EP0168726A2 - Formkörper aus silikatischem Material, ihre Verwendung und Verfahren zu ihrer Herstellung - Google Patents

Formkörper aus silikatischem Material, ihre Verwendung und Verfahren zu ihrer Herstellung Download PDF

Info

Publication number
EP0168726A2
EP0168726A2 EP85108349A EP85108349A EP0168726A2 EP 0168726 A2 EP0168726 A2 EP 0168726A2 EP 85108349 A EP85108349 A EP 85108349A EP 85108349 A EP85108349 A EP 85108349A EP 0168726 A2 EP0168726 A2 EP 0168726A2
Authority
EP
European Patent Office
Prior art keywords
sks
moldings
salts
granules
layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85108349A
Other languages
English (en)
French (fr)
Other versions
EP0168726A3 (en
EP0168726B1 (de
Inventor
Hans-Peter Dr. Rieck
Martin Dr. Schott
Jürgen Dr. Russow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0168726A2 publication Critical patent/EP0168726A2/de
Publication of EP0168726A3 publication Critical patent/EP0168726A3/de
Application granted granted Critical
Publication of EP0168726B1 publication Critical patent/EP0168726B1/de
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/04Alkali metal or ammonium silicate cements ; Alkyl silicate cements; Silica sol cements; Soluble silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/16Clays or other mineral silicates

