EP0191170B2 - Vorrichtung zur Entlüftung von Kraftstofftanks - Google Patents

Vorrichtung zur Entlüftung von Kraftstofftanks Download PDF

Info

Publication number
EP0191170B2
EP0191170B2 EP85115458A EP85115458A EP0191170B2 EP 0191170 B2 EP0191170 B2 EP 0191170B2 EP 85115458 A EP85115458 A EP 85115458A EP 85115458 A EP85115458 A EP 85115458A EP 0191170 B2 EP0191170 B2 EP 0191170B2
Authority
EP
European Patent Office
Prior art keywords
control
duty ratio
mean value
mixture
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85115458A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0191170A1 (de
EP0191170B1 (de
Inventor
Helmut Ing. Grad. Breitkreutz
Albrecht Dipl.-Ing. Clement
Dieter Dipl.-Ing. Mayer
Claus Dipl.-Ing. Ruppmann
Dieter Dipl.-Ing. Walz
Ernst Dipl.-Ing. Wild
Martin Dr. Zechnall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6260813&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0191170(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0191170A1 publication Critical patent/EP0191170A1/de
Application granted granted Critical
Publication of EP0191170B1 publication Critical patent/EP0191170B1/de
Publication of EP0191170B2 publication Critical patent/EP0191170B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1491Replacing of the control value by a mean value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Definitions

