EP0178020A1 - Verfahren zur Behandlung von Aluminiumoberflächen - Google Patents

Verfahren zur Behandlung von Aluminiumoberflächen Download PDF

Info

Publication number
EP0178020A1
EP0178020A1 EP85201600A EP85201600A EP0178020A1 EP 0178020 A1 EP0178020 A1 EP 0178020A1 EP 85201600 A EP85201600 A EP 85201600A EP 85201600 A EP85201600 A EP 85201600A EP 0178020 A1 EP0178020 A1 EP 0178020A1
Authority
EP
European Patent Office
Prior art keywords
ppm
bis
solution
aluminum surfaces
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85201600A
Other languages
English (en)
French (fr)
Other versions
EP0178020B1 (de
Inventor
Samuel T. Farina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel Corp
Original Assignee
Parker Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parker Chemical Co filed Critical Parker Chemical Co
Publication of EP0178020A1 publication Critical patent/EP0178020A1/de
Application granted granted Critical
Publication of EP0178020B1 publication Critical patent/EP0178020B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds

Definitions

  • the invention relates to a method for the treatment of aluminum surfaces in two successive stages and the use of this method for pretreatment before the subsequent painting.
  • the object of the invention is to provide a method for the treatment of aluminum surfaces, with the aid of which coatings with excellent corrosion protection and adhesion for paint, varnish and the like are obtained, which moreover also largely meet the other aforementioned requirements.
  • the zirconium ions can be introduced into the bath in the form of any zirconium compound which is soluble in an aqueous acidic solution and does not introduce any disadvantageous components into the bath.
  • suitable soluble zirconium compounds are fluozirconic acid, ammonium or alkali salts thereof, zirconium fluoride, zirconium nitrate, zirconium sulfate and the like.
  • alkali metal fluorozirconate for example of potassium fluorozirconate (K2ZrF 6 )
  • K2ZrF 6 potassium fluorozirconate
  • the concentration of the zirconium ions can vary in a wide range from about 1 ppm to about 5000 ppm and more, with amounts between 4 ppm and 100 ppm being preferred. A particularly satisfactory concentration is around 50 ppm.
  • the source of hafnium can also be any hafnium compound which is soluble in the aqueous acidic medium and does not introduce any constituents which adversely affect the solution.
  • hafnium compounds are described in H andbook of Chemistry and Physics, 55th edition, CRC Press, Inc., Cleveland, Ohio (1974).
  • Preferred hafnium compounds are hafnium oxide and acids or salts, such as hafnium or hafnyl nitrate or fluoride or chloride.
  • the hafnium compound should be incorporated in an amount such that the concentration of hafnium ions is between about 1 ppm and about 5000 ppm. A concentration of ions in the range from 4 to 100 ppm, in particular around 50 ppm, is preferred.
  • Any compound which is soluble in aqueous, acidic medium and does not introduce any disadvantageously influencing constituents can also be used as a source of titanium.
  • suitable titanium compounds are hexafluorotitanic acid, titanium or titanyl sulfate and ammonium or alkali salts of halogenotitanates, such as potassium fluorotitanate. Salts containing both titanium and fluoride are usually preferred because they introduce two of the required bath components into the bath at the same time.
  • the concentration of titanium ions can also vary in the range from 1 to 5000 ppm, concentrations in the range from 4 to 100 ppm being preferred, in particular around 50 ppm.
  • the treatment solution can contain only hafnium ions or only zirconium ions or only titanium ions, but also mixtures thereof.
  • concentration of the mixture should be within the above range, i.e. are within the range of 1 to 5000 ppm, preferably in the range of 4 to 100 ppm.
  • the treatment solution contains zirconium ions or predominantly zirconium ions.
  • the fluoride ions can be in the solution in the form of simple or complex fluoride compounds, such as in the form of hydrofluoric acid, or in the form of simple or bifluoride salts of alkali metal or ammonium, or as complex fluoride acid or salts with boron, silicon, titanium, zirconium and the like as a central ion be introduced.
  • the fluoride concentration can be from about 1 ppm to about 6000 ppm or more, with amounts in the range from 4 to about 100 ppm being preferred. A particularly outstanding fluoride concentration is around 60 ppm.
  • the fluoride concentration is preferably related to the amount of hafnium, zirconium and / or fluoride ions.
  • the weight ratio of fluoride to zircon is preferably at least 1.25: 1, from fluoride to hafnium at least 0.64: 1.
  • the maximum fluoride concentration is limited by a concentration at which there is already considerable etching of the aluminum surface. The maximum fluoride concentration also depends on the type of aluminum surface to be treated, but also on the temperature of the treatment bath and the duration of the treatment.
  • the fluoride concentration in the treatment bath is controlled in relation to the concentration of hafnium and / or zirconium and / or titanium, so that a stoichiometric ratio of at least 6 moles of fluoride is present per mole of the metal ions.
  • the concentration of free fluoride in the bath is usually measured in millivolt units using a specific fluoride ion electrode. It generally varies depending on the specific bath composition and the concentration of the bath inventory parts and the pH of the bath. For each special bath at an essentially constant pH value, there is a relationship between the millivolt display and the free fluoride content, which is responsible for the satisfactory functioning of the bath.
  • the millivolt display therefore represents a simple control system for the functioning of the bath. The millivolt display required in each case can be determined for any bath by simple examinations with regard to the desired result.
  • fluoroboric acid in the phosphating bath in cases in which a reservoir for free fluoride ions is desired, so that the fluoride ions which are used for the complex formation of aluminum can be continuously simulated.
  • tannins are a group of soluble, complex organic compounds that are widely distributed across the plant kingdom. All tannin extracts contain mixtures of polyphenolic substances and are normally bound to certain sugars (for tannins see Encyclopedia of Chemical Technology, 2nd Edition, Kirk-Othmer; XII (1976), pages 303-341 and The Chemistry and Technology of Leather, Reinhold Publishing Corporation , New York, pp. 98-220 (1958).
  • Tannins are typically characterized as polyphenolic compounds that have molecular weights from about 400 to about 3000. They can be so-called hydrolyzable or condensed tannins, depending on whether the product of the hydrolysis is soluble or insoluble in boiling mineral acid. Tannin extracts are often mixed and contained both hydrolyzable and condensed forms. There are not two tannin extracts that are completely the same. The main sources of tannin extracts are bark from lichen, mangrove, oak, eucalyptus, hamloctane, spruce, larch and willow. Certain woods, such as those of quebracho, chestnut and oak, as well as fruits, leaves and roots also contain tannin.
  • vegetable tannin used above is used to distinguish organic tannins as mentioned above from mineral tannin materials, e.g. those that chrome, zircon, etc. contain. Both hydrolyzable and condensed and mixed types of vegetable tannin can be used within the present invention.
  • the vegetable tannin is usually present in an amount of at least 1 ppm, preferably in an amount of at least 25 ppm, up to the solubility limit in the phosphating bath.
  • the upper concentration is preferably 500 ppm. Concentrations in the range of about 70 ppm are particularly advantageous.
  • the treatment solution used in the process according to the invention must be adjusted to a pH in the acidic range.
  • the best results are obtained when the pH is less than 5 and preferably at least 2.
  • the pH is preferably between 2 and 3.5.
  • the metal is zircon or predominantly zircon, the pH should be between about 3 and 4.5, but especially between 3.5 and 4.
  • titanium or predominantly titanium is used as the metal, the pH should preferably be between about 2.5 and about 4.0.
  • the pH can already be in the aforementioned range without further adjustments being necessary.
  • the commonly used inorganic or organic compounds can be used for adjustment. These are in particular mineral acids, for example hydrofluoric acid, sulfuric acid, nitric acid and phosphoric acid, or alkali and ammonium hydroxides, carbonates, bicarbonates, oxides or silicate.
  • the phosphate ions contained in the treatment bath should be present in an amount of 10 to about 200 ppm, but in particular in an amount of 25 to 75 ppm. The range of 45 to 55 ppm phosphate is particularly preferred.
  • Suitable sources of phosphate ions are e.g. Phosphoric acid and the numerous sodium, potassium or ammonium phosphates.
  • the treatment solution may also contain polyphosphoric acid such as pyrophosphoric acid, tripolyphosphoric acid, hexametaphosphoric acid, or sodium and potassium salts thereof.
  • organophosphate content e.g.
