EP0154144B1 - Moteur à combustion interne refroidi par air - Google Patents

Moteur à combustion interne refroidi par air Download PDF

Info

Publication number
EP0154144B1
EP0154144B1 EP19850100754 EP85100754A EP0154144B1 EP 0154144 B1 EP0154144 B1 EP 0154144B1 EP 19850100754 EP19850100754 EP 19850100754 EP 85100754 A EP85100754 A EP 85100754A EP 0154144 B1 EP0154144 B1 EP 0154144B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
air
cooling
tubes
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19850100754
Other languages
German (de)
English (en)
Other versions
EP0154144A2 (fr
EP0154144A3 (en
Inventor
Werner Dr.-Ing. Haas
Dieter Hilker
Pavel Jan Slezak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Khd Canada Inc Deutz R & D Division
Kloeckner Humboldt Deutz AG
Original Assignee
Khd Canada Inc Deutz R & D Division
Kloeckner Humboldt Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Khd Canada Inc Deutz R & D Division, Kloeckner Humboldt Deutz AG filed Critical Khd Canada Inc Deutz R & D Division
Priority to AT85100754T priority Critical patent/ATE51433T1/de
Publication of EP0154144A2 publication Critical patent/EP0154144A2/fr
Publication of EP0154144A3 publication Critical patent/EP0154144A3/de
Application granted granted Critical
Publication of EP0154144B1 publication Critical patent/EP0154144B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/04Cylinders; Cylinder heads  having cooling means for air cooling
    • F02F1/06Shape or arrangement of cooling fins; Finned cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/28Cylinder heads having cooling means for air cooling
    • F02F1/30Finned cylinder heads
    • F02F1/34Finned cylinder heads with means for directing or distributing cooling medium 