  • the invention relates to a device according to the preamble of claim 1.
  • a device of this type US-A-4 275 697
  • the composition of the exhaust gas-sensing lambda probe is used to control tank ventilation valves in such a way that depending on the signal of the lambda probe such valve is opened or closed continuously.
  • the tank ventilation valve is arranged between an intermediate store and the inlet of the internal combustion engine and is electrically controlled; a corresponding, but pneumatically controlled tank ventilation valve is also known from DE-A-2 612 300.
  • DE-A-2 633 617 discloses a combination of precontrol and regulation of setting variables in internal combustion engines, but without going into the special conditions when venting fuel tanks.
  • tank ventilation device according to US Pat. No. 4,275,697, which parallelly converts the output signal of the ⁇ probe, which is converted into a clock pulse sequence, and which is originally fed to the solenoid of a control nozzle in the carburetor in order to ensure a stoichiometric mixture used to switch the tank ventilation off or to keep it to minimum values when either a minimum or a maximum fuel is added via the carburetor.
  • the additional tank ventilation should lead to an undesirable over-greasing of the mixture; in normal operation, the additional fuel quantities coming from the tank ventilation remain without any major influence and ultimately, namely indirectly via the reaction of the ⁇ probe, affect the mixture composition, albeit with a time delay and below Circumstances, roughly corrected.
  • the intermediate storage container containing the activated carbon filter is able to store fuel vapors up to a certain maximum quantity, the filter being flushed during engine operation by the vacuum developed by the internal combustion engine in the intake tract, for which purpose the filter has an opening to the outside air. Therefore, if you only allow the buffer to be flushed under certain operating conditions, an additional fuel-air mixture that is attributable to this tank ventilation results, which, as a mixture that has not been measured or cannot be measured with reasonable effort, results in the fuel metering signal that is normally produced very precisely with a high level of computation a fuel injection system, the duration of the injection control command t i - and the resulting quantity of fuel supplied to the internal combustion engine falsifies.
  • Such an additional amount of fuel which in particular also influences the driving behavior under certain conditions, which in extreme cases can consist of almost 100% air or 100% fuel vapor as a tank ventilation mixture, is also not acceptable if the influence of this disturbance variable is directly influenced by pneumatic actuators refers to the intake manifold pressure developed by the internal combustion engine or completely excludes the supply of the tank ventilation mixture by means of an electronic on / off control for particularly sensitive operating conditions, such as idling.
  • the invention is therefore based on the object to provide a device which in terms of its proportions or its quantities, the tank ventilation mixture, which cannot be predetermined, can be fed to the intake tract of the respective internal combustion engine in such a way that, on the one hand, there is an effective ventilation of the intermediate storage, but on the other hand no disturbing influence on the fuel metering device operating under the guidance of a ⁇ regulation the internal combustion engine results.
  • the invention solves this problem with the characterizing features of claim 1 and has the decisive advantage that the tank ventilation influence is removed from the area of arbitrary connections and is deliberately fine-tuned to the respective internal combustion engine behavior with continuous change of the maximum quantity to be supplied, the tank ventilation depending on in internal combustion engines already existing ⁇ control of the operating mixture is controlled and regulated so that negative influences neither on the driving behavior nor on the basic control of the fuel supply are possible.
  • tank ventilation valve in the tank ventilation line between the filter and the suction tract is controlled periodically by the assigned control unit, the period resulting from the change between opening and closing the valve and a variation of this ratio of opening time to closing time (which corresponds to the duty cycle of the tank ventilation control) appropriate adjustment of the tank ventilation mixture amount can be achieved.
  • tank ventilation can also be included and implemented in the overall behavior of the internal combustion engine over a wide range depending on the ⁇ control factor.
  • FIG. 1 shows the basic principle of tank ventilation with tank ventilation valve with a continuously changeable opening cross section and electronic control unit
  • FIG. 2 shows the approximately linear course of the characteristic curve of the tank ventilation valve over the pulse duty factor of the control pulse sequence
  • Control pulse sequence for the tank ventilation valve via load and speed
  • Fig. 4 shows the characteristic curve of the mean value of the lambda control factor for lambda control-dependent control of the tank ventilation
  • Fig. 5 characteristic curves of the duty cycle, tank ventilation and lambda control factor over time each with pure control via the tank ventilation Map and additionally with a control dependent on the mean value of the lambda control factor
  • FIG. 1 shows the basic principle of tank ventilation with tank ventilation valve with a continuously changeable opening cross section and electronic control unit
  • FIG. 2 shows the approximately linear course of the characteristic curve of the tank ventilation valve over the pulse duty factor of the control pulse sequence
  • Control pulse sequence for the tank ventilation valve via load and speed
  • Fig. 4 shows the characteristic curve of the mean value of the lambda control factor for lambda control-dependent
  • Fig. 7 shows the block diagram schematic of the tank ventilation with pilot control map and optional supplementary engagement of a lambda control dependent control and a threshold control.
  • FIG. 1 shows a fuel tank or tank 10 which is vented and vented exclusively via an activated carbon filter located in a temporary storage tank 11, the fuel evaporating from the tank being stored in the activated carbon filter up to a limited maximum amount.
  • This stored fuel is then sucked into the engine while the internal combustion engine is running - only the intake area 12 with the throttle valve 12a is shown in FIG. 1.
  • the metering of the fuel drawn off from the area of the tank ventilation or of the fuel air mixture formed there, the proportions of which cannot be determined, takes place via a special tank ventilation valve 13 in such a way that in all operating states of the system there is no impairment of driving behavior and exhaust gas behavior and no impairment of the control circuits involved in the fuel metering and adaptive systems occurs.