Definitions

  • the present invention relates to shaped articles made of silicas with a layered structure or their salts, their use and processes for their production.
  • the silicas used here and their salts differ in their layer structure from amorphous silicas or silicas with a framework structure, or their salts, e.g. Silicalite (US-PS 4061724).
  • Eugster specified the formulas NaSi 11 0 20.5 (OH) 4 .3H 2 O and NaSi7013 (OH) 383H20, among others.
  • OH groups chemically bound water
  • crystal water crystal water
  • a number of alkali salts and silicas with a layer structure have also been obtained synthetically.
  • the free silicas can be obtained from these alkali silicates by acidic ion exchange.
  • the layer structure of the connections is retained.
  • a process that is also technically feasible for the production of crystalline alkali layer silicates with a molar ratio nissen Na 2 0 / Si0 2 from 1:14 to 1:22 is the subject of German patent application P 34 00 132.8.
  • an acidic compound is added to an acidic compound in water or an amorphous alkali silicate with a molar ratio M20 / Si02, where M stands for an alkali metal, such that a molar ratio M 20 ( not neutralized) / Si0 2 from 0.05 to 0.239 is reached, optionally by diluting a molar ratio Si0 2 / H 2 0 from 1: 5 to 1: 100 and the reaction mixture at a reaction temperature of 70 to 250 ° C.
  • this process can also be used to produce a layered sodium silicate with a molar ratio of Na 2 0 / Si0 2 of approximately 1:14, which has a magadiite structure.
  • the corresponding free silica is obtained from this by acidic ion exchange.
  • Na-SKS-5 can be manufactured in accordance with the glass techn. 37, 194-200 (1964).
  • the product is similar to a-Na2Si205 in the X-ray diffraction pattern.
  • the X-ray spectrum according to the list in Powder Diffraction File, Inorganic Phases, (Int.Center for Diffraction Data) Swarthmore 1983 / number 22-1397.
  • Na-SKS-6 can be produced according to the magazine for Kristallogr. 129, 396-404 (1969). It is similar to -Na 2 Si 2 O 5 .
  • Na-SKS-7 can be manufactured according to glass technology. Ber. 37, 194-200 (1964). It is similar to ⁇ -Na 2 Si 2 0 5 .
  • Na-SKS-11 can be manufactured according to glass technology. Ber. 37, 194-200 (1964), and according to the magazine for Kristallogr. 129, 396-404 (1969). It is similar to -Na 2 Si 2 O 5 .
  • Na-SKS-9 can be produced according to Bull. Soc. franc. Min. Crist., 95, 371-382 (1972). It has the approximate composition NaHSi 2 O 5 ⁇ H 2 O. The X-ray spectrum has the number 27-709.
  • Na-SKS-10 can be produced according to Bull. Soc. franc. Min. Crist., 95, 371-382 (1972) and according to Amer. Mineral., 62, 763-771 (1977).
  • the X-ray spectrum has the number 25-1309.
  • the product has the approximate composition NaHSi 2 O 5 ⁇ 2H 2 O. It resembles the mineral kanemite for in the literature, the formula NaHSi 2 O 4 (OH) 2 .2H 2 O is specified, the NaHSi 2 O 5 .3H 2 O corresponds.
  • Na-SKS-13 can be produced according to Bull. Soc. franc. Min., Crist., 95, 371-382 (1972).
  • the X-ray spectrum has the number 27-708.
  • the product has the approximate composition NaHSi 2 0 5 .
  • the object of the present invention is to provide moldings made of silicate material which are porous, are easy to produce and have a certain mechanical stability so that they can be used, for example, as fillers can be used in a column to adsorb vapors from gases without being crushed.
  • Shaped bodies made of silicate material are usually produced with the addition of binders. In this way, the molding that is created during the shaping process is so stable that it can at least be removed from the mold and (gently) transported without disintegrating.
  • lime is added as a binder.
  • Moldings made of silicate material have now been found, which are characterized in that they consist of a layered silicic acid or its salts with the general formula (H, M) 2 Siy0 2 y +1 or the corresponding hydrates, where M is lithium, Sodium, potassium or ammonium and y is 1.7 to 24.
  • M is lithium, Sodium, potassium or ammonium and y is 1.7 to 24.
  • the protons of the free silica can therefore be replaced in whole or in part by M.
  • corresponding hydrates have the general formula (H, M) 2Siy02y + l, xH20, where x is a number between 0 and 20. In dried powders or moldings, x is below 7 and usually below 4.5.
  • the moldings can also consist of a mixture of different layered silicas or their salts.
  • the Shaped bodies according to the invention can have different geometric shapes and sizes. For example, they can have the shape of spheres, cylinders, prisms, cubes, cuboids, tubes or plates.
  • moldings are preferred whose silicate material (salt of a layered silica or free layered silica) has a magadiite structure or a Kenyaite structure. In this case, the starting connections are also easily accessible.
  • the moldings according to the invention can be produced by extruding the layered silicas or their salts in powder form, if appropriate after moistening with water or an organic solvent, into cylindrical shaped articles and then drying them. It is also possible to round off the roll-shaped moldings produced on a pelletizing plate and then, after drying at 120 ° C., shape-stable, approximately spherical granules are obtained. These have a hardness that is sufficient for many purposes. When testing with the Pfizer hardness tester, values from 3 to 115 kg are observed, which correspond to a test pressure of 10 to 37 bar.
  • the moldings according to the invention can also be produced by adding the layered silicas or their salts as dry powders (or moistened with water or organic solvents) into a mold and compressing them to give moldings. The resulting molded body is then removed from the mold. The pressures used are higher than in the case of the extruders mentioned above. If moistened powder is used, the moldings produced still have to be dried. It is surprising that this process can be used to produce dimensionally stable bodies without any addition of binders and that these have an even higher hardness than the granules mentioned above.
  • a dry powder of layered silicas or salts of layered silicas can be pressed in a tube under load by a punch with a pressing pressure of, for example, 500 bar into cylindrical bodies with a diameter of 16 mm.
  • the Pfizer hardness tester is not suitable as a testing tool. Instead, the Shore hardness was measured in these cases, which can easily reach values over 40 in the dry moldings, even without thermal aftertreatment. Shaped bodies with a Shore hardness of at least 40 are preferred because of their mechanical stability.
  • the X-ray spectra recorded prove that in all cases despite the changed behavior towards water the tempered shaped bodies still consist of layered silicas or their salts.
  • the duration of the annealing is not critical. In most cases, annealing for one hour is sufficient. Extending the annealing for more than 3 hours has no further advantages. At the same time, the hardness of the molded body is further increased by the annealing.
  • the waterproof bodies produced by pressing and subsequent tempering have a porosity of at least 40%, measured in accordance with DIN 51 056, even if no pore-forming substances have been added. In many cases, porosities of 50 to 60% can be determined if the bodies are soaked with water in accordance with DIN 51 056 in a vacuum. This shows that the pores are open and makes such shaped articles particularly suitable for impregnation with aqueous solutions or solutions in organic solvents.
  • the moldings according to the invention are therefore suitable as supports for catalysts.
  • the metal salt solutions can be impregnated with metal salt solutions, such as solutions of copper nitrate, nickel nitrate or cobalt acetate, then the solvent, in particular water, evaporated by heating and the metal salts optionally decomposed to their oxides.
  • the metal salt solutions can contain nonionic or anionic wetting agents, such as, for example, oxyethylated alkylphenols or alkylarylsulfonates.
  • nonionic or anionic wetting agents such as, for example, oxyethylated alkylphenols or alkylarylsulfonates.
  • hydrogenation catalysts are obtained in this way, especially for the gas phase. The higher the porosity, the smaller the apparent density.
  • densities of around 1.0 are obtained.
  • molding pressures of 1000 - 2000 bar during the molding process moldings of higher density (1.2 - 1.3) and lower porosity are obtained. Densities of over 1.3 can be generated by using the mold filled with powder evacuated before and during the pressing
  • the moldings according to the invention are suitable as catalysts for various purposes even without treatment with metal salt solutions. It has been found that the moldings according to the invention, in particular moldings made from free layered silicic acids, preferably moldings made from H-SKS-1, are suitable for the dehydration of hydroxyl-containing aliphatic hydrocarbons in the gas phase.
  • Monohydric aliphatic alcohols with a chain length of C i -C 5 , in particular C 1 -C 2 and propanol are preferably dehydrated at temperatures of 180 ° -600 ° C., preferably 250-500 ° C.
  • the alcohol vapor generally flows through the catalyst bed at a rate of 0.1-10 room parts per room part (bulk volume) of catalyst and hour.
  • the reaction product obtained is mainly C 2 -C 4 -alkenes in addition to dimethyl ether.
  • the silicate-based catalysts (zeolites) previously used for this purpose contained aluminum and also differ from the products used according to the invention in their three-dimensional framework structure.
  • the moldings according to the invention are also suitable as cracking catalysts. If you leave e.g. If saturated aliphatic hydrocarbons with 3 to 10 carbon atoms flow at temperatures from 400 to 700 ° C. over the moldings according to the invention, in particular over granules from free layered silicas, then alkenes with a lower carbon number and methane are formed.
  • the moldings according to the invention are also suitable as drying agents and / or absorbents for vapors of organic compounds.
  • Granules made from the layered silicates Na-SKS-1 and Na-SKS-2 are particularly suitable for the adsorption of water and thus for drying gases as well as for the adsorption of vapors of organic substances, e.g. n-hexane and cyclohexane.
  • the adsorption is generally carried out at temperatures from 5 to 95 ° C, preferably at room temperature.
  • the absorption capacity of the granules for the various vapors is influenced by the previous tempering of the granules. Particularly high values for the adsorption of water (28%) and cyclohexane (32%) are obtained if granules made from Na-SKS-2 are tempered at 300 ° C for 4 hours before use.
  • Na-SKS-1 plates Made of powdered layered silicates such as Na-SKS-1 but also from the corresponding silicas such as H-SKS-1 can be produced by pressing between two plates, plate-shaped bodies.
  • Na-SKS-1 plates are obtained which, after tempering at 600 ° C, have a porosity of 55%, a density of 1.05 and a Shore hardness of 55. Up to temperatures of 600 ° C, these plates are well suited as thermal insulation material.
  • the good insulating effect is not limited to the plates; rather, it is a property of all molded articles according to the invention, with a high porosity (> 50%) being particularly favorable.
  • the moldings according to the invention have a high porosity.
  • pore-forming additives are only required if particularly high porosities are required; however, they can also be used for moldings with low porosities.
  • the pore formers are removed thermally from the moldings.
  • Wood flour has proven to be a suitable pore-forming additive. It burns practically residue-free when the moldings are tempered in an oxidizing atmosphere (air).
  • Ammonium carbonate and ammonium bicarbonate are also suitable as pore formers. Both salts can be used in amounts of 0 to 25%, e.g. 10%, mix the powdered layered silicic acids (or their salts) before shaping. They evaporate during later tempering.
  • 300 g Na-SKS-1 are moistened with 240 g H 2 0 and passed through an extruder. Short strands of 3 mm in diameter and 4 mm in length are formed. These are then rounded off in a pelletizing drum to form granules without edges and dried at 120 ° C. for 2 hours.
  • the hardness measured with the Chas hardness tester. Pfizer & Co., Inc., New York, is 3 kg.