  • Phytic acid on nitrodiethanolethylene sulfonic acid, on phosphonates, such as of 2-hydroxyethyl methacrylic acid, of phosphonic acid, of 2-ethylhexyl acid and of ethane-1-hydroxy-1,1-diphosphonic acid.
  • the complexing agent of the treatment bath can be of a conventional type, provided that it is compatible with the other bath components.
  • suitable complexing agents are ethylenediaminetetraacetic acid, alkali metal gluconates, alkali tartrate and the like.
  • the complexing agent is used in an amount such that harmful precipitation of aluminum in the treatment bath is suppressed.
  • a particularly preferred bath composition contains zircon at a concentration of about 50 ppm, total fluoride at about 180 ppm, tannin at about 70 ppm (calculated as weight equivalent to tannic acid), phosphate ions at about 50 ppm and an effective amount of complexing agent.
  • aids can be incorporated into the treatment bath to influence the layer quality.
  • These other aids include nitrate compounds and compounds containing titanium and lithium. The content of such aids is usually low.
  • the solutions used in carrying out the process according to the invention are usually used at a temperature from room temperature to the boiling point of the solution, preferably at temperatures in the range from 37.8 ° C. to approximately 71 ° C.
  • the treatment time can range from 0.1 sec to 10 min, with 2 sec to about 1 min being the most common.
  • the coating formation is a function of the concentration of the solution, its temperature and the contact time. For example, the contact time can be reduced if the temperature and / or concentration of the treatment solution is increased.
  • Any customary procedure for applying the solution to the metal surfaces can be used, for example spraying, roller application, dipping or flooding.
  • the different types of contact of the solution with the metal surface in combination with the variable concentration of the solution, treatment temperature and duration of treatment make it possible to create coating weights of 0.0215 to 0.538 g / m 2 .
  • water is usually carried out rinsing and then post-treatment with a solution as described in US-A-4,457,790.
  • the solution for aftertreatment preferably contains a polymer with Z groups, the Z groups in a particularly advantageous manner making up a proportion of 10 to 200% per monomer unit of the polymer. This ensures water solubility or water dispersibility in the aftertreatment solution.
  • the aftertreatment solution can contain polymeric compounds with different monomer units each of the above formula.
  • a polymer compound can have the following formulation:
  • Y has the definition given above - except hydrogen - and A), B), C) and D) can each go from 0 to a number at which the polymer is no longer soluble or dispersible under the conditions of use.
  • the sum of A), B), C) and D) must be at least 2.
  • the Z group should also be present in such an amount that, after neutralization with an acid, the polymer is water-soluble or water-dispersible.
  • the specific amount of Z groups required for water solubility or dispersibility depends on the molecular weight of the polymer, but also on the nature of the R 4 to R 10 groups. In general it can be said that the proportion of the Z group should be 10 to 200%, in particular 50 to 150%, per monomer unit. The same applies to the proportion of amino groups which may be present and which differ from Z.
  • the polymer in the aftertreatment solution is based on derivatives of polyalkenylphenol polymers.
  • polyalkenylphenols or substituted alkenylphenols are isopropenylphenol, isobutenylphenol, dimethylvinylphenol and the like.
  • Suitable derivatives with the above general formula can be prepared, for example, by the Mannich reaction.
  • poly-4-vinylphenol can be reacted with formaldehyde and a secondary amine to form a product which can be neutralized with organic or inorganic acids and is water-soluble or dispersible.
  • the molecular weight of the polymer compounds can correspond to that of the dimer, but in particular an oligomer of 360 monomer units up to a high polymer of 30,000 units.
  • the upper limit is determined by the lack of water solubility or water dispersibility.
  • the molecular weight of the polymer ranges from about 200,000, molecular weights in the range from 700 to about 70,000 are preferred.
  • the upper value is for n generally 850.
  • the preferred value is in the range of 10 to 300.
  • the carbon chain length of the substituents R 4 to R 10 is generally between 1 and 18.
  • a chain length of 1 to 12 is particularly advantageous.
  • the values for " n", for the chain length and for the " Z" group influence each other and must therefore be selected in a suitable manner so that water solubility and / or dispersibility are given.
  • the polymer of the aftertreatment solution is in organic solvents, e.g. in ethanol, soluble and can be used as an organic solution.
  • the aftertreatment solution is preferably used in the form of an aqueous solution or dispersion.
  • the Z content of the polymer can be neutralized by means of an organic or inorganic acid.
  • Suitable acids for this purpose are acetic acid, citric acid, oxalic acid, ascorbic acid, phenylphosphonic acid, chloromethylphosphonic acid, mono-, di- and trichloroacetic acid, trifluoroacetic acid, nitric acid, phosphoric acid, hydrofluoric acid, sulfuric acid, boric acid, hydrochloric acid, hexafluorosilicic acid, hexafluorotitanic acid, hexafluorozirconic acid, and the like. These acids can be used individually or used in combination with each other. After dilution of the neutralized or partially neutralized or also with excess acid, the solution is ready for use.
  • the pH of the aqueous aftertreatment solution can be in the range from 0.5 to 12.
  • the pH is expediently adjusted to a value in the range from 2.0 to 8.0.
  • the aftertreatment solution can be used at room temperature and concentrations of about 0.001 to about 5% by weight. In practice, a concentration of 0.005 to about 0.015% by weight is recommended. In addition to the polymer, the aftertreatment solution can contain pigments similar to conventional paints and varnishes.
  • the aftertreatment solution can contain further constituents, for example in amounts of 0.01 to 4.0% by weight.
  • these are, for example, thiourea, alkyl or arylthiourea compounds, tannic acid, vegetable tannin, gallic acid or mixtures thereof.
  • Specific examples of such further contents are methyl, ethyl or butylthiourea, tannin extracts from mangroves, chestnuts or oaks and the like.
  • the aftertreatment solution can be applied in a conventional manner.
  • the solution may be applied by a spray treatment i roller application or dipping treatment.
  • the temperature of the solution applied can vary over a wide range. A temperature in the range from 21.1 to 71 ° C. is preferred.
  • the contact time can vary between 1 sec and 1 h.
  • rinsing can be carried out if necessary, although good results are obtained even without rinsing. Rinsing is preferred for certain consumption purposes, for example for subsequent electrocoating.
  • the final drying is usually done by circulating air. Although room temperature air can be used, it is preferred to use elevated temperature air to reduce the drying time.
  • the treated aluminum surfaces are available for painting and the like.
  • Suitable standard paint or other coating application methods can be used, for example brush application, spray painting, electrostatic coating formation, dipping or roller application, and electrocoating.
  • brushes application for example brush application, spray painting, electrostatic coating formation, dipping or roller application, and electrocoating.
  • a treatment solution was prepared which contained the following components:
  • the aforesaid concentrate was diluted to 3.75 by adding tap water and adjusting the pH with ammonium bicarbonate to a treatment solution of the following nature.
  • the aforementioned solution was then diluted with deionized water and adjusted to a pH of 4.25 by adding 25% phosphoric acid.
  • the nature of the diluted solution was:
  • Extruded aluminum workpieces were cleaned with an alkaline cleaner, rinsed with tap water and brought into contact with the aforementioned treatment solution by spraying at a temperature of 52 ° C. for 30 minutes, then rinsed with tap water and then also sprayed with the aforementioned aftertreatment solution .
  • the aftertreatment solution also had a temperature of 52 ° C. and was applied over a period of 30 seconds.
  • the sheets were dried with hot air and provided with a varnish (Duracron 100 from Pitsburgh Plate and Glass Co.). The sheets were then subjected to various tests and judged to be excellent in terms of paint adhesion and corrosion protection.
  • a treatment solution for process stage 1 was prepared, which contained the following constituents in demineralized water:
  • Example 1 were rinsed, treated with the aforementioned solution, rinsed and aftertreated as indicated in Example 1. These sheets were also characterized by excellent paint adhesion and corrosion resistance.
  • Example 2 The procedure of Example 2 was repeated with similar results. However, a solution for process step 1 was used which contained 0.85 g / 1 H 2 HfF 6 instead of the fluorotitanic acid. The pH of the treatment solution was set to 3 instead of 3.75.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Paints Or Removers (AREA)

