EP0183034B1 - Galvanizing process - Google Patents

Galvanizing process Download PDF

Info

Publication number
EP0183034B1
EP0183034B1 EP85113105A EP85113105A EP0183034B1 EP 0183034 B1 EP0183034 B1 EP 0183034B1 EP 85113105 A EP85113105 A EP 85113105A EP 85113105 A EP85113105 A EP 85113105A EP 0183034 B1 EP0183034 B1 EP 0183034B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
electrolyte solution
guide rail
coated
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85113105A
Other languages
German (de)
French (fr)
Other versions
EP0183034A2 (en
EP0183034A3 (en
Inventor
Erwin A. Dr. Sauter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inovan GmbH and Co KG Metalle und Bauelemente
Original Assignee
Inovan GmbH and Co KG Metalle und Bauelemente
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inovan GmbH and Co KG Metalle und Bauelemente filed Critical Inovan GmbH and Co KG Metalle und Bauelemente
Priority to AT85113105T priority Critical patent/ATE54474T1/en
Publication of EP0183034A2 publication Critical patent/EP0183034A2/en
Publication of EP0183034A3 publication Critical patent/EP0183034A3/en
Application granted granted Critical
Publication of EP0183034B1 publication Critical patent/EP0183034B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0685Spraying of electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating

Definitions

  • the invention relates to a method for applying metallic layers by electroplating onto strip-shaped or rope-shaped materials, the materials to be coated connected to the negative pole of a current source being passed through an electrolyte solution located in a suitable vessel, past an anode connected there to the plusol of the current source. are continuously passed through and the electrolyte solution is moved in the opposite direction to the direction of movement of the material to be coated, and a device for performing this method.
  • the electrolyte is also continuously pumped around and renewed, so that there is always an electrolyte solution which has sufficient metal ions, at least in the vessel through which the band-like materials are passed.
  • this does not mean that there are also sufficient metal ions in the immediate vicinity of the cathode, that is to say the material to be coated.
  • sufficient ions (or anions) are available for the current transport can a corresponding amount of metal be deposited on the cathode or can a good current yield be expected.
  • the object of the invention is therefore to increase the very high separation speed of such known systems even further.
  • This is achieved in a manner according to the invention by moving the material at a speed above 0.1 m / s and the electrolyte in the opposite direction at a speed above 1 m / s at a Reynolds number above 80,000, so that both the flow speed of the electrolyte as well as the relative speed in the boundary layer between the movement of the material to be coated and that of the electrolyte are in the region of the turbulent flow.
  • the turbulent flow thus achieved is certainly directly on the surface of the material to be coated, since this is the starting point or the starting surface for the turbulent flow.
  • the decisive factor for this turbulent flow is the Reynolds number, i.e. the ratio of the inertial forces to the toughness forces, the flow speed or the relative speed between the strip-like material and the electrolyte playing the decisive role in this case. It is not decisive that fresh electrolyte solution is always available in the electrolysis bath, i.e. in the vessel containing the electrolytic solution, but that this fresh electrolytic solution with a high number of separable metal ions in the immediate vicinity of the material to be coated, i.e. also in the boundary layer , is available.
  • the boundary layer is the layer between the material to be coated and the electrolyte, in which the flow rate of the electrolyte is adjusted the belt speed takes place, i.e. the layer that directly forms the surface of the belt to be coated.
  • a turbulent flow also prevails in the boundary layer, which means that the metal ions are not only brought close to the cathode, but are also supported by the turbulent flow, the electron migration to the cathode.
  • the boundary layer in the case of turbulent flow is orders of magnitude smaller than in the case of laminar flow, that is to say the high relative speed aimed for according to the invention and the resulting turbulence are decisive for the high separation speed.
  • turbulent flow already exists from a Reynolds number that is greater than 2,320. With a Reynolds number, as determined by the invention, of RE 80,000, there is definitely a turbulent flow.
  • a device which is characterized by a hollow rail made of insulating material, the free passage cross section of which corresponds approximately to the cross section of the material to be coated, by anodes inserted into the hollow rail and by a ring line connected to the hollow rail and carrying the electrolyte in which a circulation pump is inserted.
  • a collection basin for electrolyte liquid can also be inserted into this ring line, to which fresh electrolyte liquid can then always be added in order to maintain the previously determined optimal values.
  • the length of the hollow rail is determined according to the layer thickness to be applied, the layer thickness being proportional to the length of the hollow rail at constant speeds and current intensities. The proportionality factor depends on the material; for deposition of palladium under otherwise identical conditions, the length of the hollow rail would have to be about ten times longer than that for coating with silver.
  • the anodes can cover the entire inner wall surface of the free passage cross section of such a hollow rail or even only parts thereof.
  • the anodes can only be attached on one side, preferably to coat one side of a strip-shaped material, the strip side facing away from the anodes expediently being covered by a mask attached or traveling in the hollow rail.
  • the anodes can also run in the form of strips in the longitudinal direction of the hollow rail in order to produce a coating strip on a strip-shaped material or, of course, also several such strips. Even if the entire surface of the band-shaped material is to be coated, it is advisable to strip the anodes within the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

