and X-rays.
  • the invention is thus based on the knowledge that a special coating of textile fabrics in conjunction with a specific aftertreatment has made it possible to obtain a textile fabric that is water-resistant on the one hand, but at the same time is also permeable to water vapor and, in contrast to usual coated or laminated fabrics, the textile character largely retains.
  • the individual threads of the fabric surprisingly act as a grid, so that the radiation-sensitive connections are cross-linked by the irradiation only between the threads, but not inside, ie between the fibrils. Hence a differentiated porosity is achieved.
  • the cross-linking between the threads is attributed to the water resistance of the treated fabric, the voids in the interior of the threads the water vapor permeability.
  • compounds which can be crosslinked by reaction-starting radiation are to be understood as meaning low-molecular and high-molecular compounds which, in thin layers, undergo changes in solubility when irradiated with reaction-starting radiation of the corresponding wavelength, so that structuring in the layer can be achieved by so-called development processes. In principle, this can be done using the so-called positives as well as the negative method.
  • Suitable compounds which can be crosslinked by reaction-starting radiation e.g. also in Angew. Chem. 94, (1982), 471-564, Adv. Photochem. 11, 1-103, (1979) and in J. Macromol. Sci. - Revs. Macromol. Chem. C21 187-273, (1981/82).
  • a large number of patent applications and documents such as DE 15 22 515, US 4,079,041, US 4,272,620, EP 92 524, EP 134 752, EP 138 768, EP 132 221, EP 141 781, US 2,670,286, US 2,379,413, US 2,299,839, US 2,760,863 and US 4,530,896 round off this overview.
  • linear polymers come into consideration which have a basic structure - polyvinyl alcohol, - epoxy resins chain-extended with terminal epoxy groups, - Acrylate / methacrylate copolymers, - Butadiene-acrylonitrile copolymers have and as photocrosslinkable parts either lateral Styryl-pyridinium groups, - Acrylamide groups or - Dimethyl maleimide groups or carry terminal vinyl groups.
  • Compounds which are particularly suitable for the process according to the invention and can be crosslinked by reaction-initiating radiation are, for example, cinnamic acid esters of high molecular weight, polyhydric alcohols, polymers with chalcone-like and benzophenone-like groups and stilbenes, which form crosslinks under the influence of reaction-initiating radiation, if appropriate in the presence of sensitizers (cf. Chapter 4).
  • Polyvinyl alcohol and some of its derivatives as well as organic colloids, such as gelatin and starch, in combination with crosslinking agents such as metal dichromates, as described in Chapter 2 by J. Kosar (see above) are among the preferred compounds that can be crosslinked by reaction-starting radiation.
  • Polyvinyl alcohols modified with groups which can be crosslinked by reaction-initiating radiation and which are also well suited for use in the process according to the invention are e.g. in US 4,272,620.
  • Further preferred compounds which can be crosslinked by reaction-initiating radiation are those whose average molecular weight is at least 1000 and which on average more than 2 maleimide groups of the formula per molecule contain, wherein R1 and R2 are independently alkyl having 1 to 4 carbon atoms or are the addition to a 5- or 6-membered carbocyclic ring.
  • the polymer backbone to which these maleimide groups are bound is preferably a homo- or copolymer of monomers containing reactive double bonds.
  • thiol-ene systems in which thiols under the action of reaction-initiating radiation are added to alkenes, producing thioethers, as described in Angew. Chem. 94 (1982) 480.
  • homopolymers and copolymers which can be crosslinked directly by the action of reaction-starting radiation, and which contain at least 5 mol% of structural units of the formula based on the polymer in which R and R 'independently of one another are the divalent radicals indicated in the cited application and q is 0 or 1.
  • EP 132 221 and EP 141 781 Further homopolymers and copolymers which are preferred for the process according to the invention are described in EP 132 221 and EP 141 781. These essentially contain the recurring structural elements of the type in which Z and X have the meanings given in the citations and, if the conditions described in EP 132 221 are observed, can be crosslinked without the addition of sensitizers or crosslinking agents.
  • the radiation-sensitive homo- and copolycondensates from the group of linear saturated polyamides, polyesters, polyamideimides, polyesterimides and polyesteramides based on benzophenone dicarboxylic acids and benzophenone tricarboxylic acids according to EP 138 768, the recurring structural elements of the formula and in the case of copolycondensates additionally the recurring structural elements of the formulas have, in which the substituents have the meanings given in the cited application, also belong to the group of preferred compounds which can be crosslinked by reaction-starting radiation.
  • Particularly preferred silicone-based systems sensitive to reaction-starting radiation are those siloxanes which contain terminal epoxy groups and which can be photocrosslinked in the presence of cationic sensitizers, such as, for example, ferrocenium, iodonium or sulfonium complexes.
  • cationic sensitizers such as, for example, ferrocenium, iodonium or sulfonium complexes.
  • polar solvents such as e.g. Alcohols, ethers, ether alcohols, esters, aldehydes and ketones, in particular methyl ethyl ketone, furfural, benzaldehyde, morpholine, acetophenone and cyclohexanone.
  • polar solvents such as e.g. Alcohols, ethers, ether alcohols, esters, aldehydes and ketones, in particular methyl ethyl ketone, furfural, benzaldehyde, morpholine, acetophenone and cyclohexanone.
  • aqueous solutions of these compounds are preferably chosen for coating the textile fabrics.
  • the sensitizers known from the literature can optionally be added to the solution or dispersion of the light-crosslinkable compound used.
  • these are, for example, mono- or polycyclic aromatics or heteroaromatics, phenones, in particular acetophenones and benzophenones, benziles, xanthones, stilbenes, thioxanthones, phthalimides, phthalimide thioethers and diones with adjacent carbonyl groups.
  • Further lists of possible sensitizers can be found, for example, SL Murow, Handbook of Photo- chemistry, M. Dekker Inc., New York, pages 27 ff (1973) and GB 2 119 364, US 4,363,917, US 4,459,414, US 4,348,530 and EP 152 377.
  • a crosslinking agent When using certain networkable connections, e.g. that mentioned in EP 92 524, a crosslinking agent must be added to the solution or dispersion which effects the crosslinking of the compound under the action of reaction-starting (e.g. actinic) radiation.
  • reaction-starting e.g. actinic
  • Such crosslinking agents are known from the literature.
  • metal dichromates or low molecular weight organic compounds with e.g. two functional groups, e.g. Azido, carbonazido or sulfazido groups which are exposed to radiation e.g. split off with light, nitrogen. The remaining reactive imenes then link neighboring polymers.
  • customary hydrophobizing agents such as e.g. those based on fluorine or silicone are added.
  • Common thickeners such as e.g. finely divided silicon dioxide, silicates, bentonites, kaolins, titanium dioxide and calcium carbonate can be used to bring the viscosity of the solution or dispersion to an appropriate value.
  • the viscosity can also be controlled by setting a certain temperature range.
  • Solutions or dispersions of the compounds which can be crosslinked by reaction-starting radiation preferably contain 5 to 50% by weight of polymer, 0 to 5% by weight of sensitizer, 0 to 20% by weight of crosslinking agent, 0 to 10% by weight of hydrophobizing agent and 0 to 10% by weight of thickening agent .
  • Particularly suitable solutions of the compounds which can be crosslinked by reaction-starting radiation are aqueous solutions which contain 5 to 15% by weight of polyvinyl alcohol derivative.
  • the coating of the textile fabric with the polymers is carried out according to methods known per se, for example using a punctured applicator roller or a doctor blade, by immersion, spraying or brushing.