Definitions

  • the invention relates to an air-cooled reciprocating internal combustion engine according to the preamble of patent claim 1.
  • GB-A 200 938 and FR-A 874 201 both relate to air-cooled cylinder tubes which have different fin heights and GB-A 200 938 additionally has cooling fins arranged vertically in a cooling air supply area.
  • GB-A 200 938 additionally has cooling fins arranged vertically in a cooling air supply area.
  • the object of the invention is to optimize the cooling air flow in an air-cooled internal combustion engine with regard to cooling that is as uniform as possible, in particular of the cylinder tubes.
  • the cooling air is directed radially around the cylinder tubes by the cooling fins running transversely to the longitudinal axis of the cylinder tube, and in addition to the change in the cooling capacity caused by the inventive constant decrease in the rib height of the cooling ribs from the cylinder head-side cylinder tube section to the crankcase-side cylinder tube section, a change in the cooling capacity by the cooling air flowing radially around the cylinder tubes and directed specifically to different cylinder tube sections is reached.
  • due to the coincidence of the different (axial and radial) cooling air flows at the corresponding crossing points particularly intensive cooling is achieved by the cooling air flows which add up.
  • uniform cooling of the internal combustion engine is achieved overall.
  • valve stems of the intake and exhaust valves on the cooling air inflow or cooling air outflow side are arranged in such a way that the plane running through the valve stems is rotated at an acute angle to the longitudinal axis of the cylinder row
  • the circumferential region of the cylinder tubes on the cooling air inflow side is preferably free of cooling fins
  • the transverse to Cooling fins extending in the longitudinal axis of the cylinder tube are in a heat-conducting connection in the adjacent circumferential area, so that a constant heat flow of the cooling fins provided in the area of an exhaust valve of a cylinder to the cooling fins provided in the area of the inlet valve of the adjacent cylinder makes a contribution to the homogenization of the temperatures of also adjacent cylinder tubes in an advantageous manner Row of cylinders.
  • the manufacture (casting mold, mechanical processing methods, casting cores, etc.) is also far less complex, and the maintenance effort is also considerably simplified, e.g. B. due to simplified cleaning of significantly fewer fin surfaces.
  • the cooling fins are also arranged in areas that are easily accessible for cleaning even in reciprocating internal combustion engines with a V-shaped arrangement of the rows of cylinders.
  • the air control devices themselves are components that are easy to manufacture.
  • the air guiding devices are preferably designed in such a way that the cooling air, which is already heated on the circumferential areas of the cylinder tubes on the cylinder head side due to the higher temperature level prevailing there, can be discharged into the surroundings through outflow openings provided in the air guiding devices, so that only those from the crankcase-side cylinder tube sections flowing relatively cold cooling air is used to cool the rear hot cylinder tube areas.
  • higher cooling air velocities and thus higher cooling air mass flows can also be realized in the cylinder head circumferential regions.
  • the air-guiding devices on the cylinder head side in areas of the cylinder row and in the areas to be allocated in the interspaces of adjacent cylinder tubes have a cross-sectional structure that extends essentially up to close to the cooling air outflow-side end faces of cooling ribs running transversely to the longitudinal axis of the cylinder tube. This can be accomplished in a structurally simple manner, for example, by indentations, offsets, etc.
  • the cylinder heads in the area of the end of the cylinder tube on the cooling air outflow side are also provided with cooling fins aligned parallel to the longitudinal axis of the cylinder tube and with air baffles, so that the cooling air flow of the rear cylinder tube areas is provided by the special design of the air guide devices of the cylinder tubes and the air guide plates of the cylinder heads Outflow from the cooling fins of the cylinder tubes, which run parallel to the longitudinal axis of the cylinder tube, also for cooling the rear cylinder head region on the end of the cylinder tube, ie. H. essentially in the area of the outlet channel or outlet valve, can be used for cooling.
  • the air guiding plates in areas near the outlet duct can also contain additional cooling air outlet openings in order to have more intensive cooling achieved here through increased cooling air mass flows.
  • the advantages and effects of the invention ideally create the possibility for an air-cooled internal combustion engine to form the cylinder tubes and the crankcase in one piece, the cooling fins of adjacent cylinder tubes also extending transversely to the cylinder tube longitudinal axis one-piece training can be included, so that the crankcase and the cylinder tubes are easy to manufacture compact unit.
  • cylinder tubes are usually braced as special components with the crankcase via tie rods
  • significant savings in main machining steps can thus be achieved, so that, in addition to the functional advantages of the internal combustion engine according to the invention, overall production is also significantly reduced - and assembly effort and thus ultimately realize significant cost advantages.
  • the stability of the cylinder tubes and the crankshaft housing can also be strengthened, so that these are highly suitable, e.g. B. withstand higher torsional loads.
  • a circumferential reinforcing rib provided in the respective cylinder head end regions of the cylinder tubes can also contribute, as proposed in a further embodiment of the invention.
  • FIGS. 1 to 3 generally designates an air-cooled reciprocating piston internal combustion engine, which is provided with a crankcase 2, cylinder tubes 3 arranged next to one another and single cylinder heads 4.
  • the cylinder tubes 3 are formed in one piece with the crankshaft housing 2 and the outlet channels 5 of the individual cylinder heads 4 extend, as can be seen from FIGS. 1 and 2, on the cooling air outflow side.
  • the inlet duct which is not shown in detail, lies on the cooling air inflow side and opens into the area of the cooling air inflow side, the valves of the outlet and inlet ducts 5 and 6, which are not shown in detail, being arranged such that the planes running through the valve stems are at an acute angle (approx . 30 °) to the cylinder axis 7.
  • the cylinder tubes 3 In a cylinder tube section on the cylinder head side, the cylinder tubes 3 have cooling fins 9 running transversely to the cylinder tube longitudinal axes 8, these cooling fins 9 running transversely to the cylinder tube longitudinal axis 8, as can be seen from the various views according to FIGS. 1 to 3, only in a rear (downstream) side Circumferential region of the cylinder head section on the cylinder head side are provided.
  • the cylinder tubes 3 are thus formed without cooling ribs.
  • the cooling fins 11 running parallel to the longitudinal axis 8 of the cylinder tube and the cooling fins 9 of the cylinder tubes 3 of a row of cylinders 3 extending transversely to the longitudinal axis 8 of the cylinder tube are formed in one piece.
  • the air guiding device 13 On the cooling air outflow side of the cylinder tubes 3, the air guiding device 13 is provided, which on the last cylinder tubes 3 of the row of cylinders is kinked, so that the cylinder row on the side and on the outflow side is completely encased by the air guiding device with a sufficient flow distance 14 (FIG. 3).
  • the air guiding device 13 At the locations of the cylinder tubes 3 at which cooling fins 9 are provided which run transversely to the longitudinal axis 8 of the cylinder tube, the air guiding device 13 has a cross-sectional structure (indentations 15) on the cylinder head side that extends close to the downstream end faces of the cooling fins 9.
  • Outflow openings 16 are provided in these indentations 15, so that the cooling air (arrows 20a) flowing in these upper hot cylinder tube sections can flow directly into the surroundings.
  • the outflow openings 16 for cooling air flowing between the cylinder tubes are arranged asymmetrically to the central planes 21 of adjacent cylinder tubes 3, namely offset to the respective outlet channels 5, so that the peripheral regions of the cylinder tubes or their cooling fins 9 near the outlet channel are cooled more intensively than the opposite peripheral regions of the Cooling fins (inlet duct areas) of the neighboring cylinder tube.
  • the supplied cooling air is deflected after flowing through the respective non-ribbed front and side areas of the cylinder tubes 3 from the air guiding device 13 on the cooling air downstream side in the direction of the cooling fins 11 running parallel to the longitudinal axis 7 of the cylinder tube (arrows 20b), so that this total cooling air flow, which is a relatively low one Has temperature level, can be used to cool the rear hot cylinder tube area and is led through the parallel cooling fins 11 to the hottest area of the cylinder tubes 3 on the cylinder head side. Since the transverse cooling fins 11 are arranged at a distance from the crankshaft housing 2, it is ensured to a high degree that air accumulations, backflows, swirls etc. are avoided in the downstream flow space 14 of the air guiding device.
  • This design of the cooling air duct and the arrangement and design of the cooling fins 9 and 11 results in an optimal utilization of the total cooling air to be supplied and a substantial homogenization of the overall cylinder tube temperatures, so that this optimally fulfills the requirements for an increase in performance of the internal combustion engine and a reduction in temperature voltages given are.
  • the connection of the cooling fins 9 of adjacent cylinder tubes 3 running transversely to the longitudinal axis 8 of the cylinder tube ensures that a steady heat flow takes place from the hot peripheral region of a cylinder tube 3 (outlet channel 5) to the colder peripheral region (inlet channel 6) of the neighboring cylinder tube 3.
  • the cylinder heads 4 also have cooling fins 17 oriented parallel to the cylinder tube axis 8 at their end region on the cylinder tube side and are provided with air baffles 18 on the cooling air outflow side.
  • the air guiding device 13 and the air guiding plate 18, which also extends over the cylinder heads 4 of the entire cylinder row, are at a distance from one another on the outflow side and are bent at their edges by approximately 90 °, so that the cooling air of the cylinder tubes is arranged after flowing through the axis 8 parallel to the cylinder tube longitudinal axis
  • Cooling fins 11 is directed in the direction of the parallel oriented cooling fins 17 of the cylinder heads 4 and can flow together with the cooling air (arrows 20c) of the cylinder heads in this area into the environment (Fig. 3).
  • the cooling air of the cylinder tubes 3 also makes a contribution to cooling the hot end regions of the cylinder heads 4 on the end of the cylinder tubes 4.
  • the air baffles 18 of the cylinder heads 4 additionally have outlet openings 22, so that the cooling air can flow directly into the surroundings in regions of the outlet ducts 5.
  • the reciprocating piston internal combustion engine 1 Due to the one-piece design of the cylinder tubes 3, the crankshaft housing 2 and the cooling fins 9 and 11, the reciprocating piston internal combustion engine 1 according to the invention is designed as an overall unit with excellent stability properties that is simple to manufacture and therefore inexpensive to manufacture.
  • the stability structure of the cylinder tubes 3 in the region 12 on the end of the cylinder head can be improved by a reinforcing rib 19 extending over the entire circumference of the cylinder tubes 3.

Claims (10)

1. Moteur à combustion interne à pistons axiaux (1), refroidi par de l'air, comportant deux ou plusieurs fûts de cylindre (3) juxtaposés à un carter de vilebrequin (2), fûts qui présentent des ailettes de refroidissement (9) qui sur au moins une partie de leur périphérie, sont principalement transversales à l'axe longitudinale (8) du fût ainsi que des ailettes de refroidissement (11) qui, du côté de l'évacuation de l'air de refroidissement (20), sont pratiquement parallèles à l'axe longitudinal des fûts de cylindre (8) et des installations de direction d'air (13), ces installations (13) déviant au moins une partie de l'air de refroidissement qui enveloppe latéralement les fûts de cylindre (3) ou passant entre les fûts de cylindre (3) voisins, en direction des ailettes de refroidissement (11) qui sont parallèles à l'axe longitudinal (8) des fûts de cylindre, les fûts (3) étant recou- verts par des culasses de cylindre (4) dont les canaux d'admission (6) sont de préférence situés du côté de l'arrivée d'air de refroidissement (10) et dont les canaux d'échappement (5) sont situés de préférence du côté de l'évacuation de l'air de refroidissement (20), moteur caractérisé en ce que les ailettes de refroidissement (11) qui sont parallèles à l'axe longitudinal (8) des cylindres sont chaque fois en une seule pièce et arrivent pratiquement jusqu'au niveau des surfaces d'extrémité (12) des fûts de cylindre (3) au niveau des culasses de cylindre et commencent à une distance axiale du carter de vilebrequin (2) au niveau des fûts (3) pour que les nervures de refroidissement (9) dirigées transversalement par rapport à l'axe longitudinal (8) des fûts de cylindre présentent une hauteur d'ailettes plus faible dans un segment de fût de cylindre situé du côté du carter du vilebrequin que dans un segment de fût de cylindre situé du côté de la culasse de cylindre, et dans la direction du carter de vilebrequin (2), la hauteur des ailettes diminue, de manière essentiellement constante et les fûts de cylindre (3) ne comportent pas d'ailettes dans une zone périphérique située du côté de l'arrivée de l'air de refroidissement .(10).
2. Moteur à combustion interne refroidi par de l'air selon la revendication 1, caractérisé en ce que les plans passant par les tiges des soupapes d'admission et d'échappement sont tournés suivant un angle aigu par rapport à l'axe longitudinal (7) de la rangée de cylindres.
3. Moteur à combustion interne refroidi par de l'air selon l'une des revendications précédentes, caractérisé en ce que les ailettes de refroidissement (9) qui sont dirigées transversalement par rapport à l'axe longitudinal des fûts de cylindre (8) sont en liaison de conduction thermique dans les zones périphériques voisines.
4. Moteur à combustion interne refroidi par de l'air selon l'une des revendications précédentes, caractérisé en ce que les ailettes de refroidissement (9) dirigées transversalement par rapport à l'axe longitudinal des fûts de cylindre (8) et appartenant à des fûts de cylindre (3), voisins, sont réalisées en une seule pièce.
5. Moteur à combustion interne refroidi par de l'air selon l'une des revendications précédentes, caractérisé en ce que les installations de guidage d'air (13) présentent au niveau de la culasse des cylindres dans la zone de l'extrémité des rangées de cylindres et entre les fûts des cylindres (6), voisins, une structure de section transversale (1'5) qui arrive pratiquement jusqu'au voisinage des surfaces d'extrémité du côté de la sortie de l'air de refroidissement, pour les ailettes de refroidissement (9) dirigées transversalement par rapport à l'axe longitudinal (8) des fûts de cylindre.
6. Moteur à combustion interne à refroidissement par air selon la revendication 5, caractérisé en ce que les orifices d'écoulement d'air (16) pour l'air de refroidissement qui passe entre les fûts de cylindre (3), voisins, sont prévus de manière asymétrique par rapport au plan médian (21) de fûts de cylindre, voisins, plan perpendiculaire à l'axe longitudinal (7) de la rangée de cylindres et sont décalés en direction des canaux d'échappement respectifs (5).
7. Moteur à combustion interne à refroidissement par air selon l'une des revendications précédentes, caractérisé en ce que les culasses de cylindre (4) comportent du côté de la sortie de l'air de refroidissement (20), des nervures de refroidissement (17) prévues dans la zone d'extrémité du côté des fûts de cylindre, parallèles à l'axe longitudinal (8) des fûts de cylindre et comportant des tôles de guidage d'air (18), et en ce que les bords des installations de guidage d'air (13) des fûts de cylindre (3), du côté de l'extrémité des culasses de cylindre et les bords des tôles de guidage d'air (18) des culasses de cylindre (4) du côté de l'extrémité du fût de cylindre sont recourbés ou coudés à environ 90°, les installations de guidage d'air (13) et les tôles de guidage d'air (18) étant distantes au niveau des ailettes de refroidissement (11) parallèles à l'axe longitudinal (8) des fûts de cylindre (3) et en ce que les installations de guidage d'air (13) des fûts de cylindre (3) arrivent jusqu'à proximité des ailettes de refroidissement (17) des culasses de cylindre (4) parallèles à l'axe longitudinal (8) des fûts de çylindre.
8. Moteur à combustion interne à refroidissement par air selon l'une des revendications précédentes, caractérisé en ce que les fûts de cylindre (3) et le carter de vilebrequin (2) sont réalisés en une seule pièce.
9. Moteur à combustion interne à refroidissement par air selon l'une des revendications précédentes, caractérisé par une nervure de renforcement (19) prévue principalement dans la zone d'extrémité (12) du côté de la culasse de cylindre des fûts de cylindre (3).
10. Moteur à combustion interne à refroidissement par air selon la revendication 7, caractérisé en ce que les tôles de guidage d'air (18) des culasses de cylindre (4) ont des orifices de sortie d'air de refroidissement (22) au niveau des canaux de sortie (5).
EP19850100754 1984-03-09 1985-01-25 Moteur à combustion interne refroidi par air Expired - Lifetime EP0154144B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85100754T ATE51433T1 (de) 1984-03-09 1985-01-25 Luftgekuehlte hubkolbenbrennkraftmaschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3408624 1984-03-09
DE19843408624 DE3408624A1 (de) 1984-03-09 1984-03-09 Luftgekuehlte hubkolbenbrennkraftmaschine

Publications (3)

Publication Number Publication Date
EP0154144A2 EP0154144A2 (fr) 1985-09-11
EP0154144A3 EP0154144A3 (en) 1986-08-27
EP0154144B1 true EP0154144B1 (fr) 1990-03-28

Family

ID=6229994

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850100754 Expired - Lifetime EP0154144B1 (fr) 1984-03-09 1985-01-25 Moteur à combustion interne refroidi par air

Country Status (5)

Country Link
US (1) US4633823A (fr)
EP (1) EP0154144B1 (fr)
AT (1) ATE51433T1 (fr)
CA (1) CA1238540A (fr)
DE (2) DE3408624A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3540487A1 (de) * 1985-11-15 1987-05-21 Kloeckner Humboldt Deutz Ag Luftleitblech fuer luftgekuehlte brennkraftmaschinen
DE3616636A1 (de) * 1986-05-16 1987-11-19 Porsche Ag Luftgekuehlte mehrzylinder-brennkraftmaschine
US5638779A (en) * 1995-08-16 1997-06-17 Northrop Grumman Corporation High-efficiency, low-pollution engine
US7617804B2 (en) * 2003-09-25 2009-11-17 Cordy Jr Clifford B Axial flow cooling for air-cooled engines
US20050066916A1 (en) * 2003-09-25 2005-03-31 Cordy Clifford B. Axial flow cooling for air-cooled engines
JP4568672B2 (ja) * 2005-10-18 2010-10-27 三菱重工業株式会社 強制空冷エンジンの冷却風案内カバー
TWI311897B (en) * 2006-10-26 2009-07-01 Delta Electronics Inc Electronic apparatus with water blocking and draining structure and manufacturing method thereof
CN111075589B (zh) * 2019-12-30 2021-03-30 重庆品恒动力机械有限公司 强制风冷柴油机机体
RU204384U1 (ru) * 2020-10-20 2021-05-21 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ Военная академия Ракетных войск стратегического назначения имени Петра Великого МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ Система воздушного охлаждения двигателя внутреннего сгорания с управляемым замкнутым контуром охлаждения

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE366305C (de) * 1923-01-02 Gustav Roehr Zylinderblock fuer mehrzylindrige Verbrennungskraftmaschinen
DE511424C (de) * 1930-10-29 Augustin Seguin Innenbrennkraftmaschine mit Luftkuehlung
CH100547A (de) * 1918-05-02 1923-08-01 Waermekraft Ges Mit Beschraenk Verfahren zum Betriebe von luftgekühlten Verbrennungsmotoren und Einrichtung zur Ausübung des Verfahrens.
US1398849A (en) * 1920-11-01 1921-11-29 Bristol Aeroplane Co Ltd Cylinder for internal-combustion engines
US1622015A (en) * 1921-03-29 1927-03-22 Jr John M Williams Internal-combustion engine
US1506950A (en) * 1921-11-12 1924-09-02 John W Smith Internal-combustion engine
GB200938A (en) * 1922-04-26 1923-07-26 Gordon Henry John Templeman Improved air cooled internal combustion engine cylinder
CH179201A (de) * 1934-09-06 1935-08-31 Bernhard Gabrielson John Einrichtung zum Kühlen von Brennkraftmaschinen mittelst Luft.
DE705247C (de) * 1936-10-15 1941-04-22 John Bernhard Gabrielson Luftkuehlanordnung fuer mehrzylindrige Verbrennungsmotoren mit seitlich zu den Zylindern angeordneten Auslaessen fuer die Abgase
DE733191C (de) * 1937-07-29 1943-03-20 Bayerische Motoren Werke Ag Einrichtung zur Kuehlung von luftgekuehlten Brennkraftmaschinen in Reihenbauart
FR874201A (fr) * 1940-07-27 1942-07-31 Ets Ringhoffer Tatra Sa Dispositif de construction des ailettes de renoidissement des cylindres des moteurs à explosion ou à combustion refroidis par l'air
GB877560A (en) * 1958-11-07 1961-09-13 Daimler Benz Ag Improvements relating to air-cooled four-stroke injection combustion engines
DE1300344B (de) * 1963-07-06 1969-07-31 Volkswagenwerk Ag Luftgekuehlter Zylinderkopf fuer eine mehrzylindrige Brennkraft-maschine
GB1110453A (en) * 1965-07-19 1968-04-18 Schoenebeck Dieselmotoren Improvements in or relating to cooling systems for air-cooled internal combustion engines
DE6906207U (de) * 1968-08-15 1969-07-10 Tovarna Motornih Vozil T O M O Zylinder mit getrenntem zylinderkopf
US4047508A (en) * 1975-12-08 1977-09-13 Avco Corporation Cooling air distribution system for reciprocating aircraft engines
AT365743B (de) * 1977-06-07 1982-02-10 List Hans Zylinderkopf fuer eine luftgekuehlte brennkraftmaschine
DE2921925A1 (de) * 1979-05-30 1981-03-12 Klöckner-Humboldt-Deutz AG, 5000 Köln Luftgekuehlte brennkraftmaschine mit luftfuehrungs- und luftleitblechen.
US4515111A (en) * 1984-04-19 1985-05-07 Khd Canada Inc. Air-cooled, reciprocating piston, internal combustion engine with cylinder heads forming arcuate or S-shaped cooling ducts therebetween