In a method for high-speed electrolytic-deposition of metallic layers on ribbon or cord-like strips, the strips which are electrically connected to the negative side of an electric DC power source are moved through a hollow guide rail containing an electrolyte solution and past an anode structure arranged within the hollow guide rail and connected to the positive side of the DC power source. An electrolyte solution circulating conduit structure including a circulating pump is connected to opposite ends of the guide rail and, while the metal is deposited on the strip which is moved through the guide rail in one direction, the electrolyte solution is circulated through the guide rail in the opposite direction at a speed which provides for a Reynolds No. of over 80,000 with regard to the relative strip speed in the electrolyte solution so as to provide turbulent flow conditions adjacent the strip surface which greatly increase the electrolyte deposition rates. The hollow guide rail is preferably arranged vertically with the strip moving upwardly and the electrolyte solution flowing downwardly through the guide rail.

Description

Die Erfindung betrifft ein Verfahren zum Aufbringen metallischer Schichten durch Galvanisieren auf band- oder seilförmige Materialien, wobei die mit dem Minuspol einer Stromquelle verbundenen zu beschichtenden Materialien durch eine in einem geeigeneten Gefäß befindliche Elektrolytlösung, vorbei an einer dort mit dem Plusol der Stromquelle verbundenen Anode, kontinuierlich hindurchgeführt werden und die Elektrolytlösung in Gegenrichtung zur Bewegungsrichtung des zu beschichtenden Materials bewegt wird, sowie eine Vorrichtung zur Durchführung dieses Verfahrens.The invention relates to a method for applying metallic layers by electroplating onto strip-shaped or rope-shaped materials, the materials to be coated connected to the negative pole of a current source being passed through an electrolyte solution located in a suitable vessel, past an anode connected there to the plusol of the current source. are continuously passed through and the electrolyte solution is moved in the opposite direction to the direction of movement of the material to be coated, and a device for performing this method.