  • Woven fabrics, knitted fabrics and non-woven fabrics are generally considered as textile fabrics. These fabrics can be made from all common natural and synthetic fiber materials such as cotton, linen, regenerated cellulose, cellulose acetate (2 1/2 or triacetate) polyester, polyacrylonitrile, polyamide, polyurethane, wool, silk, polyolefins, especially polypropylene, or in particular mixtures of different fibers be made, mixtures of polyurethane fibers (3-30) with cotton, polyester or synthetic polyamide fibers (70-97) are preferred. If necessary, they can also be impregnated with agents for improving the properties of use. Such agents are in particular water repellents and / or oil repellants, such as e.g.
  • aqueous silicone oil emulsions aqueous silicone oil emulsions, organic solutions of organopolysiloxanes, fat-modified melamine resins, fluorochemicals or water-soluble chromium complexes of stearic acid.
  • Such coatings show good resistance to chemical cleaning.
  • these textile fabrics have to be pretreated with suitable contrast agents to increase the contrast to the reaction-starting radiation (in the case of colored substrates, UV-curing radiation is generally sufficient for the UV intrinsic absorption of the dye).
  • white substrates can be colored with UV absorbers (e.g. 2- (3'-tert-butyl-2'-hydroxy-5'-methylphenyl) -5-chloro-benzotriazole) or with brighteners that absorb UV.
  • agents for improving the properties of use are, for example, flame retardants, bacteriostatics, non-iron or wash-and-wear preparations, softening agents, dyes, pigments or optical brighteners.
  • the coated fabric is then dried at a temperature of 20 to 180 ° C, preferably at 80 to 130 ° C, in conventional heating agents.
  • the layer overlay depends on the properties given for a particular textile fabric. Good results are generally achieved with layer coverings which are 5 to 15 g / m 2 in the dry state.
  • the dried fabric is started with a reaction, e.g. exposed to actinic radiation in a manner known per se.
  • a reaction e.g. exposed to actinic radiation in a manner known per se.
  • the duration of the radiation depends on the intensity of the radiation source and can vary within wide limits.
  • the upper limit of the exposure time is of course exceeded when the radiation-sensitive connections located directly behind the threads of the fabric are affected by e.g. Scattering or refraction effects can absorb so much energy that they also form networks.
  • the textile fabrics treated by the method according to the invention prove to be waterproof and at the same time permeable to water vapor.
  • the method according to the invention is therefore suitable for a wide variety of textile fabrics to which these requirements can be imposed - to varying degrees - preferably for those textiles which are used for the production of, for example, sportswear items such as ski jackets and suits and anoraks, windbreakers, coats, in particular raincoats, work clothes, protective suits and sleeping bags can be used.
  • water vapor permeability and watertightness of textile fabrics can be coordinated with one another within considerable limits, depending on the requirements, by choosing the exposure time or the intensity of the reaction-starting radiation (cf. Examples 2-8).
  • Red polyamide 6.6 (nylon filament fabric: basis weight 65 g / m 2) hydrophobized with a fluorocarbon polymer (eg Oleophobol SY®) is coated with a coating composition consisting of a 10% aqueous solution of the polyvinyl alcohol derivative according to US Pat. No. 4,272,620, Examples 1 and 2 together with 16. which contains 3% by weight of a fluorocarbon polymer (eg Oleophobol SY®), coated with a doctor blade (100 ⁇ ) and then dried at 120 ° C. The application weight of the layer obtained was determined to be 7 g polymer / m2.
  • the material coated in this way was then exposed from the rear using a Philips HPR lamp, 125 W, from a distance of 18 cm for 20 minutes and washed in a water bath at 50 ° C. for 5 minutes. Was dried at 130 ° C.
  • the water column was measured based on the Hydrostatic Head Test AATCC 1952-18.
  • the water column was 72 cm, which indicates good waterproofness of the nylon filament treated according to the invention.
  • the hydrophobized material not treated according to the invention had a water column of only 17 cm.
  • the nylon filament treated according to the invention is thus also distinguished by good water vapor permeability.
  • the untreated hydrophobized material had a water vapor permeability of 50 g / m2.
  • Red-colored polyamide 6.6 (nylon filament fabric: basis weight 65 g / m 2) hydrophobized with a fluorocarbon polymer (e.g. Oleophobol SY®) is coated with a coating composition consisting of a 10% aqueous solution of the polyvinyl alcohol derivative according to US Pat. No. 4,272,620, Examples 1 and 2 together with 16, which contains 3% by weight of a fluorocarbon polymer (for example Oleophobol SY®), spread twice using a doctor blade (100 ⁇ ) and then dried at 100 ° C for 2 minutes. The application weight of the layer obtained was determined to be 7 g polymer / m2.
  • a fluorocarbon polymer e.g. Oleophobol SY®
  • the material coated in this way is then exposed from the rear with a Philips HPR lamp, 125 W, from a distance of 18 cm for different lengths and then washed in a water bath at 50 ° C. for 5 minutes. Drying takes place at 130 ° C.
  • the water tightness is measured in accordance with DIN 53886 and the water vapor permeability is determined in accordance with the standard method in accordance with DIN 53122.
  • the fabric samples obtained have the following characteristics:
  • tissue samples are obtained with the following features:
  • the following coating composition is coated once with a 15 ⁇ doctor knife instead of the one specified there: 5 g of a vinyl-terminated butadiene-acrylic-nitrile copolymer (e.g. Hycar®VTBN) 15 g of hydroxyethyl methacrylate 0.4 g of a photopolymerization initiator, for example 2-morpholino (p-methylthio-isobutyrophenone) 0.5 g fumed silica (e.g. Aerosil Silica R 202®)
  • a photopolymerization initiator for example 2-morpholino (p-methylthio-isobutyrophenone)
  • fumed silica e.g. Aerosil Silica R 202®
  • Example 2 The exposure is carried out as in Example 2, but under a nitrogen atmosphere. It is then developed for 30 seconds in acetone at room temperature. After post-oleophobization with 35 g / l of a fluorocarbon polymer (eg Oleophobol SY®) and 0.8 g / l acetic acid in water and drying for 2 minutes at 100 ° C, tissue samples with the following characteristics are obtained:
  • a fluorocarbon polymer eg Oleophobol SY®
  • An epoxy resin with photopolymerizing pendant acrylamide groups is prepared by the method described in Example 1 of U.S. Patent 4,108,803.
  • 1,4-Butanediol is used as the diol component instead of ethylene glycol.
  • the condensation of the diol with 1,3-diglycidyl-5,5-dimethylhydantoin takes place up to an epoxide content of 0.1 equivalent / kg (instead of 0.32 equivalent / kg according to the example).
  • the reaction of this condensate with N-hydroxymethylacrylamide is carried out under the molar ratios and reaction conditions given in the patent example.
  • Example 4 After exposure from the rear, as in Example 4, development is carried out in ethanol for 2 minutes, air-dried and post-oleophobic, as in Example 4.
  • a coating composition of the following composition is used: 68% epoxy resin 10% of a photopolymerization initiator, for example a 1: 1 mixture of benzophenone and 1-benzoyl-cyclohexanol 5% of a fluorocarbon polymer (e.g. Oleophobol SY®) 17% water
  • a light-crosslinkable copolymer of 20% methyl methacrylate, 12.5% 2-dimethylaminoethyl methacrylate and 67.5% N- (hydroxyethoxyethyl) dimethylmaleimide methacrylate (US Pat. No. 4,532,332) produced according to US Pat. No. 4,079,041 (50 wt.% In the solvent mixture ethyl methyl ketone) / 1-methoxy-2-propanol (1: 1) dissolved. 1.5% of ethyl 6-methylthioxanone-2-carboxylate is added to the solution (based on the polymer) as a sensitizer.
  • the coating slip is applied once with a 50 ⁇ doctor blade to the test fabric described in Example 2 and air-dried. Exposure is carried out from the rear, as in Example 2.
  • tissue samples are obtained with the following features:
  • tissue patterns are obtained with the following features :
  • Example 8 The procedure described in Example 8 is followed, but using a light-crosslinking copolymer of 80% N- (hydroxyethoxyethyl) dimethylmaleinimide methacrylate (US 4,532,332) and 20% ethyl acrylate in 60% solution in ethyl methyl ketone / 1-methoxy-2-propanol 1: 1.
  • tissue samples are obtained with the following characteristics:

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

Veredlung textiler Flächengebilde durch Beschichtung derselben mit einer durch reaktionsstartende Strahlung vernetzbaren Verbindung, Bestrahlung des beschichteten Materials von der Rückseite her mit reaktionsstartender Strahlung und Herauslösen von nichtvernetzter Verbindung. Die so behandelten textilen Flächengebilde zeichnen sich durch gute Wasserfestigkeit und Wasserdampfdurchlässigkeit aus.

Description

  • Die vorliegende Erfindung betrifft ein neues Verfahren zur Veredlung von textilen Flächengebilden.
  • Das erfindungsgemässe Verfahren ist dadurch gekennzeichnet, dass man eine durch reaktionsstartende Strahlung vernetzbare Verbindung auf die Oberseite der textilen Flächengebilde aufbringt, hierauf von der Rückseite her mit reaktionsstartender Strahlung belichtet und die nichtvernetzte Verbindung herauslöst.
  • Unter reaktionsstartender Strahlung wird hier eine Strahlung mit einer solchen Wellenlänge verstanden, die in der bestrahlten Verbindung Veränderungen wie z.B. Vernetzungsreaktionen bewirken kann. Solche Strahlungen sind z.B. sichtbares Licht, UV-Licht und Röntgenstrahlen.
  • Die Erfindung beruht somit auf der Erkenntnis, dass es durch eine spezielle Beschichtung von textilen Flächengebilden in Verbindung mit einer spezifischen Nachbehandlung möglich geworden ist, ein textiles Flächengebilde zu erhalten, das sich einerseits als wasserfest darstellt, jedoch gleichzeitig auch wasserdampfdurch­lässig ist und, im Gegensatz zu üblich beschichteten bzw. lami­nierten Geweben, den textilen Charakter weitgehend behält.
  • Nach dem erfindungsgemässen Verfahren wirken die einzelnen Fäden des Flächengebildes überraschenderweise als Raster, sodass eine Ver­netzung der strahlungsempfindlichen Verbindungen durch die Bestrah­ lung nur zwischen den Fäden, nicht aber in deren Innern, d.h. also zwischen den Fibrillen, stattfinden kann. Offenbar wird hierdurch eine differenzierte Porosität erreicht. Der Vernetzung zwischen den Fäden wird die Wasserfestigkeit des behandelten Flächengebildes, den Hohlräumen im Innern der Fäden die Wasserdampfdurchlässigkeit zugeschrieben.
  • Unter durch reaktionsstartende Strahlung vernetzbaren Verbindungen sollen im folgenden niedermolekulare und hochmolekulare Verbindungen verstanden werden, die, in dünnen Schichten vorliegend, bei Bestrah­lung mit reaktionsstartender Strahlung von entsprechender Wellen­länge Löslichkeitsveränderungen erleiden, sodass durch sogenannte Entwicklungsprozesse Strukturierungen in der Schicht erzielt werden können. Dies kann prinzipiell sowohl nach dem sogenannten Positiv­als auch Negativ-Verfahren erfolgen.
  • Gemäss vorliegender Erfindung wird jedoch nur nach dem Negativver­fahren gearbeitet, wonach an den Stellen der Belichtung durch eine Maske (hier: Gewebestruktur) Vernetzungen zwischen den Molekülen der lichtvernetzbaren Verbindungen ausgebildet werden, die nicht mehr gelöst werden können. Die nicht vernetzten Verbindungen an den unbelichteten Stellen werden dann in einem Auswasch- bzw. Entwick­lungsvorgang herausgelöst.
  • Solche durch reaktionsstartende Strahlung vernetzbare Verbindungen sind aus einer Vielzahl von wissenschaftlichen Publikationen und Patentschriften bekannt. Beispielsweise wird in J. Kosar, Light Sensitive Systems, John Wiley & Sons, New York, 1965, in Kapiteln 2, 6 und 7, in W.S. DeForest, Photoresist - Materials and Processes, Mac Graw Hill Book Company, New York, 1975, insbesondere in den Kapiteln 2 und 4, und in K. Maas, Themen zur Chemie der Reproduk­tionsverfahren, Hüthig, Heidelberg, 1974, in den Kapiteln 5.1 bis 5.3 ein umfassender Ueberblick über lichtvernetzbare Verbin­dungen gegeben, die im erfindungsgemässen Verfahren zur Anmwendung kommen können.
  • Des weiteren werden geeignete durch reaktionsstartende Strahlung vernetzbare Verbindungen z.B. auch in Angew. Chem. 94, (1982), 471-564, Adv. Photochem. 11, 1-103, (1979), sowie in J. Macromol. Sci. - Revs. Macromol. Chem. C21 187-273, (1981/82), beschrieben. Eine grosse Anzahl von Patentanmeldungen und -schriften wie z.B. DE 15 22 515, US 4,079,041, US 4,272,620, EP 92 524, EP 134 752, EP 138 768, EP 132 221, EP 141 781, US 2,670,286, US 2,379,413, US 2,299,839, US 2,760,863 und US 4,530,896 runden diesen Ueberblick ab.
  • Als durch reaktionsstartende Strahlung vernetzbare Verbindungen kommen z.B. Linearpolymere in Betracht, die ein Grundgerüst aus
    - Polyvinylalkohol,
    - mit endständigen Epoxigruppen kettenverlängerten Epoxiharzen,
    - Acrylat/Methacrylat-Copolymerisaten,
    - oder Butadien-Acrylnitril-Copolymerisaten
    aufweisen und als photovernetzbare Teile entweder seitenständige
    - Styryl-Pyridiniumgruppen,
    - Acrylamid-Gruppen oder
    - Dimethylmaleinimid-Gruppen
    oder endständige Vinylgruppen tragen.
  • Für das erfindungsgemässe Verfahren besonders geeignete durch reaktionsstartende Strahlung vernetzbare Verbindungen sind z.B. Zimtsäureester hochmolekularer, mehrwertiger Alkohole, Polymere mit chalconartigen und benzophenonartigen Gruppen und Stilbene, die unter dem Einfluss von reaktionsstartender Strahlung, gegebenenfalls in Anwesenheit von Sensibilisatoren, Vernetzungen ausbilden (vgl. Kosar, s.o. Kapitel 4). Auch Polyvinylalkohol und einige seiner Derivate sowie organische Kolloide, wie z.B. Gelatine und Stärke in Kombination mit Vernetzungsmitteln wie Metalldichromaten, wie sie in Kapitel 2 von J. Kosar (s.o.) beschrieben sind, gehören zu den bevorzugten durch reaktionsstartende Strahlung vernetzbaren Verbin­dungen.
  • Mit durch reaktionsstartende Strahlung vernetzbaren Gruppen modifi­zierte Polyvinylalkohole, die sich ebenfalls gut zur Verwendung im erfindungsgemässen Verfahren eignen, sind z.B. in US 4,272,620 beschrieben.
  • Weitere bevorzugte durch reaktionsstartende Strahlung vernetzbare Verbindungen sind solche, deren Durchschnittsmolekulargewicht mindestens 1000 beträgt und die pro Molekül durchschnittlich mehr als 2 Maleinimidgruppen der Formel
    Figure imgb0001