  • the hardness tester is a test clamp for tablets. Taking into account the stamp area of 3.1 mm 2 , over which the pressure is exerted on the test specimen, there is a factor of 3.2 for converting the measured values into bar, ie the 3 kg correspond to a constant clamp pressure of 9.6 bar .
  • the dried granules withstand a pressure of 10.5 bar in the hardness tester.
  • H-SKS-1 is prepared according to Example 28 by reacting Na-SKS-1 with hydrochloric acid. Granules are produced from the washed, filter-moist product, as described in Example 1.
  • the dried granules withstand a pressure of 20 bar in the hardness tester.
  • H-SKS-2 is prepared according to Example 30 by reacting Na-SKS-2 with hydrochloric acid. Granules are produced from the washed, filter-moist product, as described in Example 1.
  • the dried granules withstand a pressure of 17.6 bar in the hardness tester.
  • the granules of Na-SKS-1 produced in Example 1 are annealed at 400 ° C for 3 hours. If they are then stored in water for several days, they do not disintegrate.
  • the granules made of Na-SKS-2 produced in Example 2 are annealed at 400 ° C. for 4 hours.
  • the tempered granules withstand a pressure of 17.9 bar in the hardness tester, so they have become harder due to the tempering. When stored in water for several days, they do not disintegrate.
  • Example 9 4.99 g Na-SKS-2 are pressed as in Example 9 to a cylindrical shaped body with a diameter of 16.3 mm and a height of 23.1 mm.
  • the molded body has a Shore hardness of 60 and a density of 1.04.
  • H-SKS-1 is prepared according to Example 28 by reacting Na-SKS-1 with hydrochloric acid. The washed product is then dried at 100 ° C. 4.88 g of this are pressed as in Example 9 into a cylindrical shaped body with a diameter of 16.3 mm and a height of 22.5 mm. The molded body has a Shore hardness of 45 and a density of 1.04.
  • H-SKS-2 is prepared according to Example 30 by reacting Na-SKS-2 with hydrochloric acid. The washed product is then dried at 100 ° C. 4.94 g of this are pressed as in Example 9 into a cylindrical shaped body with a diameter of 16.3 mm and a height of 22.8 mm. The molded body has a Shore hardness of 57 and a density of 1.04.
  • the shaped body made of Na-SKS-1 produced in Example 9 is annealed at 600 ° C. for 4 hours. It then has a Shore hardness of 55 and a density of 0.98. The body is now water resistant. Its open porosity, tested according to DIN 51 056-A-2 (impregnation under vacuum), is 0.56 cm 3 / cm 3 or 56%.
  • a molded article made of Na-SKS-2 as produced in Example 10 is annealed at 600 ° C. for 4 hours. It then has a Shore hardness of 75 and a density of 1.07. The body is now water resistant. Its open porosity (tested as in Example 13) is 58
  • a molded article made of H-SKS-1 as produced in Example 11 is annealed at 400 ° C. for 4 hours. It then has a Shore hardness of 55, a density of 1.02 and is water-resistant. The open porosity (tested as in Example 13) is 56%. The X-ray spectrum shows that the structure of the H-SKS-1 has been preserved.
  • a molded article made of H-SKS-2 as produced in Example 12 is annealed at 250 ° C. for 4 hours. It then has a Shore hardness of 48 and a density of 1.03. Its open porosity (tested as in Example 13) is 60%. Another molded body made of H-SKS-2 is instead tempered for 4 hours at 400 ° C. The Shore hardness is then 60, the density 1.0 and the open porosity 56%.
  • H-SKS-1 is used to produce molded bodies by pressing in a cylindrical tube with a stamp, which have a diameter of 51.4 mm and a height of approx. 49 mm to have.
  • the pressure of the stamp increases, the density of the moldings also increases: If vacuum is applied before and during the pressing process, the density can be increased even further. It is then 1.36 after pressing at 960 bar.
  • Example 9 5.05 g of Na-SKS-6 are pressed into a cylindrical shaped body with a diameter of 16.2 mm and a height of 21.9 mm.
  • the Shore hardness is 45, the density 1.12.
  • Example 9 5 g of powdered precipitated silica (FK 320 D S from Degussa) were pressed as in Example 9. The molded body disintegrates when removed from the mold.
  • Powdery Na-SKS-1 is dry pressed in a thin layer between 2 plates.
  • the pressure is 600 bar.
  • a round plate with a thickness of 3.1 mm and a diameter of approx. 70 mm is created.
  • the density is 1.1. After annealing at 600 ° C, the density is 1.05 and the porosity is 55%.
  • the plate is suitable as a thermal insulation material at least up to 600 ° C.
  • Example 13 One described in Example 13, annealed at 600 ° C Moldings made of Na-SKS-1 are soaked in a vacuum with 0.6 cm 3 / cm 3 of a 10% strength solution of Cu (N0 3 ) 2 .3H 2 0. The impregnated molded body is dried and then kept at 350 ° C. for 2 hours. The copper nitrate decomposes to Cu0. After reduction into the hydrogen / nitrogen mixture, the shaped body is suitable as a hydrogenation catalyst for the gas phase.
  • Hydrogenation catalysts of similar effectiveness can be obtained if powdery layered silicates or layered silicas are soaked in solutions of metal salts, for example of copper nitrate, dried and then processed under pressure to give moldings. Part of the alkali ions can be exchanged for Cu ++ ions both when impregnating moldings and powders made from layered silicates. This effect can be controlled via the pH value of the drinking solution.
  • metal salts for example of copper nitrate
  • the granules of Na-SKS-1 described in Example 1 are suitable for the adsorption of vapors from the gas phase.
  • the adsorption capacity was checked by storing the granules for 15 hours in a desiccator over dishes with hexane or cyclohexane or 20% sulfuric acid (H 2 0 partial pressure approx. 20 mbar). The weight increase of the granules was then determined. The results can be found in the table below.
  • Granules made of Na-SKS-1 which were annealed at 400 ° C or 600 ° C, also adsorb well.
  • Granules made of Na-SKS-2 which have been annealed at 300 ° C or 450 ° C are also suitable.
  • granules from H-SKS-6 show a surprisingly good adsorption capacity for vapors.
  • the starting material for granules from H-SKS-6 is produced as follows: From Na-SKS-6, free silica (H-SKS-6) is produced by reaction with hydrochloric acid.
  • the washed product is then dried at 120 °. It has the X-ray spectrum with the number 27-606. H 2 Si 2 0 5 is given as the formula (Johan and Maglione, Bull. Soc. Franc. Min. Crist. 95, 371-82 (1972)).
  • the granules are produced from the moistened H-SKS-6 according to the method of Example 1 and then annealed at 300 ° C.
  • Granules are produced from H-SKS-1 as indicated in Example 1.
  • a bed of 100 ml of these granules is poured into a heatable vertical tube.
  • the temperature of the bed is kept at 400-450 ° C.
  • Methanol vapor is passed over the bed from above.
  • the reaction mixture is cooled in order to condense out the water formed.
  • the remaining gas is examined in a gas chromatograph. It essentially contains ethene, propene and the various butenes and dimethyl ether. Small amounts of aromatics are also detectable.
  • Granules are produced from H-SKS-2 as described in Example 1. 100 ml of a bed of the granules are poured into a vertically heated tube. The The bed is heated to 518 ° C. and kept at this temperature during the reaction. N-hexane vapor is passed over the bed from above. After leaving the tube, the reaction mixture is cooled in order to condense out the main amount of n-hexane. The remaining gas is examined in a gas chromatograph. It has the following composition:
  • H-SKS-1 200 g of H-SKS-1 are moistened with 140 ml of ethanol and granules are produced therefrom, as described in Example 1.
  • the granules dried at 120 ° C withstand a pressure of 13 bar in the hardness tester.
  • H-SKS-1 200 g of H-SKS-1 are mixed with 167 g of silica sol (with 30% SiO 2 ) and granules are produced from this mixture, as described in Example 1.
  • the granules dried at 120 ° C withstand a pressure of 30 bar in the hardness tester.
  • a reaction mixture of molar composition is first prepared by giving 83.5 parts by weight of sodium water glass (27% SiO 2 , 8.43% Na 2 0, 0.24% A1 2 0 3 ) to 149 parts of water. Then a part of a filter-moist crystalline sodium silicate from a previous experiment (71% weight loss by heating to 1200 ° C; only the water content was taken into account for the calculation of the molar composition) is added. 4.93 parts of 96% sulfuric acid are then slowly added with stirring. The reaction mixture then has the following molar composition:
  • the reaction mixture is heated in a stainless steel autoclave to 205 ° C. within 1.5 hours. Maintained at this temperature for 2.5 hours and then slowly cooled. After cooling, the reaction mixture is filtered, washed with water and sucked dry on a suction filter. The filter-moist product has a loss on ignition of 55%.
  • the product, briefly dried in air, is examined thermogravimetrically. A weight loss of 43% has occurred up to a temperature of around 140 ° C. No further significant weight loss is observed up to approx. 1000 ° C.
  • a molar Si02 / Na20 ratio of 17.9 can be calculated from this.
  • the molar SiO 2 / Al 2 O 3 ratio of 332 shows that despite the presence of dissolved A1 2 0 3 in the reaction mixture, this is incorporated into the end product only in very small amounts.
  • the crystalline Na silicate from Example 27 is extracted twice with 5% hydrochloric acid at 80 ° C. for 15 minutes. It is washed, filtered and dried at 40 ° C. Examination of the differential thermal analysis shows a pronounced endothermic conversion at approximately 120 ° C. and a far less pronounced endothermic conversion at approximately 1180 ° C.
  • the product is produced with the same starting material composition as in Example 27. Seed crystals of a magadiite-like silicate from a previous experiment are added to the reaction mixture. The reaction mixture is stirred at 165 ° C. for 19 hours, filtered after cooling, washed with water and sucked dry on a suction filter. 10 g of the mother liquor of the reaction mixture, diluted with 250 ml of water, have a pH of 10.4. The filter-moist product, which loses 61.3% of its weight on annealing (> 1000 ° C), is titrated with sulfuric acid and an equivalent value of 215 meq / 100 g of annealed product is determined from the turning point of the titration curve at pH 5.0.
  • an equivalence value of 235 mmol H + / 100 g annealed product is determined from the turning point of the curve at pH 8.3. From this, an ion exchange capacity of about 144 meq / mol Si0 2 , corresponding to an Si0 2: Na 2 0 ratio or an Si0 2 / 2H + ratio of 13.9: 1, is determined.
  • Example 2 The granules of Example 2 were annealed at 300 ° for 4 hours for dewatering and then used to dry solvents. For this purpose, 5 g each of the granules were added to 25 ml of water-saturated ethyl acetate (o-xylene, n-hexane). After 3 hours the water content of the solvent had dropped from 3.35% (0.056%, 0.017%) to 0.63% (0.0067%, 0.0045%).
  • water-saturated ethyl acetate o-xylene, n-hexane
  • a cylinder of 50 mm in diameter and 48 mm in height produced by pressing Na-SKS-2 at 400 bar was placed on a hot plate. Thermocouples were attached directly to the plate and on top of the cylinder. The plate was heated to 162 ⁇ 2 ° C. A temperature of 45 ° C. was set on the top of the cylinder and remained constant for 90 minutes. The heating plate was then switched off and the cylinder removed without changing the position of the heating elements. The temperature on the plate dropped by 2 ° C. within 23 minutes. In contrast, the temperature at the upper thermocouple rose continuously up to 55 ° C during this time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Formkörper werden beschrieben, die aus einer Kieselsäure mit Schichtstruktur oder deren Salzen mit der allgemeinen Formel (H,M)2SiyO2y+1 oder den entsprechenden Hydraten bestehen, wobei M für Lithium, Natrium, Kalium oder Ammonium steht und y 1,7 bis 24 ist. Sie lassen sich z.B. dadurch herstellen, daß man pulverförmige Schichtkieselsäuren oder deren Salze der allgemeinen Formel (H,M)2SiyO2y+1 oder die entsprechenden Hydrate, wobei M für Lithium, Natrium, Kalium oder Ammonium steht und y 1,7 bis 24 ist, gegebenenfalls nach Anfeuchten mit Wasser oder einem organischen Lösungsmittel zu walzenförmigen Formlingen extrudiert und anschließend trocknet oder die gleichen Ausgangsprodukte als trockene oder feuchte Pulver in eine Form gibt, unter Anwendung von Druck zu Formkörpern verpreßt und gegebenenfalls trocknet.