Abstract

Bei einem Verfahren zur Behandlung von Aluminiumoberflächen in zwei aufeinanderfolgenden Stufen erfolgt zur Verbesserung der Schichtqualität ein Kontakt mit zunächst einer wässrigen, sauren Lösung, die
  • a) Hafnium-, Zirkon- und/oder Titanionen, vorzugsweise 4 bis 100 ppm,
  • b) Phosphationen, vorzugsweise 10 bis 200 ppm,
  • c) Fluoridionen, vorzugsweise 4 bis 100 ppm,
  • d) lösliche Tanninverbindung, vorzugsweise 25 bis 500 ppm,
  • e) Komplexverbindung enthält,

und anschliessend mit einer Lösung, die eine Verbindung der allgemeinen Formel
Figure imga0001
und/oder Salze hiervon enthält. In der Formel bedeuten
  • R1 bis R3 Wasserstoff oder eine Alkylgruppe mit 1 bis 5 Kohlenstoffatomen
  • Y Wasserstoff, Z, CR4R5OR6, CH2Cl, oder eine Alkyl- oder Arylgruppe mit 1 bis 18 Kohlenstoffatomen
    Figure imga0002
  • R4 bis R,o Wasserstoff, Alkyl-, Aryl-, Hydroxyalkyl-, Aminoalkyl-, Mercaptoalkyl- oder Phosphoalkyl-Gruppen mit Kohlenwasserstoffketten bis zu einer Länge, bei der die Verbindung nicht mehr löslich oder dispergierbar ist, und

n2 bis zu einer Zahl, bei der die Verbindung nicht mehr löslich oder dispergierbar ist.

Description

  • Die Erfindung betrifft ein Verfahren zur Behandlung von Aluminiumoberflächen in zwei aufeinanderfolgenden Stufen sowie die Anwendung dieses Verfahrens zur Vorbehandlung vor der anschließenden Lackierung.
  • Umweltbestimmungen, die mit Mindestbegrenzungen der zulässigen Richtwerte von umweltschädigenden Substanzen bei der Zuführung zu Abfallsystemen verbunden sind, geben zu einem Austausch der herkömmlichen, Chrom und Phosphat enthaltenden Mittel zur Behandlung von Metalloberflächen durch chromfreie Überzugsmittel Veranlassung. Ein derartiges Überzugsmittel ist in der US - A - 4 338 140 beschrieben. Zur Verbesserung des Korrosionswiderstandes von Metallen, insbesondere von Eisen, Zink und Aluminium, sind dort Lösungen offenbart, die gelöstes Hafnium und/oder Zirkon sowie Fluorid, vorzugsweise auch Tannin, und gegebenenfalls auch Phosphat enthalten. Andere Mittel zur Behandlung von Metalloberflächen, die verdünnte Lösungen von Poly-Alkenylphenol, Salze oder Derivate hiervon darstellen, sind in der US - A - 4 457 790 genannt.
  • Die an derartige Überzüge gestellten Qualitätsanforderungen sind vielfältig und variieren in ihrer Rangfolge mit dem Endverbrauch, dem das mit der Schutzschicht versehene Werkstück zugeführt wird. Von besonderer Bedeutung sind:
    • 1.) Haftung des Überzuges auf der Metalloberfläche
    • 2.) Haftung der nachfolgend aufgebrachten Endbeschichtung, z.B. von Farbe, Lack und dergl.
    • 3.) Korrosionswiderstand des überzogenen, aber nicht endbeschichteten Werkstückes
    • 4.) Korrosionswiderstand des endbeschichteten Werkstückes
    • 5.) Farbe bzw. Farblosigkeit des erzeugten Überzuges
    • 6.) Gleichmäßigkeit des Überzuges
    • 7.) Schichtdicke des Überzuges im Hinblick auf die gestellten Mindestanforderungen
    • 8.) Verformbarkeit des mit dem Überzug versehenen Werkstückes
    • 9.) Veränderung des Aussehens der metallischen Oberfläche
  • Mit den bisher bekannten Verfahren gelingt es zwar, einzelne der geforderten Qualitätsansprüche zu erfüllen, jedoch sind dafür die Ergebnisse hinsichtlich der anderen Qualitätsanforderungen häufig unzufriedenstellend.
  • Aufgabe der Erfindung ist es, ein Verfahren zur Behandlung von Aluminiumoberflächen bereitzustellen, mit dessen Hilfe Überzüge mit hervorragendem Korrosionsschutz und Haftvermögen für Farbe, Lack und dergl. erhalten werden, die zudem auch die weiteren vorgenannten Anforderungen weitestgehend erfüllen.
  • Die Aufgabe wird gelöst, indem das Verfahren der eingangs genannten Art entsprechend der Erfindung derart ausgestaltet wird, daß man die Aluminiumoberfläche zunächst mit einer wäßrigen, sauren Lösung in Berührung bringt, die wirksame Mengen von
    • a) gelösten Metallen mindestens eines der Elemente Hafnium, Zirkon oder Titan,
    • b) Phosphationen
    • c) Fluoridionen
    • d) löslicher Tanninverbindung
    • e) Komplexverbindung