Zum Beschichten der Oberfläche von Drähten, Bändern, Stanzgittern, Seilen oder sonstigen bandförmigen Materialien durch Galvanisieren, werden diese Materialien kontinuierlich durch ein Gefäß hindurchgeführt, in dem sich eine Elektrolytlösung (oder auch Salzschmelze) befindet. Hierbei bildet das zu beschichtende Material die Kathode, an der sich infolge der lonenwanderung die im Elektrolyten gelösten Metalle anlagern. Durch diese lonenwanderung verarmt der Elektrolyt in der Umgebung der Kathode an abscheidbaren Metallionen, so daß stets für die Zufuhr von frischem Elektrolyt gesorgt werden muß. Dies geschieht bei den bekannten Galvanisierbädern im allgemeinn bereits dadurch, daß das bandförmige Material durch die Elektrolytlösung hindurchgeführt wird, also stets mit neuer Elektolytlösung in Berührung kommt. Bei modernen Anlagen wird außerdem der Elektrolyt stetig umgepumpt und erneuert, so daß sich zumindest im Gefäß, durch das die bandartigen Materialien hindurchgeführt werden, stets eine genügend Metallionen aufweisende Elektrolytlösung befindet. Dies besagt allerdings noch nicht, daß in der unmittelbaren Umgebung der Kathode, also des zu beschichtenden Materials, ebenfalls genügend Metallioen vorhanden sind. Nur aber dann, wenn genügend Ionen (beziehungsweise Anionen) für den Stromtransport zur Verfügung stehen, kann entsprechend viel Metall auf der Kathode abgeschieden beziehungsweise kann mit einer guten Stromausbeute gerechnet werden. Daraus ergibt sich, daß, je besser der Elektrolytaustausch an der Oberfläche des zu beschichtenden Teiles durchgeführt wird, desto höher die Abscheidungsgeschwindigkeit und die Stromausbeute ist beziehungsweise desto schneller das Metall in erwünschter Weise auf dem Material abgeschieden wird bei gleichzeitig verbessertem Wirkungsgrad der Galvanisierungseinrichtung.To coat the surface of wires, tapes, lead frames, ropes or other tape-like materials by electroplating, these materials are continuously passed through a vessel in which there is an electrolyte solution (or molten salt). The material to be coated forms the cathode on which the metals dissolved in the electrolyte are deposited as a result of the ion migration. As a result of this ion migration, the electrolyte in the vicinity of the cathode is depleted of separable metal ions, so that fresh electrolyte must always be supplied. In the known electroplating baths, this generally already takes place in that the band-shaped material is passed through the electrolyte solution, that is to say always comes into contact with new electrolyte solution. In modern systems, the electrolyte is also continuously pumped around and renewed, so that there is always an electrolyte solution which has sufficient metal ions, at least in the vessel through which the band-like materials are passed. However, this does not mean that there are also sufficient metal ions in the immediate vicinity of the cathode, that is to say the material to be coated. However, only if sufficient ions (or anions) are available for the current transport can a corresponding amount of metal be deposited on the cathode or can a good current yield be expected. It follows from this that the better the electrolyte exchange is carried out on the surface of the part to be coated, the higher the deposition rate and the current efficiency or the faster the metal is deposited on the material in a desired manner while at the same time improving the efficiency of the galvanizing device.

Um dieser Verarmung in der Nähe des zu beschichtenden Materials zu begegnen, wurde, wie oben erwähnt, bereits vorgeschlagen, die Elektrolytlösung kontinuierlich zu erneuern und auch die Elektrolytlösung innerhalb des Elektrolysegefäßes in Bewegung zu halten. Durch diese maßnahme sollte erreicht werden, daß sich immer frische Elektrolytlösung mit genügend abzuscheidenden Metallionen in der Umbegung des zu beschichtenden Materials befindet.In order to counteract this depletion in the vicinity of the material to be coated, it has already been proposed, as mentioned above, to continuously renew the electrolyte solution and also to keep the electrolyte solution in motion within the electrolysis vessel. This measure should ensure that there is always fresh electrolyte solution with enough metal ions to be deposited in the area surrounding the material to be coated.