Description

  • Die vorliegende Erfindung betrifft Formkörper aus Kieselsäuren mit Schichtstruktur oder deren Salzen, ihre Verwendung und Verfahren zu ihrer Herstellung.
  • Die hier verwendeten Kieselsäuren und ihre Salze unterscheiden sich durch ihre Schichtstruktur von amorphen Kieselsäuren oder Kieselsäuren mit Gerüststruktur, bzw. deren Salzen, wie z.B. Silicalit (US-PS 4061724).
  • Solche Schichtkieselsäuren und deren Alkalisalze sind in der Natur gefunden worden (H.P. Eugster, Science 157, 1177 - 1180; T.P. Rooney et al., Amer. Mineral., 54, 1034 - 1043 (1969); G. Maglione und M. Servant, C.R. Acad. Sci., Ser. D., 277, 1721 - 1724 (1973); J.L. McAtee, Jr. et al., Amer. Mineral., 53 (1968), 2061 -2069.
  • Für die dort beschriebenen Mineralien Kenyait und Magadiit werden u.a. von Eugster die Formeln NaSi11020,5(OH)4·3H2O und NaSi7013(OH)383H20 angegeben. Dabei wird unterschieden zwischen chemisch gebundenem Wasser (OH-Gruppen) und Kristall-Wasser. Diese Unterscheidung ist jedoch nicht mit Sicherheit durchführbar.
  • Man kann die gleichen Substanzen auch als Na2Si22O45·10H2O und Na2Si14O29·9H2O formulieren.
  • Eine Reihe von Alkalisalzen und Kieselsäuren mit Schichtstruktur sind auch schon synthetisch erhalten worden. Aus diesen Alkalisilikaten können durch sauren Ionenaustausch die freien Kieselsäuren gewonnen werden. Dabei bleibt die Schichtstruktur der Verbindungen erhalten.
  • Ein auch technisch gangbares Verfahren zur Herstellung von kristallinen Alkalischichtsilikaten mit Molverhältnissen Na20/Si02 von 1 : 14 bis 1 : 22 ist Gegenstand der deutschen Patentanmeldung P 34 00 132.8. Nach diesem Verfahren wird ein in Wasser gelöstes oder ein amorphes Alkalisilikat mit einem molaren Verhältnis M20/Si02, wobei M für ein Alkalimetall steht, von 0,24 bis 2,0 mit so viel einer sauren Verbindung versetzt, daß ein molares Verhältnis M20 (nicht neutralisiert) / Si02 von 0,05 bis 0,239 erreicht wird, gegebenenfalls durch Verdünnen ein molares Verhältnis Si0 2/H20 von 1 : 5 bis 1 : 100 eingestellt und die Reaktionsmischung so lange bei einer Reaktionstemperatur von 70 bis 250°C gehalten, bis das Alkalischichtsilikat auskristallisiert ist. Man kann auf diese Weise beispielsweise ein Alkalischichtsilikat mit einem Molverhältnis Na2O/SiO2 von etwa 1 : 21 mit Kenyait-Struktur erhalten. Durch sauren Ionenaustausch ist daraus die entsprechende freie Säure herstellbar. Die so erhaltenen Verbindungen werden im folgenden als Na-SKS-1 bzw. H-SKS-1 bezeichnet.
  • In Gegenwart von Impfkristallen mit Magadiit-Struktur läßt sich nach diesem Verfahren auch ein Natriumschichtsilikat mit dem Molverhältnis Na20/Si02 von etwa 1 : 14 herstellen, das Magadiit-Struktur aufweist. Durch sauren Ionenaustausch erhält man hieraus die entsprechende freie Kieselsäure. Diese Verbindungen werden im folgenden als Na-SKS-2 und H-SKS-2 bezeichnet.
  • Es sind mehrere Schichtsilikate mit der ungefähren Zusammensetzung Na2Si2O5 bekannt. Hierzu gehören die folgenden als Na-SKS-5, Na-SKS-6, Na-SKS-7 und Na-SKS-11 bezeichneten Produkte. Na-SKS-5 läßt sich herstellen gemäß Glastechnischen Ber. 37, 194 - 200 (1964). Das Produkt ähnelt im Röntgenbeugungsdiagramm a-Na2Si205. Das Röntgenspektrum hat gemäß der Aufstellung in Powder Diffraction File, Inorganic Phases, (Int. Centre f. Diffraction Data) Swarthmore 1983/ die Nummer 22-1397.
  • Na-SKS-6 läßt sich herstellen gemäß Zeitschrift für Kristallogr. 129, 396 - 404 (1969). Es ähnelt -Na2Si2O5.
  • Na-SKS-7 läßt sich herstellen gemäß Glastechn. Ber. 37, 194 - 200 (1964). Es ähnelt β-Na2Si205.
  • Na-SKS-11 läßt sich herstellen gemäß Glastechn. Ber. 37, 194 - 200 (1964), sowie gemäß Zeitschrift für Kristallogr. 129, 396 - 404 (1969). Es ähnelt -Na2Si2O5.
  • Ein technisch gangbarer Weg zur Herstellung von Na-SKS-5, Na-SKS-6 und Na-SKS-11 wird beschrieben in der deutschen Patentanmeldung P 34 17 649.7. Schichtsilikate mit anderer Zusammensetzung sind Na-SKS-9, Na-SKS-10 und Na-SKS-13.
  • Na-SKS-9 läßt sich herstellen gemäß Bull. Soc. franc. Min. Crist., 95, 371 - 382 (1972). Es weist die ungefähre Zusammensetzung NaHSi2O5·H2O auf. Das Röntgenspektrum hat die Nummer 27-709.
  • Na-SKS-10 läßt sich herstellen gemäß Bull. Soc. franc. Min. Crist., 95, 371 - 382 (1972) sowie gemäß Amer. Mineral., 62, 763 - 771 (1977). Das Röntgenspektrum hat die Nummer 25-1309. Das Produkt hat die ungefähre Zusammensetzung NaHSi2O5·2H2O. Es ähnelt dem Mineral Kanemit für den in der Literatur die Formel NaHSi2O4(OH)2.2H2O angegeben ist, die NaHSi2O5.3H2O entspricht.
  • Na-SKS-13 läßt sich herstellen gemäß Bull. Soc. franc. Min., Crist., 95, 371 - 382 (1972). Das Röntgenspektrum hat die Nummer 27-708. Das Produkt hat die ungefähre Zusammensetzung NaHSi205.
  • Aufgabe der vorliegenden Erfindung ist es, Formkörper aus silikatischem Material bereitzustellen, die porös sind, leicht zu produzieren sind und eine gewisse mechanische Stabilität aufweisen, damit sie z.B. als Füllkörper in einer Kolonne zur Adsorption von Dämpfen aus Gasen verwendet werden können ohne zerdrückt zu werden.
  • Formkörper aus silikatischem Material werden üblicherweise unter Zusatz von Bindemitteln hergestellt. Damit wird der bei der Formgebung entstehende Formling soweit stabil, daß er wenigstens aus der Form entfernt und (schonend) transportiert werden kann, ohne zu zerfallen. Beim Verpressen von Quarzmehl wird Kalk als Bindemittel zugesetzt.
  • Es wurden nun Formkörper aus silikatischem Material gefunden, die dadurch gekennzeichnet sind, daß sie aus einer Kieselsäure mit Schichtstruktur oder deren Salzen mit der allgemeinen Formel (H,M)2Siy02y+1 oder den entsprechenden Hydraten bestehen, wobei M für Lithium, Natrium, Kalium oder Ammonium steht und y 1,7 bis 24 ist. Die Protonen der freien Kieselsäure können also ganz oder teilweise durch M ersetzt sein.
  • Die entsprechenden Hydrate haben die allgemeine Formel (H,M)2Siy02y+l,xH20, wobei x eine Zahl zwischen 0 und 20 ist. In getrockneten Pulvern oder Formkörpern liegt x unter 7 und meist unter 4,5.
  • Auf die Unterscheidung zwischen verschiedenen Formen gebundenen Wassers wird hier bewußt verzichtet. Die allgemeine Formel (H,M)2SiyO2y+1·xH2O soll auch alle jene Schichtsilikate einschließen, die zwar in der Literatur evtl. mit OH-Gruppen formuliert worden sind, sich jedoch rechnerisch durch die gleiche allgemeine Formel beschreiben lassen. Der Verzicht auf eine gesonderte Kennzeichnung von Silanol-OH-Gruppen soll keineswegs bedeuten, daß solche in den Ausgangsverbindungen oder den erfindungsgemäßen Formkörpern nicht vorhanden wären.
  • Die Formkörper können auch aus einem Gemisch verschiedener Schichtkieselsäuren oder deren Salzen bestehen. Die erfindungsgemäßen Formkörper können unterschiedliche geometrische Form und Größe besitzen. Sie können z.B. die Form von Kugeln, Zylindern, Prismen, Würfeln, Quadern, Rohren oder Platten aufweisen.
  • Wegen der guten mechanischen Eigenschaften, insbesondere der Wasserbeständigkeit, sind Formkörper bevorzugt, deren silikatisches Material (Salz einer Schichtkieselsäure oder freie Schichtkieselsäure) Magadiit-Struktur oder Kenyait-Struktur aufweist. In diesem Fall sind auch die Ausgangsverbindungen leicht zugänglich.
  • Die erfindungsgemäßen Formkörper lassen sich dadurch herstellen, daß man die Schichtkieselsäuren oder deren Salze in Pulverform, gegebenenfalls nach Anfeuchten mit Wasser oder einem organischen Lösungsmittel, zu walzenförmigen Formlingen extrudiert und anschließend trocknet. Man kann auch die erzeugten walzenförmigen Formlinge auf einem Pelletierteller abrunden und erhält dann nach Trocknung bei 120°C formstabile, etwa kugelförmige Granalien. Diese haben eine Härte, die für viele Zwecke ausreichend ist. Bei der Prüfung mit dem Pfizer-Hardness-Tester werden Werte von 3 bis 115 kg beobachtet, die einem Prüfdruck von 10 bis 37 bar entsprechen.
  • Die erfindungsgemäßen Formkörper lassen sich auch dadurch herstellen, daß man die Schichtkieselsäuren oder deren Salze als trockene (oder mit Wasser oder organischen Lösemitteln) angefeuchtete Pulver in eine Form gibt und unter Anwendung von Druck zu Formkörpern verpreßt. Der entstandene Formkörper wird anschließend aus der Form entfernt. Die angewandten Drucke liegen höher als im Fall der oben erwähnten Extruder. Bei Einsatz angefeuchteter Pulver müsssen die erzeugten Formkörper noch getrocknet werden. Es ist überraschend, daß sich nach diesem Verfahren ohne jeglichen Zusatz von Bindemitteln formstabile Körper herstellen lassen und diese eine noch höhere Härte aufweisen als die oben erwähnten Granalien. So läßt sich ein trockenes Pulver aus Schichtkieselsäuren oder Salzen von Schichtkieselsäuren in einem Rohr unter Belastung durch einen Stempel mit einem Preßdruck von z.B. 500 bar zu zylinderförmigen Körpern mit dem Durchmesser 16 mm verpressen. Bei diesen größeren Formkörpern eignet sich allerdings der Pfizer-Hardness-Tester nicht als Prüfwerkzeug. Stattdessen wurde in diesen Fällen die Shore-Härte gemessen, die bei den trockenen Formlingen, selbst ohne thermische Nachbehandlung, ohne weiteres Werte über 40 erreichen kann. Formkörper mit Shore-Härten von mindestens 40 sind wegen ihrer mechanischen Stabilität bevorzugt.
  • Es hat sich weiter gezeigt, daß durch ein mehrstündiges Erhitzen der Formkörper auf Temperaturen von 250 bis 1200°, vorzugsweise 300 bis 650°C, in vielen Fällen die Formkörper gegen Wasser oder wäßrige Lösungen beständig werden. Dies ist nützlich für die Verwendung der Formkörper als Katalysatorträger, wenn die zu katalysierende Umsetzung in Gegenwart von oder unter Bildung von Wasser stattfindet. Die Mindesttemperatur, die nötig ist, um diesen Effekt zu erreichen, hängt vom Material ab. Am besten geeignet sind hierfür die freien Schichtkieselsäuren. Formkörper aus H-SKS-2 sind schon nach einer dreistündigen Temperung bei 250°C wasserbeständig, während man bei Verwendung von H-SKS-1 und gleicher Zeitdauer 400°C benötigt. Formkörper aus Na-SKS-1 und Na-SKS-2 werden erst nach Temperung bei 600°C wasserbeständig. Die Lithium- und Kaliumsilikate verhalten sich ähnlich wie die Natriumsilikate. Die besonders alkalireichen Schichtsilikate Na-SKS-6, Na-SKS-10, Na-SKS-9 und Na-SKS-13 sind weniger geeignet zur Herstellung wasserfester Formkörper.
  • Die aufgenommenen Röntgenspektren beweisen, daß in allen Fällen trotz des veränderten Verhaltens gegenüber Wasser die getemperten Formkörper noch aus Schichtkieselsäuren bzw. deren Salzen bestehen. Die Dauer des Temperns ist nicht kritisch. In den meisten Fällen reicht ein Tempern von einer Stunde bereits aus. Ein Verlängern des Temperns über 3 Stunden bringt keine weiteren Vorteile. Gleichzeitig wird durch das Tempern auch die Härte des Formkörpers weiter erhöht.