    enthält,
    und anschließend mit einer Lösung nachbehandelt, die eine wirksame Menge einer löslichen oder dispergierbaren Verbindung der allgemeinen Formel
    Figure imgb0001
    und/oder Salze hiervon enthält, wobei bedeuten:
    • R1 bis R3 Wasserstoff oder eine Alkylgruppe mit 1 bis 5 Kohlenstoffatomen
    • Y Wasserstoff, Z, CR4R5OR6, CH2Cl, oder eine Alkyl- oder Arylgruppe mit 1 bis 18 Kohlenstoffatomen
      Figure imgb0002
    • R4 bis R10 Wasserstoff, Alkyl-, Aryl-, Hydroxyalkyl-, Aminoalkyl-, Mercaptoalkyl-oder Phosphoalkyl-Gruppen mit Kohlenwasserstoffketten bis zu einer Länge, bei der die Verbindung nicht mehr löslich oder dispergierbar ist, und
    • n 2 bis zu einer Zahl, bei der die Verbindung nicht mehr löslich oder dispergierbar ist.
  • Die Zirkonionen können in das Bad in Form jeder Zirkonverbindung, die in wäßriger, saurer Lösung löslich ist und keine nachteiligen Komponenten in das Bad einbringt, eingeführt werden. Beispiele für geeignete lösliche Zirkonverbindungen sind Fluozirkonsäure, Ammonium oder Alkalisalze hiervon, Zirkonfluorid, Zirkonnitrat, Zirkonsulfat und dergl. Die Verwendung von Alkalifluozirkonat beispielsweise von Kaliumfluorozirkonat (K2ZrF6) wird üblicherweise bevorzugt, da hierdurch gleichzeitig Zirkonionen und Fluoridionen in das B 1 eingebracht werden. Die Konzentration der Zirkonionen kann in einem breiten Bereich von etwa 1 ppm bis etwa 5000 ppm und mehr schwanken, wobei Mengen, die zwischen 4 ppm und 100 ppm liegen, bevorzugt sind. Eine besonders zufriedenstellende Konzentration liegt bei ca. 50 ppm.
  • Die Quelle für Hafnium kann ebenfalls jede Hafniumverbindung sein, die im wäßrigen, sauren Medium löslich ist und keine die Lösung nachteilig beeinträchtigenden Bestandteile einbringt. Beispiele für erhältliche Hafniumverbindungen sind im Handbook of Chemistry and Physics, 55. Ausgabe, CRC Press, Inc., Cleveland, Ohio (1974) beschrieben. Bevorzugte Hafniumverbindungen sind Hafniumoxid und Säuren oder Salze, wie Hafnium- oder Hafnylnitrat, bzw. -fluorid oder -chlorid. Die Hafniumverbindung sollte in einer solchen Menge eingebracht werden, daß die Konzentration an Hafniumionen zwischen etwa 1 ppm und etwa 5000 ppm beträgt. Bevorzugt ist eine Konzentration an Hat iumionen im Bereich von 4 bis 100 ppm, insbesondere um etwa 50 ppm.
  • Auch als Quelle für Titan kann jede Verbindung, die in wäßrigem, saurem Medium löslich ist und keine nachteilig beeinflussenden Bestandteile einbringt, verwendet werden. Beispiele für geeignete Titanverbindungen sind Hexafluorotitansäure, Titan- oder Titanylsulfat und Ammonium- oder Alkalisalze von Halogenotitanaten, wie Kaliumfluorotitanat. Salze, die sowohl Titan und Fluorid enthalten, sind üblicherweise bevorzugt, da sie gleichzeitig zwei der erforderlichen Badkomponenten in das Bad einbringen. Die Konzentration an Titanionen kann ebenfalls im Bereich von 1 bis 5000 ppm schwanken, wobei Konzentrationen im Bereich von 4 bis 100 ppm insbesondere um ca. 50 ppm bevorzugt sind.
  • Die Behandlungslösung kann nur Hafniumionen oder nur Zirkonionen oder nur Titanionen, aber auch Mischungen hiervon enthalten. Wenn Mischungen der genannten Metallionen verwendet werden, sollte die Konzentration der Mischung innerhalb des vorstehend genannten Bereiches, d.h. innerhalb des Bereichs von 1 bis 5000 ppm, vorzugsweise im Bereich von 4 bis 100 ppm liegen.
  • Gemäß einer bevorzugten Ausgestaltung der Erfindung enthält die Behandlungslösung Zirkonionen oder überwiegend Zirkonionen.
  • Die Fluoridionen können in die Lösung in Form einfacher oder komplexer Fluoridverbindungen, wie in Form von Fluorwasserstoffsäure, oder in Form von einfachen oder Bifluoridsalzen von Alkalimetall oder Ammonium oder als komplexe Fluoridsäure bzw. Salze mit Bor, Silizium, Titan, Zirkon und dergl. als Zentralion eingebracht werden. Die Fluoridkonzentration kann etwa 1 ppm bis etwa 6000 ppm oder mehr betragen, wobei Mengen im Bereich von 4 bis etwa 100 ppm bevorzugt sind. Eine besonders herausragende Fluoridkonzentration liegt bei etwa 60 ppm. Die Fluoridkonzentration wird vorzugsweise in Beziehung zur Menge der Hafnium-, Zirkonium- und/oder Fluoridionen gesetzt. Vorzugsweise beträgt das Gewichtsverhältnis von Fluorid zu Zirkon wenigstens 1,25 : 1, von Fluorid zu Hafnium wenigstens 0,64 : 1. Die maximale Fluoridkonzentration ist von einer derartigen Konzentration begrenzt, bei der ein bereits erhebliches Ätzen der Aluminiumoberfläche auftritt. Die maximale Fluoridkonzentration ist darüber hinaus von der Art der zu behandelnden Aluminiumoberflächen, aber auch von der Temperatur des Behandlungsbades und der Dauer der Behandlung abhängig.
  • Wie bereits vorstehend ausgeführt, wird die Fluoridkonzentration im Behandlungsbad im Verhältnis zur Konzentration von Hafnium und/oder Zirkon und/oder Titan kontrolliert, so daß ein stöchiometrisches Verhältnis von wenigstens 6 Mol Fluorid pro Mol der Metallionen vorhanden ist. Die Konzentration an freiem Fluorid im Bad wird üblicherweise durch eine spezifische Fluoridionenelektrode in Millivolt-Einheiten gemessen. Sie schwankt im allgemeinen in Abhängigkeit von der speziellen Badzusammensetzung und der Konzentration der Badbestandteile sowie vom pH-Wert des Bades. Für jedes spezielle Bad bei im wesentlichen konstantem pH-Wert besteht eine Relation zwischen der Millivolt-Anzeige und dem Gehalt an freiem Fluorid, die für eine zufriedenstellende Arbeitsweise des Bades verantwortlich ist. Die Millivolt-Anzeige stellt mithin ein einfaches Kontrollsystem für die Arbeitsweise des Bades dar. Die jeweils erforderliche Millivolt-Anzeige kann für jedes beliebige Bad durch einfache Untersuchungen hinsichtlich des gewünschten Ergebnisses festgestellt werden.
  • Es ist zweckmäßig, im Phosphatierbad Fluoborsäure in den Fällen einzusetzen, in denen ein Reservoir für freie Fluoridionen erwünscht ist, so daß die Fluoridionen, die zur Komplexbildung von Aluminium gebraucht werden, ständig nachgebildet werden können.
  • Zusätzlich zu Hafnium und/oder Zirkon und/oder Titan sowie Fluoridionen enthält das Bad lösliches, pflanzliches Tannin. Bei Tanninen handelt es sich um eine Gruppe von löslichen, kompliziert aufgebauten organischen Verbindungen, die weit über das Pflanzenreich verteilt sind. Alle Tanninextrakte enthalten Mischungen von polyphenolischen Substanzen und sind normalerweise an bestimmte Zucker gebunden (über Tannine siehe Encyclopedia of Chemical Technology, 2nd Edition, Kirk-Othmer; XII (1976), Seiten 303-341 und The Chemistry and Technology of Leather, Reinhold Publishing Corporation, New York, Seiten 98-220 (1958).
  • Tannine werden üblicherweise als polyphenolische Verbindungen charakterisiert, die Molekulargewichte von etwa 400 bis etwa 3000 aufweisen. Sie können sogenannte hydrolysierbare oder kondensierte Tannine sein, je nach dem, ob das Produkt der Hydrolyse in siedender Mineralsäure löslich oder unlöslich ist. Häufig werden Tanninextrakte gemischt und enthalten sowohl hydrolysierbare als auch kondensierte Formen. Es gibt nicht zwei Tanninextrakte, die vollkommen gleich sind. Die Hauptquellen für Tanninextrakte sind Rinde bzw. Borke von Flechten, Mangroven, Eichen, Eukalyptus, Hamloktannen, Fichten, Lärchen und Weiden. Auch bestimmte Hölzer, wie die von Quebracho, Kastanie und Eiche, sowie Früchte, Blätter und Wurzeln enthalten Tannin.
  • Der vorstehend verwendete Begriff pflanzliches Tannin ist angewendet, um einen Unterschied zu organischen Tanninen, wie vorstehend erwähnt, zu schaffen gegenüber mineralischen Tanninmaterialien, z.B. solchen, die Chrom, Zirkon u.ä. enthalten. Sowohl hydrolysierbare als auch kondensierte und gemischte Arten von pflanzlichem Tannin können innerhalb der vorliegenden Erfindung angewendet werden.