Mit diesen bekannten, dem Stande der Technik zuzuzählenden Anlagen, waren bereits recht hohe Abscheidegeschwindigkeiten zu erzielen, insbesondere dann, wenn die Elektrolytlösung, wie beispielsweise in der US-A-3,975,242 beschrieben, in Gegenrichtung zur Bewegungsrichtung des zu beschichtenden Materials bewegt wird. Ausgangspunkt für diese in Gegenrichtung geführte Elektrolytströmung war die Uberlegung, daß bei hoher Relativgeschwindigkeit zwischen dem zu beschichtenden Material und der Elektrolytlösung eine Ablösung eventuell vorhandener Gasbläschen auf dem zu beschichtenden Material erfolgt, die eventuell zu einer punktförmigen Störung bei der Beschichtung führen könnten.With these known systems, which are to be counted in the prior art, very high deposition rates could already be achieved, in particular when the electrolyte solution, as described, for example, in US Pat. No. 3,975,242, is moved in the opposite direction to the direction of movement of the material to be coated. The starting point for this electrolyte flow, which was conducted in the opposite direction, was the consideration that, at a high relative speed between the material to be coated and the electrolyte solution, any gas bubbles present on the material to be coated occur, which could possibly lead to a punctual disturbance in the coating.

Weiter bekannt ist ein Verfahren nach der EP-A-0 100 400, bei dem, um eine Verarmung des elektrolyten an Metallionen in Kathodennähe zu verhindern, eine hohe Relativströmungsgeschwindigkeit im Bereich der turbulenten Strömung zwischen dem Elektrolyten und dem zu beschichtenden Material vorgeschlagen wird. Die Turbulenz dieser Strömung soll nach dieser Vorveröffentlichung durch Elektrolytteilströme erreicht werden, die quer zur Bandlaufrichtung gerichtet sind.Also known is a method according to EP-A-0 100 400, in which, in order to prevent depletion of the electrolyte from metal ions in the vicinity of the cathode, a high relative flow velocity in the region of the turbulent flow between the electrolyte and the material to be coated is proposed. According to this prior publication, the turbulence of this flow is intended to be achieved by partial electrolyte streams which are directed transversely to the direction of travel of the strip.

Aufgabe der Erfindung ist es damit, die recht hohe Abscheidegeschwindigkeit derartiger bekannter Anlagen noch weiter zu erhöhen. Erreicht wird dies in erfindungsgemäßer Weise durch, daß das Material mit einer Geschwindigkeit oberhalb 0,1 m/s und der Elektrolyt in der Gegenrichtung mit einer Geschwindigkeit oberhalb 1 m/s bei einer Reynolds-Zahl oberhalb 80.000 bewegt werden, so daß sowohl die Strömungsgeschwindigkeit des Elektrolyten wie auch die Relativgeschwindigkeit in der Grenzschicht zwischen der Bewegung des zu beschichtenden Materials und derjenigen des Elektrolyten im Bereich der turbulenten Strömung liegen.The object of the invention is therefore to increase the very high separation speed of such known systems even further. This is achieved in a manner according to the invention by moving the material at a speed above 0.1 m / s and the electrolyte in the opposite direction at a speed above 1 m / s at a Reynolds number above 80,000, so that both the flow speed of the electrolyte as well as the relative speed in the boundary layer between the movement of the material to be coated and that of the electrolyte are in the region of the turbulent flow.