    enthalten, worin R₁ und R₂ unabhängig voneinander Alkyl mit 1 bis 4 Kohlenstoffatomen sind oder die Ergänzung zu einem 5- oder 6-gliedrigen carbocyclischen Ring bedeuten. Das Polymergerüst, an das diese Maleinimidgruppen gebunden sind, stellt vorzugsweise ein Homo- oder Copolymerisat von reaktiven Doppelbindungen enthaltenden Monomeren dar. Eine detaillierte Beschreibung dieser lichtvernetz­baren Polymere findet sich in US 4,079,041.
  • Die in EP 92 524 beschriebenen Homo- und Copolymerisate, welche durch organische, chromophore Polyazide durch reaktionsstartende Strahlung vernetzbar sind, stellen eine weitere bevorzugte Gruppe von durch reaktionsstartende Strahlung vernetzbaren polymeren Verbindungen dar.
  • Gute Ergebnisse werden auch mit Verbindungen mit intakten Acrylat­doppelbindungen erhalten. Ebenso eignen sich für das erfindungsge­mässe Verfahren Thiol-En-Systeme, worin Thiole unter Einwirkung von reaktionsstartender Strahlung an Alkene addiert werden, wobei Thioether entstehen, wie dies in Angew. Chem. 94 (1982) 480 be­schrieben ist.
  • Besonders geeignet sind auch die direkt durch Einwirkung von reaktionsstartender Strahlung vernetzbaren Homo- und Copolymeren gemäss EP 134 752, die zu mindestens 5 Mol-% bezogen auf das Polymer Struktureinheiten der Formel
    Figure imgb0002
    aufweisen, worin R und R' unabhängig voneinander die in der zitier­ten Anmeldung angegebenen zweiwertigen Reste sind und q 0 oder 1 ist.
  • Weitere Homo- und Copolymerisate, die bevorzugt für das erfindungs­gemässe Verfahren in Betracht kommen, sind in EP 132 221 und EP 141 781 beschrieben. Diese enthalten im wesentlichen die wieder­kehrenden Strukturelemente vom Typ
    Figure imgb0003
    worin Z und X die in den Zitaten angegebenen Bedeutungen haben, und können, wenn die in der EP 132 221 beschriebenen Bedingungen eingehalten werden, ohne Zugabe von Sensibilisatoren oder Ver­netzungsmittel vernetzt werden.
  • Die strahlungsempfindlichen Homo- und Copolykondensate aus der Gruppe linearer gesättigter Polyamide, Polyester, Polyamidimide, Polyester­imide und Polyesteramide auf der Basis von Benzophenondicarbonsäuren und Benzophenontricarbonsäuren gemäss EP 138 768, die wiederkehrende Strukturelemente der Formel
    Figure imgb0004
    und im Falle von Copolykondensaten zusätzlich die wiederkehrenden Strukturelemente der Formeln
    Figure imgb0005
    aufweisen, worin die Substituenten die in der zitierten Anmeldung genannten Bedeutungen haben, gehören ebenfalls zum Kreis der bevorzugten durch reaktionsstartende Strahlung venetzbaren Verbin­dungen.
  • Es seien auch die lichtempfindlichen Systeme gemäss EP 152 377, z.B. äthylenisch ungesättigte Verbindungen wie Olefine, Vinyläther und -ester, und Epoxyde, die in Gegenwart eines kationischen Sensibili­sators und eines Oxidationsmittels photovernetzbar sind, sowie die gegenüber reaktionsstartender Strahlung empfindlichen Systeme auf Siliconbasis, wie z.B. durch reaktionsstartende Strahlung vernetz­ bare modifizierte Dimethylpolysiloxane, Methyl-H-Polysiloxane und Siliconelastomere, und auch die durch reaktionsstartende Strahlung vernetzbaren Perfluoralkylgruppen enthaltenden Polymere genannt, die mit Vorteil im erfindungsgemässen Verfahren verwendet werden können. Besonders bevorzugte gegenüber reaktionsstartender Strahlung empfindliche Systeme auf Siliconbasis sind solche Siloxane, die endständige Epoxidgruppen enthalten und in Gegenwart kationischer Sensibilisatoren, wie z.B. Ferrocenium-, Jodonium- oder Sulfonium­komplexen, photovernetzbar sind.
  • Von den aufgezählten Verbindungen sind ganz besonders solche zur Verwendung im erfindungsgemässen Verfahren geeignet, deren Grund­struktur wie z.B. beim Polyvinylalkohol und dessen Derivate (z.B. gemäss US 4,272,620) im wesentlichen linear ist. Die durch reak­tionsstartende Strahlung vernetzbaren Verbindungen werden in Form einer Lösung oder Dispersion auf das textile Flächengebilde aufge­bracht.
  • Als Lösungs- oder Dispergiermittel kommen Wasser und organische, insbesondere polare Lösungsmittel wie z.B. Alkohole, Ether, Ether­alkohole, Ester, Aldehyde und Ketone, insbesondere Methylethyl­keton, Furfural, Benzaldehyd, Morpholin, Acetophenon und Cyclo­hexanon in Betracht. Solange es die Löslichkeitseigenschaften der verwendeten durch reaktionsstartende Strahlung vernetzbaren Ver­bindungen erlauben, wählt man vorzugsweise wässrige Lösungen dieser Verbindungen zur Beschichtung der textilen Flächengebilde.
  • Der Lösung oder Dispersion der verwendeten lichtvernetzbaren Verbindung können gegebenenfalls zur Steigerung der Lichtempfind­lichkeit dieser Verbindung die aus der Literatur bekannten Sensibi­lisatoren hinzugefügt werden. Es handelt sich dabei z.B. um mono- oder polycylische Aromaten oder Heteroaromaten, Phenone, insbeson­dere Acetophenone und Benzophenone, Benzile, Xanthone, Stilbene, Thioxanthone, Phthalimide, Phthalimidthioether und Dione mit benachbarten Carbonylgruppen. Weitere Aufzählungen in Frage kommen­der Sensibilisatoren können z.B. S.L. Murow, Handbook of Photo-­ chemistry, M. Dekker Inc., New York, Seiten 27 ff (1973) sowie GB 2 119 364, US 4,363,917, US 4,459,414, US 4,348,530 und EP 152 377 entnommen werden.
  • Bei Verwendung bestimmter vernetzbarer Verbindungen, z.B. der in EP 92 524 genannten, muss der Lösung oder Dispersion ein Vernetzungs­mittel hinzugefügt werden, welches unter der Einwirkung von reak­tionsstartender (z.B. aktinischer) Strahlung die Vernetzung der Verbindung bewerkstelligt. Solche Vernetzungsmittel sind aus der Literatur bekannt. Es sind in der Regel Metalldichromate oder niedermolekulare organische Verbindungen mit z.B. zwei funktionellen Gruppen, wie z.B. Azido-, Carbonazido- oder Sulfazidogruppen, welche bei Bestrahlung, z.B. mit Licht, Stickstoff abspalten. Die verblei­benden reaktionsfähigen Imene verknüpfen dann benachbarte Polymere.
  • Zur Beeinflussung der Hydrophobie des verwendeten Polymers können der Lösung oder Dispersion übliche Hydrophobiermittel wie z.B. solche auf Fluor- oder Siliconbasis zugesetzt werden.
