EP0183034B1 - Galvanisierverfahren - Google Patents

Galvanisierverfahren Download PDF

Info

Publication number
EP0183034B1
EP0183034B1 EP85113105A EP85113105A EP0183034B1 EP 0183034 B1 EP0183034 B1 EP 0183034B1 EP 85113105 A EP85113105 A EP 85113105A EP 85113105 A EP85113105 A EP 85113105A EP 0183034 B1 EP0183034 B1 EP 0183034B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
electrolyte solution
guide rail
coated
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85113105A
Other languages
English (en)
French (fr)
Other versions
EP0183034A2 (de
EP0183034A3 (en
Inventor
Erwin A. Dr. Sauter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inovan GmbH and Co KG Metalle und Bauelemente
Original Assignee
Inovan GmbH and Co KG Metalle und Bauelemente
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inovan GmbH and Co KG Metalle und Bauelemente filed Critical Inovan GmbH and Co KG Metalle und Bauelemente
Priority to AT85113105T priority Critical patent/ATE54474T1/de
Publication of EP0183034A2 publication Critical patent/EP0183034A2/de
Publication of EP0183034A3 publication Critical patent/EP0183034A3/de
Application granted granted Critical
Publication of EP0183034B1 publication Critical patent/EP0183034B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0685Spraying of electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating

Definitions

  • the invention relates to a method for applying metallic layers by electroplating onto strip-shaped or rope-shaped materials, the materials to be coated connected to the negative pole of a current source being passed through an electrolyte solution located in a suitable vessel, past an anode connected there to the plusol of the current source. are continuously passed through and the electrolyte solution is moved in the opposite direction to the direction of movement of the material to be coated, and a device for performing this method.
  • the electrolyte is also continuously pumped around and renewed, so that there is always an electrolyte solution which has sufficient metal ions, at least in the vessel through which the band-like materials are passed.
  • this does not mean that there are also sufficient metal ions in the immediate vicinity of the cathode, that is to say the material to be coated.
  • sufficient ions (or anions) are available for the current transport can a corresponding amount of metal be deposited on the cathode or can a good current yield be expected.
  • the object of the invention is therefore to increase the very high separation speed of such known systems even further.
  • This is achieved in a manner according to the invention by moving the material at a speed above 0.1 m / s and the electrolyte in the opposite direction at a speed above 1 m / s at a Reynolds number above 80,000, so that both the flow speed of the electrolyte as well as the relative speed in the boundary layer between the movement of the material to be coated and that of the electrolyte are in the region of the turbulent flow.
  • the turbulent flow thus achieved is certainly directly on the surface of the material to be coated, since this is the starting point or the starting surface for the turbulent flow.
  • the decisive factor for this turbulent flow is the Reynolds number, i.e. the ratio of the inertial forces to the toughness forces, the flow speed or the relative speed between the strip-like material and the electrolyte playing the decisive role in this case. It is not decisive that fresh electrolyte solution is always available in the electrolysis bath, i.e. in the vessel containing the electrolytic solution, but that this fresh electrolytic solution with a high number of separable metal ions in the immediate vicinity of the material to be coated, i.e. also in the boundary layer , is available.
  • the boundary layer is the layer between the material to be coated and the electrolyte, in which the flow rate of the electrolyte is adjusted the belt speed takes place, i.e. the layer that directly forms the surface of the belt to be coated.
  • a turbulent flow also prevails in the boundary layer, which means that the metal ions are not only brought close to the cathode, but are also supported by the turbulent flow, the electron migration to the cathode.
  • the boundary layer in the case of turbulent flow is orders of magnitude smaller than in the case of laminar flow, that is to say the high relative speed aimed for according to the invention and the resulting turbulence are decisive for the high separation speed.
  • turbulent flow already exists from a Reynolds number that is greater than 2,320. With a Reynolds number, as determined by the invention, of RE 80,000, there is definitely a turbulent flow.
  • a device which is characterized by a hollow rail made of insulating material, the free passage cross section of which corresponds approximately to the cross section of the material to be coated, by anodes inserted into the hollow rail and by a ring line connected to the hollow rail and carrying the electrolyte in which a circulation pump is inserted.
  • a collection basin for electrolyte liquid can also be inserted into this ring line, to which fresh electrolyte liquid can then always be added in order to maintain the previously determined optimal values.
  • the length of the hollow rail is determined according to the layer thickness to be applied, the layer thickness being proportional to the length of the hollow rail at constant speeds and current intensities. The proportionality factor depends on the material; for deposition of palladium under otherwise identical conditions, the length of the hollow rail would have to be about ten times longer than that for coating with silver.
  • the anodes can cover the entire inner wall surface of the free passage cross section of such a hollow rail or even only parts thereof.
  • the anodes can only be attached on one side, preferably to coat one side of a strip-shaped material, the strip side facing away from the anodes expediently being covered by a mask attached or traveling in the hollow rail.
  • the anodes can also run in the form of strips in the longitudinal direction of the hollow rail in order to produce a coating strip on a strip-shaped material or, of course, also several such strips. Even if the entire surface of the band-shaped material is to be coated, it is advisable to strip the anodes within the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Aufbringen metallischer Schichten durch Galvanisieren auf band- oder seilförmige Materialien, wobei die mit dem Minuspol einer Stromquelle verbundenen zu beschichtenden Materialien durch eine in einem geeigeneten Gefäß befindliche Elektrolytlösung, vorbei an einer dort mit dem Plusol der Stromquelle verbundenen Anode, kontinuierlich hindurchgeführt werden und die Elektrolytlösung in Gegenrichtung zur Bewegungsrichtung des zu beschichtenden Materials bewegt wird, sowie eine Vorrichtung zur Durchführung dieses Verfahrens.
  • Zum Beschichten der Oberfläche von Drähten, Bändern, Stanzgittern, Seilen oder sonstigen bandförmigen Materialien durch Galvanisieren, werden diese Materialien kontinuierlich durch ein Gefäß hindurchgeführt, in dem sich eine Elektrolytlösung (oder auch Salzschmelze) befindet. Hierbei bildet das zu beschichtende Material die Kathode, an der sich infolge der lonenwanderung die im Elektrolyten gelösten Metalle anlagern. Durch diese lonenwanderung verarmt der Elektrolyt in der Umgebung der Kathode an abscheidbaren Metallionen, so daß stets für die Zufuhr von frischem Elektrolyt gesorgt werden muß. Dies geschieht bei den bekannten Galvanisierbädern im allgemeinn bereits dadurch, daß das bandförmige Material durch die Elektrolytlösung hindurchgeführt wird, also stets mit neuer Elektolytlösung in Berührung kommt. Bei modernen Anlagen wird außerdem der Elektrolyt stetig umgepumpt und erneuert, so daß sich zumindest im Gefäß, durch das die bandartigen Materialien hindurchgeführt werden, stets eine genügend Metallionen aufweisende Elektrolytlösung befindet. Dies besagt allerdings noch nicht, daß in der unmittelbaren Umgebung der Kathode, also des zu beschichtenden Materials, ebenfalls genügend Metallioen vorhanden sind. Nur aber dann, wenn genügend Ionen (beziehungsweise Anionen) für den Stromtransport zur Verfügung stehen, kann entsprechend viel Metall auf der Kathode abgeschieden beziehungsweise kann mit einer guten Stromausbeute gerechnet werden. Daraus ergibt sich, daß, je besser der Elektrolytaustausch an der Oberfläche des zu beschichtenden Teiles durchgeführt wird, desto höher die Abscheidungsgeschwindigkeit und die Stromausbeute ist beziehungsweise desto schneller das Metall in erwünschter Weise auf dem Material abgeschieden wird bei gleichzeitig verbessertem Wirkungsgrad der Galvanisierungseinrichtung.