Im Gegensatz zu der letztbesprochenen europäischen Patentschrift 0100400 liegt die somit erzielte turbulente Strömung mit Sicherheit direkt an der Oberfläche des zu beschichtenden Materials, da dies der Ausgangspunkt beziehungsweise die Ausgangsfläche für die turbulente Strömung ist. Maßgehend für diese turbulente Strömung ist die Reynolds-Zahl, also das Verhältnis der Trägheitskräfte zu den Zähigkeitskräften, wobei die Strömungsgeschwindigkeit beziehungsweise die Relativgeschwindigkeit zwischen dem bandförmigen Material und dem Elektrolyten in diesem Falle die ausschlaggebende Rolle spielt. Maßgebend ist ja nicht, daß in dem Elektrolysebad, also in dem die Elektrolytlösung enthaltenden Gefäß, stets frische Elektrolytlösung zur Verfügung steht, sondern daß diese frische Elektrolytlösung mit einer hohen Anzahl von abscheidbaren Metallionen in unmittelbarer Umgebung des zu beschichtenden Materials, also auch in der Grenzschicht, vorhanden ist. Als Grenzschicht wird hierbei die Schicht zwischen dem zu beschichtenden Material und dem Elektrolyten bezeichnet, in der die Anpassung der Strömungsgeschwindigkeit des Elektrolyten an die Bandgeschwindigkeit stattfindet, also die Schicht, die unmittelbar die Oberfläche des zu beschichtenden Bandes bildet. Erreicht wird dies nach der Erfindung dadurch, daß auch in der Grenzschicht eine turbulente Strömung vorherrscht, die bewirkt, daß die Metallionen nicht nur in die Nähe der Kathode gebracht werden, sondern, durch die turbulente Strömung, auch noch die Elektronenwanderung zur Kathode unterstüzt wird. Es darf in diesem Zusammenhang auch darauf hingewiesen werden, daß die Grenzschicht bei turbulenter Strömung um Größenordnungen kleiner ist als bei laminarer Strömung, daß also die nach der Erfindung angestrebte hohe Relativgeschwindigkeit und die damit herbeigeführte Turbulenz maßgebend für die hohe Abscheidegeschwindigkeit ist. Turbulente Strömung herrscht jedoch nach empirisch festgelegten Werten bereits ab einer Reynolds-Zahl, die größer als 2.320 ist. Bei einer Reynolds-Zahl, wie dies von der Erfindung festgelegt wird, von RE 80.000, ist also mit Sicherheit eine turbulente Strömung vorhanden.In contrast to the last-mentioned European patent specification 0100400, the turbulent flow thus achieved is certainly directly on the surface of the material to be coated, since this is the starting point or the starting surface for the turbulent flow. The decisive factor for this turbulent flow is the Reynolds number, i.e. the ratio of the inertial forces to the toughness forces, the flow speed or the relative speed between the strip-like material and the electrolyte playing the decisive role in this case. It is not decisive that fresh electrolyte solution is always available in the electrolysis bath, i.e. in the vessel containing the electrolytic solution, but that this fresh electrolytic solution with a high number of separable metal ions in the immediate vicinity of the material to be coated, i.e. also in the boundary layer , is available. The boundary layer is the layer between the material to be coated and the electrolyte, in which the flow rate of the electrolyte is adjusted the belt speed takes place, i.e. the layer that directly forms the surface of the belt to be coated. This is achieved according to the invention in that a turbulent flow also prevails in the boundary layer, which means that the metal ions are not only brought close to the cathode, but are also supported by the turbulent flow, the electron migration to the cathode. In this context, it should also be pointed out that the boundary layer in the case of turbulent flow is orders of magnitude smaller than in the case of laminar flow, that is to say the high relative speed aimed for according to the invention and the resulting turbulence are decisive for the high separation speed. According to empirically determined values, however, turbulent flow already exists from a Reynolds number that is greater than 2,320. With a Reynolds number, as determined by the invention, of RE 80,000, there is definitely a turbulent flow.

Zur Durchführung des Verfahrens empfiehlt sich eine Vorrichtung, die gekennzeichnet ist durch eine aus Isoliermaterial bestehenden Hohlschiene, deren freier Durchtrittsquerschnitt etwa dem Querschnitt des zu beschichtenden Materials entspricht, durch in die Hohlschiene eingefügte Anoden sowie durch eine beidseits an die Hohlschiene angeschlossene, den Elektrolyten führende Ringleitung, in die eine Umwälzpumpe eingefügt ist. Selbstverständlich kann in diese Ringleitung noch ein Sammelbecken für Elektrolytflüssigkeit eingefügt werden, dem dann auch stets frische Elektrolytflüssigkeit zur Beibehaltung der zuvor bestimmten optimalen Werte hinzugefügt werden kann. Die Länge der Hohlschiene wird hierbei nach der aufzubringenden Schichtdicke festgelegt, wobei, bei konstanten Geschwindigkeiten und Stromstärken, die Schichtdicke der Länge der Hohlschiene proportional ist. Der Proportionalitätsfaktor ist allerdings materialabhängig; so müßte zum Abscheiden von Palladium unter sonst gleichen Bedingungen die Länge der Hohlschiene etwa zehnmal größer sein als für diejenge zum Beschichten mit Silber.To carry out the method, a device is recommended which is characterized by a hollow rail made of insulating material, the free passage cross section of which corresponds approximately to the cross section of the material to be coated, by anodes inserted into the hollow rail and by a ring line connected to the hollow rail and carrying the electrolyte in which a circulation pump is inserted. Of course, a collection basin for electrolyte liquid can also be inserted into this ring line, to which fresh electrolyte liquid can then always be added in order to maintain the previously determined optimal values. The length of the hollow rail is determined according to the layer thickness to be applied, the layer thickness being proportional to the length of the hollow rail at constant speeds and current intensities. The proportionality factor depends on the material; for deposition of palladium under otherwise identical conditions, the length of the hollow rail would have to be about ten times longer than that for coating with silver.