  • Im Hinblick auf die Härte der Formkörper ist ihre hohe Porosität überraschend. Die durch Verpressen und anschließendes Tempern hergestellten wasserfesten Körper weisen Porositäten von mindestens 40 %, gemessen nach DIN 51 056 auf, selbst wenn ohne jeglichen Zusatz von porenbildenden Stoffen gearbeitet wurde. In vielen Fällen lassen sich Porositäten von 50 bis 60 % feststellen, wenn man die Körper nach DIN 51 056 im Vakuum mit Wasser tränkt. Dies zeigt, daß es sich um offene Poren handelt und macht derartige Formkörper besonders geeignet zur Tränkung mit wäßrigen Lösungen oder Lösungen in organischen Lösemitteln. Die erfindungsgemäßen Formkörper sind deswegen geeignet als Träger für Katalysatoren. Beispielsweise kann man sie mit Metallsalzlösungen, wie z.B. Lösungen von Kupfernitrat, Nickelnitrat oder Kobaltacetat, tränken, anschließend durch Erhitzen das Lösungsmittel, insbesondere Wasser, verdunsten und die Metallsalze gegegebenenfalls zu ihren Oxiden zersetzen. Um die Tränkung der Formkörper zu fördern, können die Metallsalzlösungen nichtionische oder anionische Netzmittel, wie z.B. oxäthylierte Alkylphenole oder Alkylarylsulfonate enthalten. Ausgehend von Kupfernitrat erhält man auf diese Weise Hydrierungskatalysatoren, insbesondere für die Gasphase. Je höher die Porosität, desto kleiner ist die scheinbare Dichte. Bei Arbeitsdrucken von 500 bar erhält man Dichten von etwa 1,0. Mit Preßdrucken von 1000 - 2000 bar bei der Formgebung erhält man Formkörper höherer Dichte (1.2 - 1.3) und geringerer Porosität. Dichten von über 1.3 lassen sich erzeugen, wenn man die mit Pulver gefüllte Form vor und während des Preßvorganges evakuiert.
  • überraschenderweise eignen sich die erfindungsgemäßen Formkörper auch ohne Behandlung mit Metallsalzlösungen als Katalysatoren für verschiedene Zwecke. Es wurde gefunden, daß sich die erfindungsgmäßen Formkörper, insbesondere Formkörper aus freien Schichtkieselsäuren, vorzugsweise Formkörper aus H-SKS-1, zur Dehydratisierung von hydroxylgruppenhaltigen aliphatischen Kohlenwasserstoffen in der Gasphase eignen. Dehydratisiert werden vorzugsweise einwertige aliphatische Alkohole mit einer Kettenlänge von Ci-C5, insbesondere C1-C2 sowie Propanol, bei Temperaturen von 180° - 600°C, vorzugsweise 250 - 500°C. Der Alkoholdampf strömt dabei im allgemeinen mit einer Geschwindigkeit von 0,1 - 10 Raumteilen pro Raumteil (Schüttvolumen) Katalysator und Stunde durch das Katalysatorbett. Läßt man z.B. Methanoldampf bei 250 bis 450°C durch ein Rohr mit Granalien aus H-SKS-1 strömen, so erhält man als Umsetzungsprodukt hauptsächlich C2- bis C4-Alkene neben Dimethylether. Die bisher für diesen Zweck eingesetzten Katalysatoren auf Silikatbasis (Zeolithe) enthielten Aluminium und unterscheiden sich von den erfindungsgemäß eingesetzten Produkten weiterhin durch ihre dreidimensionale Gerüststruktur.
  • Die erfindungsgemäßen Formkörper eignen sich auch als Crack-Katalysatoren. Läßt man z.B. gesättigte aliphatische Kohlenwasserstoffe mit 3 bis 10 Kohlenstoffatomen bei Temperaturen von 400 bis 700°C über die erfindungsgemäßen Formkörper, insbesondere über Granalien aus freien Schichtkieselsäuren, strömen, so entstehen Alkene mit geringerer Kohlenstoff-Zahl sowie Methan.
  • Die erfindungsgemäßen Formkörper eignen sich weiterhin als Trockenmittel und/oder Absorptionsmittel für Dämpfe organischer Verbindungen.
  • Insbesondere eignen sich aus den Schichtsilikaten Na-SKS-1 und Na-SKS-2 hergestellte Granalien für die Adsorption von Wasser und damit zum Trocknen von Gasen ebenso wie für die Adsorption von Dämpfen organischer Substanzen, z.B. n-Hexan und Cyclohexan. Die Adsorption erfolgt im allgemeinen bei Temperaturen von 5 bis 95°C, vorzugsweise bei Raumtemperatur. Das Aufnahmevermögen der Granalien für die verschiedenen Dämpfe wird durch die vorherige Temperung der Granalien beeinflußt. So erhält man besonders hohe Werte für die Adsorption von Wasser (28 %) und Cyclohexan (32 %), wenn man aus Na-SKS-2 hergestellte Granalien vor ihrer Verwendung 4 Stunden bei 300°C tempert. Tempert man dieses Material dagegen bei 450°C, so nimmt das Adsorptionsvermögen wieder ab. Adsorbierend auf Dämpfe wirken außer den Formkörpern aus Schichtsilikaten auch solche aus den freien Schichtkieselsäuren, so z.B. aus H-SKS-6. Stellt man daraus Granalien her und tempert diese bei 300°C, so erzielt man eine gute Adsorption von Dämpfen des n-Hexans und des Cyclohexans sowie von Wasserdampf.
  • Aus pulverförmigen Schichtsilikaten wie z.B. Na-SKS-1 aber auch aus den entsprechenden Kieselsäuren wie z.B. H-SKS-1 lassen sich durch Pressen zwischen zwei Platten plattenförmige Körper herstellen. So erhält man bei einem Preßdruck von 600 bar aus Na-SKS-1 Platten, die nach Tempern bei 600°C eine Porosität von 55 %, eine Dichte von 1,05 und eine Shore-Härte von 55 aufweisen. Diese Platten eignen sich bis zu Temperaturen von 600°C gut als thermisches Isoliermaterial. Die gute isolierende Wirkung beschränkt sich nicht auf die Platten, sie ist vielmehr eine Eigenschaft aller erfindungsgemäßen Formkörper, wobei eine hohe Porosität (> 50 %) besonders günstig ist.
  • Wie erwähnt, weisen die erfindungsgemäßen Formkörper eine hohe Porosität auf. Bei der Herstellung der Formkörper sind porenbildende Zusätze nur dann erforderlich, wenn besonders hohe Porositäten gewünscht werden; sie können jedoch auch für Formkörper mit niedrigen Porositäten ein-
  • gesetzt werden. Die Porenbildner werden thermisch aus den Formkörpern entfernt. Als geeigneter porenbildender Zusatz hat sich Holzmehl erwiesen. Es verbrennt beim Tempern der Formkörper in oxidierender Atmosphäre (Luft) praktisch rückstandsfrei. Geeignet als Porenbildner sind auch Ammoniumcarbonat und Ammoniumbicarbonat. Beide Salze lassen sich in Mengen von 0 bis 25 %, z.B. 10 %, den pulverförmigen Schichtkieselsäuren (oder deren Salzen) vor der Formgebung zumischen. Sie verdampfen beim späteren Tempern.
  • Die Erfindung wird durch die Beispiele näher erläutert.
  • Beispiel 1
  • 300 g Na-SKS-1 werden mit 240 g H20 angefeuchtet und durch einen Extruder gegeben. Es entstehen kurze Stränge von 3 mm Durchmesser und 4 mm Länge. Diese werden anschließend in einer Pelletiertrommel abgerundet zu Granalien ohne Kanten und bei 120°C 2 Std. getrocknet.
  • Die Härte, gemessen mit dem Hardness-Tester von Chas. Pfizer & Co., Inc., New York, beträgt 3 kg. Der Hardness-Tester ist eine Prüfzange für Tabletten. Unter Berücksichtigung der Stempelfläche von 3,1 mm2, über die der Druck auf den Prüfkörper ausgeübt wird, ergibt sich für die Umrechnung der Meßwerte in bar ein Faktor von 3,2, d.h. die 3 kg entsprechen einem standgehaltenen Zangendruck von 9,6 bar.
  • Beispiel 2
  • 400 g Na-SKS-2 werden mit 320 g H20 angefeuchtet und daraus Granalien hergestellt, wie in Beispiel 1 beschrieben.
  • Die getrockneten Granalien halten im Hardness-Tester einen Druck von 10,5 bar aus.
  • Beispiel 3
  • 200 g Na-SKS-6 werden mit 150 g H20 angefeuchtet und daraus Granalien hergestellt, wie in Beispiel 1 beschrieben. Die getrockneten Granalien halten im Hardness-Tester einen Druck von 37 bar aus.
  • Beispiel 4
  • H-SKS-1 wird gemäß Beispiel 28 durch Reaktion von Na-SKS-1 mit Salzsäure hergestellt. Aus dem gewaschenen, filterfeuchten Produkt werden Granalien hergestellt, wie in Beispiel 1 beschrieben.
  • Die getrockneten Granalien halten im Hardness-Tester einen Druck von 20 bar aus.
  • Beispiel 5
  • H-SKS-2 wird gemäß Beispiel 30 durch Reaktion von Na-SKS-2 mit Salzsäure hergestellt. Aus dem gewaschenen, filterfeuchten Produkt werden Granalien hergestellt, wie in Beispiel 1 beschrieben.
  • Die getrockneten Granalien halten im Hardness-Tester einen Druck von 17,6 bar aus.
  • Beispiel 6
  • Die im Beispiel 1 hergestellten Granalien aus Na-SKS-1 werden 3 Stunden bei 400°C getempert. Bei einer anschließenden mehrtägigen Lagerung in Wasser zerfallen sie nicht.
  • Beispiel 7
  • Die in Beispiel 2 hergestellten Granalien aus Na-SKS-2 werden 4 Stunden bei 400°C getempert. Die getemperten Granalien halten im Hardness-Tester einen Druck von 17,9 bar aus, sind also durch das Tempern härter geworden. Bei einer mehrtägigen Lagerung in Wasser zerfallen sie nicht.
  • Beispiel 8 (Vergleichsbeispiel)
  • Es wurden 200 g gefällte Kieselsäure (Lieferant: Merck, Darmstadt) mit 320 g H20 angefeuchtet. Es wurde versucht, daraus wie im Beispiel 1 beschrieben, Granalien herzustellen. Die erhaltenen Granalien zerfielen jedoch in feuchtem wie in trockenem Zustand so leicht, daß eine Prüfung der Härte nicht möglich war. Die mechanische Stabilität wird auch durch Tempern bei 400°C nicht verbessert.
  • Beispiel 9
  • 5,01 g pulverförmiges, trockenes Na-SKS-1 werden in einer röhrenförmigen Presse mit 16 mm Innendurchmesser unter einem Stempeldruck von 500 bar 5 min verpreßt. Der so hergestellte 23,3 mm hohe, zylindrische Formkörper (Durchmesser 16,3 mm) hat die Shore-Härte (D nach DIN 53 505) 52 und die Dichte 1,03.
  • Beispiel 10
  • 4,99 g Na-SKS-2 werden wie in Beispiel 9 zu einem zylindrischen Formkörper von 16,3 mm Durchmesser und 23,1 mm Höhe verpreßt. Der Formkörper hat die Shore-Härte 60 und die Dichte 1,04.
  • Beispiel 11
  • H-SKS-1 wird gemäß Beispiel 28 durch Reaktion von Na-SKS-1 mit Salzsäure hergestellt. Das gewaschene Produkt wird anschließend bei 100°C getrocknet. Davon werden 4,88 g wie in Beispiel 9 zu einem zylindrischen Formkörper von 16,3 mm Durchmesser und 22,5 mm Höhe verpreßt. Der Formkörper hat die Shore-Härte 45 und die Dichte 1,04.
  • Beispiel 12
  • H-SKS-2 wird gemäß Beispiel 30 durch Reaktion von Na-SKS-2 mit Salzsäure hergestellt. Das gewaschene Produkt wird anschließend bei 100°C getrocknet. Davon werden 4,94 g wie in Beispiel 9 zu einem zylindrischen Formkörper von 16,3 mm Durchmesser und 22,8 mm Höhe verpreßt. Der Formkörper hat die Shore-Härte 57 und die Dichte 1,04.
  • Beispiel 13
  • Der in Beispiel 9 hergestellte Formkörper aus Na-SKS-1 wird 4 Stunden bei 600°C getempert. Er hat dann die Shore-Härte 55 und die Dichte 0,98. Der Körper ist nunmehr wasserbeständig. Seine offene Porosität, geprüft nach DIN 51 056-A-2 (Tränkung unter Vakuum), beträgt 0,56 cm3/cm3 bzw. 56 %.
  • Beispiel 14
  • Ein wie in Beispiel 10 hergestellter Formkörper aus Na-SKS-2 wird 4 Stunden bei 600°C getempert. Er hat dann die Shore-Härte 75 und die Dichte 1,07. Der Körper ist nunmehr wasserbeständig. Seine offene Porosität (geprüft wie in Beispiel 13) beträgt 58
  • Beispiel 15
  • Ein wie in Beispiel 11 hergestellter Formkörper aus H-SKS-1 wird 4 Stunden bei 400°C getempert. Er hat dann die Shore-Härte 55, die Dichte 1,02 und ist wasserbeständig. Die offene Porosität (geprüft wie in Beispiel 13) beträgt 56 %. Das Röntgenspektrum zeigt, daß die Struktur des H-SKS-1 erhalten geblieben ist.
  • Beispiel 16
  • Ein wie in Beispiel 12 hergestellter Formkörper aus H-SKS-2 wird 4 Stunden bei 250°C getempert. Er hat dann die Shore-Härte 48 und die Dichte 1,03. Seine offene Porosität (geprüft wie in Beispiel 13) beträgt 60 %. Ein weiterer Formkörper aus H-SKS-2 wird statt dessen 4 Stunden bei 400°C getempert. Die Shore-Härte beträgt dann 60, die Dichte 1,0 und die offene Porosität 56 %.
  • In beiden Fällen bleibt die Struktur des H-SKS-2 erhalten, wie die Röntgenspektren beweisen. Beide Formkörper sind wasserbeständig.
  • Beispiel 17
  • Aus H-SKS-1 werden durch Pressen in einem zylinderförmigen Rohr mit Stempel Formkörper hergestellt, die einen Durchmesser von 51,4 mm und eine Höhe von ca. 49 mm haben. Mit erhöhtem Preßdruck des Stempels erhöht sich auch die Dichte der Formkörper:
    Figure imgb0001