  • Um dieser Verarmung in der Nähe des zu beschichtenden Materials zu begegnen, wurde, wie oben erwähnt, bereits vorgeschlagen, die Elektrolytlösung kontinuierlich zu erneuern und auch die Elektrolytlösung innerhalb des Elektrolysegefäßes in Bewegung zu halten. Durch diese maßnahme sollte erreicht werden, daß sich immer frische Elektrolytlösung mit genügend abzuscheidenden Metallionen in der Umbegung des zu beschichtenden Materials befindet.
  • Mit diesen bekannten, dem Stande der Technik zuzuzählenden Anlagen, waren bereits recht hohe Abscheidegeschwindigkeiten zu erzielen, insbesondere dann, wenn die Elektrolytlösung, wie beispielsweise in der US-A-3,975,242 beschrieben, in Gegenrichtung zur Bewegungsrichtung des zu beschichtenden Materials bewegt wird. Ausgangspunkt für diese in Gegenrichtung geführte Elektrolytströmung war die Uberlegung, daß bei hoher Relativgeschwindigkeit zwischen dem zu beschichtenden Material und der Elektrolytlösung eine Ablösung eventuell vorhandener Gasbläschen auf dem zu beschichtenden Material erfolgt, die eventuell zu einer punktförmigen Störung bei der Beschichtung führen könnten.
  • Weiter bekannt ist ein Verfahren nach der EP-A-0 100 400, bei dem, um eine Verarmung des elektrolyten an Metallionen in Kathodennähe zu verhindern, eine hohe Relativströmungsgeschwindigkeit im Bereich der turbulenten Strömung zwischen dem Elektrolyten und dem zu beschichtenden Material vorgeschlagen wird. Die Turbulenz dieser Strömung soll nach dieser Vorveröffentlichung durch Elektrolytteilströme erreicht werden, die quer zur Bandlaufrichtung gerichtet sind.
  • Aufgabe der Erfindung ist es damit, die recht hohe Abscheidegeschwindigkeit derartiger bekannter Anlagen noch weiter zu erhöhen. Erreicht wird dies in erfindungsgemäßer Weise durch, daß das Material mit einer Geschwindigkeit oberhalb 0,1 m/s und der Elektrolyt in der Gegenrichtung mit einer Geschwindigkeit oberhalb 1 m/s bei einer Reynolds-Zahl oberhalb 80.000 bewegt werden, so daß sowohl die Strömungsgeschwindigkeit des Elektrolyten wie auch die Relativgeschwindigkeit in der Grenzschicht zwischen der Bewegung des zu beschichtenden Materials und derjenigen des Elektrolyten im Bereich der turbulenten Strömung liegen.
  • Im Gegensatz zu der letztbesprochenen europäischen Patentschrift 0100400 liegt die somit erzielte turbulente Strömung mit Sicherheit direkt an der Oberfläche des zu beschichtenden Materials, da dies der Ausgangspunkt beziehungsweise die Ausgangsfläche für die turbulente Strömung ist. Maßgehend für diese turbulente Strömung ist die Reynolds-Zahl, also das Verhältnis der Trägheitskräfte zu den Zähigkeitskräften, wobei die Strömungsgeschwindigkeit beziehungsweise die Relativgeschwindigkeit zwischen dem bandförmigen Material und dem Elektrolyten in diesem Falle die ausschlaggebende Rolle spielt. Maßgebend ist ja nicht, daß in dem Elektrolysebad, also in dem die Elektrolytlösung enthaltenden Gefäß, stets frische Elektrolytlösung zur Verfügung steht, sondern daß diese frische Elektrolytlösung mit einer hohen Anzahl von abscheidbaren Metallionen in unmittelbarer Umgebung des zu beschichtenden Materials, also auch in der Grenzschicht, vorhanden ist. Als Grenzschicht wird hierbei die Schicht zwischen dem zu beschichtenden Material und dem Elektrolyten bezeichnet, in der die Anpassung der Strömungsgeschwindigkeit des Elektrolyten an die Bandgeschwindigkeit stattfindet, also die Schicht, die unmittelbar die Oberfläche des zu beschichtenden Bandes bildet. Erreicht wird dies nach der Erfindung dadurch, daß auch in der Grenzschicht eine turbulente Strömung vorherrscht, die bewirkt, daß die Metallionen nicht nur in die Nähe der Kathode gebracht werden, sondern, durch die turbulente Strömung, auch noch die Elektronenwanderung zur Kathode unterstüzt wird. Es darf in diesem Zusammenhang auch darauf hingewiesen werden, daß die Grenzschicht bei turbulenter Strömung um Größenordnungen kleiner ist als bei laminarer Strömung, daß also die nach der Erfindung angestrebte hohe Relativgeschwindigkeit und die damit herbeigeführte Turbulenz maßgebend für die hohe Abscheidegeschwindigkeit ist. Turbulente Strömung herrscht jedoch nach empirisch festgelegten Werten bereits ab einer Reynolds-Zahl, die größer als 2.320 ist. Bei einer Reynolds-Zahl, wie dies von der Erfindung festgelegt wird, von RE 80.000, ist also mit Sicherheit eine turbulente Strömung vorhanden.
  • Zur Durchführung des Verfahrens empfiehlt sich eine Vorrichtung, die gekennzeichnet ist durch eine aus Isoliermaterial bestehenden Hohlschiene, deren freier Durchtrittsquerschnitt etwa dem Querschnitt des zu beschichtenden Materials entspricht, durch in die Hohlschiene eingefügte Anoden sowie durch eine beidseits an die Hohlschiene angeschlossene, den Elektrolyten führende Ringleitung, in die eine Umwälzpumpe eingefügt ist. Selbstverständlich kann in diese Ringleitung noch ein Sammelbecken für Elektrolytflüssigkeit eingefügt werden, dem dann auch stets frische Elektrolytflüssigkeit zur Beibehaltung der zuvor bestimmten optimalen Werte hinzugefügt werden kann. Die Länge der Hohlschiene wird hierbei nach der aufzubringenden Schichtdicke festgelegt, wobei, bei konstanten Geschwindigkeiten und Stromstärken, die Schichtdicke der Länge der Hohlschiene proportional ist. Der Proportionalitätsfaktor ist allerdings materialabhängig; so müßte zum Abscheiden von Palladium unter sonst gleichen Bedingungen die Länge der Hohlschiene etwa zehnmal größer sein als für diejenge zum Beschichten mit Silber.
  • Die Anoden können in erfindungsgemäßer Weise die gesamte Innenwandfläche des freien Durchgangsquerschnitts einer solchen Hohlschiene bedecken oder auch nur Teile hiervon. So können die Anoden beispielsweise nur einseitig angebracht sein, um vorzugsweise eine Seite eines bandförmigen Materials zu beschichten, wobei zweckmäßigerweise die den Anoden abgekehrte Bandseite durch eine in der Hohlschiene angebrachte oder mitlaufende Maske abgedeckt wird. Es können jedoch auch die Anoden streifenförmig in Längsrichtung der Hohlschiene verlaufen, um einen Beschichtungsstreifen auf einem bandförmigen Material oder selbstverständlich auch mehrere derartige Streifen zu erzeugen. Auch dann, wenn die gesamte Fläche des bandförmigen Materials zu beschichten ist, empfiehlt es sich, die Anoden streifenförmig innerhalb der
    Figure imgb0001