Also Published As

Publication number Publication date
DE3408624A1 (de) 1985-09-12
DE3576842D1 (de) 1990-05-03
EP0154144A2 (fr) 1985-09-11
CA1238540A (fr) 1988-06-28
US4633823A (en) 1987-01-06
ATE51433T1 (de) 1990-04-15
EP0154144A3 (en) 1986-08-27

Similar Documents

Publication Publication Date Title
DE2950905C2 (de) Zylinderkopf für einen mehrzylindrigen Verbrennungsmotor
DE19618625C1 (de) Flüssigkeitsgekühlter Kolben für Verbrennungsmotoren
DE2756006C2 (fr)
DE2420051A1 (de) Zylinderkopfblock
DE2839199C2 (de) Im Druckgießverfahren herstellbarer Zylinderkopf für wassergekühlte Brennkraftmaschinen
EP0268988B1 (fr) Moteur diesel
AT519458B1 (de) Zylinderkopf für eine brennkraftmaschine
EP0774577B1 (fr) Culasse à refroidissement liquide pour moteur à combustion interne multicylindre
EP0088157B1 (fr) Culasse pour un moteur à combustion interne, refroidi par eau
EP0154144B1 (fr) Moteur à combustion interne refroidi par air
EP0838585B1 (fr) Culasse pour un moteur à combustion interne à plusieurs cylindres
DE10222078B4 (de) Mehrzylindermotor
EP0819837B1 (fr) Circuit de refroidissement d'un moteur à combustion interne
EP0062143A2 (fr) Culasse de cylindres pour un moteur à compression d'air, à auto-allumage et à injection
DE102014118060A1 (de) Zylinderblock einer flüssigkeitsgekühlten Verbrennungskraftmaschine in Monoblock-Bauweise und Gießform zu dessen Herstellung
DE4030652C2 (fr)
DE3435386A1 (de) Luftgekuehlte mehrzylinder-brennkraftmaschine
EP0632190B1 (fr) Moteur à combustion interne avex deux rangées de cylindres
DE102017216694A1 (de) Verbrennungsmotorgehäuse mit Zylinderkühlung
DE19802060A1 (de) Flüssigkeitsgekühlter Zylinderkopf einer mehrzylindrigen, je Zylinder mehrventiligen Brennkraftmaschine
DE3701083C1 (en) Engine housing of an internal combustion engine with banks of cylinders arranged in a V shape
DE2227120C2 (de) Luftgekühlte Hubkolben-Brennkraftmaschine
DE638258C (de) Luftgekuehlter Mehrzylinderreihenmotor, insbesondere fuer Flugzeuge
EP0123101B1 (fr) Culasse pour moteur à combustion interne alternatif à refroissement par air
DE102019212200A1 (de) Zylinderkopf mit verbesserter ventilbrückenkühlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR IT

17P Request for examination filed

Effective date: 19860724

17Q First examination report despatched

Effective date: 19870416

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19900328

Ref country code: FR

Effective date: 19900328

REF Corresponds to:

Ref document number: 51433

Country of ref document: AT

Date of ref document: 19900415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3576842

Country of ref document: DE

Date of ref document: 19900503

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RIN2 Information on inventor provided after grant (corrected)

Free format text: HAAS, WERNER, DR.-ING. * HILKER, DIETER * SLEZAK, PAVEL JAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910214

Year of fee payment: 7

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921001