  • the control of the tank ventilation valve 13 takes place on its magnetic part 13a by a control device 14, this one Control pulse sequence outputs with variable duty cycle TV, whereby a suitable variation of the opening cross section of the tank ventilation system 13 can be set.
  • the characteristic curve of the tank ventilation valve 13 between the minimum throughput Qmin and Qmax over the pulse duty factor can be approximately linear, possibly also exponential, which can be included in the calculation.
  • the following information relates to specific numerical data of a suitable tank ventilation valve with a passage cross-section that can be changed continuously depending on the duty cycle of the control pulse sequence.
  • a corresponding characteristic curve is shown qualitatively in FIG. 2.
  • a first embodiment which is independent of other, possibly supplementary and supportive control and regulation options for tank ventilation, has inventive importance, the control of the tank ventilation valve via a tank ventilation map or pilot control map, which is dependent on the load (shown as pilot control Injection pulse t L here a fuel injection system) and the speed n via 4x4 support points with the possibility of interpolation each outputs quantized duty cycle variables and feeds, for example, a multiplier 15 for the tank ventilation valve control.
  • pilot control map is denoted by 16 and shown in FIG. 3 as a diagram, the map being designed so that the percentage enrichment of the combustion mixture supplied to the internal combustion engine is the same in all areas for a given TE mixture .
  • the duty cycle of the control pulse sequence for the tank ventilation valve can be quantized continuously or in steps of, for example, 10% each in the range between 0 and 100%.
  • Fig. 7 the control of the further processing point 15 from the pilot control map 16 is shown via a switch S1, which is useful so that in certain operating states (idling, overrun cut-off) the tank ventilation can be completely prevented, if necessary, or also to do without to enable the pilot control map control to take effect other control and regulating methods to be explained below.
  • the lambda control circuit for generating the fuel metering signal of the internal combustion engine 17, in this case a spark ignition internal combustion engine (Otto engine) with injection, in a multiplier stage 18, starting from the output signal of a load sensor (not shown),
  • a load sensor for example, an air flow meter, and a speed sensor generates a load signal, namely an injection time duration signal t L and is fed to a further, downstream multiplier stage 19, ultimately for the control of the injection valve or valves.
  • a correction factor F R is applied to the injection time period at the multiplier 19, which is generated as a lambda correction factor behind a comparator 20 from the actual lambda value generated by the lambda probe 21 and a lambda target value from a lambda controller 22.
  • this lambda correction factor F R which is present anyway on the basis of the lambda control loop, is used in order to make possible a lambda control-dependent control of the tank ventilation as well.
  • the averaged value generated via an intermediate low-pass filter 23 is used F R of the lambda correction factor is used and also reaches a multiplication point 15 for the TE valve control via a characteristic curve block 24.
  • the characteristic curve of the tank ventilation change or influence above the mean value of the lambda control is again shown separately in FIG. 4 and comprises four support points with interpolation, the basic function being such that an increasing enrichment of the tank ventilation mixture (TE mixture) over the mean value F R of the lambda correction factor is recognized, since this shifts to lower values, and the tank ventilation is closed accordingly by correspondingly changing the duty cycle of the control pulse sequence for the tank ventilation valve.
  • the block diagram of FIG. 7 also contains a second possible variant for characteristic curve mean value control, which can be used as an alternative to this and comprises limit value regulation of the mean value of the lambda correction factor.
  • a further comparison point 25 is provided, which has a limit value F RGW of the mean value of the lambda correction factor is supplied, together with the actual value mean value F R of the correction factor.
  • the comparison result is sent to a comparator 26, which decides whether the mean value F R of the correction factor is above or below the predetermined limit value;
  • a downstream integrator 27 is driven as an I controller for limit value control with appropriate polarity, the output signal of which is then likewise fed to the multiplication point 15.
  • FIG. 5 The diagrams on the left-hand side of FIG. 5 show the states that result from the pilot control map 16 with pure control; assume that the duty cycle of the controller is at 0.25 due to the speed and load values; occurs at a predetermined time t 1 (see diagram b) of Fig. 5) a sudden increase in the fuel content in the TE mixture (illustrated by three different curves (1); (2); (3)), then the controller responds Not at all via the pilot control map and the lambda correction factor F R only shifts accordingly in the direction of a lean mixture as a result of the "fuel cloud" (theoretical step function) in the TE mixture (see c) of FIG. 5), ie the Regulator leans.
  • the enrichment now caused by the tank ventilation shifts the mean value F R beyond the limit value GW, which occurs at time t2.
  • the duty cycle of the drive pulse sequence is (increasingly) closed via the I controller 27, that is, it decreases from the time t 3 to the mean value F R has returned above the limit; from this point in time, the pulse duty factor increases again in accordance with the adjustment of the I-controller 27, whereby multiple oscillations, as shown at c) in FIG. 6, can also result around the limit value GW until the cloud formation has subsided at the point in time t and Average F R and duty cycle return to previous values.
  • the time constant of the I controller 27 for the tank ventilation must be greater than the time constant of the known I controller of the lambda control for the fuel metering or the calculation of the fuel injection pulses, one for the entire speed / load range constant time constant is sufficient for the tank ventilation. Furthermore, a maximum limitation I TEmax should be provided for the I controller and the quantization of the I controller should be about four times finer than the output quantization for the pulse duty factor.
  • the overall function of the tank ventilation in accordance with the block diagram representation of FIG. 7 can therefore look like the two following formulas alternatively indicate and the alternatively provided additional control options occur via the mean value of the lambda control or the limit value control in addition to the map control:
  • TVTE KFTE (n, t L ) - ITE ( F ⁇ CMEA )