  • Das pflanzliche Tannin ist üblicherweise in einer Menge von wenigstens 1 ppm, vorzugsweise in einer Menge von wenigstens 25 ppm, bis hinauf zur Löslichkeitsgrenze im Phosphatierbad enthalten. Die obere Konzentration liegt vorzugsweise bei 500 ppm. Konzentrationen im Bereich von etwa 70 ppm sind insbesondere vorteilhaft.
  • Die innerhalb des erfindungsgemäßen Verfahrens zum Einsatz kommende Behandlungslösung muß auf einen pH-Wert im sauren Bereich eingestellt werden. Die besten Ergebnisse werden erhalten, wenn der pH-Wert kleiner als 5 und vorzugsweise wenigstens 2 ist. Sofern das Metall der Komponente a) Hafnium oder überwiegend Hafnium ist, liegt der pH-Wert vorzugsweise zwischen 2 und 3,5. Ist das Metall Zirkon oder überwiegend Zirkon, so sollte der pH-Wert zwischen etwa 3 und 4,5, insbesondere aber zwischen 3,5 und 4 liegen. Sofern als Metall Titan oder überwiegend Titan eingesetzt wird, sollte der pH-Wert vorzugsweise zwischen etwa 2,5 und etwa 4,0 liegen.
  • In Abhängigkeit von den eingesetzten Ausgangsstoffen hinsichtlich der Komponenten Hafnium und/oder Zirkon und/oder Titan sowie Fluorid kann der pH-Wert bereits im vorgenannten Bereich liegen, ohne daß es weiterer Anpassungen bedarf. Wenn jedoch eine Einstellung des pH-Wertes erforderlich ist, können die üblicherweise verwendeten anorganischen oder organischen Verbindungen zur Einstellung verwendet werden. Hierbei handelt es sich insbesondere um Mineralsäuren, beispielsweise Fluorwasserstoffsäure, Schwefelsäure, Salpetersäure und Phosphorsäure, bzw. um Alkali- und Ammonhydroxide, -carbonate, -bicarbonate, -oxide oder -silikat.
  • Die im Behandlungsbad enthaltenen Phosphationen sollten in einer Menge von 10 bis etwa 200 ppm, insbesondere aber in einer Menge von 25 bis 75 ppm vorliegen. Der Bereich von 45 bis 55 ppm Phosphat ist besonders bevorzugt. Geeignete Quellen für Phosphationen sind z.B. Phosphorsäure und die zahlreichen Natrium-, Kalium- oder Ammonphosphate. Die Behandlungslösung kann gegebenenfalls auch Polyphosphorsäure, wie Pyrophosphorsäure, Tripolyphosphorsäure, Hexametaphosphorsäure, oder Natrium- und Kaliumsalze hiervon enthalten. Auch ist ein Gehalt an Organophosphaten, wie z.B. Phytinsäure, an Nitrodiäthanolethylensulfonsäure, an Phosphonaten, wie von 2-Hydroxyethylmethacryl-l-säure, von Phosphonsäure, von 2-Ethylhexylsäure und von Ethan-1-hydroxy-1,1-diphosphonsäure, möglich.
  • Der Komplexbildner des Behandlungsbades kann konventioneller Art sein, sofern er mit den anderen Badbestandteilen verträglich ist. Beispiele geeigneter Komplexbildner sind Ethylendiamintetraessigsäure, Alkaliglukonate, Alkalitartrat und dergl. Der Komplexbildner wird in einer derartigen Menge angewendet, daß eine schädliche Ausfällung von Aluminium im Behandlungsbad unterdrückt wird.
  • Eine besonders bevorzugte Badzusammensetzung enthält Zirkon in einer Konzentration von etwa 50 ppm, Gesamtfluorid von etwa 180 ppm, Tannin von etwa 70 ppm (berechnet als Gewichts- äquivalent zu Tanninsäure), Phosphationen von etwa 50 ppm und eine wirksame Menge Komplexbildner.
  • Andere üblicherweise verwendete Hilfsmittel können in das Behandlungsbad eingearbeitet werden, um die Schichtqualität zu beeinflussen. Unter diesen weiteren Hilfsmitteln befinden sich Nitratverbindungen und Verbindungen, die Titan und Lithium enthalten. Der Gehalt derartiger Hilfsmittel ist üblicherweise gering.
  • Die bei Durchführung des erfindungsgemäßen Verfahrens zum Einsatz kommenden Lösungen werden üblicherweise bei einer Temperatur von Raumtemperatur bis zum Siedepunkt der Lösung, vorzugsweise bei Temperaturen im Bereich von 37,8°C bis ca. 71°C eingesetzt. Die Behandlungszeit kann von 0,1 sec bis zu 10 min betragen, wobei 2 sec bis etwa 1 min am häufigsten sind. Die Überzugsbildung ist eine Funktion der Konzentration der Lösung, deren Temperatur und der Kontaktzeit. Beispielsweise kann die Kontaktzeit reduziert werden, wenn die Temperatur und/oder Konzentration der Behandlungslösung erhöht ist. Jede übliche Verfahrensweise zur Aufbringung der Lösung auf die Metallflächen ist anwendbar, beispielsweise Spritzen, Rollenauftrag, Tauchen oder Fluten. Die unterschiedlichen Arten des Kontaktes der Lösung mit der Metalloberfläche in Kombination mit den Variablen Konzentration der Lösung, Behandlungstemperatur und Behandlungsdauer schaffen die Möglichkeit, Überzugsgewichte von 0,0215 bis 0,538 g/m2 entstehen zu lassen.
  • Nach der Behandlung der Aluminiumoberfläche in der vorstehend beschriebenen ersten Stufe erfolgt üblicherweise eine Wasserspülung und dann die Nachbehandlung mit einer Lösung, wie in US - A - 4 457 790 beschrieben.
  • Vorzugsweise enthält die Lösung zur Nachbehandlung ein Polymer mit Z-Gruppen, wobei die Z-Gruppen in insbesondere vorteilhafter Weise einen Anteil von 10 bis 200 % pro Monomereinheit des Polymers ausmachen. Hierdurch ist Wasserlöslichkeit oder Wasserdispergierbarkeit in der Nachbehandlungslösung gewährleistet.
  • Während in der Polymerkette der oben genannten Formel die Alkylgruppen in ortho-, meta- oder para-Stellung zur Hydroxylgruppe im aromatischen Ring angeordnet sind, werden bei den Monomereinheiten der oben genannten Formel vorzugsweise solche mit der Alkylgruppe in der para- und/oder ortho-Stellung verwendet.
  • Die Nachbehandlungslösung kann polymere Verbindungen mit unterschiedlichen Monomereinheiten jeweils der oben genannten Formel enthalten. Beispielsweise kann eine Polymerverbindung folgende Formulierung besitzen:
    Figure imgb0003
  • Dabei hat Y die oben angegebene Definition - ausgenommen Wasserstoff - und A), B), C) und D) können jeweils 0 bis zu einer Zahl gehen, bei der das Polymer unter den Benutzungsbedingungen nicht mehr löslich oder dispergierbar ist.
  • Die Summe von A), B), C) und D) muß wenigstens 2 betragen. Sofern als Lösungsmittel Wasser verwendet wird, sollte zudem die Z-Gruppe in einer solchen Menge vorhanden sein, daß nach Neutralisation mit einer Säure das Polymer wasserlöslich oder -dispergierbar ist. Die konkrete Menge von Z-Gruppen, die zur Wasserlöslichkeit bzw. -dispergierbarkeit erforderlich ist, hängt vom Molekulargewicht des Polymers, aber auch von der Beschaffenheit der R4- bis RlO-Gruppen ab. Im allgemeinen läßt sich sagen, daß der Anteil der Z-Gruppe 10 bis 200 %, insbesondere 50 bis 150 %, pro Monomereinheit betragen sollte. Gleiches gilt für den Anteil gegebenenfalls vorhandener, von Z verschiedener Aminogruppen.
  • Das Polymer in der Nachbehandlungslösung basiert auf Derivaten von Polyalkenylphenolpolymeren. Beispiele von Polyalkenylphenolen oder substituierten Alkenylphenolen sind Isopropenylphenol, Isobutenylphenol, Dimethylvinylphenol und dergl. Geeignete Derivate mit der oben genannten allgemeinen Formel können beispielsweise durch die Mannichreaktion hergestellt werden. Beispielsweise kann Poly-4-vinylphenol mit Formaldehyd und einem sekundären Amin zur Reaktion gebracht werden, so daß ein mit organischen oder anorganischen Säuren neutralisierbares Produkt entsteht, das wasserlöslich oder dispergierbar ist.
  • Das Molekulargewicht der Polymerverbindungen kann dem des Dimers, insbesondere aber eines Oligomers von 360 Monomereinheiten bis zu einem Hochpolymer von 30 000 Einheiten entsprechen. Die obere Grenze ist durch die mangelnde Wasserlöslichkeit oder Wasserdispergierbarkeit vorgegeben.
  • Das Molekulargewicht des Polymers reicht etwa bis 200 000, Molekulargewichte im Bereich von 700 bis etwa 70 000 sind bevorzugt. In der allgemeinen Formel ist der obere Wert für n im allgemeinen 850. Der bevorzugte Wert liegt im Bereich von 10 bis 300. Die Kohlenstoffkettenlänge der Substituenten R4 bis R10 liegt im allgemeinen zwischen 1 und 18. Eine Kettenlänge von 1 bis 12 ist besonders vorteilhaft. Die Werte für "n", für die Kettenlänge und für die "Z"-Gruppe beeinflussen sich gegenseitig und sind daher in geeigneter Weise auszuwählen, damit Wasserlöslichkeit und/oder Dispergierbarkeit gegeben sind.