    Wird vor und während des Preßvorganges Vakuum angelegt, läßt sich die Dichte noch weiter erhöhen. Sie beträgt dann nach Pressen mit 960 bar 1,36.
  • Beispiel 18
  • 5,05 g Na-SKS-6 werden wie in Beispiel 9 zu einem zylindrischen Formkörper von 16,2 mm Durchmesser und 21,9 mm Höhe verpreßt. Die Shore-Härte beträgt 45, die Dichte 1,12.
  • Beispiel 19 (Vergleichsbeispiel)
  • Es wurden 5 g pulverförmige gefällte Kieselsäure (FK 320 DS von Degussa) wie in Beispiel 9 verpreßt. Der Formkörper zerfällt beim Entfernen aus der Form.
  • Beispiel 20
  • Pulverförmiges Na-SKS-1 wird in dünner Schicht zwischen 2 Platten trocken verpreßt. Der Preßdruck beträgt 600 bar. Es entsteht eine runde Platte von 3,1 mm Dicke und ca. 70 mm Durchmesser. Die Dichte liegt bei 1,1. Nach Tempern bei 600°C beträgt die Dichte 1,05 und die Porosität 55 %. Die Platte ist als thermisches Isoliermaterial zumindest bis 600°C geeignet.
  • Beispiel 21
  • Ein in Beispiel 13 beschriebener, bei 600°C getemperter Formkörper aus Na-SKS-1 wird mit 0,6 cm3/cm3 einer 10 %igen Lösung von Cu (N03)2.3H20 im Vakuum getränkt. Der getränkte Formkörper wird getrocknet und anschließend 2 Stunden bei 350°C gehalten. Das Kupfernitrat zersetzt sich dabei zum Cu0. Nach Reduktion ins Wasserstoff/Stickstoff-Gemisch ist der Formkörper als Hydrierungskatalysator für die Gasphase geeignet.
  • Hydrierungskatalysatoren ähnlicher Wirksamkeit lassen sich erhalten, wenn man pulverförmige Schichtsilikate oder Schichtkieselsäuren mit Lösungen von Metallsalzen, z.B. von Kupfernitrat, tränkt, trocknet und anschließend unter Druck zu Formkörpern verarbeitet. Sowohl bei der Tränkung von Formkörpern als auch von Pulvern aus Schichtsilikaten kann ein Teil der Alkaliionen durch Cu++-ionen ausgetauscht werden. Dieser Effekt läßt sich über den pH-Wert der Tränklösung steuern .
  • Beispiel 22
  • Die im Beispiel 1 beschriebenen Granalien aus Na-SKS-1 eignen sich zur Adsorption von Dämpfen aus der Gasphase. Geprüft wurde das Adsorptionsvermögen, indem die Granalien jeweils 15 Stunden im Exsikkator über Schalen mit Hexan oder Cyclohexan oder 20 %iger Schwefelsäure (H20-Partialdruck ca. 20 mbar) aufbewahrt wurden. Anschließend wurde die Gewichtszunahme der Granalien festgestellt. Die Ergebnisse finden sich in der nachfolgenden Tabelle. Auch Granalien aus Na-SKS-1, die bei 400°C oder 600°C getempert wurden, adsorbieren gut. Ebenfalls geeignet sind Granalien aus Na-SKS-2, die bei 300°C oder 450°C getempert wurden. Ein überraschend gutes Adsorptionsvermögen für Dämpfe zeigen schließlich Granalien aus H-SKS-6.
  • Das Ausgangsmaterial für Granalien aus H-SKS-6 wird wie folgt erzeugt: Aus Na-SKS-6 wird durch Reaktion mit Salzsäure dir freie Kieselsäure (H-SKS-6) hergestellt.
  • Das gewaschene Produkt wird anschließend bei 120° getrocknet. Es hat das Röntgenspektrum mit der Nummer 27-606. Als Formel wird H2Si205 angegeben (Johan und Maglione, Bull. Soc. franc. Min. Crist. 95, 371 - 82 (1972)).
  • Die Granalien werden aus dem angefeuchteten H-SKS-6 nach der Methode von Beispiel 1 hergestellt und anschließend bei 300°C getempert.
    Figure imgb0002
  • Beispiel 23
  • Aus H-SKS-1 werden Granalien hergestellt wie im Beispiel 1 angegeben. In ein beheizbares senkrecht stehendes Rohr wird eine Schüttung von 100 ml dieser Granalien eingefüllt. Die Temperatur der Schüttung wird auf 400 - 450°C gehalten. Von oben wird Methanol-Dampf über die Schüttung geführt. Das Reaktionsgemisch wird nach Verlassen des Rohres gekühlt, um entstandenes Wasser auszukondensieren. Das verbleibende Gas wird im Gaschromatographen untersucht. Es enthält im wesentlichen Ethen, Propen und die verschiedenen Butene sowie Dimethylether. Auch sind geringe Mengen an Aromaten nachweisbar.
  • Beispiel 24
  • Aus H-SKS-2 werden Granalien hergestellt wie in Beispiel 1 beschrieben. In ein senkrecht beheizbares Rohr werden 100 ml einer Schüttung der Granalien eingefüllt. Die Schüttung wird auf 518°C aufgeheizt und während der Umsetzung bei dieser Temperatur gehalten. n-Hexan-Dampf wird von oben über die Schüttung geführt. Das Reaktionsgemisch wird nach Verlassen des Rohres abgekühlt, um die Hauptmenge an n-Hexan auszukondensieren. Das verbleibende Gas wird im Gaschromatographen untersucht. Es hat folgende Zusammensetzung:
    Figure imgb0003
  • Beispiel 25
  • 200 g H-SKS-1 werden mit 140 ml Ethanol angefeuchtet und daraus Granalien hergestellt, wie in Beispiel 1 beschrieben. Die bei 120°C getrockneten Granalien halten im Hardness-Tester einen Druck von 13 bar aus.
  • Beispiel 26
  • 200 g H-SKS-1 werden mit 167 g Kieselsol (mit 30 % Si02) vermischt und aus dieser Mischung Granalien hergestellt, wie in Beispiel 1 beschrieben. Die bei 120°C getrockneten Granalien halten im Hardness-Tester einen Druck von 30 bar aus.
  • Beispiel 27 (Darstellung von Na-SKS-1)
  • Man stellt zunächst eine Reaktionsmischung der molaren Zusammensetzung
    Figure imgb0004