Claims (5)

  1. Figure imgb0002
    des Elektrolyten wie auch die Relativgeschwindigkeit in der Grenzschicht zwischen der Bewegung des zu beschichtenden Materials (2) und derjenigen des Elektrolyten im Bereich der turbulenten Strömung liegen.
  2. 2. Vorrichtungen zur Durchführung des Verfahrens nach Anspruch 1, gebildet aus einer aus Isoliermaterial bestehenden Hohlschiene, deren freier Durchtrittsquerschnitt etwa dem Querschnitt des zu beschichtenden Materials entspricht, mit in die Hohlschiene eingefügten Anoden sowie mit einer, beidseits an die Hohlschiene angeschlossenen, den Elektrolyten führenden Ringleitung, in die eine Umwälzpumpe eingefügt ist, dadurch gekennzeichnet, daß die Anoden die gesamte Innenwandfläche des freien Durchgangsquerschnittes der Hohlschiene (1) bedecken oder auch nur Teile hiervon.
  3. 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Anoden streifenförmig in Längsrichtung der Hohlschiene (1) verlaufen.
  4. 4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Anoden in Längsrichtung unterteilt und verschiedenen Stromkreisen zugeordnet sind.
  5. 5. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Anoden in gleichmäßigem Abstand hintereinander innerhalb der Hohlschiene (1) angebracht sind und daß eine Vorrichtung zum taktweisen Vorbewegen des zu beschichtenden Materials (2), jeweils im Abstand der Anoden voneinander, vorgesehen ist.
EP85113105A 1984-10-31 1985-10-16 Galvanisierverfahren Expired - Lifetime EP0183034B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85113105T ATE54474T1 (de) 1984-10-31 1985-10-16 Galvanisierverfahren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843439750 DE3439750A1 (de) 1984-10-31 1984-10-31 Galvanisierverfahren
DE3439750 1984-10-31