  • Das Polymer der Nachbehandlungslösung ist in organischen Lösungsmitteln, z.B. in Äthanol, löslich und kann als organische Lösung eingesetzt werden. Vorzugsweise erfolgt jedoch die Anwendung der Nachbehandlungslösung in Form einer wäßrigen Lösung oder Dispersion. Um Wasserlöslichkeit oder -dispergierbarkeit des Polymers zu bewirken, kann mittels einer organischen oder anorganischen Säure der Z-Anteil des Polymers neutralisiert werden. Geeignete Säuren hierfür sind Essigsäure, Zitronensäure, Oxalsäure, Ascorbinsäure, Phenylphosphonsäure, Chlormethylphosphonsäure, Mono-, Di- und Trichloressigsäure, Trifluoressigsäure, Salpetersäure, Phosphorsäure, Fluorwasserstoffsäure, Schwefelsäure, Borsäure, Chlorwasserstoffsäure, Hexafluorokieselsäure, Hexafluorotitansäure, Hexafluorozirkonsäure und dergl. Diese Säuren können einzeln oder in Kombination miteinander eingesetzt werden. Nach Verdünnung des neutralisierten oder teilweise neutralisierten oder aber auch mit überschüssiger Säure versetzten Monomers ist die Lösung einsatzfähig.
  • Der pH-Wert der wäßrigen Nachbehandlungslösung kann im Bereich von 0,5 bis 12 liegen. Mit Rücksicht auf die Stabilität der Lösung und optimale erzielbare Ergebnisse wird jedoch der pH-Wert zweckmäßigerweise auf einen Wert im Bereich von 2,0 bis 8,0 eingestellt.
  • Die Nachbehandlungslösung kann bei Raumtemperatur und Konzentrationen von etwa 0,001 bis etwa 5 Gew.-% eingesetzt werden. In der Praxis empfiehlt sich eine Konzentration von 0,005 bis etwa 0,015 Gew.-%. Die Nachbehandlungslösung kann außer dem Polymer Pigmente ähnlich herkömmlichen Farben und Lacken enthalten.
  • Schließlich kann die Nachbehandlungslösung weitere Bestandteile, etwa in Mengen von 0,01 bis 4,0 Gew.-%, enthalten. Hierbei handelt es sich beispielsweise um Thioharnstoff, Alkyl- oder Arylthioharnstoffverbindungen, Tanninsäure, pflanzliches Tannin, Gallussäure oder Mischungen hiervon. Konkrete Beispiele derartiger weiterer Gehalte sind Methyl-, Ethyl- oder Butylthioharnstoff, Tanninextrakte von Mangroven, Kastanien oder Eichen und dergl.
  • Die Applikation der Nachbehandlungslösung kann auf herkömmliche Weise erfolgen. Beispielsweise kann die Lösung durch Spritzbehandlungi Rollenauftrag oder Tauchbehandlung aufgebracht werden. Die Temperatur der aufgebrachten Lösung kann über einen weiten Bereich schwanken. Bevorzugt ist eine Temperatur im Bereich von 21,1 bis 71°C. Die Kontaktdauer kann zwischen 1 sec und 1 h schwanken. Nach Applikation der Nachbehandlungslösung kann gegebenenfalls gespült werden, obgleich gute Ergebnisse auch ohne Nachspülung erhalten werden. Für gewisse Verbrauchszwecke, beispielsweise für eine nachfolgende Elektrotauchlackierung, ist eine Spülung bevorzugt.
  • Das erfindungsgemäße Verfahren wird üblicherweise wie folgt angewendet:
    • 1. Reinigung der Metalloberfläche, vorzugsweise mit einem alkalischen Reiniger
    • 2. Spülen der gereinigten Oberfläche mit Wasser
    • 3. In-Kontakt-Bringen der Metalloberfläche mit einer wäßrigen, sauren Behandlungslösung entsprechend Stufe 1 des erfindungsgemäßen Verfahrens
    • 4. Spülen der mit einem Überzug versehenen Oberfläche mit Wasser
    • 5. In-Kontakt-Bringen der gespülten Oberfläche mit der Nachbehandlungslösung entsprechend Stufe 2 des erfindungsgemäßen Verfahrens
    • 6. Trocknung der Metalloberfläche
  • Die abschließende Trocknung erfolgt üblicherweise durch Umluft. Obgleich Luft von Raumtemperatur eingesetzt werden kann, wird vorzugsweise mit Luft erhöhter Temperatur gearbeitet, um die Trockendauer zu verkürzen.
  • Nach der Trocknung stehen die behandelten Aluminiumflächen zur Lackierung und dergl. zur Verfügung. Es können geeignete Standard-Farb- oder sonstige Überzugs-Applikationsverfahren angewendet werden, beispielsweise Pinselauftrag, Spritzlackierung, elektrostatische Überzugsbildung, Tauchen oder Rollenauftrag, sowie Elektrotauchlackierung. Als Ergebnis des erfindungsgemäßen Verfahrens werden Oberflächen mit vorzüglicher Lackhaftung und vorzüglichem Korrosionswiderstand erhalten.
  • Die Erfindung wird anhand der folgenden Beispiele näher und beispielsweise erläutert.
  • Beispiel 1
  • Es wurde eine Behandlungslösung hergestellt, die folgende Bestandteile enthielt:
    Figure imgb0004
  • Das vorgenannte Konzentrat wurde durch Zugabe von Leitungswasser und durch pH-Wert-Einstellung mittels Ammoniumbicarbonat auf 3,75 zu einer Behandlungslösung der folgenden Beschaffenheit verdünnt.
    Figure imgb0005
  • Zur Herstellung der Nachbehandlungslösung wurden 45,4 kg l-Propoxy-2-propanol in einen Edelstahlreaktor, der mit einem Rührwerk, einer Stickstoffzuführung und einem Rückflußkühler versehen war, eingetragen. Danach wurde vorsichtig auf 50°C erwärmt und Poly-4-vinylphenolpolymer mit einem Molekulargewicht von 5000 in einer Menge von 36,3 kg langsam unter gutem Rühren zugegeben. Nachdem das gesamte Polymer zugegeben war, wurde der Reaktor geschlossen und auf 80°C erwärmt, um die Auflösung des Polymers herbeizuführen. Dann wurde der Reaktor auf 60°C gekühlt und sein Inhalt mit 22,7 kg N-Methylaminoäthanol und 45,4 kg entsalztem Wasser versetzt. Im Anschluß wurden 24,5 kg Formaldehydlösung (37 Gew.-%) während eines Zeitraumes von 1 h zugegeben, wobei die Temperatur auf 60 + 2°C konstantgehalten wurde. Danach wurde der Reaktor 3 h auf der Temperatur von 60°C gehalten. Im Anschluß wurden 9,9 kg Phosphorsäure (75 Gew.-%) zugesetzt und die Mischung mit entsalztem Wasser auf einen Feststoffgehalt von 10 Gew.-% verdünnt. Es resultierte eine stabile Lösung.
  • Die vorgenannte Lösung wurde dann mit entsalztem Wasser verdünnt und durch Zugabe von 25%iger Phosphorsäure auf einen pH-Wert von 4,25 eingestellt. Die Beschaffenheit der verdünnten Lösung war:
    Figure imgb0006
  • Schließlich erfolgte eine Verdünnung im Verhältnis von 1 : 100, so daß eine Nachbehandlungslösung entstand, die
    Figure imgb0007
  • enthielt.
  • Extrudierte Werkstücke aus Aluminium wurden mit einem alkalischen Reiniger gereinigt, mit Leitungswasser gespült und mit der zunächst erwähnten Behandlungslösung im Sprühen bei einer Temperatur von 52°C während 30 min in Kontakt gebracht, dann mit Leitungswasser gespült und danach mit der vorerwähnten Nachbehandlungslösung ebenfalls im Sprühen behandelt. Die Nachbehandlungslösung hatte eine Temperatur von ebenfalls 52°C und wurde während einer Zeit von 30 sec appliziert. Schließlich wurden die Bleche mit Heißluft getrocknet und mit einem Lack (Duracron 100 der Pitsburgh Plate and Glass Co.) versehen. Die Bleche wurden anschließend verschiedenen Tests unterworfen und hinsichtlich Lackhaftung und Korrosionsschutz für hervorragend beurteilt.
  • Beispiel 2
  • Es wurde eine Behandlungslösung für die Verfahrensstufe 1 hergestellt, die in entsalztem Wasser folgende Bestandteile enthielt:
    Figure imgb0008
  • Extrudierte Werkstücke aus Aluminium, die gereinigt und
  • gespült waren, wurden mit der vorgenannten Lösung behandelt, gespült und nachbehandelt, wie in Beispiel 1 angegeben. Auch diese Bleche zeichneten sich durch eine hervorragende Lackhaftung und Korrosionsbeständigkeit aus.
  • Beispiel 3
  • Das Verfahren von Beispiel 2 wurde wiederholt mit ähnlichen Ergebnissen. Es kam jedoch eine Lösung für die Verfahrensstufe 1 zum Einsatz, die anstelle der Fluorotitansäure 0,85 g/1 H2HfF6 enthielt. Dabei war der pH-Wert der Behandlungslösung auf 3 anstelle von auf 3,75 eingestellt.