    dadurch her, daß man 83,5 Gewichtsteile Natronwasserglas (27 % SiO2, 8,43 % Na20, 0,24 % A1203) zu 149 Teilen Wasser gibt. Danach wird ein Teil eines filterfeuchten kristallinen Natriumsilikats aus einem früheren Versuch (71 % Gewichtsverlust durch Erhitzen auf 1200°C; für die Berechnung der molaren Zusammensetzung wurde nur der Wasseranteil berücksichtigt) zugegeben. Man setzt anschließend langsam unter Rühren 4,93 Teile 96 %ige Schwefelsäure zu. Danach hat die Reaktionsmischung folgende molare Zusammensetzung:
    Figure imgb0005
  • Die Reaktionsmischung wird in einem Edelstahl-Autoklaven innerhalb von 1,5 Stunden auf 205°C erhitzt. 2,5 Stunden bei dieser Temperatur gehalten und anschließend langsam abgekühlt. Nach dem Abkühlen wird die Reaktionsmischung filtriert, mit Wasser gewaschen und auf einer Nutsche trocken gesaugt. Das filterfeuchte Produkt weist einen Glühverlust von 55 % auf. Das an der Luft kurzzeitig getrocknete Produkt wird thermogravimetrisch untersucht. Bis zu einer Temperatur von etwa 140°C ist ein Gewichtsverlust von 43 % eingetreten. Bis ca. 1000° C wird keine weitere wesentliche Gewichtsabnahme beobachtet. Das bei 120°C bis zur Gewichtskonstanz getrocknete Produkt, Na-SKS-1, zeigt folgende elementar-analytische Zusammensetzung: 3,8 % Na, 0,24 % Al, 41,5 % Si und 0,003 % Fe. Es läßt sich daraus ein molares Si02/Na20-Verhältnis von 17,9 errechnen. Das molare SiO2/Al2O3-Verhältnis von 332 zeigt, daß trotz der Anwesenheit von gelöstem A1203 in der Reaktionsmischung dieses nur in sehr geringen Mengen in das Endprodukt eingebaut wird.
  • Beispiel 28 (Darstellung von H-SKS-1)
  • Das kristalline Na-Silikat aus Beispiel 27 wird zweimal mit 5 %iger Salzsäure bei 80°C 15 Minuten lang extrahiert. Man wäscht, filtriert und trocknet bei 40°C. Die Untersuchung der differentiellen Thermoanalyse ergibt eine ausgeprägte endotherme Umwandlung bei etwa 120°C und eine weit weniger ausgeprägte endotherme Umwandlung bei etwa 1180°C.
  • Beispiel 29 (Darstellung von Na-SKS-2)
  • Das Produkt wird mit gleicher Eduktzusammensetzung wie in Beispiel 27 hergestellt. Der Reaktionsmischung werden Impfkristalle eines Magadiit-artigen Silikats aus einem früheren Versuch zugesetzt. Die Reaktionsmischung wird 19 Stunden bei 165° C gerührt, nach dem Erkalten filtriert, mit Wasser gewaschen und auf einer Nutsche trockengesaugt. 10 g der Mutterlauge der Reaktionsmischung, mit 250 ml Wasser verdünnt, haben einen pH-Wert von 10,4. Das filterfeuchte Produkt, welches beim Glühen (>1000°C) 61,3 % seines Gewichtes verliert, wird mit Schwefelsäure titriert und aus dem Wendepunkt der Titrationskurve bei pH 5,0 ein Äquivalenzwert von 215 meq/100 g geglühtes Produkt ermittelt. Für ein Produkt der Zusammensetzung Na20·ySi02 wird hieraus ein Ionenaustauschvermögen von 138 mmol Na+/mol SiO2, entsprechend einem Si02:Na20-Verhältnis von 14,5 : 1 ermittelt. Arbeitet man ohne Impfkristalle, so werden deutlich längere Reaktionszeiten erforderlich.
  • Beispiel 30 (Darstellung von H-SKS-2)
  • 100 g feuchtes Produkt aus Beispiel 29 werden zu 200 ml 5 %iger Salzsäure gegeben und 1,25 Stunden bei Raumtemperatur gerührt. Das Produkt wird filtriert, erneut zu einer gleichen Menge Salzsäure gegeben, 25 Stunden gerührt, filtriert und zweimal gründlich mit Wasser gewaschen, wobei das Produkt mit Wasser gerührt wird und bei der Filtration gewaschen wird. Anschließend wird das Produkt trockengesaugt. Es weist einen Glühverlust von 57 % auf. Von dem trockengesaugten Produkt werden 10 g zu 1900 ml 5 %iger NaCl-Lösung gegeben und anschließend mit lm NaOH titriert. Bei der graphischen Darstellung der Titrationswerte wird aus dem Wendepunkt der Kurve bei pH 8,3 ein Äquivalenzwert von 235 mmol H+/100 g geglühtes Produkt ermittelt. Daraus wird ein Ionenaustauschvermögen von etwa 144 meq/mol Si02, entsprechend einem Si02 : Na20-Verhältnis bzw. einem Verhältnis Si02/2H+ von 13,9 : 1 bestimmt.
  • Beispiel 31
  • Die Granalien von Beispiel 2 wurden zur Entwässerung 4 Stunden bei 300° getempert und dann zum Trocknen von Lösemitteln eingesetzt. Hierzu wurden jeweils 5 g der Granalien zu 25 ml von mit Wasser gesättigtem Essigsäureäthylester (o-Xylol, n-Hexan) gegeben. Nach 3 Stunden war der Wassergehalt des Lösemittels von 3,35 % (0,056 %, 0,017 %) auf 0,63 % (0,0067 %, 0,0045 %) gesunken.
  • Beispiel 32
  • Ein durch Verpressen von Na-SKS-2 bei 400 bar erzeugter Zylinder von 50 mm Durchmesser und 48 mm Höhe wurde auf eine Heizplatte gelegt. Thermoelemente wurden unmittelbar auf der Platte und auf der Oberseite des Zylinders befestigt. Die Platte wurde auf 162 ± 2°C aufgeheizt. Auf der Oberseite des Zylinders stellte sich eine Temperatur von 45°C ein, die 90 min konstant blieb. Danach wurde die Heizplatte abgeschaltet und der Zylinder entfernt ohne die Position der Heizelemente zu ändern. Innerhalb von 23 min sank die Temperatur auf der Platte um 2°C. Dagegen stieg in dieser Zeit die Temperatur am oberen Thermoelement kontinuierlich bis 55°C an.