Publications (3)

Publication Number Publication Date
EP0183034A2 EP0183034A2 (de) 1986-06-04
EP0183034A3 EP0183034A3 (en) 1987-10-28
EP0183034B1 true EP0183034B1 (de) 1990-07-11

Family

ID=6249147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113105A Expired - Lifetime EP0183034B1 (de) 1984-10-31 1985-10-16 Galvanisierverfahren

Country Status (5)

Country Link
US (1) US4721554A (de)
EP (1) EP0183034B1 (de)
JP (1) JPS61113790A (de)
AT (1) ATE54474T1 (de)
DE (1) DE3439750A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1182782B (it) * 1985-07-18 1987-10-05 Centro Speriment Metallurg Perfezionamento nei procedimenti di zincatura elettrolitica
US4904350A (en) * 1988-11-14 1990-02-27 International Business Machines Corporation Submersible contact cell-electroplating films
DE4430652C2 (de) * 1994-08-29 1997-01-30 Metallglanz Gmbh Galvanisches Verfahren und Vorrichtung zur Durchführung des Verfahrens sowie dessen Verwendung zum galvanischen oder chemischen Behandeln, insbesondere zum kontinuierlichen Aufbringen metallischer Schichten auf einen Körper

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2370973A (en) * 1941-11-22 1945-03-06 William C Lang Method and apparatus for producing coated wire
US3441494A (en) * 1963-05-25 1969-04-29 Kokusai Denshin Denwa Co Ltd Apparatus to deposit a ferromagnetic film on a conductive wire
US3522166A (en) * 1967-04-21 1970-07-28 Reynolds Metals Co Electrical system for anodizing
SE335038B (de) * 1968-05-06 1971-05-10 Wennberg Ab C
US3644181A (en) * 1969-07-24 1972-02-22 Sylvania Electric Prod Localized electroplating method
US3975242A (en) * 1972-11-28 1976-08-17 Nippon Steel Corporation Horizontal rectilinear type metal-electroplating method
US3865701A (en) * 1973-03-06 1975-02-11 American Chem & Refining Co Method for continuous high speed electroplating of strip, wire and the like
JPS5116236A (en) * 1974-07-31 1976-02-09 Daiichi Denshi Kogyo Denkaishorihoho narabini sochi
US4039398A (en) * 1975-08-15 1977-08-02 Daiichi Denshi Kogyo Kabushiki Kaisha Method and apparatus for electrolytic treatment
LU80496A1 (fr) * 1978-11-09 1980-06-05 Cockerill Procede et diopositif pour le depot electrolytique en continu et a haute densite de courant d'un metal de recouvrement sur une tole
DE2917630A1 (de) * 1979-05-02 1980-11-13 Nippon Steel Corp Anordnung zur elektrolytischen verzinkung von walzband
DE3017079A1 (de) * 1980-05-03 1981-11-05 Thyssen AG vorm. August Thyssen-Hütte, 4100 Duisburg Vorrichtung zum elektroplattieren
JPS5915996B2 (ja) * 1980-12-03 1984-04-12 新日本製鐵株式会社 連続金属板処理設備における電解処理装置
JPS57140890A (en) * 1981-02-24 1982-08-31 Nippon Kokan Kk <Nkk> Electric metal plating method for steel strip
DE3228641A1 (de) * 1982-07-31 1984-02-02 Hoesch Werke Ag, 4600 Dortmund Verfahren zur elektrolytischen abscheidung von metallen aus waessrigen loesungen der metallsalze auf stahlband und vorrichtung zur durchfuehrung des verfahrens
US4434040A (en) * 1982-09-28 1984-02-28 United States Steel Corporation Vertical-pass electrotreating cell

