EP0216269A2 - Dekorative Platte mit verbesserten Oberflächeneigenschaften - Google Patents

Dekorative Platte mit verbesserten Oberflächeneigenschaften Download PDF

Info

Publication number
EP0216269A2
EP0216269A2 EP86112598A EP86112598A EP0216269A2 EP 0216269 A2 EP0216269 A2 EP 0216269A2 EP 86112598 A EP86112598 A EP 86112598A EP 86112598 A EP86112598 A EP 86112598A EP 0216269 A2 EP0216269 A2 EP 0216269A2
Authority
EP
European Patent Office
Prior art keywords
radiation
layer
polymerized
decorative
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86112598A
Other languages
English (en)
French (fr)
Other versions
EP0216269A3 (en
EP0216269B1 (de
Inventor
Johannes Christinus Van Der Hoeven
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trespa International BV
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6281596&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0216269(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to AT86112598T priority Critical patent/ATE75448T1/de
Publication of EP0216269A2 publication Critical patent/EP0216269A2/de
Publication of EP0216269A3 publication Critical patent/EP0216269A3/de
Application granted granted Critical
Publication of EP0216269B1 publication Critical patent/EP0216269B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C5/00Processes for producing special ornamental bodies
    • B44C5/04Ornamental plaques, e.g. decorative panels, decorative veneers
    • B44C5/0469Ornamental plaques, e.g. decorative panels, decorative veneers comprising a decorative sheet and a core formed by one or more resin impregnated sheets of paper
    • B44C5/0476Ornamental plaques, e.g. decorative panels, decorative veneers comprising a decorative sheet and a core formed by one or more resin impregnated sheets of paper with abrasion resistant properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31859Next to an aldehyde or ketone condensation product
    • Y10T428/31862Melamine-aldehyde
    • Y10T428/31866Impregnated or coated cellulosic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31906Ester, halide or nitrile of addition polymer

Definitions

  • the invention relates to a decorative panel, composed of a core layer and a decorative layer on one or both sides, and to a method for the production thereof.
  • Panels of this type are used for indoor or outdoor applications in the construction sector, depending on their thickness they are used as cladding panels or as self-supporting elements.
  • the previously used decorative panels are, for example, decorative laminated panels (DIN 16 926), so-called "high pressure laminates” (HPL panels). They consist of a heat-pressed stack of resin-soaked paper webs as the core layer and a top layer of resin-soaked decorative paper. These plates have the disadvantage that they are attacked by mineral acids, in particular at concentrations above 10% and an exposure time of longer than 10 minutes. In addition, these standard panels are not sufficiently weather-resistant because the type of resin used in the top layer is sensitive to hydrolysis. Plates of this type can therefore only be used to a limited extent as worktops in chemical laboratories or for the production of wet cells which have to be cleaned with acids. When used outdoors, additional complex measures are required to improve their resistance to weather influences.
  • Laminates and sheets based on plastics such as polyester or acrylate sheets are particularly scratch-sensitive and not sufficiently resistant to organic solvents. For this reason, they are also less suitable for these applications.
  • a decorative plate which is particularly suitable for exterior applications, for interior fitting and for the production of special furniture, the surface of which is not sensitive to hydrolysis and has sufficient resistance to weathering influences, mineral acids and organic solvents and high surface hardness, is the subject of the unpublished EP application 85105851.1. It is made up of a core layer and a decorative layer on one or both sides. At least the outermost layer of the plate on at least one of the two plate surfaces consists predominantly of a synthetic resin composed of one or more components polymerized by radiation, selected from the group of unsaturated acrylates and methacrylates. This layer shows a particularly high surface hardness. It is still scratch-resistant with a scratching load of at least 1.5 N, preferably 2 to 7 N (DIN 53 799, part 10).
  • a liquid surface layer which comprises the components polymerizable by radiation, is applied to a base and then polymerized by radiation. Only after a further step in which the surface layer polymerized by radiation is pressed together with the base at elevated temperature. the plate surface shows the required properties.
  • this decorative plate shows the often undesirable property of being more or less shiny.
  • the plate surface can have a structure structured according to the surface of the separation medium, for example an orange peel-like surface structure, but its surface gloss is still very high.
  • matting agents such as silicon dioxide pigments in the outermost surface layer of the plate practically does not reduce the gloss, because the pigment-matt surface, which is still silk-matt after the radiation polymerization, strangely shines again as soon as the plate is subsequently subjected to heat compression.
  • the plate is a flat body, its surface shape and Surface structure is adapted to the application and can, for example, also have a curved shape.
  • a plate in the sense of the invention is also to be understood as films.
  • the force with which a diamond needle creates a visible scratch on the plate surface is determined. This assessment is carried out immediately after the action of the diamond needle, since the surface layer can be gradually reset due to the elasticity of the surface layer after the scratching.
  • the scratch resistance is a measure of the surface hardness.
  • this decorative plate with the special synthetic resin layer polymerized by radiation on at least one of the outer surfaces not only has excellent weather resistance compared to the previously known plates, but surprisingly has an increased surface hardness. It is also much less sensitive to acids and organic solvents.
  • the reflectometer value is used as a measure of the gloss of the plate surface with a reflectometer type RB / Dr. Determined for a long time according to DIN 67 530.
  • a reflectometer value determined according to this standard represents an optical parameter for the surface of a test specimen which is related to the gloss of the surface. It is to take into account that the gloss is not a purely physical, but also a physiologically and psychologically related variable. A direct measurement of the gloss is therefore not possible, but the "glossiness", namely the proportion which the surface contributes to the appearance of the gloss due to its reflective properties, can in principle be measured in a suitable manner.
  • the reflectometer value can be used as a measure of the gloss, because it is essentially determined by the reflective properties of the surface.
  • the reflectometer system defined by this standard is based on the arrangements described in the ASTM D 523-67 standard.
  • the radiation angles 20 °, 60 ° and 85 ° are chosen arbitrarily.
  • the 20 ° measuring geometry is used for test specimens with a 60 ° reflectometer value above 70, the 85 ° measuring geometry for test specimens with a 60 ° reflectometer value below 30.
  • a light source is imaged centrally in the opening of an aperture.
  • the light rays hit the surface of the plate at the specified angle of incidence (20 °, 60 ° or 85 °) and are reflected in a scattered manner.
  • the luminous flux passing through the aperture is measured with a photoelectronic receiver located behind the aperture.
  • the core layer has the supporting function of the plate. They is made of wood, for example. Sheets or foils made of plastic, for example based on polyvinyl chloride, polyethylene and polystyrene, or made of metal, for example made of steel, aluminum, copper, brass or other alloys, are also suitable as the core layer.
  • the radiation-polymerized synthetic resin layer is located directly on the surface of these core layers or is connected to the core layer by means of glue films or glue joints, but preferably with adhesion-promoting synthetic resins such as phenol-formaldehyde or resorcinol-formaldehyde precondensate. Glue joints are pure adhesive layers, glue films are carrier layers that are coated or soaked with adhesive. Adhesion promoters are substances that, without being adhesive themselves, promote the connection of two different types of material.
  • the core layer can also consist of the sheets of paper, in particular sodium kraft paper, impregnated with heat-curable synthetic resin, in particular phenol-formaldehyde resin, which are customary in H.P.L. plates and are pressed in the heat. Depending on the desired plate thickness, 1 to about 100 sheets are superimposed in the heat.
  • the core layer can also consist of pressure-hardened nonwoven or mats made of mineral fibers, glass fibers, plastic fibers or a fiber mixture, but preferably made of cellulose.
  • Cellulose-containing fiber layers are, for example, tangled wood fibers or wood chips.
  • the nonwoven, or mat, made of wood and / or cellulose fibers is produced by applying a synthetic resin to the fibers, drying the resin-coated fibers, shaping a fiber mat and pre-compressing this mat under the action of pressure (EP-A-0 081 147) .
  • this fiber-containing core layer may contain a thermosetting aminoplast or phenoplast resin.
  • This layer consists e.g. from a pigmented or unpigmented nonwoven or paper.
  • the fiber-containing core layer or this underlay layer is followed directly by a radiation-polymerized synthetic resin layer which is decorative, i.e. shows special optical effect or decorative effect by added dyes.
  • a radiation-polymerized synthetic resin layer which forms the outermost surface (s) of the plate; however, it is entirely possible to omit this clear synthetic resin layer, so that the decorative synthetic resin layer (s) then form (s) the outermost layer (s).
  • a decorative layer based on a colored and / or printed plastic film or based on paper can also be used, which usually consists of a pigmented, colored and / or printed decorative paper.
  • the synthetic resin layer polymerized by radiation, in this case transparent and dye-free, is located on the plastic film or the decorative paper.
  • the decorative paper contains the usual thermosetting synthetic resin, in particular aminoplast resin, and is located on core layers, which are made up of the sodium kraft paper typical of HPL boards or of phenol-resinous, tangled wood or cellulose fibers.
  • the compounds provided for the production of the uppermost layer of synthetic resin polymerized by radiation comprise acrylic acid esters or methacrylic acid esters which are radically polymerizable by actinic radiation and which are present individually or together in a polymerizable mixture.
  • the preferred component is a polyfunctional, ie polyunsaturated, prepolymer.
  • a further component with a diluting effect is optionally present in the copolymerizable mixture, which component is referred to as the dilution monomer or dilution oligomer.
  • the polyfunctional prepolymer has a proportion of 50 to 100, in particular 60 to 90,% by weight of the total weight of the copolymerizable components.
  • Low viscosity prepolymers (less than 100 poise at 20 ° C) are used without the thinning monomers or oligomers.
  • the components used have a strong tendency to polymerize radically when exposed to actinic radiation. Close UV light or high-energy radiation comes as actinic radiation, e.g. Electron corpuscular or X-ray radiation into consideration.
  • the free-radically polymerizable prepolymer is a polyfunctional unsaturated aliphatic or aromatic acrylate or methacrylate, preferably an unsaturated polyester acrylate oligomer, but in particular an aliphatic urethane acrylate oligomer.
  • Aromatic urethane acrylate oligomers also lead to scratch-resistant surface layers, but yellow after a while in outdoor applications.
  • a mono-, di-, tri-, tetra-, penta- or hexaacrylate or methacrylate is used in the free-radically copolymerizable mixture as an additional suitable monomer or oligomer.
  • These mono- to hexaacrylates or methacrylates are esters of polyols with 1 to 6 OH groups with acrylic acid or methacrylic acid and are therefore also referred to as polyol acrylates or polyol methacrylates.
  • Suitable diacrylates are esters of acrylic acid with aliphatic, dihydric alcohols, in particular ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, butanediols, 1,6-hexanediol or neopentyl glycol, with aliphatic ether alcohols, in particular diethylene glycol, dipropylene glycol, dibutylene glycol, polyethylene or polyethylene Polypropylene glycols, with oxyalkylated compounds of the aforementioned aliphatic Alcohols and ether alcohols or also with aromatic dihydroxyl compounds, in particular bisphenol A, pyrocatechol, resorcinol, hydroquinone, p-xylylene glycol or p-hydroxybenzyl alcohol.
  • aliphatic, dihydric alcohols in particular ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, butanediols, 1,6-hexanediol
  • Preferred diacrylates are 1,6-hexanediol diacrylate, tripropylene glycol diacrylate and 1,4-butanediol diacrylate.
  • Preferred triacrylates are trimethylolpropane triacrylate and pentaerythritol triacrylate.
  • suitable polyfunctional prepolymers are also epoxy acrylate and silicone acrylate oligomers, which are preferably used in the free-radically copolymerizable mixture with the diacrylates or triacrylates mentioned.
  • the prepolymers are known compounds and are produced, for example, from hydroxylated copolymers in which the hydroxyl groups are randomly distributed along the copolymer chain.
  • Statistically unsaturated acrylic copolymers are obtained from this copolymer by esterification of the hydroxyl groups with acrylic acid.
  • the hydroxyl group is attached to the end of the chain in the preparation of the hydroxylated copolymer.
  • Urethane acrylate oligomers are produced by reacting (meth) acrylic acid esters containing hydroxy groups, for example hydroxyethyl methacrylate, with polyvalent isocyanates, preferably diisocyanates.
  • the di- or polyisocyanates can preferably be reaction products of diols, polyether diols or polyester diols len with a stoichiometric excess of monomeric di- or polyisocyanate.
  • the chemical nature of the base polymer determines the properties of the hardened surface layer.
  • the added mono- to hexaacrylate or methacrylate, as the diluting monomer or oligomer, allows the viscosity of the mixture to be cured to be adjusted, which is normally in a viscosity range from 20 to 100 poise (20 ° C.), and fully takes on the radical polymerization part.
  • the coating is cured by radical polymerization between the double bonds of the prepolymer and the dilution monomers or oligomers which may be present.
  • photoinitiators When curing under the action of actinic radiation, photoinitiators must be added which absorb UV light and facilitate the initiation of radical polymerization with the formation of radicals. On the other hand, no photoinitiators are required when curing with electron beams. Most photoinitiators contain at least one carbonyl group that is conjugated to an aromatic ring. A photoinitiator system consisting of several components is usually used.
  • the radiation-polymerized synthetic resin contains, if necessary, to achieve the desired decorative, mechanical and physical surface properties suitable additives such as plasticizers, fillers, dye pigments, agents to improve the abrasion resistance and stabilizers.
  • suitable additives such as plasticizers, fillers, dye pigments, agents to improve the
  • the liquid compounds polymerizable by radiation are applied to the substrate to be coated, e.g. by spraying, pouring, a doctor blade system, a roller or screen printing.
  • the applied layer when applied to a decorative layer, is transparent. But it can also be decorative itself and is then colored and is on a non-decorative paper layer or directly on the core layer.
  • an additional layer which can be polymerized by radiation, is applied to this decorative synthetic resin layer after radiation curing, but is not decorative but transparent.
  • the base used for the application of the compounds polymerizable by radiation is thus a paper layer, a decorative paper layer or the above-mentioned core layers based on wood, plastic, metal or a stack of further fiber-containing layers, which forms the core of the plate obtained later.
  • the fibrous layers of the stack which are preferably made of sodium kraft paper or a Nonwovens made of wood and / or cellulose fibers contain the heat-curable pre-hardened resins that are customary in HPL boards, in particular phenol-formaldehyde resins, while the papers which may additionally be present on the stack contain an aminoplast resin, but in particular a phenoplast resin .
  • the content of thermosetting resins is 20 to 250 wt .-%, based on the respective layer.
  • the fiber-containing layers or the paper layers are impregnated or impregnated, for example, by immersion in a bath with a solution or dispersion containing the thermosetting resin or by application or spraying on using a metering system.
  • the solvent or dispersant is aqueous-alcoholic, aqueous-acetone or aqueous. It can also contain up to 20% by weight of flame retardant.
  • the distribution of the desired amount of resin is then carried out by stripping or squeezing, e.g. with rollers.
  • thermosetting resins of the base are precured and dried as usual.
  • the outermost, still liquid layer is made of radiation-polymerizable compounds with a film or plate made of plastic or paper or a composite film various plastic layers or plastic and paper layers with a rough surface structure, which must be sufficiently permeable to actinic radiation.
  • the film or plate provided for covering must not have a highly porous surface, since otherwise there is a risk that the liquid compounds which can still be polymerized by radiation penetrate into the surface. In this case, the film or plate can no longer be removed after the polymerization.
  • This outermost liquid layer can itself be decorative and contain a dye or non-decorative, that is to say transparent, and can then be located on a decorative layer or on a decorative synthetic resin layer polymerized by radiation.
  • Films with a thickness of up to 0.1 mm are preferably used, since thicker covers for electron beams or UV rays do not have sufficient permeability or require relatively long exposure times.
  • foils with a thickness of 20 to 60 ⁇ m are used, since on the one hand they are sufficiently transparent to the radiation and on the other hand they also have sufficient mechanical strength. For the sake of simplicity, the following is referred to as foils or cover foils.
  • the plastic film consists in particular of a polyester or polypropylene film oriented by biaxial stretching.
  • the rough structure of the film provided for covering is produced, for example, by adding pigments, at least in the vicinity of its outer surface. This surface roughness is due to Elevations in the film surface, the height of which, however, is only small in comparison to the film thickness and is in the range of a maximum of a few micrometers.
  • the pigments consist, for example, of inorganic particles, in particular of aluminum oxide, aluminum sulfate, barium sulfate, calcium carbonate, magnesium carbonate, kaolin, talc, silicon dioxide, titanium dioxide or microglass beads, or organic plastic particles which are incompatible with the plastic of the film and dispersed in particulate form in the film.
  • the pigments usually have a particle size of 0.1 to 20 ⁇ m, the average particle size being in the range of 0.1 to 4 ⁇ m.
  • Their concentration is 0.01 to 10% by weight, based on the film weight.
  • the concentration of the pigments in the film and their size is set depending on the desired surface roughness of the plastic film.
  • the cover film is applied to the liquid layer which can still be polymerized by radiation by first applying this liquid layer to the base in the manner described above and then providing it with the cover film, the rough surface side of the cover film having the liquid, polymerizable layer Layer comes into contact.
  • the roughness of the surface is reflected on the surface of the transferred by radiation to the layer to be polymerized, which then adopts the surface structure of the cover film and receives a matt surface. This result is all the more surprising since the surface gloss of the end product can practically no longer be reduced by using structured separating media during the final pressing.
  • a common source of free radical formation such as e.g. a photoinitiator, or just heat is applied. If the photopolymerizable layer contains photoinitiators, the polymerization is initiated as it passes under mercury vapor lamps. The absence of oxygen is not required for curing with UV radiation.
  • the electron beams used to harden the polymerizable compounds expediently have an energy corresponding to 150 to 350 KeV.
  • the energy of the electron accelerator is determined by the thickness of the synthetic resin layer to be formed, the necessary radiation dose and the duration of exposure or the speed at which it is carried out.
  • the devices used to accelerate the electron beams are commercially available. These are the accelerators known as “scanner type” and “linear cathode type”. By interacting with the components of the polymerizable layer, free radicals are formed. This curing process is usually carried out at room temperature. Also for curing by means of electron beams, it is not necessary for this process to take place in an inert, ie largely oxygen-free, atmosphere, since the polymerizable surface layer is protected by the plastic film lying thereon.
  • the cover film can be removed. However, the cover film can also only be removed after the process has ended, i.e. after heat pressing, remove or use as a covering of the finished plate. If they are sufficiently flexible, the documents are wound up for storage or cut to the desired format. If the base comprising the radiation-polymerized resin consists only of a paper layer, it is placed on a stack of fiber-containing layers forming the core layer. It is also possible to additionally provide the lower side of the stack with such a base.
  • the resulting layer package of fiber-containing core layer and radiation-polymerized surface layer (s) and, if necessary, intermediate layers of paper or decorative paper is, as is customary in the production of HPL plates, pressed into a decorative plate in the heat, the thermosetting resins being cured .
  • the temperature is preferably 120 to 210 ° C, the pressure in the range of 10 to 100 bar and the exposure time is 1 to 30 minutes.
  • the temperature and pressure can usually be reduced to values of 80 ° C and 5 bar.
  • the pressing takes place in a known stationary, continuous or continuous pressing device.
  • the number and the thickness of the fiber-containing layers of the core layer or the thickness of the core layer is selected depending on the use of the plate, with plate thicknesses of 3 to 25 mm being required for external applications depending on the intended use.
  • the individual plates are separated from one another by a separating medium.
  • the separation medium is e.g. a layer of paper, plastic film or metal plate. If the separation medium has a rough surface structure, i.e. Elevations or depressions, the rough outer structure of the respective plate is given this rough structure, while the existing matt fine structure is retained. The degree of gloss of the plate surface already determined by the radiation process can practically no longer be changed by the separating medium.
  • the decorative panels produced are surprisingly particularly weather-resistant and extremely scratch-resistant, which may be unpredictable Interaction between the different resins or maybe also based on a post-crosslinking of the free-radically polymerizable compounds during the heat pressing.
  • the scratch resistance and chemical resistance is surprisingly much higher than in the case of a plate which is coated with the same compounds which can be polymerized by radiation and whose coating - without the heat compression - has only been radically polymerized by radiation.
  • the plate surface shows a greatly reduced gloss, which cannot be achieved even when matting agents are used in the surface layer.
  • FIGS. 1 to 4 The invention is illustrated by FIGS. 1 to 4 and the following examples.
  • the percentages are percentages by weight.
  • the partially cured synthetic resin-containing kraft paper 1 is provided with a dye-containing radiation-polymerizable liquid layer 2.
  • the layer 2 is covered with the plastic film 3 and cured in the device 4 with electron beams.
  • the dye-containing layer 5 has already been partially cured by radiation when it is provided with the transparent liquid layer 6 polymerizable by radiation.
  • the plastic film 3 is applied to the layer 6. 3 differs from FIG. 1 only in that there is still a transparent liquid layer 6 polymerizable by radiation on the plastic film 3.
  • the deflection rollers are 7,8,9,10 and the coating devices 11 and 12. 1a and 3a, according to the layer arrangements of FIGS. 1, 2 and 3, pressed plates 14 can be seen.
  • the stack forming the core is designated 13.
  • a paste-like liquid 2 (viscosity 50 poise at 25 ° C) from a radiation.
  • a paste-like liquid 2 viscosity 50 poise at 25 ° C
  • a first hardened with phenol-formaldehyde resin (resin application 70%) impregnated polymerizable mixture of 85 parts by weight aliphatic urethane acrylate oligomers as prepolymer, 15 parts by weight Hexanediol diacrylate as a dilution monomer and 10 parts by weight organic dye pigments applied, forming a closed film (layer thickness about 80 microns).
  • the absorbed radiation dose is 60 kGy.
  • the paper 1 with the synthetic resin layer 2 lying on the outside which is copolymerized by radiation, is placed on the outside of a stack 13 of 50 papers lying one above the other.
  • the papers were previously soaked in thermosetting phenol-formaldehyde resin and the resin was partially cured.
  • the layer package is pressed in a press between two structured sheets at 150 ° C. and 80 bar for 10 minutes. It has the following structure: Decorative layer 2 (radiation-polymerized synthetic resin with organic dye pigments) as an outer layer on a pre-impregnated paper layer 1, - 50 paper webs (impregnated with phenol-formaldehyde resin) as core layer 13. - Decorative layer 2 (polymerized by radiation Synthetic resin with organic dye pigments) as an outer layer on a pre-impregnated paper layer 1.
  • the 10 mm thick decorative plate 14 obtained on both sides has a scratch resistance of greater than 3.0 N (DIN 53799, part 10). It is insensitive to hydrolysis and shows no changes after boiling in water for 100 hours. Concentrated mineral acid does not attack its surface for a period of 6 hours (DIN 53230). The light fastness of this plate is rated 8 (DIN 54004). The resistance of the plate to weather influences is measured according to ASTM G 53-84, whereby a time cycle of 4 h UV / 4 h CON (condensation period) at a test temperature of 50 ° C. is observed over 1500 h.
  • the decorative surfaces show a low surface gloss corresponding to a reflectometer value of 20-22, radiation angle 60 ° or a reflectometer value of 44-45, radiation angle 85 ° (DIN 67 530). After weathering, the panel shows no discoloration or change in gloss.
  • the viscous, radiation-polymerizable, dye-containing liquid 2 of Example 1 is, as described in Example 1, applied to a pre-hardened phenol-formaldehyde resin containing sodium kraft paper 1 and largely homogeneously crosslinked with electron beams.
  • the absorbed dose is 5 to 10 kGy.
  • a further layer 6 of transparent - ie dye-free - radiation-polymerizable liquid is applied with rollers or rotary screen printing, which contains the same compounds as the first applied layer in addition to the dye.
  • This layer forms a closed film with a layer thickness of approximately 20 ⁇ m.
  • a matt monofoil 3 made of polyethylene terephthalate and biaxially oriented by stretching is placed on the wet layer 6.
  • curing is carried out using electron beams.
  • the absorbed radiation dose is 60 kGy.
  • the paper 1 with the synthetic resin layer 6 lying on the outside, which is copolymerized by radiation is placed on the outside of a stack 13 of 50 papers lying one above the other.
  • the papers were previously soaked in thermosetting phenol-formaldehyde resin and the resin was partially cured.
  • the layer package is pressed in a press between two sheets at 150 ° C. and 80 bar for 10 minutes.
  • Transparent layer 6 synthetic resin polymerized by radiation
  • Decorative layer 5 radiation-polymerized synthetic resin with organic dye pigments
  • Decorative layer 5 radiation-polymerized synthetic resin with organic dye pigments
  • Transparent layer 6 radiation polymerized synthetic resin
  • the decorative plate 14 obtained has a scratch resistance of greater than 2.0 N (DIN 53 799, part 10). Concentrated mineral acid does not attack its surface for 6 hours. The light fastness of this plate is rated 8 (DIN 54 004). It shows a surface gloss corresponding to a reflectometer value of 22-24, radiation angle 60 °, or a reflectometer value of 44-45, radiation angle 85 ° (DIN 67 530).
  • the pasty dye-containing liquid 2 made of radiation-polymerizable compounds of Example 1 is applied to a sodium kraft paper 1 initially impregnated with heat-curable phenol-formaldehyde resin (resin application 70%), a closed film (layer thickness approximately 80 ⁇ m) trains (see FIG. 3).
  • a transparent layer 6 of a pasty, dye-free liquid made of the same compounds polymerizable by radiation (layer thickness about 20 to 40 ⁇ m) is applied to a matted plastic film 3 made of polypropylene.
  • the paper 1 and the plastic film 3 are then placed one on top of the other in sheet or web form, so that the two liquid layers 2, 6 come into contact with one another. Make sure that there are no air pockets.
  • the polymerizable compounds are crosslinked by means of electron beams which strike the liquid layers 2, 6 through the plastic film 3.
  • the absorbed dose is 60 kGy.
  • the paper 1 with the polymerized surface layer 2, 6 is further processed into a decorative plate 14 by heat pressing with a paper stack 13 as described in Example 2.
  • the synthetic resin layers polymerized by radiation in the examples still show relatively low scratch resistance values in the range from about 0.7 to 0.9 Newton before the hot pressing. Only after the synthetic resin layer polymerized by radiation has been subjected to heat compression according to the invention is a surprisingly obtained a significantly higher surface hardness of the plate.
  • a long reflectometer value measured according to DIN 67 530 is 45 to 47, radiation angle 20 ° or approximately 83, radiation angle 60 ° if the matt plastic film is missing when crosslinked with electron beams. It can be reduced to values from 37 to 41, angle of incidence 20 ° or approximately 79, angle of incidence 60 °, if structured pressing elements are used in the heat pressing, which, for example, include an outermost layer of the plate Give surface texture similar to orange structure.
  • By adding matting agents to the surface layer even lower reflectometer values can be achieved, which are approximately 30 to 36, angle of incidence 20 °, or approximately 75, angle of incidence 60 °.
  • the particularly low gloss values according to the invention can only be achieved by the special measures in the polymerization of the synthetic resin layer.

Landscapes

  • Laminated Bodies (AREA)
  • Panels For Use In Building Construction (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Paper (AREA)

Abstract

Die dekorative Platte umfaßt eine Kernschicht und ein- oder beidseitig dekorative Schichten. Zumindest die äußerste Schicht der Platte auf wenigstens einer der beiden Plattenoberflächen ist überwiegend aus einem Kunstharz aus einer oder mehreren durch Strahlung polymerisierten Komponenten aufgebaut, ausgewählt aus der Gruppe der ungesättigten Acrylate und Methacrylate. Diese Schicht ist bei einer Kratzbeanspruchung von mindestens 1,5 Newton, vorzugsweise 2 bis 7 Newton (DIN 53 799, Teil 10) kratzfest und zeigt einen niedrigen Glanz entsprechend einem Reflektometerwert von maximal 50 bei einem Einstrahlungswinkel von 85° (DIN 67 530). Beschrieben wird ferner ein Verfahren zur Herstellung der Platte.

Description

  • Die Erfindung bezieht sich auf eine dekorative Platte, aufgebaut aus einer Kernschicht und einer ein- oder beidseitigen dekorativen Schicht und auf ein Verfahren zu ihrer Herstellung. Platten dieser Art werden für Innen- oder Außenanwendungen im Bausektor eingesetzt, wobei sie je nach ihrer Dicke als Verkleidungsplatten oder als selbsttragende Elemente verwendet werden.
  • Die bisher verwendeten dekorativen Platten sind bei­spielsweise dekorative Schichtpreßstoffplatten (DIN 16 926), sog. "high pressure laminates" (H.P.L.-Platten). Sie bestehen aus einem in der Hitze verpreßten Stapel von harzgetränkten Papierbahnen als Kernschicht und einer Deckschicht aus harzgetränktem Dekorpapier. Diese Platten zeigen den Nachteil, daß sie von Mineralsäuren, insbesondere bei Konzentrationen über 10 % und einer Einwirkungszeit von länger als 10 Min., angegriffen werden. Außerdem sind diese Platten in Standardausführung nicht ausreichend witterungsbeständig, da der in der Deckschicht verwen­dete Harztyp hydrolyseempfindlich ist. Platten dieser Art können deshalb als Arbeitsplatten in chemischen Labors oder zur Herstellung von Naßzellen, die mit Säuren gereinigt werden müssen, nur beschränkt verwen­det werden. Bei Anwendung im Außenbereich sind zu­sätzliche aufwendige Maßnahmen erforderlich, um ihre Beständigkeit gegen Witterungseinflüsse zu verbessern.
  • Laminate und Platten auf Kunststoffbasis wie Polyester- oder Acrylat-Platten sind dagegen besonders kratz­empfindlich und gegenüber organischen Lösungsmitteln nicht ausreichend widerstandsfähig. Aus diesem Grund sind sie für diese Anwendungen ebenfalls weniger geeignet.
  • Eine insbesondere für Außenanwendungen, für den Innen­ausbau und zur Herstellung von Spezialmöbeln geeignete dekorative Platte, deren Oberfläche nicht hydrolyse­empfindlich und ausreichend beständig ist gegen Witte­rungseinflüsse, Mineralsäuren und organische Lösungsmittel sowie hohe Oberflächenhärte aufweist, ist Gegenstand der nicht vorveröffentlichten EP-Anmeldung 85105851.1. Sie ist aufgebaut aus einer Kernschicht und ein- oder beidseitiger dekorativer Schicht. Zumindest die äußerste Schicht der Platte auf wenigstens einer der beiden Plattenoberflächen besteht überwiegend aus einem Kunstharz aus einer oder mehreren durch Strahlung polymerisierten Komponenten, ausgewählt aus der Gruppe der ungesättigten Acrylate und Methacrylate. Diese Schicht zeigt eine besonders hohe Oberflächenhärte. Sie ist bei einer Kratzbeanspruchung von mindestens 1,5 N, vorzugsweise 2 bis 7 N (DIN 53 799, Teil 10) noch kratzfest. Bei dem Verfahren zur Herstellung dieser Platte wird eine flüssige Oberflächenschicht, welche die durch Strahlung polymerisierbaren Komponenten umfaßt, auf eine Unterlage aufgetragen und anschließend durch Strahlung polymerisiert. Erst nach einem weiteren Schritt, bei dem die durch Strahlung polymerisierte Oberflächenschicht zusammen mit der Unterlage bei erhöhter Temperatur verpreßt wird, zeigt die Plattenoberfläche die geforderten Eigenschaf­ten.
  • Diese dekorative Platte zeigt allerdings die häufig un­erwünschte Eigenschaft, mehr oder weniger stark zu glänzen. Bei Verwendung von strukturierten Trennmedien bei der abschließenden Hitzeverpressung kann die Plattenoberfläche zwar eine entsprechend der Oberfläche des Trennmediums strukturierte, beispielsweise eine orangenschalenartige Oberflächenstruktur, erhalten, doch ist ihr Oberflächenglanz nach wie vor sehr hoch. Auch das Hin­zufügen von bekannten Mattierungsmittel wie Siliciumdioxid-Pigmente in die äußerste Ober­flächenschicht der Platte erniedrigt den Glanz prak­tisch nicht, denn die zunächst nach der Strahlungspolymerisation noch seidenmatte pig­menthaltige Oberfläche wird eigenartigerweise wieder glänzend, sobald die Platte anschließend der Hitzever­pressung unterworfen wird.
  • Es ist somit Aufgabe der Erfindung, eine witterungsbe­ständige, säure- und lösungsmittelfeste dekorative Platte anzugeben, die eine hohe Oberflächenhärte und nur geringen Oberflächenglanz aufweist.
  • Diese Aufgabe wird gelöst durch die im Anspruch 1 ange­gebene Platte und durch das Verfahren zu ihrer Herstel­lung mit den im Anspruch 6 genannten Merkmalen; die Unteransprüche betreffen besondere Ausführungsformen der Platte bzw. Weiterbildungen des Verfahrens. Die Platte ist ein flächenhafter Körper, dessen Oberflächenform und Oberflächenstruktur dem Anwendungszweck angepaßt ist und der z.B. auch gebogene Form aufweisen kann. Unter einer Platte im Sinne der Erfindung sind auch Folien zu verstehen.
  • Bei der nach DIN 53799, Teil 10, durchgeführten Messung der Kratzfestigkeit wird die Kraft bestimmt, mit der eine Diamantnadel einen sichtbaren Kratzer auf der Plattenoberfläche erzeugt. Diese Beurteilung erfolgt unmittelbar nach der Einwirkung der Diamantnadel, da infolge der Elastizität der Oberflächenschicht nach der Kratzbeanspruchung eine allmähliche Rückstellung der Oberflächendeformation erfolgen kann. Die Kratzfestig­keit ist ein Maß für die Oberflächenhärte.
  • Überraschenderweise wurde gefunden, daß diese dekora­tive Platte mit der speziellen durch Strahlung poly­merisierten Kunstharzschicht auf wenigstens einer der Außenoberflächen gegenüber den bisher bekannten Platten nicht nur eine ausgezeichnete Witterungsbeständigkeit, sondern überraschenderweise eine erhöhte Oberflächenhärte besitzt. Sie ist außerdem wesentlich unempfindlicher gegenüber Säuren und organischen Lösungsmitteln.
  • Als Meßgröße für den Glanz der Plattenoberfläche wird der Reflektometerwert mit einem Reflektometer Typ RB/Dr. Lange nach DIN 67 530 bestimmt. Ein nach dieser Norm bestimmter Reflektometerwert stellt eine optische Kenngröße für die Oberfläche eines Prüfkörpers dar, die mit dem Glanz der Oberfläche im Zusammenhang steht. Es ist dabei zu berücksichtigen, daß der Glanz keine rein phy­sikalische, sondern auch eine physiologisch und psycho­logisch bedingte Größe ist. Eine unmittelbare Messung des Glanzes ist daher nicht möglich, jedoch läßt sich das "Glanzvermögen", nämlich der Anteil, den die Ober­fläche aufgrund ihrer Reflexions-Eigenschaften zur Ent­stehung des Glanzeindrucks beiträgt, grundsätzlich in geeigneter Weise messen. Der Reflektometerwert kann als Maß für das Glanzvermögen benutzt werden, denn im wesentlichen ist er durch die Reflexions-Eigenschaften der Oberfläche bestimmt.
  • Das durch diese Norm festgelegte Reflektometersystem lehnt sich an die Norm ASTM D 523-67 beschriebenen An­ordnungen an. Die Einstrahlungswinkel 20°, 60° und 85° sind willkürlich gewählt.
  • Die 20° Meßgeometrie wird benutzt für Prüfkörper, deren 60° Reflektometerwert über 70 liegt, die 85° Meßgeometrie für Prüfkörper, deren 60° Reflektometer­wert unter 30 liegt.
  • Im Reflektometer wird eine Lichtquelle zentrisch in der Öffnung einer Blende abgebildet. Die Lichtstrahlen treffen unter dem festgelegten Einstrahlungswinkel (20°, 60° oder 85°) auf der Plattenoberfläche auf und werden gestreut reflektiert. Mit einem hinter der Blende befindlichen photoelektronischen Empfänger wird der durch die Blende gehende Lichtstrom gemessen.
  • Die Kernschicht hat die Trägerfunktion der Platte. Sie besteht beispielsweise aus Holz. Auch Platten oder Folien aus Kunststoff, z.B. auf Basis von Polyvinylchlorid, Polyäthylen und Polystyrol, oder aus Metall, z.B. aus Stahl, Aluminium, Kupfer, Messing oder anderen Legierungen, sind als Kernschicht geeignet. Die durch Strahlung polymerisierte Kunstharzschicht be­findet sich direkt auf der Oberfläche dieser Kern­schichten oder ist mittels Leimfolien oder Leimfugen, vorzugsweise aber mit haftvermittelnden Kunstharzen, wie z.B. Phenol-Formaldehyd- oder Resorcin-Formaldehyd-Vorkondensat, mit der Kernschicht verbunden. Leimfugen sind reine Klebstoffschichten, Leimfolien sind Trägerschichten, welche mit Klebstoff beschichtet oder getränkt werden. Haftvermittler sind Substanzen, die ohne selbst Klebstoff zu sein, die Ver­bindung zweier verschiedenartiger Materialien fördern.
  • Die Kernschicht kann außerdem aus den bei H.P.L.-Platten üblichen mit hitzehärtbarem Kunstharz, insbesondere Phenol-Formaldehyd-Harz, imprägnierten Bögen aus Papier, insbesondere Natronkraftpapier, bestehen, die in der Hitze verpreßt werden. In Ab­hängigkeit von der gewünschten Plattendicke sind 1 bis etwa 100 Bögen übereinanderliegend in der Hitze ver­preßt.
  • Die Kernschicht kann auch aus unter Druck verfestigtem Vliesstoff oder Matten aus Mineralfasern, Glasfasern, Kunststoffasern oder einem Fasergemisch, bevorzugt je­doch aus Cellulose bestehen. Cellulosehaltige Faser­schichten sind z.B. wirr abgelegte Holzfasern oder Holz­ späne. Der Vliesstoff, bzw. die Matte, aus Holz- und/oder Cellulosefasern wird hergestellt durch Aufbringen eines Kunstharzes auf die Fasern, Trocknung der beharzten Fasern, Formung einer Fasermatte und Vor­verdichtung dieser Matte unter Einwirkung von Druck (EP-A-0 081 147).
  • Auf der (den) äußere(n) Oberfläche(n) dieser faserhaltigen Kernschicht befindet sich gegebenenfalls ein Underlay, welches ein hitzehärtbares Aminoplast- oder Phenoplast-Harz enthält. Diese Schicht besteht z.B. aus einem pigmentierten oder unpigmentierten Vliesstoff oder Papier.
  • Direkt auf die faserhaltige Kernschicht oder auf diese Underlayschicht folgt in einer bevorzugten Ausführungs­form eine durch Strahlung polymerisierte Kunstharz­schicht, die dekorativ ist, d.h. durch zugesetzte Farbstoffe besonderen optischen Effekt oder dekorative Wirkung zeigt. Auf der dekorativen durch Strahlung polymerisierten Kunstharzschicht kann noch eine klare, d.h. transparente und farbstofffreie, durch Strahlung polymerisierte Kunstharzschicht vorhanden sein, welche die äußerste(n) Oberfläche(n) der Platte bildet (bilden); doch ist es durchaus möglich, diese klare Kunstharzschicht wegzulassen, so daß dann die de­korative(n) Kunstharzschicht(en) die äußerste(n) Schicht(en) bildet (bilden).
  • Anstelle der dekorativen Kunstharzschicht kann auch eine Dekorschicht auf Basis einer eingefärbten und/oder bedruckten Kunststoffolie oder auf Basis von Papier ver­ wendet werden, die gewöhnlich aus einem pigmentierten, eingefärbten und/oder bedruckten Dekorpapier besteht. Auf der Kunststoffolie bzw. dem Dekorpapier befindet sich die durch Strahlung polymerisierte, in diesem Fall transparente und farbstofffreie Kunstharzschicht. Das Dekorpapier enthält für diesen Zweck übliches hitze­härtbares Kunstharz, insbesondere Aminoplast-Harz, und befindet sich auf Kernschichten, die aus dem bei H.P.L.-Platten typischen Natronkraftpapier bzw. aus phe­nolbeharzten wirr abgelegten Holz- oder Cellulosefasern aufgebaut sind.
  • Die für die Herstellung der obersten durch Strahlung polymerisierten Kunstharzschicht vorgesehenen Verbin­dungen umfassen durch aktinische Strahlung radikalisch polymerisierbare Acrylsäureester oder Methacrylsäure­ester, die einzeln oder zusammen in einem polymerisier­baren Gemisch vorliegen. Die bevorzugte Komponente ist ein polyfunktionelles, d.h. mehrfach ungesättigtes, Präpolymeres. Im copolymerisierbaren Gemisch ist neben dieser überwiegenden Komponente gegebenenfalls eine weitere Komponente mit verdünnender Wirkung vorhanden, welche als Verdünnungsmonomer bzw. Verdünnungsoligomer bezeichnet wird. Im Gemisch hat das polyfunktionelle Präpolymere einen Anteil von 50 bis 100, insbesondere 60 bis 90 Gew.-% vom Gesamtgewicht der copolymerisier­baren Komponenten. Präpolymere mit niedriger Viskosität (kleiner als 100 Poise bei 20°C) werden ohne die eine Verdünnung bewirkenden Monomeren bzw. Oligomeren einge­setzt.
  • Die verwendeten Komponenten haben eine starke Neigung bei Einwirkung von aktinischer Strahlung radikalisch zu polymerisieren. Als aktinische Strahlung kommt nahes UV-Licht oder energiereiche Strahlung, z.B. Elektronen- Korpuskular- oder Röntgenstrahlung in Betracht. Das ra­dikalisch polymerisierbare Präpolymere ist ein polyfunktionelles ungesättigtes aliphatisches oder aro­matisches Acrylat oder Methacrylat, vorzugsweise ein ungesättigtes Polyesteracrylat-Oligomeres, insbesondere aber ein aliphatisches Urethanacrylat-Oligomeres. Aro­matische Urethanacrylat-Oligomere führen zwar ebenfalls zu kratzfesten Oberflächenschichten, vergilben aber nach einiger Zeit bei Außenanwendungen.
  • Im radikalisch copolymerisierbaren Gemisch wird neben dem Präpolymeren als zusätzliches geeignetes Monomeres bzw. Oligomeres ein Mono-, Di-, Tri-, Tetra-, Penta- oder Hexaacrylat bzw. -methacrylat, vorzugsweise aber ein Di- oder Triacrylat, verwendet. Diese Mono- bis Hexaacrylate bzw. -methacrylate sind Ester von Polyolen mit 1 bis 6 OH-Gruppen mit Acrylsäure bzw. Methacryl­säure und werden deshalb auch als Polyolacrylate bzw. Polyolmethacrylate bezeichnet. Geeignete Diacrylate sind Ester der Acrylsäure mit aliphatischen, zweiwer­tigen Alkoholen, insbesondere Äthylenglykol, 1,2-Propylenglykol, 1,3-Propylenglykol, Butandiolen, 1,6-Hexandiol oder Neopentylglykol, mit aliphatischen Ätheralkoholen, insbesondere Diäthylenglykol, Dipropy­lenglykol, Dibutylenglykol, Polyäthylenglykole oder Polypropylenglykole, mit oxyalkylierten Verbindungen der zuvorgenannten aliphatischen Alkohole und Ätheralkohole oder auch mit aromatischen Dihydroxylverbindungen, insbesondere Bisphenol A, Brenzcatechin, Resorcin, Hydrochinon, p-Xylylenglykol oder p-Hydroxybenzylalkohol. Bevorzugte Diacrylate sind 1,6-Hexandioldiacrylat, Tripropylenglykoldiacrylat und 1,4-Butandioldiacrylat. Bevorzugte Triacrylate sind Trimethylolpropantriacrylat und Pentaerythrit-triacrylat.
  • Geeignete polyfunktionelle Präpolymere sind außer den bereits genannten Urethanacrylat- und ungesättigten Polyesteracrylat-Oligomeren auch Epoxyacrylat- und Silikonacrylat-Oligomere, welche im radikalisch copoly­merisierbaren Gemisch vorzugsweise mit den genannten Diacrylaten oder Triacrylaten verwendet werden.
  • Die Präpolymeren sind an sich bekannte Verbindungen und werden beispielsweise hergestellt aus hydroxylierten Copolymeren, bei denen die Hydroxylgruppen statistisch entlang der Copolymerkette verteilt sind. Aus diesem Copolymer erhält man durch Veresterung der Hydroxylgruppen mit Acrylsäure statistisch ungesättigte Acryl-Copolymere. Zur Herstellung halbendständiger ungesättigter Acryl-Copolymere wird bei der Herstellung des hydroxylierten Copolymeren die Hydroxylgruppe am Ende der Kette angebracht. Urethanacrylat-Oligomere werden hergestellt durch Umsetzen von Hydroxygruppen enthaltenden (Meth)acrylsäureestern, z.B. von Hydroxyethylmethacrylat, mit mehrwertigen Isocyanaten, bevorzugt Diisocyanaten. Die Di- bzw. Polyisocyanate können bevorzugt Umsetzungsprodukte von Diolen, Polyätherdiolen oder Polyesterdio­ len mit einem stöchiometrischen Überschuß an monomerem Di- oder Polyisocyanat sein.
  • Überwiegt im polymerisierbaren Gemisch das polyfunktio­nelle Präpolymere, so bestimmt es als Basisharz durch seine chemische Natur die Eigenschaften der gehärteten Oberflächenschicht. Das zugesetzte Mono- bis Hexaacry­lat bzw. -methacrylat gestattet als Verdünnungsmonomer bzw. -oligomer die Einstellung der Viskosität des zu härtenden Gemisches, die normalerweise in einem Visko­sitätsbereich von 20 bis 100 Poise (20°C) liegt, und nimmt vollständig an der radikalischen Polymerisation teil. Bei der Bestrahlung ergibt sich die Aushärtung der Beschichtung durch radikalische Polymerisation zwischen den Doppelbindungen des Präpolymeren und des gegebenenfalls vorhandenen Verdünnungsmonomeren bzw. -oligomeren.
  • Beim Aushärten unter Einwirkung von aktinischer Strah­lung müssen Photoinitiatoren zugefügt werden, welche UV-Licht absorbieren und unter Bildung von Radikalen die Einleitung der radikalischen Polymerisation erleichtern. Beim Aushärten mit Elektronenstrahlen benötigt man dagegen keine Photoinitiatoren. Die meisten Photoinitiatoren enthalten wenigstens eine Carbonylgruppe, die in Konjugation zu einem aroma­tischen Ring steht. Gewöhnlich wird ein Photoini­tiatorsystem verwendet, das aus mehreren Komponenten besteht.
  • Daneben enthält das durch Strahlung polymerisierte Kunstharz gegebenenfalls zur Erzielung der gewünschten dekorativen, mechanischen und physikalischen Oberflächen­eigenschaften geeignete Additive wie Weichmacher, Füll­stoffe, Farbstoffpigmente, Mittel zur Verbesserung der Abriebfestigkeit sowie Stabilisatoren. Zu diesen Stof­fen gehören beispielsweise Bariumsulfat, Kieselsäure, Aluminiumoxid und lichtstabile Pigmente.
  • Zur Herstellung der dekorativen Platte werden die flüs­sigen durch Strahlung polymerisierbaren Verbindungen auf die zu beschichtende Unterlage aufgebracht, z.B. durch Sprühen, Gießen, ein Rakelsystem, eine Walze oder Siebdruck. Die aufgetragene Schicht ist dann, wenn sie auf eine Dekorschicht aufgebracht ist, transparent. Sie kann aber auch selbst dekorativ sein und ist dann eingefärbt und befindet sich auf einer nicht dekorati­ven Papierschicht oder direkt auf der Kernschicht. In einer weiteren Ausführungsform wird auf diese dekorati­ve Kunstharzschicht nach der Strahlungshärtung noch eine zusätzliche, durch Strahlung polymerisierbare Schicht aufgebracht, die allerdings nicht dekorativ sondern transparent ist.
  • Die für den Auftrag der durch Strahlung polymerisier­baren Verbindungen verwendete Unterlage ist somit eine Papierschicht, eine dekorative Papierschicht oder die obengenannten Kernschichten auf Basis von Holz, Kunst­stoff, Metall oder einem Stapel aus weiteren faserhal­tigen Schichten, welcher den Kern der später erhaltenen Platte bildet. Die faserhaltigen Schichten des Stapels, die vorzugsweise aus Natronkraftpapieren oder einem Vliesstoff aus Holz- und/oder Cellulosefasern bestehen, enthalten die bei H.P.L.-Platten üblichen hitzehärtba­ren vorgehärteten Harze, insbesondere Phenol-Formaldehyd-Harze, während die gegebenenfalls zusätzlich vorhandenen auf dem Stapel liegenden Papiere ein Aminoplast-Harz, insbesondere aber ein Phenoplast-­Harz enthalten. Der Gehalt an hitzehärtbaren Harzen be­trägt 20 bis 250 Gew.-%, bezogen auf die jeweilige Schicht.
  • Das Tränken bzw. Imprägnieren der faserhaltigen Schich­ten bzw. der Papierschichten erfolgt beispielsweise durch Eintauchen in ein Bad mit einer das hitzehärtbare Harz enthaltenden Lösung oder Dispersion bzw. durch Auftragen oder Aufsprühen mittels eines Dosiersystems. Das Lösungs- bzw. Dispergiermittel ist je nach verwen­detem Kunstharz wäßrig-alkoholisch, wäßrig-acetonisch oder wäßrig. Ferner kann es bis zu 20 Gew.-% Flammschutzmittel enthalten. Anschließend wird die Ver­teilung der gewünschten Harzmenge durch Abstreifen oder Abquetschen, z.B. mit Walzen, vorgenommen.
  • Noch vor dem Auftrag der durch Strahlung polymerisier­baren Verbindungen auf die vorgesehene Unterlage werden die hitzehärtbaren Harze der Unterlage wie üblich vorgehärtet und getrocknet.
  • Während der Strahlungspolymerisation ist die äußerste, noch flüssige Schicht aus durch Strahlung polymerisier­baren Verbindungen mit einer Folie oder Platte aus Kunststoff oder Papier oder einer Verbundfolie aus verschiedenen Kunststoffschichten oder Kunststoff- und Papier­schichten mit rauher Oberflächenstruktur abgedeckt, welche für die aktinische Strahlung ausreichend durch­lässig sein muß. Die zur Abdeckung vorgesehene Folie oder Platte darf keine stark poröse Oberfläche aufweisen, da sonst Gefahr besteht, daß die flüssigen durch Strahlung noch polymerisierbaren Verbindungen in die Oberfläche eindringen. In diesem Fall läßt sich die Folie bzw. Platte nach der Polymerisation nicht mehr entfernen. Diese äußerste flüssige Schicht kann selbst dekorativ sein und einen Farbstoff enthalten oder nicht dekorativ, d.h. transparent, sein und sich dann auf einer Dekorschicht oder auf einer durch Strahlung poly­merisierten dekorativen Kunstharzschicht befinden. Vor­zugsweise werden Folien mit einer Dicke bis zu 0,1 mm eingesetzt, da dickere Abdeckungen für Elektronenstrah­len bzw. UV-Strahlen keine ausreichende Durchlässigkeit aufweisen oder relativ lange Belichtungszeiten erfor­derlich machen. Im allgemein werden Folien mit einer Dicke von 20 bis 60 µm verwendet, da sie einerseits ausreichend durchlässig für die Strahlung sind und andererseits auch genügend mechanische Festigkeit aufweisen. Der Einfachheit halber wird im folgenden von Folien bzw. Abdeckfolien gesprochen.
  • Die Kunststoffolie besteht insbesondere aus einer durch biaxiale Streckung orientierten Polyester- oder Polypropylenfolie. Die rauhe Struktur der zur Abdeckung vorgesehenen Folie wird beispielsweise durch Zusatz von Pigmenten, zumindest in der Nähe ihrer äußeren Oberflä­che, erzeugt. Diese Oberflächenrauhigkeit beruht auf Erhebungen in der Folienoberfläche, deren Höhe allerdings im Vergleich zur Foliendicke nur gering ist und im Bereich von maximal einigen Mikrometern liegt. Die Pigmente be­stehen beispielsweise aus anorganischen Teilchen, ins­besondere aus Aluminiumoxid, Aluminiumsulfat, Bariumsulfat, Calciumcarbonat, Magnesiumcarbonat, Kaolin, Talk, Siliciumdioxid, Titandioxid oder Mikroglasperlen, oder organischen Kunststoffpartikeln, die mit dem Kunststoff der Folie unverträglich und in der Folie teilchenförmig dispergiert sind. Die Pigmente zeigen gewöhnlich eine Teilchengröße von 0,1 bis 20 µm, wobei die mittlere Teilchengröße im Bereich von 0,1 bis 4 µm liegt. Ihre Konzentration liegt bei 0,01 bis 10 Gew.-%, bezogen auf das Foliengewicht. Die Kon­zentration der Pigmente in der Folie und ihre Größe wird in Abhängigkeit von der gewünschten Oberflächen­rauhigkeit der Kunststoffolie eingestellt.
  • Das Aufbringen der Abdeckfolie auf die flüssige durch Strahlung noch polymerisierbare Schicht erfolgt dadurch, daß zunächst diese flüssige Schicht in der oben beschriebenen Weise auf die Unterlage aufgebracht wird und diese dann mit der Abdeckfolie versehen wird, wobei die rauhe Oberflächenseite der Abdeckfolie mit der flüssigen, polymerisierbaren Schicht in Kontakt tritt. Es ist aber auch möglich, zuerst die flüssige polymerisierbare Schicht auf die rauhe Oberflächenseite der Abdeckfolie aufzutragen und danach die Abdeckfolie mit dieser flüssigen Schicht auf die Unterlage aufzubringen.
  • Die Rauhigkeit der Oberfläche wird auf die Oberfläche der durch Strahlung zu polymerisierenden Schicht übertragen, welche dann die Oberflächenstruktur der Abdeckfolie annimmt und eine matte Oberfläche erhält. Dieses Ergebnis ist umso überraschender, da der Oberflächenglanz des Endproduktes durch Verwendung von strukturierten Trennmedien beim abschließenden Verpres­sen praktisch nicht mehr herabgesetzt werden kann.
  • Zur Einleitung der durch Strahlen bewirkten Polymerisa­tion kann eine übliche Quelle zur Bildung freier Radi­kale eingesetzt werden, wie z.B. ein Photoinitiator, oder es wird einfach nur Hitze zugeführt. Wenn die pho­topolymerisierbare Schicht Photoinitiatoren enthält, wird die Polymerisation beim Durchgang unter Quecksilberdampflampen eingeleitet. Für das Aushärten mittels UV-Strahlung ist die Abwesenheit von Sauerstoff nicht erforderlich. Die zum Aushärten der polymeri­sierbaren Verbindungen verwendeten Elektronenstrahlen haben zweckmäßigerweise eine Energie entsprechend 150 bis 350 KeV. Die Energie der Elektronenbeschleuniger wird durch die Dicke der auszubildenden Kunstharzschicht, die notwendige Strahlungsdosis und die Einwirkungsdauer bzw. Durchführgeschwindigkeit bestimmt.
  • Die für die Beschleunigung der Elektronenstrahlen ver­wendeten Vorrichtungen sind im Handel erhältlich. Es handelt sich um die als "Scanner type" und "Linearcathode type" bekannten Beschleuniger. Durch die Wechselwirkung mit den Komponenten der polymerisier­baren Schicht werden freie Radikale gebildet. Dieser Aushärtungsvor­ gang wird gewöhnlich bei Raumtemperatur durchgeführt. Auch für das Aushärten mittels Elektronenstrahlen ist es nicht erforderlich, daß dieser Vorgang in einer inerten, d.h. weitgehend sauerstoffreien Atmosphäre stattfindet, da die polymerisierbare Oberflächenschicht durch die aufliegende Kunststoffolie geschützt ist.
  • Nach der durch Strahlung bewirkten Polymerisation kann die Abdeckfolie entfernt werden. Man kann aber auch die Abdeckfolie erst nach Beendigung des Verfahrens, d.h. nach der Hitzeverpressung, entfernen oder sie als Umhüllung der fertiggestellten Platte verwenden. Die Unterlagen werden sofern sie ausreichend flexibel sind, zur Lagerung aufgewickelt oder gleich auf das gewünschte Format zugeschnitten. Wenn die das durch Strahlung polymerisierte Harz aufweisende Unterlage nur aus einer Papierschicht besteht, wird sie auf einem die Kernschicht bildenden Stapel aus faserhaltigen Schichten aufgelegt. Es ist auch möglich, zusätzlich die untere Seite des Stapels mit einer solchen Unterlage zu versehen.
  • Das erhaltene Schichtpaket aus faserhaltiger Kernschicht und durch Strahlung polymerisierter Oberflächenschicht(en) sowie gegebenenfalls dazwischen liegenden Schichten aus Papier oder Dekorpapier wird, wie bei der Herstellung von H.P.L.-Platten üblich, zu einer dekorativen Platte in der Hitze verpreßt, wobei die hitzehärtbaren Harze ausgehärtet werden. Die Tem­peratur liegt vorzugsweise bei 120 bis 210°C, der Druck im Bereich von 10 bis 100 bar und die Einwirkungszeit bei 1 bis 30 Minuten.
  • Sofern die Kernschicht aber aus einer Holz-, Kunststoff- oder Metallplatte besteht, kann die Tem­peratur und der Druck gewöhnlich bis auf Werte von 80°C und 5 bar abgesenkt werden.
  • Das Verpressen erfolgt in einer bekannten Stationär-, Durchlauf- oder kontinuierlichen Preßvorrichtung. Die Zahl und die Dicke der faserhaltigen Schichten der Kernschicht bzw. die Dicke der Kernschicht wird je nach Verwendung der Platte gewählt, wobei für Außenanwendun­gen je nach Verwendungszweck Plattendicken von 3 bis 25 mm erforderlich sind. Wird eine Vielzahl von Platten, die durch Strahlung polymerisierte Kunstharz­schichten aufweisen, in der Presse übereinandergesta­pelt, was bei geringer Dicke der Kernschicht wirtschaftlich von Vorteil ist, so werden die einzelnen Platten durch jeweils ein Trennmedium voneinander ge­trennt. Das Trennmedium ist z.B. eine Papierschicht, Kunststoffolie oder Metallplatte. Wenn das Trennmedium eine grobe Oberflächenstruktur aufweist, d.h. Erhe­bungen oder Vertiefungen, wird der angrenzenden äußeren Schicht der jeweiligen Platte diese grobe Struktur verliehen, wobei die bereits vorhandene matte Feinstruktur erhalten bleibt. Der bereits durch den Strahlungsvorgang festgelegte Glanzgrad der Plat­tenoberfläche kann durch das Trennmedium praktisch nicht mehr verändert werden.
  • Die hergestellten dekorativen Platten sind überraschen­derweise besonders witterungsbeständig und äußerst kratzfest, was eventuell auf einer nicht vorhersehbaren Wechselwirkung zwischen den verschiedenen Harzen oder vielleicht auch auf einer Nachvernetzung der radikalisch polymeri­sierbaren Verbindungen bei der Hitzeverpressung beruhen könnte. Die Kratzfestigkeit und chemische Beständigkeit ist überraschenderweise wesentlich höher als bei einer Platte, die einen Anstrich aus den gleichen durch Strahlung polymerisierbaren Verbindungen erhält und deren Anstrich - ohne die Hitzeverpressung - nur durch Strahlung radikalisch polymerisiert worden ist. Darüberhinaus zeigt die Plattenoberfläche einen stark verringerten Glanz, wie er selbst bei Verwendung von Mattierungsmitteln in der Oberflächenschicht nicht erreicht werden kann.
  • Die Erfindung wird durch die Fig. 1 bis 4 und die nach­folgenden Beispiele näher erläutert. Die Prozentangaben sind Gewichtsprozent.
  • Es zeigt:
    • Fig. 1 den Ablauf der im Beispiel 1 beschriebenen Ver­fahrensvariante,
    • Fig. 1a einen Teilquerschnitt durch eine Platte gemäß Fig.1,
    • Fig. 2 den Ablauf der im Beispiel 2 beschriebenen Ver­fahrensvariante,
    • Fig. 3 den Ablauf der im Beispiel 3 beschriebenen Ver­fahrensvariante.
    • Fig. 3a einen Teilquerschnitt durch eine Platte gemäß Fig. 2 und 3.
  • In den Figuren sind funktionsgleiche Bauteile mit glei­chen Ziffern versehen. In Fig. 1 wird das teilweise ausgehärtetes Kunstharz enthaltende Natronkraftpapier 1 mit einer farbstoffhaltigen durch Strahlung polymeri­sierbaren Flüssigkeitsschicht 2 versehen. Die Schicht 2 wird mit der Kunststoffolie 3 abgedeckt und in der Vorrichtung 4 mit Elektronenstrahlen ausgehärtet. In Fig. 2 ist die farbstoffhaltige Schicht 5 bereits durch Strahlung teils ausgehärtet, wenn sie mit der transparenten durch Strahlung polymerisierbaren Flüssigkeitsschicht 6 versehen wird. Die Kunststoffolie 3 wird auf die Schicht 6 aufgebracht. Fig. 3 unterscheidet sich von der Fig. 1 nur dadurch, daß sich auf der Kunststoffolie 3 noch eine transparente, durch Strahlung polymerisierbare Flüssigkeitsschicht 6 befindet. In den Figuren sind die Umlenkrollen mit 7,8,9,10 und die Beschichtungseinrichtungen mit 11 und 12 bezeichnet. In Fig. 1a und 3a sind gemäß den Schichtanordnungen der Fig. 1, 2 und 3 verpreßte Plat­ten 14 zu sehen. Der den Kern bildende Stapel ist mit 13 be­zeichnet.
  • Beispiel 1
  • Wie in Fig. 1 gezeigt, wird auf ein zunächst mit hitze­härtbarem Phenol-Formaldehyd-Harz (Harzauftrag 70 %) imprägniertes Natronkraftpapier 1 nach teilweiser Aushär­tung des Harzes mit Walzen eine pastöse Flüssigkeit 2 (Viskosität 50 Poise bei 25 °C) aus einem durch Strahlung polymerisierbaren Gemisch aus 85 Gew.-Tl. aliphatischen Urethanacrylat-Oligomeren als Präpolymer, 15 Gew.-Tl. Hexandioldiacrylat als Verdünnungsmonomer und 10 Gew.-Tl. organischer Farbstoffpigmente aufgebracht, wobei sich ein geschlossener Film (Schichtdicke etwa 80 µm) ausbildet. Unmittelbar danach wird auf diesen Film aus durch Strahlung polymerisierbaren Verbindungen eine mattierte biaxial gestreckte Monofolie 3 aus Poly­propylen, welche 8 Gew.% Calciumcarbonat, mittlere Teilchengröße 3 µm, enthält, aufgebracht und der Film ohne Druckanwendung bei Raumtemperatur mit Elektro­nenstrahlen weitgehend homogen vernetzt. Die ab­sorbierte Strahlungsdosis beträgt 60 kGy.
  • Nach Entfernen der Kunststoffolie 3 wird das Papier 1 mit der außen liegenden durch Strahlung copolymerisier­ten Kunstharzschicht 2 jeweils auf die Außenseite eines Stapels 13 aus 50 übereinanderliegenden Papieren gelegt. Die Papiere wurden zuvor mit hitzehärtbarem Phenol-Formaldehyd-Harz getränkt und das Harz teilweise ausgehärtet. Das Schichtpaket wird in einer Presse zwischen zwei strukturierten Blechen bei 150°C und 80 bar 10 Minuten lang verpreßt. Es hat folgenden Aufbau:
    - Dekorative Schicht 2 (durch Strahlung polymerisiertes Kunstharz mit organischen Farbstoffpigmenten) als äußere Schicht auf einer vorimprägnierten Papier schicht 1,
    - 50 Papierbahnen (mit Phenol-Formaldehyd-Harz getränkt) als Kernschicht 13.
    - Dekorative Schicht 2 (durch Strahlung polymerisiertes Kunstharz mit organischen Farbstoffpigmenten) als äußere Schicht auf einer vorimprägnierten Papierschicht 1.
  • Die erhaltene 10 mm dicke beidseitig dekorative Platte 14 hat eine Kratzfestigkeit von größer als 3,0 N (DIN 53799, Teil 10). Sie ist hydrolyseunempfindlich und zeigt keine Änderungen nach 100-stündigem Kochen in Wasser. Ihre Oberfläche wird durch konzentrierte Mineralsäure während einer Einwirkungszeit von 6 Stun­den nicht angegriffen (DIN 53230). Die Lichtechtheit dieser Platte erhält die Note 8 (DIN 54004). Die Beständigkeit der Platte gegen Witterungseinflüsse wird gemessen nach ASTM G 53-84, wobei man über 1500 h einen Zeitzyklus von 4 h UV/4 h CON (condensation period) bei einer Testtemperatur von 50 °C einhält. Die dekorativen Oberflächen zeigen einen niedrigen Oberflächenglanz entsprechend einem Reflektometerwert von 20-22, Einstrahlungswinkel 60° bzw. einen Reflektometerwert von 44-45, Einstrahlungswinkel 85° (DIN 67 530). Nach der Bewitterung zeigt die Platte keine Verfärbung oder Glanzänderung.
  • Beispiel 2
  • Die viskose durch Strahlung polymerisierbare farbstoff­haltige Flüssigkeit 2 des Beispiels 1 wird, wie im Bei­spiel 1 beschrieben, auf ein vorgehärtetes Phenol-Formal­dehyd-Harz enthaltendes Natronkraftpapier 1 aufgebracht und mit Elektronenstrahlen weitgehend homogen vernetzt. Die absorbierte Dosis beträgt 5 bis 10 kGy. Auf der Pa­pieroberfläche, auf der sich die durch Strahlung poly­ merisierte dekorative Kunstharzschicht 5 befindet, wird, wie in Fig. 2 gezeigt, mit Walzen oder Rota­tionssiebdruck eine weitere Schicht 6 aus transparenter - d.h. farbstoffreier - durch Strahlung polymerisier­barer Flüssigkeit aufgebracht, welche außer dem Farbstoff die gleichen Verbindungen enthält wie die zuerst aufgebrachte Schicht. Diese Schicht bildet einen geschlossenen Film mit einer Schichtdicke von etwa 20 µm. Gleich nach Aufbringen dieser zweiten Schicht wird eine mattierte durch Strecken biaxial orientierte Monofolie 3 aus Polyäthylenterephthalat auf die nasse Schicht 6 gelegt. Analog Beispiel 1 wird mit Elektro­nenstrahlen ausgehärtet. Die absorbierte Strah­lungsdosis beträgt 60 kGy. Nach dem Entfernen der Kunststoffolie 3 wird das Papier 1 mit der außen liegenden durch Strahlung copolymerisierten Kunstharzschicht 6 jeweils auf die Außenseite eines Stapels 13 aus 50 übereinanderliegenden Papieren gelegt. Die Papiere wurden zuvor mit hitzehärtbarem Phenol-Formaldehyd-Harz getränkt und das Harz teilweise ausgehärtet. Das Schichtpaket wird in einer Presse zwischen zwei Blechen bei 150 °C und 80 bar 10 Minuten lang verpreßt. Es hat folgenden Aufbau:
    - Transparente Schicht 6 (durch Strahlung polymerisier­tes Kunstharz) als äußerste Schicht,
    - Dekorative Schicht 5 (durch Strahlung polymerisiertes Kunstharz mit organischen Farbstoffpigmenten) beide Schichten auf einer vorimprägnierten Papierschicht 1,
    - 50 Papierbahnen (mit Phenol-Formaldehyd-Harz getränkt) als Kernschicht 13.
    - Dekorative Schicht 5 (durch Strahlung polymerisiertes Kunstharz mit organischen Farbstoffpigmenten)
    - Transparente Schicht 6 (durch Strahlung polymerisier­tes Kunstharz) als äußerste Schicht, beide Schichten auf einer vorimprägnierten Papierschicht 1.
  • Die erhaltene dekorative Platte 14 zeigt eine Kratzfestigkeit von größer als 2,0 N (DIN 53 799, Teil 10). Ihre Oberfläche wird durch konzentrierte Mineral­säure während einer Einwirkungszeit von 6 Stunden nicht angegriffen. Die Lichtechtheit dieser Platte erhält die Note 8 (DIN 54 004). Sie zeigt einen Oberflächenglanz entsprechend einem Reflektometerwert von 22-24, Einstrahlungswinkel 60°, bzw. einen Reflektometerwert von 44-45, Einstrahlungswinkel 85° (DIN 67 530).
  • Beispiel 3
  • Auf ein zunächst mit hitzehärtbarem Phenol-Formaldehyd-­Harz (Harzauftrag 70%) imprägniertes Natronkraftpapier 1 wird nach teilweiser Aushärtung des Harzes die pastöse farbstoffhaltige Flüssigkeit 2 aus durch Strah­lung polymerisierbaren Verbindungen des Beispiels 1 aufgebracht, wobei sich ein geschlossener Film (Schichtdicke etwa 80 µm) ausbildet (vgl. Fig. 3).
  • Auf eine mattierte Kunststoffolie 3 aus Polypropylen wird eine transparente Schicht 6 aus einer pastösen, farbstoffreien Flüssigkeit aus den gleichen durch Strahlung polymerisierbaren Verbindungen aufgebracht (Schichtdicke etwa 20 bis 40 µm). Das Papier 1 und die Kunststoffolie 3 werden dann blatt- oder bahnförmig übereinandergebracht, so daß die beiden Flüssigkeitsschichten 2,6 in Kontakt miteinander treten. Dabei ist darauf zu achten, daß sich keine Lufteinschlüsse bilden. Mittels Elektronenstrahlen, welche durch die Kunststoffolie 3 auf die flüssigen Schichten 2,6 auftreffen, erfolgt eine Vernetzung der polymerisierbaren Verbindungen. Die absorbierte Dosis beträgt 60 kGy. Nach dem Entfernen der Kunststoffolie 3 wird das Papier 1 mit der poly­merisierten Oberflächenschicht 2,6 durch Hitzever­pressung mit einem Papierstapel 13 wie im Beispiel 2 beschrieben zu einer dekorativen Platte 14 weiterverarbeitet.
  • Die in den Beispielen durch Strahlung polymerisierten Kunstharzschichten zeigen vor der Hitzeverpressung noch relativ niedrige Kratzfestigkeitswerte im Bereich von etwa 0,7 bis 0,9 Newton. Erst nachdem erfindungsgemäß die durch Strahlung polymerisierte Kunstharzschicht der Hitzeverpressung unterworfen worden ist, wird überraschenderweise eine wesentlich höhere Oberflächenhärte der Platte erhalten.
  • Der mit einem Reflektometer vom Typ RB nach Dr. Lange gemäß DIN 67 530 gemessene Reflektometerwert beträgt 45 bis 47, Einstrahlungswinkel 20° bzw. etwa 83, Einstrah­lungswinkel 60°, wenn die mattierte Kunststoffolie bei der Vernetzung mit Elektronenstrahlen fehlt. Er läßt sich auf Werte von 37 bis 41, Einstrahlungswinkel 20° bzw. etwa 79, Einstrahlungswinkel 60°, erniedrigen, wenn man bei der Hitzeverpressung strukturierte Preßelemente verwendet, welche der äußersten Schicht der Platte z.B. eine orangenstrukturähnliche Oberflächenbeschaffenheit ver­leihen. Durch Zusatz von Mattierungsmittel in die Ober­flächenschicht lassen sich noch niedrigere Reflektometerwerte erreichen, die etwa bei 30 bis 36, Einstrahlungswinkel 20°, bzw. etwa 75, Einstrah­lungswinkel 60°, liegen. Die erfindungsgemäß besonders niedrigen Glanzwerte lassen sich allerdings nur durch die speziellen Maßnahmen bei der Polymerisation der Kunstharzschicht erreichen.