Claims (11)

1. Formkörper aus silikatischem Material, dadurch gekennzeichnet, daß sie aus einer Kieselsäure mit Schichtstruktur oder deren Salzen mit der allgemeinen Formel (H,M)2Siy02y+1 oder den entsprechenden Hydraten bestehen, wobei M für Lithium, Natrium, Kalium oder Ammonium steht und y 1,7 bis 24 ist.
2. Formkörper gemäß Anspruch 1, dadurch gekennzeichnet, daß sie eine Shore-Härte von über 40 aufweisen.
3. Formkörper gemäß Anspruch 1, dadurch gekennzeichnet, daß sie eine Porosität von mindestens 40 %, gemessen nach DIN 51056-A-2 aufweisen.
4. Verfahren zur Herstellung von Formkörpern gemäß Anspruch 1, dadurch gekennzeichnet, daß man pulverförmige Schichtkieselsäuren oder deren Salze der allgemeinen Formel (H,M)2SiyO2y+1 oder die entsprechenden Hydrate, wobei M für Lithium, Natrium, Kalium oder Ammonium steht, und y 1,7 bis 24 ist, gegebenenfalls nach Anfeuchten mit Wasser oder einem organischen Lösungsmittel zu walzenförmigen Formlingen extrudiert und anschließend trocknet.
5. Verfahren zur Herstellung von Formkörpern gemäß Anspruch 1, dadurch gekennzeichnet, daß man Schichtkieselsäuren oder deren Salze der allgemeinen Formel (H,M)2Siy02y+1 oder die entsprechenden Hydrate, wobei M für Lithium, Natrium, Kalium oder Ammonium steht, und y 1,7 bis 24 ist, als trockene oder feuchte Pulver in eine Form gibt, unter Anwendung von Druck zu Formkörpern verpreßt und gegebenenfalls trocknet.
6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß man die Formkörper bei Temperaturen über 250°C tempert.
7. Verwendung der Formkörper gemäß Anspruch 1 als Träger für Katalysatoren.
8. Verwendung der Formkörper gemäß Anspruch 1 als Katalysator zur Dehydratisierung von hydroxylgruppenhaltigen aliphatischen Kohlenwasserstoffen in der Gasphase.
9. Verwendung der Formkörper gemäß Anspruch 1 als thermisches Isoliermaterial.
10. Verwendung der Formkörper gemäß Anspruch 1 als Trockenmittel und/oder Mittel zur Adsorption organischer Dämpfe.
11. Verwendung der Formkörper gemäß Anspruch 1 als Crack-Katalysatoren.
EP85108349A 1984-07-18 1985-07-05 Formkörper aus silikatischem Material, ihre Verwendung und Verfahren zu ihrer Herstellung Expired EP0168726B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3426389A DE3426389A1 (de) 1984-07-18 1984-07-18 Formkoerper aus silikatischem material, ihre verwendung und verfahren zu ihrer herstellung
DE3426389 1984-07-18

Publications (3)

Publication Number Publication Date
EP0168726A2 true EP0168726A2 (de) 1986-01-22
EP0168726A3 EP0168726A3 (en) 1987-10-28
EP0168726B1 EP0168726B1 (de) 1989-12-27

Family

ID=6240903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85108349A Expired EP0168726B1 (de) 1984-07-18 1985-07-05 Formkörper aus silikatischem Material, ihre Verwendung und Verfahren zu ihrer Herstellung

Country Status (8)

Country Link
US (1) US4703029A (de)
EP (1) EP0168726B1 (de)
JP (1) JPS6140865A (de)
CA (1) CA1259779A (de)
DE (2) DE3426389A1 (de)
ES (1) ES8605747A1 (de)
PT (1) PT80823B (de)
ZA (1) ZA855379B (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393329A (en) * 1991-09-06 1995-02-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Fuel-sorbing device using layered porous silica
US5382558A (en) * 1992-01-13 1995-01-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat resistant layered porous silica and process for producing the same
DE4330868A1 (de) * 1993-09-11 1995-03-16 Hoechst Ag Verfahren zur Herstellung körniger Natriumsilikate
US6107243A (en) * 1996-09-09 2000-08-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Cluster-included material
JP4731668B2 (ja) * 2000-10-17 2011-07-27 株式会社豊田中央研究所 多孔質成形体の製造方法
JP2006326502A (ja) * 2005-05-26 2006-12-07 Koichiro Katsuta 保水剤及びこれを用いた除湿剤と衛生用品
JP4859429B2 (ja) * 2005-10-03 2012-01-25 株式会社トクヤマ ダイオキシン類捕捉剤およびダイオキシン類除去方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2143346A1 (de) * 1970-08-31 1972-03-09 Exxon Research Engineering Co Komplexmetallsilikate mit Schichtstruktur, ihre Herstellung und Verwendung
DE3400132A1 (de) * 1984-01-04 1985-07-11 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von kristallinen alkalischichtsilikaten

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1832153A (en) * 1925-07-21 1931-11-17 Ig Farbenindustrie Ag Manufacture of inorganic active masses
US2921033A (en) * 1954-08-05 1960-01-12 Oxy Catalyst Inc Method for the manufacture of catalysts
US3579464A (en) * 1968-05-20 1971-05-18 Grace W R & Co Nondecrepitating silica gel and method for its preparation
US3671463A (en) * 1970-11-27 1972-06-20 American Cyanamid Co Process for extruded catalyst and catalyst supports
JPS5660645A (en) * 1979-10-24 1981-05-25 Mitsubishi Chem Ind Ltd Manufacture of isomerization catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2143346A1 (de) * 1970-08-31 1972-03-09 Exxon Research Engineering Co Komplexmetallsilikate mit Schichtstruktur, ihre Herstellung und Verwendung
DE3400132A1 (de) * 1984-01-04 1985-07-11 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von kristallinen alkalischichtsilikaten

Also Published As

Publication number Publication date
DE3426389A1 (de) 1986-01-23
US4703029A (en) 1987-10-27
CA1259779A (en) 1989-09-26
JPS6140865A (ja) 1986-02-27
ES545263A0 (es) 1986-02-01
EP0168726A3 (en) 1987-10-28
PT80823B (pt) 1987-10-20
ZA855379B (en) 1986-03-26
JPH0566330B2 (de) 1993-09-21
DE3574962D1 (de) 1990-02-01
PT80823A (de) 1985-08-01
ES8605747A1 (es) 1986-02-01
EP0168726B1 (de) 1989-12-27

Similar Documents

Publication Publication Date Title
DE2302658C3 (de) Verfahren zur Herstellung eines Kupfer-Trägerkatalysators
DE69124675T2 (de) Verfahren zur Entaluminierung von synthetischen Zeolithen und von einem im wesentlichten Kieselsäure-haltigen Beta-Typ Zeolith
DE2622536C3 (de) Verfahren zur selektiven Adsorption von Stickstoffoxiden aus einem Gasstrom
EP0807615B1 (de) Presslinge auf Basis von pyrogen hergestelltem Siliciumdioxid
DE1184743B (de) Verfahren zur Herstellung von dekationisierten zeolithischen Aluminosilicaten
DE2511364A1 (de) Katalysator und verfahren zu seiner herstellung
DE3017501A1 (de) Katalysator fuer die herstellung von aethylen
DE2707313A1 (de) Verfahren zur herstellung von geformten zeolithen
DE68912556T2 (de) Zeolit-granulate mit zeolit-bindemittel.
DE69918274T2 (de) Fester säurekatalysator, verfahren zu seiner herstellung und reaktion mit verwendung des katalysators
EP0168726B1 (de) Formkörper aus silikatischem Material, ihre Verwendung und Verfahren zu ihrer Herstellung
DE2459659A1 (de) Kieselsaeure-xerogel sowie dessen herstellung und verwendung
DE2652535B2 (de) Verfahren zur Herstellung von Kieselsäure-Körpern
DE1467177A1 (de) Dekationisierte,kristalline,zeolithische Molekularsiebe und Verfahren zu ihrer Herstellung
EP0180858B1 (de) Formkörper aus silikatischem Material, Verfahren zu ihrer Herstellung und Verwendung
CH493426A (de) Verfahren zur Verbesserung der physikalischen Eigenschaften von Alumino-Silikat-Zeolithen und deren Verwendung
DE102016202516A1 (de) Hierarchisierter ZSM-58 Zeolith
DE4142902A1 (de) Formlinge auf der basis von pyrogener kieselsaeure
DE69125283T2 (de) Kristalline molekularsiebzusammensetzung
EP0993431A1 (de) Verfahren zur herstellung von enolethern
DE2719055A1 (de) Katalysator und seine verwendung zur herstellung von alkanolen
DE2117479A1 (en) Molecular sieve adsorbent with alumina sol binder
DE1567507A1 (de) Synthetische Zeolithe vom Faujasit-Typ
DE102019106698A1 (de) Katalytische Herstellung von Butadien
DE2639285A1 (de) Verfahren zur herstellung von tonerdeextrudatteilchen und deren verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19871130

17Q First examination report despatched

Effective date: 19890228

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3574962

Country of ref document: DE

Date of ref document: 19900201

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85108349.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990615

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990618

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990621

Year of fee payment: 15

BECA Be: change of holder's address

Free format text: 19991028 *CLARIANT G.M.B.H.:BRUENINGSTRASSE 50, 65929 FRANKFURT AM MAIN

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: CLARIANT GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000706

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 85108349.3

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010625

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010626

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010816

Year of fee payment: 17

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

BERE Be: lapsed

Owner name: *CLARIANT G.M.B.H.

Effective date: 20020731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040619

Year of fee payment: 20