Claims (11)

1. Verfahren zur Behandlung von Aluminiumoberflächen in zwei aufeinanderfolgenden Stufen, dadurch gekennzeichnet, daß man die Aluminiumoberflächen zunächst mit einer wäßrigen, sauren Lösung in Berührung bringt, die wirksame Mengen von
a) gelösten Metallen mindestens eines der Elemente Hafnium, Zirkon oder Titan,
b) Phosphationen
c) Fluoridionen
d) löslicher Tanninverbindung
e) Komplexverbindung

enthält,
und anschließend mit einer Lösung nachbehandelt, die eine wirksame Menge einer löslichen oder dispergierbaren Verbindung der allgemeinen Formel
Figure imgb0009
und/oder Salze hiervon enthält, wobei bedeuten:
R1 bis R3 Wasserstoff oder eine Alkylgruppe mit 1 bis 5 Kohlenstoffatomen
Y Wasserstoff, Z, CR4R5OR6, CH2Cl, oder eine Alkyl- oder Arylgruppe mit 1 bis 18 Kohlenstoffatomen
Figure imgb0010
R4 bis R10 Wasserstoff, Alkyl-, Aryl-, Hydroxyalkyl-, Aminoalkyl-, Mercaptoalkyl-oder Phosphoalkyl-Gruppen mit Kohlenwasserstoffketten bis zu einer Länge, bei der die Verbindung nicht mehr löslich oder dispergierbar ist, und
n 2 bis zu einer Zahl, bei der die Verbindung nicht mehr löslich oder dispergierbar ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Aluminiumoberflächen zunächst mit einer Lösung in Berührung bringt, die einen pH-Wert von 2,0 bis 5,0 aufweist und die Bestandteile
a) in einer Menge von mindestens 4 ppm
b) in einer Menge von mindestens 10 ppm
c) in einer Menge von mindestens 4 ppm
d) in einer Menge von mindestens 25 ppm

enthält und der Gehalt an Komponente e) ausreicht, eine schädliche Ausfällung von Aluminium zu verhindern.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man die Aluminiumoberflächen zunächst mit einer wäßrigen, sauren Lösung in Berührung bringt, deren Metallion überwiegend Zirkon ist und die einen pH-Wert von 3,0 bis 4,5 aufweist.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man die Aluminiumoberflächen zunächst mit einer wäßrigen, sauren Lösung in Berührung bringt, deren Metallion überwiegend Hafnium ist und die einen pH-Wert von 2 bis 3,5 aufweist.
5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man die Aluminiumoberflächen zunächst mit einer wäßrigen, sauren Lösung in Berührung bringt, deren Metallion überwiegend Titan ist und die einen pH-Wert von 2,5 bis 4,0 aufweist.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Aluminiumoberflächen zunächst mit einer wäßrigen, sauren Lösung in Berührung bringt, die die Komponenten
a) bis zu einer Menge von 100 ppm
b) bis zu einer Menge von 200 ppm
c) bis zu einer Menge von 100 ppm
d) bis zu einer Menge von 500 ppm

enthält.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man die Aluminiumoberflächen in der ersten Stufe so lange mit einer wäßrigen, sauren Lösung in Berührung bringt, daß ein Schichtgewicht von 0,0215 bis 0,538 g/m2 resultiert.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß man die in Stufe 1 behandelten Aluminiumoberflächen mit einer Lösung nachbehandelt, die das Reaktionsprodukt aus Poly-4-vinylphenol, Formaldehyd und sekundärem Amin enthält.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß man die in der ersten Stufe behandelten Aluminiumoberflächen mit einer Lösung nachbehandelt, deren Konzentration an löslicher oder dispergierbarer Verbindung 0,01 bis 5,0 Gew.-% beträgt.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß man die in der ersten Stufe behandelten Aluminiumoberflächen mit einer Lösung nachbehandelt, deren Polymerverbindung die Z-Gruppen mit einem Anteil von 10 bis 200 % pro Monomereinheit enthält.
11. Anwendung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 10 zur Vorbehandlung von Aluminiumoberflächen vor der anschließenden Lackierung.
EP85201600A 1984-10-09 1985-10-03 Verfahren zur Behandlung von Aluminiumoberflächen Expired EP0178020B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65869784A 1984-10-09 1984-10-09
US658697 1984-10-09

Publications (2)

Publication Number Publication Date
EP0178020A1 true EP0178020A1 (de) 1986-04-16
EP0178020B1 EP0178020B1 (de) 1988-10-19

Family

ID=24642294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85201600A Expired EP0178020B1 (de) 1984-10-09 1985-10-03 Verfahren zur Behandlung von Aluminiumoberflächen

Country Status (7)

Country Link
EP (1) EP0178020B1 (de)
JP (1) JPS6191369A (de)
AU (1) AU4751885A (de)
DE (2) DE3535135A1 (de)
ES (1) ES8607424A1 (de)
GB (1) GB2165165A (de)
PT (1) PT81269B (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356855A2 (de) * 1988-08-27 1990-03-07 Gerhard Collardin Gmbh Chromfreies Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen vor einer Beschichtung mit organischen Materialien
WO1990012902A1 (en) * 1989-04-21 1990-11-01 Henkel Corporation A method and composition for coating aluminum
EP0726968A4 (de) * 1993-07-05 1996-05-24 Henkel Corp Zusammensetzung und verfahren zum behandeln von zinn und aluminium
EP0837954A1 (de) * 1995-06-30 1998-04-29 Henkel Corporation Zusammensetzung und verfahren zum behandeln von aluminiumhaltigen metallen
EP0911427A1 (de) * 1997-10-24 1999-04-28 Nihon Parkerizing Co., Ltd. Verfahren zur Oberflächenbehandlung von Aluminium enthaltende Metallen
US6193815B1 (en) 1995-06-30 2001-02-27 Henkel Corporation Composition and process for treating the surface of aluminiferous metals
US6365234B1 (en) 1997-11-19 2002-04-02 Henkel Kommanditgesellschaft Auf Aktien Polymerizable, chromium-free, organic coatings for metal
WO2007121898A1 (de) * 2006-04-19 2007-11-01 Ropal Ag Verfahren zur herstellung eines korrosionsgeschützten und hochglänzenden substrats
WO2016130288A1 (en) * 2015-02-09 2016-08-18 The Procter & Gamble Company Cleaning and/or treatment compositions

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370909A (en) * 1990-06-19 1994-12-06 Henkel Corporation Liquid composition and process for treating aluminum or tin cans to impart corrosion resistance and mobility thereto
US5089064A (en) * 1990-11-02 1992-02-18 Henkel Corporation Process for corrosion resisting treatments for aluminum surfaces
EP0645473B1 (de) * 1993-08-31 1997-10-15 Nippon Paint Company Limited Chemische Umwandlungsmethode und Oberflächenbehandlungsmethode für Metalldose
US5733386A (en) * 1994-04-15 1998-03-31 Henkel Corporation Polymer composition and method for treating metal surfaces
US5965205A (en) * 1995-07-21 1999-10-12 Henkel Corporation Composition and process for treating tinned surfaces
US6059896A (en) * 1995-07-21 2000-05-09 Henkel Corporation Composition and process for treating the surface of aluminiferous metals
US5641542A (en) * 1995-10-11 1997-06-24 Betzdearborn Inc. Chromium-free aluminum treatment
US6153022A (en) * 1995-10-13 2000-11-28 Henkel Corporation Composition and process for surface treatment of aluminum and its alloys
US6203854B1 (en) * 1997-09-17 2001-03-20 Brent International Plc Methods of and compositions for preventing corrosion of metal substrates
TW387926B (en) * 1998-05-15 2000-04-21 Nippon Dacro Shamrock Co Surface treatment agent for metals, surface treatment method for metals, and pre-coated steel plate
TWI268965B (en) * 2001-06-15 2006-12-21 Nihon Parkerizing Treating solution for surface treatment of metal and surface treatment method
JP3998056B2 (ja) * 2002-04-23 2007-10-24 日本ペイント株式会社 熱可塑性ポリエステル系樹脂被覆金属板の製造方法及び熱可塑性ポリエステル系樹脂被覆金属板
JP3998057B2 (ja) * 2002-04-23 2007-10-24 日本ペイント株式会社 ノンクロム金属表面処理方法、及び、アルミニウム又はアルミニウム合金板
US6881279B2 (en) * 2002-12-11 2005-04-19 Henkel Corporation High performance non-chrome pretreatment for can-end stock aluminum
JP4205939B2 (ja) * 2002-12-13 2009-01-07 日本パーカライジング株式会社 金属の表面処理方法
JP4569247B2 (ja) * 2004-09-28 2010-10-27 東洋製罐株式会社 耐硫化変色性、耐食性に優れたプレス成形缶及び蓋
CA2662865C (en) * 2006-09-08 2016-07-05 Nippon Paint Co., Ltd. Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
JP2009084702A (ja) * 2006-12-20 2009-04-23 Nippon Paint Co Ltd カチオン電着塗装用金属表面処理液
DE102007043479A1 (de) * 2007-09-12 2009-03-19 Valeo Schalter Und Sensoren Gmbh Verfahren zur Oberflächenbehandlung von Aluminium und ein Schichtaufbau eines Bauteils aus Aluminium mit einer elektrischen Kontaktierung
DE102007046924A1 (de) * 2007-09-28 2009-04-09 Ropal Ag Kunststoffsubstrat, enthaltend Metallpigmente, und Verfahren zu deren Herstellung sowie korrisionsgeschützte Metallpigmente und Verfahren zu deren Herstellung
JP2010013677A (ja) 2008-07-01 2010-01-21 Nippon Parkerizing Co Ltd 金属構造物用化成処理液および表面処理方法
JP5518398B2 (ja) * 2009-08-17 2014-06-11 日本パーカライジング株式会社 金属表面の自己析出被膜用後処理液及び後処理された自己析出被膜が形成された金属材料の製造方法
JP6295832B2 (ja) * 2014-05-28 2018-03-20 株式会社ブリヂストン アルミ−ゴム複合体及びその製造方法
CN115161626A (zh) * 2022-06-08 2022-10-11 广州市日用化学工业研究所有限公司 一种易拉罐生产用环保无铬成膜剂