Die Anoden können in erfindungsgemäßer Weise die gesamte Innenwandfläche des freien Durchgangsquerschnitts einer solchen Hohlschiene bedecken oder auch nur Teile hiervon. So können die Anoden beispielsweise nur einseitig angebracht sein, um vorzugsweise eine Seite eines bandförmigen Materials zu beschichten, wobei zweckmäßigerweise die den Anoden abgekehrte Bandseite durch eine in der Hohlschiene angebrachte oder mitlaufende Maske abgedeckt wird. Es können jedoch auch die Anoden streifenförmig in Längsrichtung der Hohlschiene verlaufen, um einen Beschichtungsstreifen auf einem bandförmigen Material oder selbstverständlich auch mehrere derartige Streifen zu erzeugen. Auch dann, wenn die gesamte Fläche des bandförmigen Materials zu beschichten ist, empfiehlt es sich, die Anoden streifenförmig innerhalb der

Figure imgb0001
In the manner according to the invention, the anodes can cover the entire inner wall surface of the free passage cross section of such a hollow rail or even only parts thereof. For example, the anodes can only be attached on one side, preferably to coat one side of a strip-shaped material, the strip side facing away from the anodes expediently being covered by a mask attached or traveling in the hollow rail. However, the anodes can also run in the form of strips in the longitudinal direction of the hollow rail in order to produce a coating strip on a strip-shaped material or, of course, also several such strips. Even if the entire surface of the band-shaped material is to be coated, it is advisable to strip the anodes within the
Figure imgb0001

Claims (5)

1. A process for applying metallic layers by galvanisation to materials in strip or cable form wherein the materials to be coated, which are connected to the negative terminal of a current source, are continuously passed through an electrolyte solution in a suitable vessel and past an anode connected therein to the positive terminal of the current source, and the electrolyte solution is moved in the opposite direction (4) to the direction of movement (3) of the material (2) to be coated, characterised in that the material (2) is moved at a speed of above 0.1 m/s and the electrolyte is moved in the opposite direction at a speed of above 1 m/s at a Reynolds number of above 80,000 so that both the flow speed of the electrolyte and also the relative speed in the boundary layer between the movement of the material (2) to be coated and that of the electrolyte are in the range of turbulent flow.
2. Apparatus for carrying out the process according to claim 1 formed from a hollow bar which comprises insulating material and the free cross-sectional area of the opening of which approximately corresponds to the cross-section of the material to be coated, with anodes inserted into the hollow bar and with a ring conduit which is connected at both ends to the hollow bar and which carries the electrolyte and into which is inserted a circulating pump, characterised in that the anodes cover the entire inside wall surface of the free cross-sectional area of the opening through the hollow bar (1) or only parts thereof.
3. Apparatus according to claim 2 characterised in that the anodes extend in a strip-like configuration in the longitudinal direction of the hollow bar (1
4. Apparatus according to claim 2 or claim 3 characterised in that the anodes are divided in the longitudinal direction and are associated with different circuits.
5. Apparatus according to claim 2 characterised in that the anodes are disposed at uniform spacings in succession within the hollow bar (1) and that there is provided a means for the cyclic forward movement of the material (2) to be
Figure imgb0003
EP85113105A 1984-10-31 1985-10-16 Galvanizing process Expired - Lifetime EP0183034B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85113105T ATE54474T1 (en) 1984-10-31 1985-10-16 ELECTRICAL PROCESS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843439750 DE3439750A1 (en) 1984-10-31 1984-10-31 GALVANIZING PROCESS
DE3439750 1984-10-31