Claims (9)

1. Dekorative Platte umfassend eine Kernschicht (13) und ein- oder beidseitige dekorative Schicht, dadurch gekennzeichnet, daß zumindest die äußerste Schicht (2,6) der Platte (14) auf wenigstens einer der beiden Plattenoberflächen überwiegend aus einem Kunstharz aus einer oder mehreren durch Strahlung polymerisierten Komponenten aufgebaut ist, ausgewählt aus der Gruppe der ungesättigten Acrylate und Methacrylate, daß diese Schicht (2,6) bei einer Kratzbeanspruchung von min­destens 1,5 Newton, vorzugsweise 2 bis 7 Newton (DIN 53 799, Teil 10) kratzfest ist und einen Reflektometerwert im Bereich von maximal 50, Einstrahlungswinkel 85° (DIN 67 530) aufweist.
2. Dekorative Platte nach Anspruch 1, dadurch gekennzeichnet, daß das Kunstharz aus einem Epoxyacrylat- oder Siliconacrylat-, vorzugsweise einem Polyesteracrylat, insbesondere aus einem Urethanacrylat-Oligomeren oder den entsprechenden Methacrylat-Oligomeren als durch Strahlung polymeri­sierbaren Präpolymeren aufgebaut ist, welches gegebe­nenfalls mit Mono-, Tetra-, Penta- und/oder Hexaacrylat, vorzugsweise mit Di- oder Triacrylat, von Polyolen oder Atherpolyolen, oder den entsprechenden Methacrylaten durch Strahlung polymerisiert ist.
3. Dekorative Platte nach Anspruch 2, dadurch gekennzeichnet, daß das Präpolymere ein aliphatisches Urethanacrylat-Oligomeres ist, welches mit einem Di- oder Tri­ acrylat durch Strahlung polymerisiert ist.
4. Dekorative Platte nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die durch Strahlung po­lymerisierte äußerste Schicht (2) der Platte (14) deko­rativ ist und sich gegebenenfalls zwischen der Kernschicht (13) und der äußersten Schicht ein Papier (1) befindet.
5. Dekorative Platte nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die durch Strahlung po­lymerisierte äußerste Schicht (6) der Platte (14) transparent ist und sich zwischen der Kernschicht (13) und dieser äußersten Schicht eine dekorative Schicht (2) befindet, die aus einem Dekorpapier besteht oder die durch Strahlung polymerisierten Komponenten umfaßt.
6. Verfahren zur Herstellung der dekorativen Platte (14) nach einem der Ansprüche 1 bis 5, wobei man in einem ersten Schritt wenigstens eine flüssige Oberflächenschicht (2,5,6) welche frei von sili­ciumhaltigen Pigmenten ist und die durch Strahlung polymerisierbaren Komponenten des Anspruchs 1 umfaßt, auf eine Unterlage (1) aufträgt und anschließend in einem zweiten Schritt durch Strahlung polymerisiert, dadurch gekennzeichnet, daß während des zweiten Schrit­tes auf der flüssigen Oberflächenschicht (2) eine Folie (3) oder Platte auf Basis von Kunststoff und/oder Papier mit rauher Oberfläche befindet und nach dem zweiten Schritt die durch Strahlung polymerisierte Oberflächenschicht (2) zusammen mit der Unterlage (1) bei erhöhter Temperatur verpreßt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die flüssige Oberflächenschicht (5) Farbpigmente und/oder weitere dekorative Additive umfaßt, auf der nach der durch Strahlung bewirkten Polymerisation gegebenenfalls eine weitere, transparente Oberflächenschicht (6), welche die durch Strahlung polymerisierbaren Komponenten umfaßt, auf­getragen wird und diese weitere Oberflächenschicht (6) durch Strahlung polymerisiert wird.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekenn­zeichnet, daß die Unterlage ein Papier (1) ist, welches hitzehärtbares, teilweise ausgehärtetes Kunstharz ent­hält, und daß beim Verpressen das Papier (1) mit der außen liegenden durch Strahlung polymerisierten Oberflächenschicht (2,5,6) auf einem zur Ausbildung der Kernschicht (13) vorgesehenen Stapel von Faser­schichten, insbesondere Papierschichten, aufliegt.
9. Verfahren nach einem der Ansprüche 6 bis 8, da­durch gekennzeichnet, daß die durch Strahlung polymeri­sierte Oberflächenschicht (2,5,6) bei einer Temperatur von 80 bis 220°C und einem Druck von 5 bis 100 bar ver­preßt wird.
EP19860112598 1985-09-21 1986-09-11 Dekorative Platte mit verbesserten Oberflächeneigenschaften Expired - Lifetime EP0216269B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86112598T ATE75448T1 (de) 1985-09-21 1986-09-11 Dekorative platte mit verbesserten oberflaecheneigenschaften.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853533737 DE3533737A1 (de) 1985-09-21 1985-09-21 Dekorative platte mit verbesserten oberflaecheneigenschaften
DE3533737 1985-09-21

Publications (3)

Publication Number Publication Date
EP0216269A2 true EP0216269A2 (de) 1987-04-01
EP0216269A3 EP0216269A3 (en) 1988-12-21
EP0216269B1 EP0216269B1 (de) 1992-04-29

Family

ID=6281596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860112598 Expired - Lifetime EP0216269B1 (de) 1985-09-21 1986-09-11 Dekorative Platte mit verbesserten Oberflächeneigenschaften

Country Status (9)

Country Link
US (1) US4789604A (de)
EP (1) EP0216269B1 (de)
JP (1) JP2536853B2 (de)
AT (1) ATE75448T1 (de)
AU (1) AU597272B2 (de)
CA (1) CA1290718C (de)
DE (2) DE3533737A1 (de)
ES (1) ES2002759A6 (de)
NO (1) NO863746L (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0304764A2 (de) 1987-08-22 1989-03-01 Hoechst Aktiengesellschaft Verfahren zur Herstellung von zerfasertem Zellulosematerial, insbesondere Holzfasern, für die Herstellung von Faserplatten
EP0578957A2 (de) * 1992-06-13 1994-01-19 Wilhelm Taubert Verfahren zum Auftragen einer dekorativen Schicht auf ein Trägermaterial
WO1995028291A1 (de) * 1994-04-16 1995-10-26 Basf Lacke + Farben Ag Verfahren zur herstellung von gegenständen mit dreidimensionaler oberflächenstruktur
WO1996011118A1 (de) * 1994-10-07 1996-04-18 ISOVOLTA Österreichische Isolierstoffwerke Aktiengesellschaft KUNSTSTOFF-PAPIERVERBUND IN FOLIENFORM SOWIE DESSEN VERWENDUNG ZUR HERSTELLUNG VON WITTERUNGSBESTÄNDIGEN SCHICHTPREssSTOFFPLATTEN MIT OBERFLÄCHENSCHUTZ
EP0745478A2 (de) * 1995-05-31 1996-12-04 Forbo- Resopal GmbH Verfahren zur Oberflächenmodifizierung von Substraten
EP1365655B1 (de) * 2001-02-07 2005-04-27 BECH, Jorgin Vorrichtung und verfahren zum enthäuten von fischen
WO2008147180A1 (en) * 2007-06-01 2008-12-04 Trespa International B.V. Method for manufacturing a decorative panel and a decorative panel
US8191500B2 (en) 2005-11-24 2012-06-05 Kronoplus Technical Ag Coating device comprising flowing coating material for smooth or structured surfaces
WO2017109118A1 (de) 2015-12-23 2017-06-29 Fundermax Gmbh Schichtpressstoffplatten und verfahren zu ihrer herstellung
EP3418052A1 (de) 2017-06-23 2018-12-26 FunderMax GmbH Schichtpressstoffplatten und verfahren zu ihrer herstellung
DE102020007628A1 (de) 2020-12-14 2022-06-15 Hans Schmid GmbH & Co. KG Verfahren zur Herstellung einer Werkstoffplatte sowie eines Kaschierfilms

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880689A (en) * 1985-10-18 1989-11-14 Formica Corporation Damage resistant decorative laminate
EP0348423A4 (de) * 1987-03-09 1990-05-14 Polycure Pty Ltd Laminiertes paneel und mit einem elektronenstrahl vernetzbare zusammensetzung zur verwendung bei der herstellung desselben.
DE3817479A1 (de) * 1988-05-21 1989-11-30 Renolit Werke Gmbh Mehrschichtige oberflaechenfolie
US5169699A (en) * 1990-05-21 1992-12-08 Avista Industries, Inc. Reinforcing substrate structures with decorative surface layer
ZA916985B (en) * 1990-09-05 1992-07-29 Wilson Ralph Plastics Co Urethane acrylate surfaced laminate
US5227676A (en) * 1991-09-16 1993-07-13 International Business Machines Corporation Current mode sample-and-hold circuit
US6406585B1 (en) 1992-06-13 2002-06-18 Wilhelm Taubert Method for the application of a decorative layer on a substrate
US5425986A (en) * 1992-07-21 1995-06-20 Masco Corporation High pressure laminate structure
CA2164645C (en) * 1993-06-09 2002-11-26 B. Shannon Fuller Hardened and fire retardant wood products
DE9316998U1 (de) * 1993-11-08 1994-02-24 Klaus Langhorst GmbH & Co KG, 28865 Lilienthal Präsentations-Vorrichtung, insbesondere Musterbuch
JPH08141499A (ja) * 1994-11-25 1996-06-04 Dainippon Printing Co Ltd 化粧鋼板
US6218004B1 (en) * 1995-04-06 2001-04-17 David G. Shaw Acrylate polymer coated sheet materials and method of production thereof
US6011091A (en) * 1996-02-01 2000-01-04 Crane Plastics Company Limited Partnership Vinyl based cellulose reinforced composite
AT404241B (de) * 1996-06-26 1998-09-25 Isovolta Beschichtungssystem sowie dessen verwendung zur herstellung von polyurethanacrylat- oberflächenbeschichtungen an schichtpressstoffplatten
US5866264A (en) * 1996-10-22 1999-02-02 Crane Plastics Company Limited Partnership Renewable surface for extruded synthetic wood material
US6180257B1 (en) 1996-10-29 2001-01-30 Crane Plastics Company Limited Partnership Compression molding of synthetic wood material
US6344504B1 (en) 1996-10-31 2002-02-05 Crane Plastics Company Limited Partnership Extrusion of synthetic wood material
US5853901A (en) * 1996-12-19 1998-12-29 Cessna; Frank L. Lightweight decorative paper products for pressure laminates and method for forming the same
AT407250B (de) * 1996-12-23 2001-01-25 Constantia Iso Holding Ag Einschicht-mehrzonen-urethanisierungs- beschichtungsverfahren
US5804019A (en) * 1997-01-31 1998-09-08 Triangle Pacific Corporation Apparatus and method for applying adhesive and release paper to wooden flooring strips
SE512143C2 (sv) * 1997-05-06 2000-01-31 Perstorp Ab Förfarande för framställning av dekorativt laminat och användning därav
US5816304A (en) * 1997-08-04 1998-10-06 Triangle Pacific Corporation Apparatus and method for increasing the flexibility of and straightening flooring strips
US5894700A (en) * 1997-08-04 1999-04-20 Triangle Pacific Corporation Glue-down prefinished wood flooring product
US5935668A (en) * 1997-08-04 1999-08-10 Triangle Pacific Corporation Wooden flooring strip with enhanced flexibility and straightness
US6464913B1 (en) 1997-09-05 2002-10-15 Crane Plastics Company Limited Partnership In-line compounding and extrusion system
US6344268B1 (en) 1998-04-03 2002-02-05 Certainteed Corporation Foamed polymer-fiber composite
US6165308A (en) * 1998-11-06 2000-12-26 Lilly Industries, Inc. In-press process for coating composite substrates
CA2357755A1 (en) 1998-12-28 2000-07-06 Burch E. Zehner Cellulosic, inorganic-filled plastic composite
ATE451230T1 (de) * 1999-07-15 2009-12-15 Prodema S A Sandwichplatte
AT408733B (de) * 1999-07-30 2002-02-25 Kaindl M Laminat-werkstoff, verfahren zu dessen herstellung sowie vorrichtung zur durchführung des verfahrens
US6689451B1 (en) * 1999-11-19 2004-02-10 James Hardie Research Pty Limited Pre-finished and durable building material
SE516696C2 (sv) 1999-12-23 2002-02-12 Perstorp Flooring Ab Förfarande för framställning av ytelement vilka innefattar ett övre dekorativt skikt samt ytelement framställda enlit förfarandet
EP1203657A4 (de) * 2000-03-24 2002-08-21 Ibiden Co Ltd Dekoratives material und dekorative platte
US6662515B2 (en) 2000-03-31 2003-12-16 Crane Plastics Company Llc Synthetic wood post cap
US6637213B2 (en) 2001-01-19 2003-10-28 Crane Plastics Company Llc Cooling of extruded and compression molded materials
US6578368B1 (en) 2001-01-19 2003-06-17 Crane Plastics Company Llc Cryogenic cooling of extruded and compression molded materials
NZ528776A (en) 2001-04-03 2006-08-31 James Hardie Int Finance Bv Two-piece siding plank, methods of making and installing
US6632863B2 (en) 2001-10-25 2003-10-14 Crane Plastics Company Llc Cellulose/polyolefin composite pellet
US6780359B1 (en) 2002-01-29 2004-08-24 Crane Plastics Company Llc Synthetic wood composite material and method for molding
US8281535B2 (en) 2002-07-16 2012-10-09 James Hardie Technology Limited Packaging prefinished fiber cement articles
WO2004007193A2 (en) 2002-07-16 2004-01-22 James Hardie International Finance B.V. Packaging prefinished fiber cement products
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
AT502316A1 (de) * 2002-11-15 2007-02-15 Surface Specialties Austria Faserverstärkte laminate
NL1023421C2 (nl) * 2003-05-14 2004-11-18 Trespa Int Bv Decoratief paneel en werkwijze voor het vervaardigen hiervan.
NL1023515C2 (nl) * 2003-05-23 2004-11-24 Trespa Int Bv Decoratief paneel voor toepassing buitenshuis en werkwijze voor het vervaardigen hiervan.
SE526722C2 (sv) * 2003-11-25 2005-11-01 Pergo Europ Ab Ett förfarande för framställning av en ytstruktur på ett dekorativt laminat
DE10361805B4 (de) * 2003-12-30 2016-05-25 Hamberger Industriewerke Gmbh Fußbodenelement
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US8074339B1 (en) 2004-11-22 2011-12-13 The Crane Group Companies Limited Methods of manufacturing a lattice having a distressed appearance
NL1027579C2 (nl) * 2004-11-24 2006-05-29 Trespa Int Bv Werkwijze voor het vervormen van een kunststofplaat.
US8167275B1 (en) 2005-11-30 2012-05-01 The Crane Group Companies Limited Rail system and method for assembly
NL1030913C2 (nl) * 2006-01-13 2007-07-17 Trespa Int Bv Werkwijze voor het door middel van curtain coating aanbrengen van een of meer lagen op een ondergrond, alsmede decoratieve folie.
US7743567B1 (en) 2006-01-20 2010-06-29 The Crane Group Companies Limited Fiberglass/cellulosic composite and method for molding
AU2007236561B2 (en) 2006-04-12 2012-12-20 James Hardie Technology Limited A surface sealed reinforced building element
US8460797B1 (en) 2006-12-29 2013-06-11 Timbertech Limited Capped component and method for forming
NL1035423C2 (nl) * 2008-05-15 2009-11-18 Trespa Int Bv Werkwijze voor het vervaardigen van een laminaatproduct.
FR2946281A1 (fr) * 2009-06-03 2010-12-10 Corso Magenta Article pour enduit pour application sur une paroi a decorer, procede de fabrication et procede d'application associes
NL2006218C2 (en) 2011-02-16 2012-08-24 Trespa Int Bv A method for reducing the formaldehyde content of a resinous starting material.
WO2013049927A1 (en) * 2011-10-05 2013-04-11 Maax Bath, Inc. Decorative panel and method for manufacturing the same
KR101351189B1 (ko) 2012-06-28 2014-01-15 조광페인트주식회사 데코시트용 도료 조성물 및 데코시트 제조방법
WO2014022361A1 (en) * 2012-07-31 2014-02-06 Wilsonart Llc Printed laminate with digital printing and method for manufacture
NL2011719C2 (en) 2013-11-01 2015-05-04 Trespa Int Bv A decorative panel.
PL2927017T5 (pl) 2014-04-04 2022-06-20 Flooring Industries Limited, Sarl Sposób pokrywania substratu
NL2016003B1 (en) * 2015-12-22 2017-07-03 Trespa Int Bv A decorative panel.
NL2016241B1 (en) 2016-02-09 2017-08-15 Trespa Int Bv A decorative panel
NL2016282B1 (en) 2016-02-18 2017-08-24 Trespa Int Bv A decorative panel.
US11504955B2 (en) 2016-08-19 2022-11-22 Wilsonart Llc Decorative laminate with matte finish and method of manufacture
US11745475B2 (en) 2016-08-19 2023-09-05 Wilsonart Llc Surfacing materials and method of manufacture
US11077639B2 (en) 2016-08-19 2021-08-03 Wilsonart Llc Surfacing materials and method of manufacture
US10933608B2 (en) 2016-08-19 2021-03-02 Wilsonart Llc Surfacing materials and method of manufacture
NL2018722B1 (en) 2017-04-14 2018-10-24 Trespa Int Bv A method for preparing an activated lignin composition
US11020948B2 (en) 2017-09-28 2021-06-01 Wilsonart Llc High pressure decorative laminate having a top layer of energy cured acrylated urethane polymer
WO2019226041A1 (en) * 2018-05-21 2019-11-28 5R Technologies Sdn. Bhd. A natural effect panel and method of fabricating the same
NL2021563B9 (en) 2018-09-05 2020-07-17 Trespa Int Bv A decorative HPL panel
NL2022381B1 (en) 2019-01-11 2020-08-13 Trespa Int Bv A method of fabricating a décor
CN113784661A (zh) 2019-05-07 2021-12-10 罗姆股份有限公司 生物认证装置
NL2030172B1 (en) 2021-12-17 2023-06-28 Trespa Int Bv Method for manufacturing a decorative laminate panel.
NL2032127B1 (en) 2022-06-10 2023-12-18 Trespa Int Bv A method for manufacturing a monomer dispersion pigment concentrate.
US20240042740A1 (en) * 2022-08-03 2024-02-08 Arclin Usa Llc Transparent overlays for the protection of interior and exterior surfaces
NL2034354B1 (en) 2023-03-16 2024-09-26 Trespa Int B V A panel comprising a stack of a plurality of core layers embedded between a décor layer and a back side layer
EP4427922A1 (de) 2023-03-06 2024-09-11 Trespa International B.V. Paneel mit einem stapel aus mehreren zwischen einer dekorschicht und einer rückseitenschicht eingebetteten kernschichten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3010060A1 (de) * 1980-03-15 1981-10-01 Letron GmbH, 8750 Aschaffenburg Mehrschichtige eine lackoberflaeche aufweisende platte, verfahren zu deren herstellung und ihre verwendung
EP0105573A2 (de) * 1982-09-07 1984-04-18 Energy Sciences Inc. Verfahren und Gerät zur Schmückung von Oberflächen von elektronenbestrahlten Überzügen auf strahlungsempfindlichen Unterlagen
EP0166153A1 (de) * 1984-05-17 1986-01-02 Hoechst Aktiengesellschaft Dekorative Platte mit verbesserten Oberflächeneigenschaften