Also Published As

Publication number Publication date
US4721554A (en) 1988-01-26
DE3439750C2 (de) 1989-01-05
EP0183034A2 (de) 1986-06-04
EP0183034A3 (en) 1987-10-28
JPS61113790A (ja) 1986-05-31
ATE54474T1 (de) 1990-07-15
DE3439750A1 (de) 1986-04-30

Similar Documents

Publication Publication Date Title
DE3236545A1 (de) Verfahren zum elektroplattieren und vorrichtung zur durchfuehrung des verfahrens
DE3233010A1 (de) Verfahren und vorrichtung zum elektroplattieren
DE3432821C2 (de)
EP0101429B1 (de) Verfahren zur elektrolytischen Beschichtung mit einer Metallschicht und gegebenenfalls elektrolytischen Behandlung eines Metallbandes
EP0183034B1 (de) Galvanisierverfahren
DE2753936C2 (de)
DE2939190A1 (de) Verfahren zur behandlung eines drahtes auf der basis eines eisenhaltigen materials
DE2156677B2 (de) Verfahren zur kontinuierlichen elektrolytischen Vorbehandlung von Aluminiumstreifen für das Aufbringen von organischen Überzügen
DE1928062C3 (de) Galvanisierzelle
DE3525183C2 (de)
EP0369983B1 (de) Verfahren und Vorrichtung zur elektrolytischen Herstellung einer Metallfolie
DE2534028C2 (de) Verfahren zur anodischen Oxidation einer Aluminiumbahn und elektrolytischen Einfärbung der Oxidschicht
EP0196420B1 (de) Hochgeschwindigkeits-Elektrolysezelle für die Veredelung von bandförmigem Gut
DE1919365A1 (de) Verfahren zum Reinigen von Baendern aus Kupferlegierungen
EP0142010B1 (de) Verfahren und Vorrichtung zum elektrolytischen Abscheiden von Metallen
DE3011005C2 (de)
DE3228641A1 (de) Verfahren zur elektrolytischen abscheidung von metallen aus waessrigen loesungen der metallsalze auf stahlband und vorrichtung zur durchfuehrung des verfahrens
DE3418040A1 (de) Vorrichtung fuer die elektrolytische behandlung eines metallbandes
DE3418039A1 (de) Vorrichtung fuer die elektrolytische behandlung metallischer baender
DE60104107T2 (de) Verfahren und vorrichtung zur elektrolytischen beschichtung eines metallbandes
DE2627837A1 (de) Elektro-reinigungsverfahren
DE2522926A1 (de) Verfahren zur herstellung metallplattierten langgestreckten aluminiummaterials
AT222453B (de) Verfahren und Vorrichtung zur vorzugsweise kontinuierlichen einseitigen Anodisierung von Metallfolien oder- bändern
DE3401063C2 (de)
DE3823072A1 (de) Galvanisiereinrichtung fuer plattenfoermige werkstuecke, insbesondere leiterplatten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH FR GB LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: C25D 7/06

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH FR GB LI NL SE

17P Request for examination filed

Effective date: 19871126

17Q First examination report despatched

Effective date: 19881013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INOVAN GMBH & CO. KG METALLE UND BAUELEMENTE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB LI NL SE

REF Corresponds to:

Ref document number: 54474

Country of ref document: AT

Date of ref document: 19900715

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900914

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900919

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900920

Year of fee payment: 6

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19901029

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19901030

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901031

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19901121

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911016

Ref country code: AT

Effective date: 19911016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911031

Ref country code: CH

Effective date: 19911031

Ref country code: BE

Effective date: 19911031

BERE Be: lapsed

Owner name: INOVAN G.M.B.H.& CO. K.G. METALLE UND BAUELEMENTE

Effective date: 19911031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920501

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85113105.2

Effective date: 19920510