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
EP85115458A 1985-01-26 1985-12-05 Vorrichtung zur Entlüftung von Kraftstofftanks Expired - Lifetime EP0191170B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3502573A DE3502573C3 (de) 1985-01-26 1985-01-26 Vorrichtung zur Entlüftung von Kraftstofftanks
DE3502573 1985-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP88106880.3 Division-Into 1988-04-29

Publications (3)

Publication Number Publication Date
EP0191170A1 EP0191170A1 (de) 1986-08-20
EP0191170B1 EP0191170B1 (de) 1989-03-29
EP0191170B2 true EP0191170B2 (de) 1995-08-16

Family

ID=6260813

Family Applications (2)

Application Number Title Priority Date Filing Date
EP85115458A Expired - Lifetime EP0191170B2 (de) 1985-01-26 1985-12-05 Vorrichtung zur Entlüftung von Kraftstofftanks
EP19880106880 Expired - Lifetime EP0288090B1 (de) 1985-01-26 1985-12-05 Vorrichtung zur Entlüftung von Kraftstofftanks

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19880106880 Expired - Lifetime EP0288090B1 (de) 1985-01-26 1985-12-05 Vorrichtung zur Entlüftung von Kraftstofftanks

Country Status (4)

Country Link
US (1) US4683861A (ja)
EP (2) EP0191170B2 (ja)
JP (3) JPH0759917B2 (ja)
DE (3) DE3502573C3 (ja)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355357A (ja) * 1986-08-22 1988-03-09 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH0718390B2 (ja) * 1986-09-26 1995-03-06 日産自動車株式会社 燃料蒸発ガスのパ−ジ量制御装置
DE3639946C2 (de) * 1986-11-22 1997-01-09 Bosch Gmbh Robert Verfahren und Einrichtung zur Kompensation des Tankentlüftungsfehlers bei einem adaptiv lernenden Kraftstoffzufuhrsystem
JPH0726598B2 (ja) * 1988-02-18 1995-03-29 トヨタ自動車株式会社 内燃機関の空燃比制御装置
DE3813220C2 (de) * 1988-04-20 1997-03-20 Bosch Gmbh Robert Verfahren und Einrichtung zum Stellen eines Tankentlüftungsventiles
DE3822300A1 (de) * 1988-07-01 1990-01-04 Bosch Gmbh Robert Verfahren und vorrichtung zur tankentlueftungsadaption bei lambdaregelung
DE3826527A1 (de) * 1988-08-04 1990-02-08 Bosch Gmbh Robert Stereolambdaregelung
US5482024A (en) * 1989-06-06 1996-01-09 Elliott; Robert H. Combustion enhancer
NL8902897A (nl) * 1989-11-23 1991-06-17 Tno Zuiveren van lucht.
DE4025544A1 (de) * 1990-03-30 1991-10-02 Bosch Gmbh Robert Tankentlueftungsanlage fuer ein kraftfahrzeug und verfahren zum ueberpruefen deren funktionstuechtigkeit
EP0451313B1 (de) * 1990-04-12 1993-01-13 Siemens Aktiengesellschaft Tankentlüftungssystem
DE4030948C1 (en) * 1990-09-29 1991-10-17 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Monitoring removal of petrol vapour from IC engine fuel tank - detecting change in fuel-air mixt. composition during selected working conditions
DE59004362D1 (de) * 1990-10-24 1994-03-03 Siemens Ag Kraftstoffeinspritzsystem für eine Brennkraftmaschine.
JP3173661B2 (ja) * 1990-12-28 2001-06-04 本田技研工業株式会社 内燃エンジンの蒸発燃料制御装置
DE4108856C2 (de) * 1991-03-19 1994-12-22 Bosch Gmbh Robert Tankentlüftungsanlage sowie Verfahren und Vorrichtung zum Überprüfen der Dichtheit derselben
DE4109401A1 (de) * 1991-03-22 1992-09-24 Bosch Gmbh Robert Verfahren und vorrichtung zur tankentlueftung
DE4122975A1 (de) * 1991-07-11 1993-01-14 Bosch Gmbh Robert Tankentlueftungsanlage fuer ein kraftfahrzeug sowie verfahren und vorrichtung zum ueberpruefen von deren funktionsfaehigkeit
US5263460A (en) * 1992-04-30 1993-11-23 Chrysler Corporation Duty cycle purge control system
JP3378304B2 (ja) * 1992-08-06 2003-02-17 マツダ株式会社 エンジンの空燃比制御装置
US5438967A (en) * 1992-10-21 1995-08-08 Toyota Jidosha Kabushiki Kaisha Internal combustion device