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457790A (en) * 1983-05-09 1984-07-03 Parker Chemical Company Treatment of metal with group IV B metal ion and derivative of polyalkenylphenol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2417537A1 (fr) * 1978-02-21 1979-09-14 Parker Ste Continentale Composition a base d'hafnium pour inhiber la corrosion des metaux

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457790A (en) * 1983-05-09 1984-07-03 Parker Chemical Company Treatment of metal with group IV B metal ion and derivative of polyalkenylphenol

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356855A2 (de) * 1988-08-27 1990-03-07 Gerhard Collardin Gmbh Chromfreies Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen vor einer Beschichtung mit organischen Materialien
EP0356855A3 (en) * 1988-08-27 1990-11-14 Gerhard Collardin Gmbh Pretreatment of metallic surfaces to be coated with organic materials without using chromium
WO1990012902A1 (en) * 1989-04-21 1990-11-01 Henkel Corporation A method and composition for coating aluminum
EP0726968A4 (de) * 1993-07-05 1996-05-24 Henkel Corp Zusammensetzung und verfahren zum behandeln von zinn und aluminium
EP0726968A1 (de) * 1993-07-05 1996-08-21 Henkel Corporation Zusammensetzung und verfahren zum behandeln von zinn und aluminium
US6193815B1 (en) 1995-06-30 2001-02-27 Henkel Corporation Composition and process for treating the surface of aluminiferous metals
EP0837954A4 (de) * 1995-06-30 1998-10-28 Henkel Corp Zusammensetzung und verfahren zum behandeln von aluminiumhaltigen metallen
EP0837954A1 (de) * 1995-06-30 1998-04-29 Henkel Corporation Zusammensetzung und verfahren zum behandeln von aluminiumhaltigen metallen
EP0911427A1 (de) * 1997-10-24 1999-04-28 Nihon Parkerizing Co., Ltd. Verfahren zur Oberflächenbehandlung von Aluminium enthaltende Metallen
US6306226B1 (en) 1997-10-24 2001-10-23 Nihon Papkerizing Co., Ltd. Process for surface-treating an aluminum-containing metal
US6365234B1 (en) 1997-11-19 2002-04-02 Henkel Kommanditgesellschaft Auf Aktien Polymerizable, chromium-free, organic coatings for metal
WO2007121898A1 (de) * 2006-04-19 2007-11-01 Ropal Ag Verfahren zur herstellung eines korrosionsgeschützten und hochglänzenden substrats
EP1870489A1 (de) * 2006-04-19 2007-12-26 Ropal AG Verfahren zur Herstellung eines korrosionsgeschützten und hochglänzenden Substrats
RU2487190C2 (ru) * 2006-04-19 2013-07-10 Ропаль Аг Способ изготовления защищенной от коррозии и обладающей зеркальным блеском подложки
US8993119B2 (en) 2006-04-19 2015-03-31 Ropal Europe Ag Process for producing a corrosion-protected and high-gloss substrate
WO2016130288A1 (en) * 2015-02-09 2016-08-18 The Procter & Gamble Company Cleaning and/or treatment compositions

Also Published As

Publication number Publication date
ES548344A0 (es) 1986-06-01
JPS6191369A (ja) 1986-05-09
PT81269A (en) 1985-11-01
EP0178020B1 (de) 1988-10-19
GB8524667D0 (en) 1985-11-13
ES8607424A1 (es) 1986-06-01
DE3565695D1 (en) 1988-11-24
PT81269B (pt) 1987-10-20
GB2165165A (en) 1986-04-09
AU4751885A (en) 1986-04-17
DE3535135A1 (de) 1986-04-17

Similar Documents

Publication Publication Date Title
EP0178020B1 (de) Verfahren zur Behandlung von Aluminiumoberflächen
EP0091166B1 (de) Verfahren zum Behandeln von Metalloberflächen
DE2428065C2 (de) Verfahren zum Versiegeln von Zinkphosphatüberzügen auf Stahlsubstraten
EP1254279B1 (de) Korrosionsschutzmittel und korrosionsschutzverfahren für metalloberflächen
DE3151181A1 (de) Fuer einen Anstrich geeignete oberflaechenbehandelte Stahlbleche
DE3038699A1 (de) Waessrige saure chromatbeschichtungsloesung, verfahren zu ihrer herstellung und ihre verwendung zum beschichten von zink-, zinklegierungs- und cadimiumoberflaechen
DE2159925A1 (de) Verfahren zur Nachbehandlung phospha tierter Metalloberflachen
DE10110833A1 (de) Verfahren zum Aufbringen eines Phosphatüberzuges und Verwendung der derart phosphatierten Metallteile
DE3234558C2 (de)
EP1402083B1 (de) Korrosionsschutzverfahren für Metalloberflächen
EP0213567B1 (de) Verfahren zum Aufbringen von Phosphatüberzügen
EP0015021B1 (de) Verfahren zur Vorbereitung von Metalloberflächen für die elektrophoretische Tauchlackierung
DE2446492A1 (de) Verfahren zur oberflaechenbehandlung von aluminium und aluminiumlegierungen
DE2100021A1 (de) Verfahren zum Aufbringen von Phos phatschichten auf Stahl, Eisen und Zinkoberflachen
EP0359296B1 (de) Phosphatierverfahren
EP0492713A1 (de) Verfahren zur Nachspülung von Konversionsschichten
EP0760870B1 (de) Eisenphosphatierung unter verwendung von substituierten monocarbonsäuren
DE3224923A1 (de) Verfahren zum aufbringen von phosphatueberzuegen auf metalloberflaechen
EP0134895B1 (de) Verfahren und Mittel zum beschleunigten und schichtverfeinernden Aufbringen von Phosphatüberzügen auf Metalloberflächen
EP0111246B1 (de) Verfahren zur Phosphatierung elektrolytisch verzinkter Metall-waren
EP0155547A1 (de) Verfahren zur Zink-Calcium-Phosphatierung von Metalloberflächen bei niedriger Behandlungstemperatur
DE2315180A1 (de) Phosphatierungsloesung
EP0410497A1 (de) Verfahren zur passivierenden Nachspülung von Phosphatschichten
DE2932822C2 (de) Phosphat-Überzugslösung und Verfahren zum Erzeugen von Phosphatüberzügen auf Oberflächen von bearbeitetem oder verzinntem Stahl
EP0078866B1 (de) Überzugsausbildung auf Aluminiumoberflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR IT NL SE

17P Request for examination filed

Effective date: 19860527

17Q First examination report despatched

Effective date: 19870605

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR IT NL SE

REF Corresponds to:

Ref document number: 3565695

Country of ref document: DE

Date of ref document: 19881124

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890915

Year of fee payment: 5

Ref country code: FR

Payment date: 19890915

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890925

Year of fee payment: 5

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891031

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891114

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19901004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19901031

BERE Be: lapsed

Owner name: PARKER CHEMICAL CY

Effective date: 19901031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85201600.5

Effective date: 19910603