  • Ferner können übliche Verdickungsmittel wie z.B. feinverteiltes Siliciumdioxid, Silikate, Bentonite, Kaoline, Titandioxid und Calciumcarbonat verwendet werden, um die Viskosität der Lösung oder Dispersion auf einen geeigneten Wert zu bringen. Die Viskosität lässt sich auch durch Einstellen eines bestimmten Temperaturbe­reiches steuern.
  • Vorzugsweise enthalten Lösungen oder Dispersionen der durch reak­tionsstartende Strahlung vernetzbaren Verbindungen 5 bis 50 Gew.% Polymer, 0 bis 5 Gew.% Sensibilisator, 0 bis 20 Gew.% Vernetzungs­mittel, 0 bis 10 Gew.% Hydrophobiermittel und 0 bis 10 Gew.% Verdickungsmittel.
  • Besonders geeignete Lösungen der durch reaktionsstartende Strahlung vernetzbaren Verbindungen sind wässrige Lösungen, die 5 bis 15 Gew.% Polyvinylalkoholderivat enthalten.
  • Die Beschichtung des textilen Flächengebildes mit den Polymeren erfolgt nach an sich bekannten Methoden, beispielsweise unter Verwendung einer punktierten Auftragswalze oder eines Rakels, durch Eintauchen, Aufsprühen oder Aufbürsten.
  • Als textile Flächengebilde kommen in der Regel Gewebe, Gewirke und Faservliese in Betracht. Diese Flächengebilde können aus allen üblichen natürlichen und synthetischen Fasermaterialien wie Baum­wolle, Leinen, regenerierter Cellulose, Celluloseacetat (2 1/2-oder Triacetat) Polyester, Polyacrylnitril, Polyamid, Polyurethan, Wolle, Seide, Polyolefinen, insbesondere Polypropylen, oder insbesondere Mischungen verschiedener Fasern hergestellt sein, wobei Mischungen aus Polyurethanfasern (3-30) mit Baumwolle, Polyester- oder synthe­tischen Polyamidfasern (70-97) bevorzugt sind. Gegebenenfalls kann man sie auch noch mit Mitteln zur Verbesserung der Gebrauchseigen­schaften imprägnieren. Solche Mittel sind insbesondere Hydrophobier- und/oder Oleophobiermittel, wie z.B. wässrige Siliconölemulsionen, organische Lösungen von Organopolysiloxanen, fettmodifizierte Melaminharze, Fluorchemikalien oder wasserlösliche Chromkomplexe von Stearinsäure. Derartige Beschichtungen zeigen eine gute Beständig­keit in der chemischen Reinigung.
  • Gegebenenfalls sind diese textilen Flächengebilde zur Erhöhung des Kontrastes gegenüber der reaktionsstartenden Strahlung mit geeig­neten Kontrastmitteln vorzubehandeln (im Falle gefärbter Substrate genügt bei Verwendung UV-vernetzender Strahlung im allgemeinen die UV-Eigenabsorption der Färbung). Weisse Substrate sind gegebenen­falls mit UV-Absorbern (z.B. 2-(3'-Tert.butyl-2'-hydroxi-5'-methyl­phenyl)-5-chlor-benzotriazol) oder mit im UV absorbierenden Auf­hellern einzufärben.
  • Weitere Mittel zur Verbesserung der Gebrauchseigenschaften sind beispielsweise Flammfestmittel, Bakteriostatika, Bügelfrei- oder Wash-and-wear-Präparate, Weichgriffmittel, Farbstoffe, Pigmente oder optische Aufheller.
  • Das beschichtete Flächengebilde wird dann bei einer Temperatur von 20 bis 180°C, vorzugsweise bei 80 bis 130°C, in üblichen Heizmitteln getrocknet.
  • Die Schichtauflage richtet sich nach den jeweils für ein bestimmtes textiles Flächengebilde gegebenen Eigenschaften. Gute Ergebnisse werden im allgemeinen mit Schichtauflagen erzielt, die in trockenem Zustand 5 bis 15 g/m² betragen.
  • Von der Rückseite her wird das getrocknete Flächengebilde mit reaktionsstartender, z.B. aktinischer Strahlung auf an sich bekannte Weise belichtet. Die Bestrahlungsdauer hängt von der Intensität der Strahlungsquelle ab und kann in weiten Grenzen schwanken. Die obere Grenze der Belichtungsdauer ist natürlich dann überschritten, wenn die direkt hinter den Fäden des Flächengebildes sich befindlichen strahlungsempfindlichen Verbindungen durch z.B. Streu- oder Brechungseffekte soviel Energie absorbieren können, dass auch sie Vernetzungen ausbilden.
  • Anschliessend wird in Wasser oder einem der oben genannten orga­nischen, insbesondere polaren Lösungsmittel, gegebenenfalls bei erhöhten Temperaturen, d.h. bei Temperaturen, welche die Struktur der Beschichtung und des textilen Flächengebildes nicht beeinträch­tigen, vorzugsweise im Bereich von 30 bis 80°C, gewaschen, um die nichtvernetzten Polymere von dem textilen Flächengebilde zu ent­fernen, und dann getrocknet.
  • Die nach dem erfindungsgemässen Verfahren behandelten textilen Flächengebilde erweisen sich als wasserdicht und zugleich wasser­dampfdurchlässig. Das erfindungsgemässe Verfahren ist deshalb für die verschiedenartigsten textilen Flächengebilde geeignet, an die diese Anforderungen - in unterschiedlichem Masse - gestellt werden können, vorzugsweise für solche Textilien, die für die Herstellung von z.B. Sportbekleidungsartikel wie Skijacken und -anzügen und Anoraks, von Windjacken, Mänteln, insbesondere Regenmäntel, Arbeits-­kleidern, Schutzanzügen und Schlafsäcken verwendet werden können.
  • Nach dem erfindungsgemässen Verfahren lassen sich Wasserdampfdurch­lässigkeit und Wasserdichtheit textiler Flächengebilde durch Wahl der Belichtungszeit oder der Intensität der reaktionsstartenden Strahlung innerhalb erheblichen Grenzen je nach Forderung aufein­ander abstimmen (vgl. Beispiele 2-8).
  • Beispiel 1
  • Mit einem Fluorocarbonpolymerisat (z.B. Oleophobol SY®) hydropho­biertes rotes Polyamid 6.6 (Nylon-Filamentgewebe: Flächengewicht 65 g/m²) wird mit einer Beschichtungsmasse bestehend aus einer 10%igen wässrigen Lösung des Polyvinylalkoholderivates gemäss US 4,272,620, Beispiele 1 und 2 zusammen mit 16, welche 3 Gew.% eines Fluorocarbonpolymerisates (z.B. Oleophobol SY®) enthält, mittels eines Ziehrahmenrakels (100 µ) bestrichen und anschliessend bei 120°C getrocknet. Das Auftragsgewicht der erhaltenen Schicht wurde zu 7 g Polymer/m² bestimmt.
  • Das so beschichtete Material wurde dann von der Rückseite her mit einer Philips HPR-Lampe, 125 W, aus einem Abstand von 18 cm 20 Minuten belichtet und 5 Minuten im Wasserbad bei 50°C gewaschen. Getrocknet wurde bei 130°C.
  • Zur Bestimmung der Wasserdichtheit wurde die Wassersäule in An­lehnung an Hydrostatic Head Test AATCC 1952-18 gemessen. Die Wassersäule betrug 72 cm, was auf gute Wasserdichtheit des erfin­dungsgemäss behandelten Nylon-Filaments hinweist. Das nicht erfin­dungsgemäss behandelte hydrophobierte Material wies eine Wassersäule von nur 17 cm auf.
  • In Anlehnung an die Standard-Methode nach DIN 53122 wurde für die Wasserdampfdurchlässigkeit ein Wert von 38 g/m²h ermittelt. Das erfindungsgemäss behandelte Nylon-Filament zeichnet sich also auch durch eine gute Wasserdampfdurchlässigkeit aus. Das unbehandelte hydrophobierte Material wies eine Wasserdampf­durchlässigkeit von 50 g/m² auf.
  • Beispiel 2
  • Mit einem Fluorcarbonpolymperisat (z.B. Oleophobol SY®) hydropho­biertes, rot eingefärbtes Polyamid 6.6 (Nylon-Filament-Gewebe: Flächengewicht 65 g/m²) wird mit einer Beschichtungsmasse bestehend aus einer 10%igen wässrigen Lösung des Polyvinylalkoholderivates gemäss US 4,272,620, Beispiel 1 und 2 zusammen mit 16, welche 3 Gew.% eines Fluorcarbonpolymerisates (z.B. Oleophobol SY®) enthält, mittels eines Ziehrahmenrakels (100 µ) 2 Mal bestrichen und anschliessend 2 Minuten bei 100°C getrocknet. Das Auftragsgewicht der erhaltenen Schicht wurde zu 7 g Polymer/m² bestimmt.
  • Das so beschichtete Material wird dann von der Rückseite her mit einer Philips HPR-Lampe, 125 W, aus einem Abstand von 18 cm ver­schieden lang belichtet und anschliessend während 5 Minuten im Wasserbad bei 50°C gewaschen. Die Trocknung erfolgt bei 130°C.
  • Zur Bestimmung der Wasserfestigkeit wird die Wasserdichtheit in Anlehnung an DIN 53886 gemessen und die Wasserdampfdurchlässigkeit in Anlehnung an die Standard-Methode nach DIN 53122 ermittelt. Die erhaltenen Gewebemuster haben folgende Merkmale:
    Figure imgb0006
  • Beispiel 3
  • Verfährt man wie in Beispiel 2 angegebenen, verwendet jedoch eine Beschichtungsmasse, die zusätzlich 5 % H₃PO₄ enthält, so erhält man Gewebemuster mit folgenden Merkmalen:
    Figure imgb0007
  • Beispiel 4
  • Auf das im Beispiel 2 beschriebene oleophobierte Testgewebe wird anstelle der dort angegebenen die folgende Beschichtungsmasse einmal mit einem 15 µ Rakel beschichtet:
    5 g eines vinyl-terminierten Butadien-acryl-nitril-copolymers (z.B. Hycar®VTBN)
    15 g Hydroxyäthylmethacrylat
    0,4 g eines Photopolymerisationsinitiators, z.B. 2-Morpholino-(p-­methylthio-isobutyrophenon)
    0,5 g pyrogener Kieselsäure (z.B. Aerosil Silica R 202®)
  • Die Belichtung erfolgt wie im Beispiel 2, jedoch unter Stickstoff­atmosphäre. Anschliessend wird während 30 Sekunden in Aceton bei Zimmertemperatur entwickelt. Nach der Nacholeophobierung mit 35 g/ℓ eines Fluorcarbonpolymerisates (z.B. Oleophobol SY®) und 0,8 g/ℓ Essigsäure in Wasser und 2 Minuten Trocknung bei 100°C werden Gewebemuster mit folgenden Merkmalen erhalten:
    Figure imgb0008
  • Beispiel 5
  • Nach der im Beispiel 1 des US-Patentes 4 108 803 beschriebenen Methode wird ein Epoxidharz mit photopolymerisierenden seitenstän­digen Acrylamidgruppen hergestellt. Als Diolkomponente wird anstelle von Ethylenglykol 1,4-Butandiol eingesetzt. Die Kondensation des Diols mit 1,3-Diglycidyl-5,5-dimethylhydantoin erfolgt bis zu einem Epoxidgehalt von 0,1 Aequivalenten/kg (anstelle von 0,32 Aequiva­lenten/kg laut Beispiel). Die Umsetzung dieses Kondensats mit N-Hydroxymethylacrylamid wird unter den im Patentbeispiel angege­benen Molverhältnissen und Reaktionsbedingungen durchgeführt. Eine 50%ige Lösung dieses Epoxidharzes in Ethanol, die 3 % eines 1:1 Ge­misches aus Benzophenon und 1-Benzoyl-cyclohexanol als Initiator enthält, wird einmal mit einem 35 µ Rakel auf das im Beispiel 2 beschriebene, oleophobierte Polyamid 6.6 Gewebe appliziert.
  • Nach Belichtung von der Rückseite her, wie in Beispiel 4, wird während 2 Minuten in Ethanol entwickelt, luftgetrocknet und nach­oleophobiert, wie in Beispiel 4.
  • Man erhält Gewebemuster mit folgenden Merkmalen:
    Figure imgb0009
  • Beispiel 6
  • Wird analog Beispiel 5 durchgeführt, jedoch mit dem Unterschied, dass das eingesetzte photovernetzbare Epoxidharz einen Epoxidgehalt von 0,33 Aequivalenten/kg aufweist. Zur Applikation gelangt eine Beschichtungsmasse der folgenden Zusammensetzung:
    68 % Epoxidharz
    10 % eines Photopolymerisationsinitiators z.B. ein 1:1 Gemisch aus Benzophenon und 1-Benzoyl-cyclohexanol
    5 % eines Fluorcarbonpolymerisates (z.B. Oleophobol SY®)
    17 % Wasser
  • Entwickelt wird während 5 Minuten in Ethanol bei 50°C; die Trock­nung erfolgt während 2 Minuten bei 100°C. Es wird nicht nacholeo­phobiert.
    Man erhält Gewebemuster mit folgenden Merkmalen:
    Figure imgb0010
  • Beispiel 7
  • Ein nach Patent US 4,079,041 hergestelltes, lichtvernetzbares Copolymer aus 20 % Methylmethacrylat, 12,5 % 2-Dimethylaminoethyl­methacrylat und 67,5 % N-(hydroxyethoxyethyl)-dimethylmaleinimid­methacrylat (US 4, 532, 332) wird 50 Gew.%ig im Lösungsmittelgemisch Ethylmethylketon/1-Methoxy-2-propanol (1:1) gelöst. Der Lösung wird (bezogen auf das Polymer) 1,5 % Ethyl-6-methylthioxanton-2-carboxy­lat als Sensibilisator zugesetzt.
  • Die Streichmasse wird einmal mit einem 50 µ Rakel auf das im Beispiel 2 beschriebenen Testgewebe appliziert und luftgetrocknet. Belichtet wird, wie in Beispiel 2, von der Rückseite her.
  • Das Material wird während 2 Minuten in 2%iger Essigsäurelösung entwickelt und anschliessend in Wasser gewaschen. Nach 10 minütiger Trocknung bei 100°C und nach Oleophobierung gemäss Beispiel 4 erhält man Gewebemuster mit folgenden Merkmalen:
    Figure imgb0011
  • Beispiel 8
  • Verfährt man wie in Beispiel 7 angegeben, verwendet jedoch ein lichtvernetzendes Copolymer aus 80 % Ethylacrylat, 12,5 % 2-Di­methylaminoethylmethacrylat und 7,5 % N-(hydroxyethoxyethyl)di­methylmaleinimid-methacrylat (US 4,532,332), so erhält man Gewebe­muster mit folgenden Merkmalen:
    Figure imgb0012
  • Beispiel 9
  • Verfährt man wie in Beispiel 8 angegeben, verwendet jedoch ein lichtvernetzendes Copolymer aus 80 % N-(hydroxyethoxyethyl)di­methylmaleinimidmethacrylat (US 4,532,332) und 20 % Ethylacrylat in 60%iger Lösung in Ethylmethylketon/1-Methoxy-2-propanol 1:1.
  • Die Entwicklung erfolgt in Aceton (½ Minute). Nach Nacholeophobie­rung und Trocknung wie in Beispiel 4 angegeben, erhält man Gewebe­muster mit folgenden Merkmalen:
    Figure imgb0013

Claims (21)

1. Verfahren zur Veredlung von textilen Flächengebilden, dadurch gekennzeichnet, dass man mindestens eine durch reaktionsstartende Strahlung vernetzbare Verbindung auf die Oberseite der textilen Flächengebilde aufbringt, hierauf von der Rückseite her mit einer reaktionsstartenden Strahlung bestrahlt und die nichtvernetzte Verbindung herauslöst.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die vernetzbare Verbindung eine durch reaktionsstartende Strahlung vernetzbare polymere Verbindung ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die durch reaktionsstartende Strahlung vernetzbare polymere Verbindung ein Linearpolymer ist.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das durch reaktionsstartende Strahlung vernetzbare Linearpolymer ein Grundge­rüst aus
- Polyvinylalkohol,
- mit endständigen Epoxigruppen kettenverlängerten Epoxiharzen,
- Acrylat/Methacrylat-Copolymerisaten,
- oder Butadien-Acrylnitril-Copolymerisaten
aufweist und als photovernetzbare Teile entweder seitenständige
- Styryl-Pyridiniumgruppen,
- Acrylamid-Gruppen oder
- Dimethylmaleinimid-Gruppen
oder endständige Vinylgruppen trägt.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die vernetzbare Verbindung in Form einer Lösung oder Dispersion auf das textile Flächengebilde aufbringt.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass man als Lösungs- oder Dispergiermittel Wasser oder organische Lösungsmittel verwendet.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man als Lösungsmittel Wasser verwendet.
8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Lösung oder Dispersion der durch reaktionsstartende Strahlung vernetzbaren Verbindung einen Sensibilisator, ein Vernetzungs­mittel, ein Hydrophobier- und/oder Verdickungsmittel enthält.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als Sensibilisatoren mono- oder polycyclische Aromaten oder Hetero­aromaten, Phenone, Stilbene, Benzile, Xanthone, Thioxanthone, Phthalimide, Phthalimidthioether oder Dione mit benachbarten Carbonylgruppen verwendet werden.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als Vernetzungsmittel Metalldichromate oder niedermolekulare organische Verbindungen mit funktionellen Gruppen verwendet werden.
11. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als Hydrophobiermittel solche auf Fluor- oder Siliconbasis verwendet werden.
12. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als Verdickungsmittel Siliciumdioxid, Silikate, Bentonite, Kaoline, Titandioxid und Calciumcarbonat verwendet.
13. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Lösung oder Dispersion der durch reaktionsstartende Strahlung vernetzbaren Verbindungen
a) 5 - 50 Gew.% durch reaktionsstartende Strahlung vernetzbare Verbindung,
b) 0 - 5 Gew.% Sensibilisator,
c) 0 - 20 Gew.% Vernetzungsmittel,
d) 0 - 10 Gew.% Hydrophobiermittel und
e) 0 - 10 Gew.% Verdickungsmittel enthält.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Lösung der durch reaktionsstartende Strahlung vernetzbaren Ver­bindung eine wässrige Lösung ist, die 5 bis 15 Gew.% Polyvinyl­alkoholderivat enthält.
15. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die nichtvernetzten Verbindungen mit Wasser oder einem organischen Lösungsmittel herauslöst.
16. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die textilen Flächengebilde Gewebe, Gewirke und Faservliese aus üblichen natürlichen und synthetischen Fasermaterialien sind.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die textilen Flächengebilde synthetische Fasermaterialien enthalten.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die synthetischen Fasermaterialien Nylonfilamentgewebe sind.
19. Die nach dem Verfahren nach Anspruch 1 veredelten textilen Flächengebilde.
20. Die nach dem Verfahren nach Anspruch 1 veredelten hydropho­bierten synthetischen Fasermaterialien.
21. Verwendung der Lösung oder Dispersion nach Anspruch 5 im Verfahren zum Veredeln von textilen Flächengebilden nach Anspruch 1.
EP86810493A 1985-11-06 1986-10-31 Verfahren zur Veredlung von textilen Flächengebilden Expired EP0225280B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4760/85 1985-11-06
CH476085 1985-11-06

Publications (2)

Publication Number Publication Date
EP0225280A1 true EP0225280A1 (de) 1987-06-10
EP0225280B1 EP0225280B1 (de) 1989-04-19

Family

ID=4282038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86810493A Expired EP0225280B1 (de) 1985-11-06 1986-10-31 Verfahren zur Veredlung von textilen Flächengebilden

Country Status (9)

Country Link
US (1) US4764395A (de)
EP (1) EP0225280B1 (de)
JP (1) JPS62110982A (de)
KR (1) KR870005142A (de)
DE (1) DE3662921D1 (de)
FI (1) FI864454A (de)
NO (1) NO864412L (de)
PT (1) PT83677B (de)
ZA (1) ZA868429B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2941468A1 (fr) * 2009-01-28 2010-07-30 Avelana Materiau filamenteux ou fibreux impregne de substances actives

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1328088C (en) * 1987-07-23 1994-03-29 Hercules Incorporated Method of modifying synthetic fibrous sheet to accept ink marking and printing thereof
US4929471A (en) * 1989-04-13 1990-05-29 The Balson-Hercules Group Ltd. Method of treating polyester fabric
DE3916127A1 (de) * 1989-05-18 1990-11-22 Kuesters Eduard Maschf Verfahren zur ausruestung von textilen flaechengebilden
DE4410020A1 (de) * 1994-03-23 1995-09-28 Gruenzweig & Hartmann Verfahren und Vorrichtung zum Polymerisieren von Substanzen in Fasermaterialien
US6211308B1 (en) 1998-08-20 2001-04-03 Henkel Corporation Method for coating a textile
US6887916B2 (en) 2000-12-28 2005-05-03 Kimberly-Clark Worldwide, Inc. Materials having controlled shrinkage and patterns and methods of making same
EP1498533A1 (de) * 2003-07-12 2005-01-19 Ciba Spezialitätenchemie Pfersee GmbH Verfahren zur Vorhangbeschichtung von textilen Flächengebilden
EP1584371A1 (de) * 2004-04-07 2005-10-12 Urea Casale S.A. Verfahren und vorrichtung zur wirbelschichtsgranulierung
US7776108B2 (en) 2005-06-07 2010-08-17 S.C. Johnson & Son, Inc. Composition for application to a surface
US8557758B2 (en) 2005-06-07 2013-10-15 S.C. Johnson & Son, Inc. Devices for applying a colorant to a surface
JP2009503125A (ja) 2005-06-07 2009-01-29 エス.シー. ジョンソン アンド サン、インコーポレイテッド 表面に適用するための組成物
US8846154B2 (en) * 2005-06-07 2014-09-30 S.C. Johnson & Son, Inc. Carpet décor and setting solution compositions
JP5246634B2 (ja) * 2007-04-26 2013-07-24 旭化成株式会社 光学的に制御された不織布および複合材料
US7642616B2 (en) * 2007-05-17 2010-01-05 Micron Technology, Inc. Tunnel and gate oxide comprising nitrogen for use with a semiconductor device and a process for forming the device
US9360759B2 (en) 2014-09-12 2016-06-07 Eastman Kodak Company Forming conductive metal patterns using water-soluble polymers
CN111996668A (zh) * 2020-08-31 2020-11-27 天津工业大学 一种高吸水非织造材料的制备方法
CN113861059B (zh) * 2021-10-27 2023-12-22 盐城工学院 一种n,n-双(2-丙烯酰胺乙基)丙烯酰胺及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1972323A (en) * 1931-05-08 1934-09-04 Shiraeff Dmitry Alexis Photographically printed fibrous product and method of producing the same
DE2039700A1 (de) * 1969-08-27 1971-03-04 Begy Soc Europ De Bas Sans Cou Verfahren zur Herstellung von bedruckten Artikeln,insbesondere von Wirkwaren
DE1710588A1 (de) * 1968-03-08 1971-12-02 Girmes Werke Ag Verfahren zur Herstellung von Ledernarbenimitationen auf der mit einem Kunststoffueberzug versehenen Rueckseite von textilen Stoffen
DE2124691A1 (de) * 1970-05-19 1971-12-09

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT216872B (de) * 1957-08-13 1961-08-25 Karl Kaup Verfahren zur Verstärkung der Reliefwirkung, insbesondere von Stickereierzeugnissen
US3878019A (en) * 1970-05-19 1975-04-15 Ici Ltd Process of producing spot bonded non-woven webs using ultra-violet radiation
US4012352A (en) * 1972-06-05 1977-03-15 E. I. Du Pont De Nemours And Company Polyvinyl alcohol microgels
US4042476A (en) * 1975-02-18 1977-08-16 Celanese Corporation Polymerized titanium dioxide for ultraviolet coatings
US4108748A (en) * 1975-03-28 1978-08-22 The United States Of America As Represented By The Secretary Of Agriculture Photofinishing of cotton textiles
US4108803A (en) * 1976-03-23 1978-08-22 Ciba-Geigy Corporation Photopolymerizable epoxy resins containing pendant unsaturated ester or amidomethyl groups
US4272620A (en) * 1978-08-09 1981-06-09 Agency Of Industrial Science And Technology Polyvinyl alcohol-styrylpyridinium photosensitive resins and method for manufacture thereof
US4278703A (en) * 1979-08-20 1981-07-14 Science Applications, Inc. Method and means for producing fluorocarbon finishes on fibrous structures
GB2109392B (en) * 1981-11-03 1985-06-26 Sericol Group Ltd Photopolymerisable materials for use in producing screen printing stencils

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1972323A (en) * 1931-05-08 1934-09-04 Shiraeff Dmitry Alexis Photographically printed fibrous product and method of producing the same
DE1710588A1 (de) * 1968-03-08 1971-12-02 Girmes Werke Ag Verfahren zur Herstellung von Ledernarbenimitationen auf der mit einem Kunststoffueberzug versehenen Rueckseite von textilen Stoffen
DE2039700A1 (de) * 1969-08-27 1971-03-04 Begy Soc Europ De Bas Sans Cou Verfahren zur Herstellung von bedruckten Artikeln,insbesondere von Wirkwaren
DE2124691A1 (de) * 1970-05-19 1971-12-09

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2941468A1 (fr) * 2009-01-28 2010-07-30 Avelana Materiau filamenteux ou fibreux impregne de substances actives
EP2213786A1 (de) * 2009-01-28 2010-08-04 Avelana Faser- oder Filamentmaterial impregniert mit Wirkstoffen

Also Published As

Publication number Publication date
PT83677B (pt) 1993-06-30
KR870005142A (ko) 1987-06-04
DE3662921D1 (en) 1989-05-24
NO864412L (no) 1987-05-07
FI864454A0 (fi) 1986-10-31
PT83677A (pt) 1987-06-17
US4764395A (en) 1988-08-16
ZA868429B (en) 1987-06-24
JPS62110982A (ja) 1987-05-22
NO864412D0 (no) 1986-11-05
FI864454A (fi) 1987-05-07
EP0225280B1 (de) 1989-04-19

Similar Documents

Publication Publication Date Title
EP0225280B1 (de) Verfahren zur Veredlung von textilen Flächengebilden
DE1216875B (de) Ultraviolett-Absorber
DE2260074A1 (de) Polymere verbindungen
DE2717778B2 (de) Lichtempfindliches Gemisch
CH350461A (de) Verwendung von Oxyketonen zum Schutze gegen ultraviolette Strahlung
DE3789180T2 (de) Fluorchemische Oxazolidinone.
DE2826894C3 (de) Verfahren zur Oberflächenbehandlung eines Filmschichtträgers
DE2610301A1 (de) Positiv wirkender photolack
DE2230304A1 (de) s-Triazinderivate, deren Herstellung und Verwendung
DE2626172A1 (de) Vernetzbare polyacrylnitril-copolymere
DE2849996A1 (de) Zur herstellung eines durch bestrahlung erzeugten positivbildes verwendbarer abdecklack und verfahren zur herstellung eines positivbildes durch bestrahlung
DE2207503A1 (de) Verfahren zum Aufbringen einer Zwi sehen bzw Haftschicht auf einen photo graphischen Film
DE2135139A1 (de) Neue Styrylverbindungen, Verfahren zu deren Herstellung und deren Verwendung
DE1668948A1 (de) Wasser-und oelabweisende Mittel und Verfahren zu deren Herstellung
DE1129925B (de) Verfahren zur Verbesserung der Eigenschaften von synthetischen Fasern, Geweben, Folien und Formkoerpern durch Bestrahlung mit radioaktiven Strahlen
DE69228067T2 (de) Polyamidmaterialien
DE1494389A1 (de) Sulfoniumsalze
DE1900234A1 (de) Wasser- und oelabweisende Ausruestung von synthetischen Fasermaterialien und Folien
DE3440508A1 (de) Verfahren zur photolytischen entwicklung eines gefaerbten bildes auf einem cellulosematerial mit monosulfonylaziden
EP0447964A2 (de) Geformte Gebilde aus aromatischen Polyetherketonen, die gegen UV-Strahlung stabilisiert sind, und ein Verfahren zu deren Herstellung
KR950032868A (ko) 심색성이 우수한 폴리에스터 직물의 제조방법
JPH0618926B2 (ja) 紫外線吸収剤
EP0185280A3 (de) Verfahren zur Herstellung von Röntgen-Resists
DE2230301A1 (de) Benzophenone, deren Herstellung und Verwendung
DE2715825C2 (de) Verfahren zur Herstellung einer dispersionsstabilen und fließfähigen, hitzehärtbaren Polymerisatemulsion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19861103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19880715

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3662921

Country of ref document: DE

Date of ref document: 19890524

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910802

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910823

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910909

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911022

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911126

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921031

Ref country code: GB

Effective date: 19921031

Ref country code: CH

Effective date: 19921031

Ref country code: BE

Effective date: 19921031

BERE Be: lapsed

Owner name: CIBA-GEIGY A.G.

Effective date: 19921031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031