DE4319772A1 (de) * 1993-06-15 1994-12-22 Bosch Gmbh Robert Verfahren und Vorrichtung zum Steuern einer Tankentlüftungsanlage
US5529047A (en) * 1994-02-21 1996-06-25 Nippondenso Co., Ltd. Air-fuel ratio system for an internal combustion engine
JP3689126B2 (ja) * 1994-03-18 2005-08-31 本田技研工業株式会社 内燃機関の蒸発燃料制御装置
FR2722247B1 (fr) * 1994-07-05 1996-08-30 Renault Procede de commande d'un moteur a combustion interne a recyclage de gaz de purge de l'event du reservoir
DE4430971A1 (de) 1994-08-31 1996-03-07 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur Zufuhr von Kraftstoffdampf in ein Saugrohr einer Brennkraftmaschine in Kraftfahrzeugen
DE19610169B4 (de) * 1996-03-15 2007-08-02 Robert Bosch Gmbh Verfahren zur Adaption der Verzugszeit eines elektromagnetischen Tankentlüftungsventils
JP3880655B2 (ja) * 1996-05-31 2007-02-14 本田技研工業株式会社 内燃機関の蒸発燃料制御装置
JP3890576B2 (ja) * 1997-04-02 2007-03-07 株式会社デンソー 内燃機関の空燃比制御装置
JP3707221B2 (ja) * 1997-12-02 2005-10-19 スズキ株式会社 内燃機関の空燃比制御装置
JP3861446B2 (ja) * 1998-03-30 2006-12-20 トヨタ自動車株式会社 希薄燃焼内燃機関の蒸発燃料濃度検出装置及びその応用装置
JPH11280567A (ja) * 1998-03-30 1999-10-12 Toyota Motor Corp 希薄燃焼内燃機関の蒸発燃料濃度検出装置及びその応用装置
JP4233694B2 (ja) * 1999-07-26 2009-03-04 本田技研工業株式会社 内燃機関の蒸発燃料放出防止装置
DE10014564A1 (de) * 2000-03-23 2001-09-27 Opel Adam Ag Kraftstoffzumess-System für eine Brennkraftmaschine
DE10037511C1 (de) * 2000-08-01 2002-01-03 Siemens Ag Verfahren zur Diagnose der Verstellvorrichtung einer Drallklappe
DE10043862A1 (de) 2000-09-04 2002-03-14 Bosch Gmbh Robert Verfahren zur Steuerung der Regenerierung eines Kraftstoffdampfzwischenspeichers bei Verbrennungsmotoren
DE10043698A1 (de) 2000-09-04 2002-03-14 Bosch Gmbh Robert Verfahrenzur Bildung der Verzugszeit eines elektromagnetischen Tankentlüftungsventils
DE10335902B4 (de) * 2003-08-06 2015-12-31 Robert Bosch Gmbh Verfahren zur Tankentlüftung bei einer Brennkraftmaschine
DE102006002717B3 (de) * 2006-01-19 2007-05-24 Siemens Ag Verfahren und Vorrichtung zum Ansteuern eines Ventils eines Kraftstoffdampf-Rückhaltesystems
US9200600B1 (en) * 2006-05-15 2015-12-01 Brunswick Corporation Method for controlling a fuel system of a marine propulsion engine
WO2008081992A1 (ja) * 2006-12-28 2008-07-10 Toyota Jidosha Kabushiki Kaisha 内燃機関の制御装置
DE102007013993B4 (de) * 2007-03-23 2011-12-22 Continental Automotive Gmbh Steuerverfahren für eine Brennkraftmaschine
DE102007039830A1 (de) * 2007-08-23 2009-02-26 Robert Bosch Gmbh Ventilkontrolle bei Betankung von Drucktanks
DE102007046481B3 (de) * 2007-09-28 2009-04-09 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102007046489B3 (de) 2007-09-28 2009-05-07 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
US7950375B2 (en) * 2008-06-11 2011-05-31 GM Global Technology Operations LLC Noise minimization for evaporative canister ventilation valve cleaning
US9527718B2 (en) * 2013-10-10 2016-12-27 Ford Global Technologies, Llc Refueling systems and methods for mixed liquid and gaseous fuel
US9388775B2 (en) 2014-04-24 2016-07-12 Ford Global Technologies, Llc Systems and methods for refueling canister system
US9644552B2 (en) 2014-06-24 2017-05-09 Ford Global Technologies, Llc System and methods for refueling a vehicle
FR3042230A1 (fr) * 2015-10-13 2017-04-14 Continental Automotive France Reduction du bruit d'une vanne d'isolation d'un reservoir de carburant d'un vehicule automotive.
JP2020133503A (ja) * 2019-02-20 2020-08-31 愛三工業株式会社 蒸発燃料処理装置
US20220256778A1 (en) * 2021-02-12 2022-08-18 Carlos T. Santiago System and method for portable self-contained greenhouse