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841956A (en) * 1970-12-03 1974-10-15 Westinghouse Electric Corp Bonded weather resistant decorative laminate with slightly grained acrylic surface
US3874906A (en) * 1972-09-22 1975-04-01 Ppg Industries Inc Process for applying polyester-acrylate containing ionizing irradiation curable coatings
JPS53142502A (en) * 1977-05-19 1978-12-12 Okura Industrial Co Ltd Production of decorative plate
JPS5723590A (en) * 1980-07-18 1982-02-06 Shin Meiwa Ind Co Ltd Charger for body to be carried such as dust
JPS587464A (ja) * 1981-07-06 1983-01-17 Showa Electric Wire & Cable Co Ltd 電気絶縁塗料
JPS588650A (ja) * 1981-07-08 1983-01-18 バンドー化学株式会社 化粧材の製造方法
DE3147989A1 (de) * 1981-12-04 1983-06-16 Hoechst Ag, 6230 Frankfurt Dekoratives, insbesondere plattenfoermiges formteil, verfahren zu seiner herstellung und seine verwendung
JPS58211448A (ja) * 1982-06-03 1983-12-08 凸版印刷株式会社 化粧材の製造方法
JPS59156749A (ja) * 1983-02-25 1984-09-06 東洋インキ製造株式会社 化粧板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3010060A1 (de) * 1980-03-15 1981-10-01 Letron GmbH, 8750 Aschaffenburg Mehrschichtige eine lackoberflaeche aufweisende platte, verfahren zu deren herstellung und ihre verwendung
EP0105573A2 (de) * 1982-09-07 1984-04-18 Energy Sciences Inc. Verfahren und Gerät zur Schmückung von Oberflächen von elektronenbestrahlten Überzügen auf strahlungsempfindlichen Unterlagen
EP0166153A1 (de) * 1984-05-17 1986-01-02 Hoechst Aktiengesellschaft Dekorative Platte mit verbesserten Oberflächeneigenschaften

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0304764A2 (de) 1987-08-22 1989-03-01 Hoechst Aktiengesellschaft Verfahren zur Herstellung von zerfasertem Zellulosematerial, insbesondere Holzfasern, für die Herstellung von Faserplatten
US4937100A (en) * 1987-08-22 1990-06-26 Hoechst Aktiengesellschaft Process for the production of pulped cellulose material, in particular wood fibers, for the production of fiberboard and products produced
EP0578957A2 (de) * 1992-06-13 1994-01-19 Wilhelm Taubert Verfahren zum Auftragen einer dekorativen Schicht auf ein Trägermaterial
EP0578957A3 (en) * 1992-06-13 1994-08-10 Wilhelm Taubert Process for applying a decorative layer to a support material
WO1995028291A1 (de) * 1994-04-16 1995-10-26 Basf Lacke + Farben Ag Verfahren zur herstellung von gegenständen mit dreidimensionaler oberflächenstruktur
US6093754A (en) * 1994-04-16 2000-07-25 Basf Coatings Ag Process for the preparation of articles with a three-dimensional surface structure, and articles prepared by this process
US5830573A (en) * 1994-04-16 1998-11-03 Basf Lacke+Farben Ag Process for the preparation of articles with a three-dimensional surface structure, and articles prepared by this process
WO1996011118A1 (de) * 1994-10-07 1996-04-18 ISOVOLTA Österreichische Isolierstoffwerke Aktiengesellschaft KUNSTSTOFF-PAPIERVERBUND IN FOLIENFORM SOWIE DESSEN VERWENDUNG ZUR HERSTELLUNG VON WITTERUNGSBESTÄNDIGEN SCHICHTPREssSTOFFPLATTEN MIT OBERFLÄCHENSCHUTZ
EP0745478A3 (de) * 1995-05-31 1999-11-24 FORBO-RESOPAL GmbH Verfahren zur Oberflächenmodifizierung von Substraten
EP0745478A2 (de) * 1995-05-31 1996-12-04 Forbo- Resopal GmbH Verfahren zur Oberflächenmodifizierung von Substraten
EP1365655B1 (de) * 2001-02-07 2005-04-27 BECH, Jorgin Vorrichtung und verfahren zum enthäuten von fischen
US8191500B2 (en) 2005-11-24 2012-06-05 Kronoplus Technical Ag Coating device comprising flowing coating material for smooth or structured surfaces
WO2008147180A1 (en) * 2007-06-01 2008-12-04 Trespa International B.V. Method for manufacturing a decorative panel and a decorative panel
WO2017109118A1 (de) 2015-12-23 2017-06-29 Fundermax Gmbh Schichtpressstoffplatten und verfahren zu ihrer herstellung
EP3418052A1 (de) 2017-06-23 2018-12-26 FunderMax GmbH Schichtpressstoffplatten und verfahren zu ihrer herstellung
WO2018234466A1 (de) 2017-06-23 2018-12-27 Fundermax Gmbh Schichtpressstoffplatten und verfahren zu ihrer herstellung
DE102020007628A1 (de) 2020-12-14 2022-06-15 Hans Schmid GmbH & Co. KG Verfahren zur Herstellung einer Werkstoffplatte sowie eines Kaschierfilms
DE102020007628B4 (de) 2020-12-14 2023-05-04 Hans Schmid GmbH & Co. KG Verfahren zur Herstellung einer Werkstoffplatte sowie eines Kaschierfilms und Verwendung einer solchen Werkstoffplatte

Also Published As

Publication number Publication date
US4789604A (en) 1988-12-06
DE3685074D1 (de) 1992-06-04
ATE75448T1 (de) 1992-05-15
NO863746D0 (no) 1986-09-19
DE3533737A1 (de) 1987-03-26
AU597272B2 (en) 1990-05-31
EP0216269A3 (en) 1988-12-21
JP2536853B2 (ja) 1996-09-25
NO863746L (no) 1987-03-23
EP0216269B1 (de) 1992-04-29
ES2002759A6 (es) 1988-10-01
AU6303686A (en) 1987-03-26
CA1290718C (en) 1991-10-15
JPS6299147A (ja) 1987-05-08

Similar Documents

Publication Publication Date Title
EP0216269B1 (de) Dekorative Platte mit verbesserten Oberflächeneigenschaften
EP0166153B2 (de) Dekorative Platte mit verbesserten Oberflächeneigenschaften
EP3094493B1 (de) Mehrschichtige bauplatte für den innen- und aussenbereich
DE102004034790A1 (de) Blatt- oder bahnförmige dekorative Beschichtungsfolie sowie Verfahren zum Herstellen einer solchen
DE69128858T2 (de) Mit Urethanacrylat beschichtetes Laminat
DE1278388B (de) Verfahren zur Herstellung harzueberzogener Dekorpapiere
DE2734669C2 (de) Mit wärmehärtbarem Polyesterharz beschichtete Trägerbahnen für die Oberflächenvergütung von Holzwerkstoffplatten oder Schichtstoffen
DE4413619C2 (de) Verfahren zum Herstellen von Papier und von Laminaten
EP3351682A1 (de) Schichtstoff zum beschichten eines plattenförmigen holzwerkstoffs
EP2730430B1 (de) Verfahren zur Behandlung einer Holzwerkstoffplatte und Bauplatte mit einem Kern aus Holzwerkstoff
DE19510237A1 (de) Laminat auf Basis von faserverstärktem Polyesterharz
EP0283651B1 (de) Verfahren zur Herstellung von Lackschichten und Lackfolien
DE3110754A1 (de) Verfahren zur herstellung eines mit durch elektronenstrahlen gehaertetem lack beschichtetem flaechenfoermigen traegermaterials mit matter oberflaeche
EP0013267B1 (de) Verfahren zur Herstellung von Schichtstoffen
EP0043063A1 (de) Verfahren zur Herstellung einer mit durch Elektronenstrahlen gehärtetem Lack beschichteten Trägerfolie
EP4279655B1 (de) Verfahren zur herstellung eines strukturgebers zum texturieren einer prägefähigen materialoberfläche, insbesondere harzhaltigen laminatoberfläche, und derartiger strukturgeber
DE1794073A1 (de) Verbundplatte enthaltend eine Metallfolie und Verfahren zu ihrer Herstellung
DE102021130810B4 (de) Faserverstärkter Kunststoffverbund mit verbesserten UV- und Glanzeigenschaften, ein Herstellungsverfahren hiervon sowie dessen Verwendung
DE2362397B2 (de) Mit haertbaren kunstharzen impraegnierte und beschichtete traegerstoffbahn fuer die oberflaechenveredelung von holzwerkstoffen und verfahren zu ihrer herstellung
WO2013026590A1 (de) Bahnförmige matrize zum erzeugen von oberflächenmaterialien und verfahren zum herstellen einer matrize
DE2104947A1 (de) Einseitig oder beidseitig mit Glasseidengewebe bzw. Glasseidenmatte und polymerisiertem Polyester beschichtete Kunststoffhartschaumplatte
DE4018572A1 (de) Dekorative platte mit verbesserten oberflaecheneigenschaften
DE2756708A1 (de) Verfahren zur verbesserung der haftung von urethanlacken auf (meth)acrylatfolien
DE2104948A1 (de) Aus Glasseidengewebe bzw. Glasseidenmatte und polymerisiertem Polyester bestehende Laminatbahn
DE9102649U1 (de) Kratzfestes und witterungsbeständiges Hochdrucklaminat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890613

17Q First examination report despatched

Effective date: 19901206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 75448

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3685074

Country of ref document: DE

Date of ref document: 19920604

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86112598.7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HOECHST AKTIENGESELLSCHAFT TRANSFER- TRESPA INTERN

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

NLS Nl: assignments of ep-patents

Owner name: TRESPA INTERNATIONAL B.V.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050908

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050909

Year of fee payment: 20

Ref country code: IT

Payment date: 20050909

Year of fee payment: 20

Ref country code: DE

Payment date: 20050909

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050915

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050926

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050928

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050929

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20051005

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20051012

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060911

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20060911

EUG Se: european patent has lapsed
BE20 Be: patent expired

Owner name: *TRESPA INTERNATIONAL B.V.

Effective date: 20060911