Publications (3)

Publication Number Publication Date
EP0183034A2 EP0183034A2 (en) 1986-06-04
EP0183034A3 EP0183034A3 (en) 1987-10-28
EP0183034B1 true EP0183034B1 (en) 1990-07-11

Family

ID=6249147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113105A Expired - Lifetime EP0183034B1 (en) 1984-10-31 1985-10-16 Galvanizing process

Country Status (5)

Country Link
US (1) US4721554A (en)
EP (1) EP0183034B1 (en)
JP (1) JPS61113790A (en)
AT (1) ATE54474T1 (en)
DE (1) DE3439750A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1182782B (en) * 1985-07-18 1987-10-05 Centro Speriment Metallurg IMPROVEMENT IN ELECTROLYTIC GALVANIZING PROCEDURES
US4904350A (en) * 1988-11-14 1990-02-27 International Business Machines Corporation Submersible contact cell-electroplating films
DE4430652C2 (en) 1994-08-29 1997-01-30 Metallglanz Gmbh Galvanic method and device for carrying out the method and its use for galvanic or chemical treatment, in particular for the continuous application of metallic layers to a body

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2370973A (en) * 1941-11-22 1945-03-06 William C Lang Method and apparatus for producing coated wire
US3441494A (en) * 1963-05-25 1969-04-29 Kokusai Denshin Denwa Co Ltd Apparatus to deposit a ferromagnetic film on a conductive wire
US3522166A (en) * 1967-04-21 1970-07-28 Reynolds Metals Co Electrical system for anodizing
SE335038B (en) * 1968-05-06 1971-05-10 Wennberg Ab C
US3644181A (en) * 1969-07-24 1972-02-22 Sylvania Electric Prod Localized electroplating method
US3975242A (en) * 1972-11-28 1976-08-17 Nippon Steel Corporation Horizontal rectilinear type metal-electroplating method
US3865701A (en) * 1973-03-06 1975-02-11 American Chem & Refining Co Method for continuous high speed electroplating of strip, wire and the like
JPS5116236A (en) * 1974-07-31 1976-02-09 Daiichi Denshi Kogyo Denkaishorihoho narabini sochi
US4039398A (en) * 1975-08-15 1977-08-02 Daiichi Denshi Kogyo Kabushiki Kaisha Method and apparatus for electrolytic treatment
LU80496A1 (en) * 1978-11-09 1980-06-05 Cockerill METHOD AND DIOPOSITIVE FOR THE CONTINUOUS ELECTROLYTIC DEPOSITION AT HIGH CURRENT DENSITY OF A COATING METAL ON A SHEET
DE2917630A1 (en) * 1979-05-02 1980-11-13 Nippon Steel Corp ARRANGEMENT FOR ELECTROLYTIC GALVANIZING OF ROLLING STRIP
DE3017079A1 (en) * 1980-05-03 1981-11-05 Thyssen AG vorm. August Thyssen-Hütte, 4100 Duisburg DEVICE FOR ELECTROPLATING
JPS5915996B2 (en) * 1980-12-03 1984-04-12 新日本製鐵株式会社 Electrolytic treatment equipment in continuous metal plate processing equipment
JPS57140890A (en) * 1981-02-24 1982-08-31 Nippon Kokan Kk <Nkk> Electric metal plating method for steel strip
DE3228641A1 (en) * 1982-07-31 1984-02-02 Hoesch Werke Ag, 4600 Dortmund METHOD FOR ELECTROLYTICALLY DEPOSITING METALS FROM AQUEOUS SOLUTIONS OF METAL SALTS ON STEEL TAPE AND DEVICE FOR CARRYING OUT THE METHOD
US4434040A (en) * 1982-09-28 1984-02-28 United States Steel Corporation Vertical-pass electrotreating cell

Also Published As

Publication number Publication date
ATE54474T1 (en) 1990-07-15
DE3439750A1 (en) 1986-04-30
EP0183034A2 (en) 1986-06-04
DE3439750C2 (en) 1989-01-05
JPS61113790A (en) 1986-05-31
EP0183034A3 (en) 1987-10-28
US4721554A (en) 1988-01-26

Similar Documents

Publication Publication Date Title
DE3236545A1 (en) METHOD FOR ELECTROPLATING AND DEVICE FOR CARRYING OUT THE METHOD
DE3233010A1 (en) METHOD AND DEVICE FOR ELECTROPLATING
DE3432821C2 (en)
DE3149519A1 (en) Method and apparatus for electroplating (zinc-plating) metal strip
EP0183034B1 (en) Galvanizing process
EP0101429A1 (en) Process for electrolytical coating with a metal layer and optionally electrolytical treatment of a metal strip
DE2753936C2 (en)
DE2939190A1 (en) METHOD FOR TREATING A WIRE BASED ON AN IRONIC MATERIAL
DE2156677B2 (en) Process for the continuous electrolytic pretreatment of aluminum strips for the application of organic coatings
DE3525183C2 (en)
EP0369983B1 (en) Process and apparatus for the electrolytic production of a metal foil
DE3015282A1 (en) METHOD AND DEVICE FOR PARTIAL GALVANIZING OF CONDUCTIVE OR CONDUCTED SURFACES
DE2534028C2 (en) Process for anodic oxidation of an aluminum web and electrolytic coloring of the oxide layer
EP0196420B1 (en) High-speed electrolytic cell for the treatment of metallic strip
DE1919365A1 (en) Process for cleaning tapes made of copper alloys
EP0142010B1 (en) Process and apparatus for the electrolytical deposition of metals
DE3011005C2 (en)
DE8414836U1 (en) Device for the electrolytic treatment of metallic strips
DE3228641A1 (en) METHOD FOR ELECTROLYTICALLY DEPOSITING METALS FROM AQUEOUS SOLUTIONS OF METAL SALTS ON STEEL TAPE AND DEVICE FOR CARRYING OUT THE METHOD
DE3418040A1 (en) DEVICE FOR THE ELECTROLYTIC TREATMENT OF A METAL STRIP
DE60104107T2 (en) METHOD AND DEVICE FOR ELECTROLYTIC COATING OF A METAL STRIP
DE2627837A1 (en) ELECTRIC CLEANING PROCEDURES
DE2522926B2 (en) Process for the continuous electroplating of elongated aluminum material
AT222453B (en) Method and device for preferably continuous one-sided anodization of metal foils or strips
DE3401063C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH FR GB LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: C25D 7/06

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH FR GB LI NL SE

17P Request for examination filed

Effective date: 19871126

17Q First examination report despatched

Effective date: 19881013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INOVAN GMBH & CO. KG METALLE UND BAUELEMENTE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB LI NL SE

REF Corresponds to:

Ref document number: 54474

Country of ref document: AT

Date of ref document: 19900715

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900914

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900919

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900920

Year of fee payment: 6

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19901029

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19901030

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901031

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19901121

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911016

Ref country code: AT

Effective date: 19911016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911031

Ref country code: CH

Effective date: 19911031

Ref country code: BE

Effective date: 19911031

BERE Be: lapsed

Owner name: INOVAN G.M.B.H.& CO. K.G. METALLE UND BAUELEMENTE

Effective date: 19911031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920501

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85113105.2

Effective date: 19920510