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690307A (en) * 1970-08-13 1972-09-12 Physics Int Co Vapor venting and purging system for engines
JPS51110130A (en) * 1975-03-25 1976-09-29 Nissan Motor Nainenkikanno taikiosenboshisochi
US4013054A (en) * 1975-05-07 1977-03-22 General Motors Corporation Fuel vapor disposal means with closed control of air fuel ratio
US4130095A (en) * 1977-07-12 1978-12-19 General Motors Corporation Fuel control system with calibration learning capability for motor vehicle internal combustion engine
JPS5458111A (en) * 1977-10-19 1979-05-10 Hitachi Ltd Engine controller
JPS5851394Y2 (ja) * 1979-04-19 1983-11-22 本田技研工業株式会社 タンク内圧制御装置
US4275697A (en) * 1980-07-07 1981-06-30 General Motors Corporation Closed loop air-fuel ratio control system
JPS5741443A (en) * 1980-08-26 1982-03-08 Toyo Denso Co Ltd Emission controlling apparatus for internal combustion engine
JPS5762955A (en) * 1980-08-28 1982-04-16 Honda Motor Co Ltd Device employed in internal combustion engine for preventing escape of vaporized fuel
DE3039436C3 (de) * 1980-10-18 1997-12-04 Bosch Gmbh Robert Regeleinrichtung für ein Kraftstoffzumeßsystem einer Brennkraftmaschine
JPS6055810B2 (ja) * 1980-11-25 1985-12-06 日本ビクター株式会社 光学的低域フイルタの製造方法
JPS57129247A (en) * 1981-02-04 1982-08-11 Hitachi Ltd Preventive device for fuel evaporation and dispersion
JPS57165644A (en) * 1981-04-07 1982-10-12 Nippon Denso Co Ltd Control method of air-fuel ratio
JPS5882040A (ja) * 1981-11-11 1983-05-17 Hitachi Ltd 空燃比制御装置
JPS58110853A (ja) * 1981-12-25 1983-07-01 Honda Motor Co Ltd 過給機付内燃機関における蒸発燃料制御装置
JPS58191361U (ja) * 1982-06-16 1983-12-19 日産自動車株式会社 燃料蒸発ガス回収装置
JPS59213941A (ja) * 1983-05-19 1984-12-03 Fuji Heavy Ind Ltd 燃料蒸発ガス排出抑止装置

Also Published As

Publication number Publication date
DE3502573A1 (de) 1986-07-31
JPH07293361A (ja) 1995-11-07
US4683861A (en) 1987-08-04
DE3584257D1 (de) 1991-10-31
DE3502573C2 (de) 1994-03-03
EP0288090A3 (en) 1989-01-04
JPH0759917B2 (ja) 1995-06-28
JP2694123B2 (ja) 1997-12-24
DE3502573C3 (de) 2002-04-25
JPH1068359A (ja) 1998-03-10
DE3569143D1 (en) 1989-05-03
EP0288090A2 (de) 1988-10-26
JP2945882B2 (ja) 1999-09-06
JPS61175260A (ja) 1986-08-06
EP0191170A1 (de) 1986-08-20
EP0288090B1 (de) 1991-09-25
EP0191170B1 (de) 1989-03-29

Similar Documents

Publication Publication Date Title
EP0191170B2 (de) Vorrichtung zur Entlüftung von Kraftstofftanks
DE2803750C2 (ja)
DE3813220C2 (de) Verfahren und Einrichtung zum Stellen eines Tankentlüftungsventiles
DE3423144C2 (de) Verfahren zum Steuern der Zufuhr von Kraftstoff zu einer Brennkraftmaschine bei Beschleunigung
DE3901109C2 (de) Adaptive Regeleinrichtung für das Luft-Kraftstoff-Verhältnis einer Brennkraftmaschine
DE4140527C2 (de) Regelvorrichtung für das Luft/Brennstoff-Verhältnis für einen Verbrennungsmotor
DE3639946C2 (de) Verfahren und Einrichtung zur Kompensation des Tankentlüftungsfehlers bei einem adaptiv lernenden Kraftstoffzufuhrsystem
EP0760056B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE3039435A1 (de) Vorrichtung zur regelung der leerlauf-drehzahl von brennkraftmaschinen
EP0152604A1 (de) Steuer- und Regelverfahren für die Betriebskenngrössen einer Brennkraftmaschine
DE3714151A1 (de) Steuereinrichtung fuer die drosselklappe eines verbrennungsmotors
DE4319772A1 (de) Verfahren und Vorrichtung zum Steuern einer Tankentlüftungsanlage
DE10225448A1 (de) Verfahren und Vorrichtung zur Steuerung der Brennkraftmaschine eines Fahrzeugs
DE3322820C2 (ja)
DE19610169B4 (de) Verfahren zur Adaption der Verzugszeit eines elektromagnetischen Tankentlüftungsventils
DE19727297C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP0205916B1 (de) Verfahren zur Steuerung und/oder Regelung von Betriebskenngrössen einer Brennkraftmaschine
DE10018209A1 (de) Verfahren und Vorrichtung zur Durchflusssteuerung insbesondere von Kraftstoffdämpfen in Tankentlüfungsanlagen von Kraftfahrzeugen
DE4322319A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4322270A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE3317938C2 (ja)
DE3321920A1 (de) Kraftstoffzufuehrungs-steuersystem fuer brennkraftmaschinen mit einer gemischabmagerungs-funktion im niedriglast-bereich der brennkraftmaschinen und verfahren zum elektronischen steuern von kraftstoffbemessungsmitteln
EP1134390B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP0150437B1 (de) Kraftstoff-Luft-Gemischzumesssystem für eine Brennkraftmaschine
EP2089621B1 (de) Verfahren zum steuern einer brennkraftmaschine und brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19870219

17Q First examination report despatched

Effective date: 19870626

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 88106880 EINGEREICHT AM 29.04.88.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3569143

Country of ref document: DE

Date of ref document: 19890503

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19891222

ITTA It: last paid annual fee
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19950816

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT

ET3 Fr: translation filed ** decision concerning opposition
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19950816

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011227

Year of fee payment: 17

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021202

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021213

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031205

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO