EP0268988B1 - Moteur diesel - Google Patents

Moteur diesel Download PDF

Info

Publication number
EP0268988B1
EP0268988B1 EP87117012A EP87117012A EP0268988B1 EP 0268988 B1 EP0268988 B1 EP 0268988B1 EP 87117012 A EP87117012 A EP 87117012A EP 87117012 A EP87117012 A EP 87117012A EP 0268988 B1 EP0268988 B1 EP 0268988B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
engine according
cooling
cylinder head
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87117012A
Other languages
German (de)
English (en)
Other versions
EP0268988A2 (fr
EP0268988A3 (en
Inventor
Lothar Bauer
Wolfgang Strusch
Ernst-Siegfried Hartmann
Herbert Schleiermacher
Jürgen Wahnschaffe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kloeckner Humboldt Deutz AG
Original Assignee
Kloeckner Humboldt Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kloeckner Humboldt Deutz AG filed Critical Kloeckner Humboldt Deutz AG
Priority to AT87117012T priority Critical patent/ATE76161T1/de
Publication of EP0268988A2 publication Critical patent/EP0268988A2/fr
Publication of EP0268988A3 publication Critical patent/EP0268988A3/de
Application granted granted Critical
Publication of EP0268988B1 publication Critical patent/EP0268988B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0021Construction
    • F02F7/0031Construction kit principle (modular engines)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/38Cylinder heads having cooling means for liquid cooling the cylinder heads being of overhead valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P2003/006Liquid cooling the liquid being oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/34Lateral camshaft position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F2001/104Cylinders; Cylinder heads  having cooling means for liquid cooling using an open deck, i.e. the water jacket is open at the block top face
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/247Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis

Definitions

  • the invention relates to a diesel internal combustion engine according to the preamble of the first claim.
  • the FR-A 49 15 26 shows an Otto engine with an identical water-cooled cylinder crankcase for both a water-cooled and an air-cooled cylinder head.
  • the invention is therefore based on the object of providing a diesel engine which can be produced by replacing fewer parts either as an oil-cooled engine or as an air-cooled engine.
  • the assembly must be carried out on the same assembly line.
  • the solution according to the invention is characterized in that only one cylinder crankcase is used for both variants, but this is strongly adapted to the requirements.
  • the cylinder tube is surrounded by an annular cylinder cooling jacket space, which is open to the cylinder head.
  • the cylinder heads of both variants are adapted to this, so that the temperature-critical area in the transition area cylinder tube / cylinder head is cooled intensively.
  • a particular advantage is that only a single cylinder head gasket is required that fits both cylinder heads.
  • the cylinder heads of a row of cylinders are combined to form a block cylinder head made of gray cast iron.
  • oil is used as the coolant. This oil also serves as a lubricant.
  • FIG. 1 and 2 show the common cylinder crankcase 1 in longitudinal section and FIG. 3 in cross section through a cylinder.
  • Fig. 5 shows a section in the longitudinal direction of the engine through the cylinder crankcase.
  • the cylinder tube 2 is surrounded by an annular cylinder cooling jacket space 3, the cylinder cooling jacket space 3 being open towards the cylinder head 100, 200 (open-deck construction).
  • the cylinder cooling jacket space 3 is conical in the axial direction, the width, ie. H. the clear width of the cylinder cooling jacket space 3 increases towards the cylinder head. Due to the conical design of the cylinder cooling jacket space 3, it can be cleaned more easily after casting and, most importantly, the cooling also increases with increasing proximity to the cylinder head 100, 200 due to the larger flow rate.
  • the cylinder cooling jacket space 3 extends only up to approximately 2/3 of the piston stroke into the cylinder crankcase 1. Only the thermally critical area of the cylinder crankcase 1 is thus intensively cooled.
  • the cylinder heads 100, 200 are fastened to the cylinder crankcase 1 with cylinder head screws 8.
  • the effective thread length of the cylinder head screws 8 is arranged in the region of the crank-side end of the cylinder cooling jacket space 3. This ensures sufficient compression of the cylinder head gasket 300 between the combustion chamber and the cylinder cooling jacket space 3.
  • Fig. 5 shows that in the direction of the longitudinal center axis 4 of the row of cylinders, the cylinder cooling jacket space 3 of one cylinder merges into the cylinder cooling jacket space 3 of the other cylinder, such that a gap 5 for the coolant passage is formed between two adjacent cylinders.
  • the centers of the cylinder cooling jacket spaces 3 are shifted from the centers of the cylinder tubes 2, two adjacent cylinder cooling jacket spaces 3 being shifted in the opposite direction perpendicular to the longitudinal center axis 4 of the row of cylinders. Due to the different displacement, with respect to the longitudinal central axis 4 of the row of cylinders, partial cooling chambers 3a, b of the cylinder cooling jacket chamber 3 of different sizes are formed.
  • each cylinder has two different sized cooling compartments 3a, b within the cylinder cooling jacket space 3, which are each arranged on one side of the longitudinal central axis 4.
  • one partial cooling space 3b has a larger flow cross section for the cooling liquid than the other Partial cooling chamber 3a on the other side of the longitudinal central axis 4.
  • the partial cooling chambers 3a, b are interchanged with respect to the longitudinal central axis 4, so that on one side of the longitudinal central axis 4 the partial cooling chambers 3a, b and thus the flow cross sections for the cooling liquid are in their Alternate size.
  • the flow cross-section can also be influenced without moving the centers of the cylinder cooling jacket spaces 3 from the centers of the cylinder tubes 2 by introducing obstacles into the cylinder cooling jacket spaces.
  • the coolant flows through a coolant inflow 6 into the cylinder cooling jacket space 3 of the first cylinder.
  • the coolant inflow 6 can be arranged on the end face or on the long side of the row of cylinders.
  • An alternative coolant inflow 6 is shown in dashed lines in FIG. 5. It opens into the partial cold room 3a.
  • the cooling liquid flow is then divided into two partial flows through the partial cooling rooms 3a and 3b. Since the flow cross section of the partial cooling space 3b is larger than that of 3a, one also flows through this larger amount of coolant.
  • the two partial flows mix again in gap 5 between the cylinders.
  • the partial cooling chamber with the larger flow cross section 3b lies on the other side of the longitudinal central axis 4 than in the previous cylinder.
  • each row of cylinders has a coolant inflow 6 and coolant outflow 7, each of which is arranged in the outermost cylinders of the row of cylinders.
  • each cylinder has at least one coolant outflow which is arranged at the end of the cylinder cooling jacket space 3 on the cylinder head side. This is particularly expedient if, after passing through the cylinder cooling jacket space 3, the cooling liquid is also intended to cool parts of the cylinder head. This embodiment will be explained in detail later.
  • Oil is ideally suited as a cooling liquid, since the internal combustion engine cannot be cooled with oil, but can also be lubricated at the same time. Accordingly, only one cooling and lubricating medium is necessary.
  • the two different cylinder heads 100, 200 which can be mounted on the cylinder crankcase 1 just described are described in detail below. Both variants have in common that the cylinder heads of a row of cylinders are combined to form a block cylinder head and are made of gray cast iron. This makes the cylinder heads particularly inexpensive to manufacture.
  • the cylinder head base 102 is provided with a slot-like recess 103 for better cooling on the combustion chamber side between the individual cylinders in the cylinder head base 3 covered by the cylinder cooling jacket space 3.
  • this slot-like recess 103 is also referred to as a slot.
  • 6 shows the slits 103 as a top view of the cylinder head base. It can be clearly seen that the slots are arranged approximately at right angles to the connecting line of the gas exchange valves 110 and the diameter of the slots 103 also increases with increasing distance from the connecting line. 6 also shows an injection nozzle 112 arranged between the gas exchange valves 110 in the web area 111.
  • the holes for the cylinder head bolts are designated with 113 and those for the bumpers with 114.
  • FIG. 7 shows a cross section through the cylinder head 100 in the region between two cylinders, in which the slots 103 are ventilated via bores or channels 105 leading to the cooling air space 104.
  • the bores or channels 105 are arranged on both sides of the end faces of the slot 103.
  • the slots 103 are connected to the liquid-cooled cylinder cooling jacket space 3 via openings 302 in the cylinder head gasket 300 (see description in FIG. 8).
  • a distribution line 106 is arranged in the cylinder head 100 and extends over its entire length, which is connected at one end side of the row of cylinders to the cylinder cooling jacket space 3 via a bore 107 which extends through the cylinder head gasket.
  • the distribution line 106 is shown in section and in Fig. 1 the bore 107. From the distribution line 106, individual bores 108 lead into the valve or rocker arm bearing space 109 (Fig. 1) for the lubrication of parts located there. Since oil is used as the cooling liquid according to the invention, the oil thus serves both for cooling and for lubrication.
  • cooling air flow is divided into two partial flows, of which one partial flow cools an engine oil cooler (or a heat exchanger) and the other partial flow cools the cylinder head 100.
  • the liquid-cooled cylinder head 200 according to the invention is shown in FIGS. 2, 3, 4.
  • FIG. 2 shows the cylinder head 200 in longitudinal section and FIG. 3 shows a cross section through a cylinder along the line A-A in FIG. 2 and FIG. 4 shows a section along the line B-B in FIG. 2.
  • annular space 203 which lies above the cylinder cooling jacket space 3 of the cylinder crankcase 1 and which is open to the cylinder crankcase 1.
  • the annular spaces 203 of adjacent heads merge into one another in the intermediate area.
  • the annular space 203 like the cylinder cooling jacket space 3 in the cylinder crankcase 1, is conical in the axial direction, but the width of the annular space 203 toward the cylinder crankcase 1 increases. This measure intensifies the cooling in the transition area cylinder head 200 and cylinder crankcase 1 and also makes cleaning after casting easier.
  • a land bore 204 (FIG. 4) is arranged in the cylinder head base 202, which runs straight through the land area and is connected at both ends to the annular space 203 in a fluid-carrying manner.
  • the web bore advantageously leads between the injection nozzle 206 and the outlet valve 209.
  • a bore 205 is arranged in the cylinder head base 202 with respect to the connecting line of the intake and exhaust valves 208, 209 on the side opposite the injection nozzle 206, which opens at an angle of approximately 65.degree other end opens into the annular space 203.
  • the opening of the bore 205 in the web bore 204 lies approximately on the connecting line of the inlet and outlet valves.
  • Another convenient bore (not shown in the figures) is in the cylinder head base 202 with respect to the connecting line of the intake and exhaust valves 208, 209 on the Side of the injector 206 is arranged, the bore opening on the one hand in the web bore 204 in the web area and on the other hand in the annular space 203 carrying liquid and is arranged between the injection nozzle 206 and the inlet valve 208. It is particularly expedient to design the bore just described with the bore 205 as a single, straight bore.
  • an axial connecting bore 210 leads into a distribution line 211, so that the cylinder cooling jacket spaces 3 and the bore 205 or the web bore 204 are connected to one another in a liquid-carrying manner with the distribution line 211.
  • the distribution line 211 runs through the entire length of the cylinder head 200.
  • individual bores 212 lead into the valve or rocker arm bearing space 213.
  • the oil that is used there primarily serves to lubricate the parts there.
  • an air space 214 is arranged between the valve or rocker arm bearing space 213 and the outlet channel, which thermally decouples the valve or rocker arm bearing space 213 from the outlet channel and thereby to the bottom of the valve or Rocker arm storage space 213 does not cause dripping oil to coke.
  • the air space 214 traverses the cylinder head 200 in the transverse direction and communicates with the atmosphere at both ends. A cooling air flow is advantageously conducted through the air space 214.
  • the axial connecting bore 210 is expediently guided through the air space 214 and in such a way that it is arranged in the immediate vicinity of the outlet valve guide.
  • the air spaces 214 are arranged in the transverse direction of the engine, they are ideally suited for routing lines 215 from one engine longitudinal side to the other. These lines 215 can u. a. Pipe or hose lines or electrical lines.
  • the coolant flows through the cylinder cooling jacket spaces 3 in the cylinder crankcase 1 as described and reaches the annular space 203 via passages in the cylinder head gasket 300.
  • the exact position of the passages is explained in point IV (cylinder head gasket).
  • the entry of the cooling liquid into the annular space 203 is marked with an asterisk in FIG. 4.
  • the coolant then flows in the annular space 203 either into the bore 205 or into the web bore 204 and from there via the axial connecting bore 210 into the distribution line 211.
  • Individual bores 212 lead from the distribution line 211 into the valve or rocker arm bearing space 213. This serves the coolant now as a lubricant.
  • the cylinder head gasket 300 is shown in a top view.
  • the outstanding feature of this cylinder head gasket 300 is that it can be used both for the air-cooled cylinder head 100 and for the liquid-cooled cylinder head 200.
  • the prerequisite for this is an equal number of cylinders.
  • the passages of the cooling liquid for the liquid-cooled cylinder head 200 that are not required are covered by the cylinder head floor 102 on the combustion chamber side in the air-cooled cylinder head 100. This applies analogously to the passages for the air-cooled cylinder head 100 in the liquid-cooled cylinder head 200.
  • the cylinder openings 304 in the cylinder head gasket 300, the z. B. is made of a soft material with an embedded carrier sheet, are provided with a sheet metal surround 308 around the combustion chamber area. These sheet metal enclosures 308 merge into one another in the intermediate region of two cylinder openings 304.
  • Four passages 309 for the cylinder head screws 8 are arranged around the cylinder openings 304.
  • passages are arranged in the circumferential direction around the cylinder openings 304, the arrangement and task of which are described below.
  • the passages or openings 302 and 303 are for the air-cooled Determines cylinder head 100 and the passages 305 ⁇ , 305 ⁇ and slot-like recess 307 for the liquid-cooled cylinder head 200.
  • a passage 303 is arranged on an end face of the cylinder head gasket 300, which in the air-cooled cylinder head 100 establishes a connection between the cylinder cooling jacket space 3 via the bore 107 to the distribution line 106.
  • This passage 303 is arranged in the area of the passage 309 for the cylinder head screws 8 on the injection valve side 310 and is located between the passage 309 and the sheet metal casing 308.
  • two openings 302 are arranged in the cylinder head gasket 300 between two cylinder openings 304 approximately at right angles to the connecting axis of the cylinder openings 304, via which the cylinder cooling jacket space 3 is connected to the slot 103 in the air-cooled cylinder head 100.
  • passages 305 are arranged in the cylinder head gasket 300 in the overlap region of the cylinder cooling jacket space 3 and the annular space 203. These passages are divided into 305 ⁇ and 305 ⁇ for clarity.
  • a passage 305 ⁇ is arranged in the overlap area of the cylinder cooling jacket space 3 and the annular space 203 approximately in the middle between the web bore 204 and the bore 205. 4, the entry of the cooling liquid into the annular space 203 is identified by an asterisk. Furthermore, there are several, advantageously two passages 305 ⁇ between the two openings of the web bore 204 in the annular space 203 on the opposite side of the bore 205 with respect to the web bore 204. The number and size of the passages 305 depends on the amount of coolant required. The flow of the cooling liquid through the annular space 203 is indicated by arrows in FIG. 4. By arranging the passages 305, the flow in the annular space 203 can be varied and thus specific areas can be cooled more intensively.
  • passages 305 only at one end of the cylinder head gasket 300.
  • a slot-like recess 307 projects into the cylinder head gasket 300, which extends into the area of the cylinder head gasket 300 covered by the cylinder cooling jacket space 300.
  • the recess 307 also serves for ventilation.
  • the slot-like recess 307 is advantageously arranged at the opening 306 adjacent to the end of the row of cylinders.
  • the cylinder head gasket 300 is notched on the injection valve side 310 in the region between two openings 306 simulated by the number eight in the direction of the longitudinal center axis of the cylinders, this notch 311 leading into the cylinder head gasket 300 to approximately half the width of the opening 306.
  • the cylinder head base 102, 202 is advantageously congruent in its outer contour to the cylinder head gasket 300, i. H. it also has notches on the injector side.
  • this invention provides a diesel internal combustion engine which is simple and inexpensive to manufacture and can be provided with either an air-cooled or liquid-cooled cylinder head, as desired. Only one cylinder head gasket is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Gasket Seals (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Claims (37)

  1. Moteur diesel comportant au choix une culasse à refroidissement par de l'huile ou à refroidissement par de l'air, avec un carter de vilebrequin 1 refroidi par du liquide et qui est identique et commun aux deux versions, avec le même vilebrequin, les mêmes bielles, pistons, chambre de combustion et la même pompe à huile,
       Moteur caractérisé en ce que,
    a) dans chaque cylindre, le tube de cylindre (2) est entouré d'une enveloppe de refroidissement (3), annulaire et l'enveloppe de refroidissement (3) est ouverte en direction de la culasse (100, 200),
    b) la culasse est un bloc-culasse qui suivant la version, comporte, dans le cas du refroidissement par de l'huile, des canaux d'huile comme cela est connu et dans le cas du refroidissement par de l'air, des canaux d'air comme cela est connu, et chaque version de la culasse est identique quant aux dimensions du carter de vilebrequin ainsi qu'au nombre des vis de culasse et des perçage pour ces vis, avec un seul joint de culasse pour les deux versions pour être vissé sur le carter de vilebrequin, et dans les deux versions de la culasse, la disposition des soupapes, les cachesoupapes et la disposition, la position et la réalisation des injecteurs sont identiques,
    c) dans la version à refroidissement par air, le fond (102) de la culasse, du côté de la chambre de combustion, comporte une cavité en forme de fente (103) entre les différents cylindres dans la zone de fond de culasse recouverte par l'enveloppe de refroidissement (3), cette cavité étant reliée par des passages (302) du joint de culasse (300) à l'enveloppe de refroidissement (3) refroidie par le liquide,
    d) dans la version à refroidissement par huile, le fond (202) de la culasse comporte un volume annulaire (203) situé au-dessus de l'enveloppe de refroidissement de cylindre (3), ce volume annulaire étant ouvert en direction du carter de vilebrequin (1) et les volumes annulaires (203) des culasses voisines communiquent.
  2. Moteur diesel selon la revendication 1, caractérisé en ce que l'enveloppe de refroidissement (3) présente une forme conique dans la direction axiale et la largeur de l'enveloppe de refroidissement de cylindre (3) va en augmentant vers la culasse (100, 200).
  3. Moteur diesel selon la revendication 1 ou 2, caractérisé en ce qu en direction de l'axe longitudinal (4) de la rangée des cylindres, l'enveloppe de refroidissement (3) de l'un des cylindres, rejoint l'enveloppe de refroidissement (3) de l'autre cylindre et entre deux cylindres voisins, il y a un intervalle (5) pour le passage de liquide de refroidissement.
  4. Moteur diesel selon l'une des revendications 1 à 3, caractérisé en ce que la section de passage d'une enveloppe de refroidissement de cylindre (3) d'un côté de l'axe longitudinal (4) est plus grande que de l'autre côté et l'enveloppe de refroidissement de cylindre (3) voisine, présente une section de passage opposée par rapport à l'axe longitudinal (4).
  5. Moteur diesel selon la revendication 4, caractérisé en ce que la section de passage s'obtient par le décalage du centre de l'enveloppe de refroidissement de cylindre (3) par rapport au centre du tube du cylindre (2).
  6. Moteur diesel selon l'une des revendications 1 à 5, caractérisé en ce que l'arrivée du liquide de refroidissement (6) et la sortie du liquide de refroidissement (7) se trouvent dans les cylindres extérieurs de la rangée de cylindres.
  7. Moteur diesel selon l'une des revendications 1 à 6, caractérisé en ce que chaque cylindre comporte au moins une sortie du liquide de refroidissement (7) à l'extrémité de l'enveloppe de refroidissement (3) du côté de la culasse.
  8. Moteur diesel selon l'une des revendications 1 à 7, comportant des vis de culasse (8) pour fixer la culasse (100, 200) sur le carter de vilebrequin (1), moteur caractérisé en ce que l'enveloppe de refroidissement (3) s'étend axialement seulement sur environ 2/3 de la course de piston dans le carter de vilebrequin (3) et la longueur utile de filetage des vis de culasse (8) se situe dans la zone de l'extrémité de l'enveloppe de refroidissement (3) du côté du vilebrequin.
  9. Moteur diesel selon l'une des revendications 1 à 8, caractérisé en ce qu'en dessous de l'enveloppe de refroidissement de cylindre (3) il y a une cloison intermédiaire (9) pour le carter de vilebrequin qui traverse l'ensemble de la rangée des cylindres et en dessous de cette cloison intermédiaire (9), les tubes de cylindre (2) se rejoignent dans l'intervalle de deux cylindres, alors qu'ailleurs, ils sont en porte-à-faux.
  10. Moteur diesel selon la revendication 9, caractérisé en ce que les tubes de cylindre (2) s'appuient en dessous de la cloison intermédiaire (9) dans la direction du carter de vilebrequin, contre ce carter par des bourrelets ou des nervures.
  11. Moteur diesel selon l'une des revendication 1 à 10, caractérisé en ce que le liquide de refroidissement est de l'huile.
  12. Moteur diesel selon l'une des revendications 1 à 11, caractérisé en ce que la culasse (100) est refroidie par air.
  13. Moteur diesel selon la revendication 12, caractérisé en ce que la cavité (103) en forme de fente est aérée par des perçages ou des canaux (105) conduisant au volume d'air de refroidissement (104).
  14. Moteur diesel selon la revendication 12 ou 13, caractérisé en ce que la culasse (100) comporte une conduite de distribution (106) occupant toute la longueur, cette conduite étant reliée à une extrémité de la rangée de cylindres à l'enveloppe de refroidissement (3) par un perçage (107) qui traverse le joint de culasse (300).
  15. Moteur diesel selon la revendication 14, caractérisé en ce que différents perçages (108) conduisent dans la chambre des paliers de soupape et de culbuteur (109) à partir de la conduite de distribution (106).
  16. Moteur diesel selon l'une des revendications 12 à 15, caractérisé en ce que le flux d'air de refroidissement se divise en deux veines dont l'une traverse le radiateur d'huile du moteur et l'autre, traverse la culasse (100).
  17. Moteur diesel selon l'une des revendications 1 à 11, caractérisé en ce que la culasse (200) est refroidie par liquide.
  18. Moteur diesel selon la revendication 17, caractérisé en ce qu'un volume annulaire (203) situé du côté de l'enveloppe de refroidissement de cylindre (3) est prévu dans le fond (202) de la culasse, ce volume annulaire étant ouvert en direction du carter de vilebrequin (1) et les volumes annulaires (203) de culasse voisine communiquent.
  19. Moteur diesel selon la revendication 18, caractérisé en ce que le volume annulaire (203) est conique dans la direction axiale et la largeur du volume annulaire (203) va en augmentant en direction du carter de vilebrequin (1).
  20. Moteur diesel selon la revendication 18 ou 19, caractérisé en ce que la section de passage d'un volume annulaire (203) d'un côté de l'axe longitudinal de la rangée des cylindres est plus grande que de l'autre côté et le volume annulaire voisin (203) présente une section de passage opposée par rapport à l'axe longitudinal.
  21. Moteur diesel selon l'une des revendications 17 à 20, caractérisé par un perçage d'entretoise (204) dans le fond (202) de la culasse, ce perçage traversant en ligne droite la zone de l'entretoise et à ses deux extrémités, il est relié au volume annulaire (203) pour le passage du liquide.
  22. Moteur diesel selon l'une des revendications 18 à 21, caractérisé par un perçage (205) réalisé dans le fond (202) de la culasse, du côté opposé aux injecteurs (206) par rapport à la ligne de jonction des soupapes d'admission et d'échappement, ce perçage débouchant suivant un angle d'environ 65° par rapport au perçage d'entretoise (204) pour le passage du liquide dans la zone de l'entretoise et son autre extrémité débouche dans le volume annulaire (203).
  23. Moteur diesel selon l'une des revendications 17 à 22, caractérisé par un perçage de liaison (210), axial dans la culasse (200), ce perçage étant d'une part relié à l'embouchure du perçage (205) dans le perçage d'entretoise (204) au niveau de l'entretoise et d'autre part, dans une conduite de distribution (211) pour le passage du liquide.
  24. Moteur diesel selon la revendication 23, caractérisé en ce que la conduite de distribution (211) traverse toute la longueur de la culasse (200) et différents perçages (212) relient la conduite de liaison (211) à la chambre des paliers de soupape et de culbuteur (213).
  25. Moteur diesel selon l'une des revendication 17 à 24, caractérisé en ce qu'entre le canal de sortie et la chambre des paliers de soupape et de culbuteur (213), il est prévu un volume d'air (214) ouvert à ses extrémités et communiquant avec l'atmosphère.
  26. Moteur diesel selon la revendication 25, caractérisé par un flux d'air de refroidissement traversant le volume d'air (214).
  27. Moteur diesel selon la revendication 25 ou 26, caractérisé en ce que le perçage de liaison (210) axial traverse le volume d'air (214) et est prévu au voisinage immédiat des moyens de guidage des soupapes d'échappement.
  28. Moteur diesel selon l'une des revendications 1 à 27, caractérisé en ce qu'à une extrémité du joint de culasse (300), il est prévu un passage (303) qui relie l'enveloppe de refroidissement de cylindre (3) par le perçage (107) à la conduite de distribution (106).
  29. Moteur diesel selon l'une des revendications 1 à 28, caractérisé en ce qu'entre deux ouvertures de cylindre (304) le joint de culasse (300) comporte sensiblement perpendiculairement à la ligne de jonction des ouvertures de cylindre, deux passages (302) par lesquels l'enveloppe de refroidissement de cylindre (3) est reliée à la cavité en forme de fente (103) dans la culasse (100).
  30. Moteur diesel selon l'une des revendications 1 à 29, caractérisé en ce que le joint de culasse (300) comporte des passages (305) dans la zone de recouvrement entre l'enveloppe de refroidissement de cylindre (3) et le volume annulaire (203).
  31. Moteur diesel selon la revendication 30, caractérisé en ce que les passages (305) ne sont prévus qu'à une extrémité du joint de culasse (300).
  32. Moteur diesel selon la revendication 30, caractérisé par un passage (305') dans la zone de recouvrement entre l'enveloppe de refroidissement de cylindre (3) et le volume annulaire (203), sensiblement entre le perçage d'entretoise (204) et le perçage (205).
  33. Moteur diesel selon la revendication 30 ou 32, caractérisé par au moins un passage (305") dans la zone de recouvrement entre l'enveloppe de refroidissement de cylindre (3) et le volume annulaire (203), sensiblement entre les deux embouchures du perçage d'entretoise (204) dans le volume annulaire (203) du côté opposé à celui du perçage (205) par rapport au perçage d'entretoise (204).
  34. Moteur diesel selon l'une des revendications 1 à 33, caractérisé en ce que dans le joint de culasse (300), entre deux ouvertures de cylindre (304), il y a une ouverture (306) en forme de chiffre huit qui est traversée chaque fois par une tige de poussoir d'un cylindre et partant d'une ouverture (306) de la rangée de cylindres, il y a une cavité (307) en forme de fente dans le joint de culasse (300) qui conduit jusque dans la zone du joint de culasse (300) recouverte par l'enveloppe de refroidissement de cylindre (3).
  35. Moteur diesel selon la revendication 34, caractérisé en ce que la cavité (307) est prévue à l'extrémité de la rangée de cylindres voisine de l'ouverture (306).
  36. Moteur diesel selon la revendication 34, caractérisé en ce que le joint de culasse (300) comporte du côté des injecteurs (310), dans la zone comprise entre deux ouvertures (306) en forme de chiffre huit, une encoche dirigée vers l'axe longitudinal des cylindres et cette encoche (311) arrive jusqu'à environ la moitié de la largeur de l'ouverture (306) dans le joint de culasse (300).
  37. Moteur diesel selon l'une des revendications 1 à 36, caractérisé en ce que le fond (102, 202) de la culasse a un contour extérieur qui coïncide avec celui du joint de culasse (300).
EP87117012A 1986-11-20 1987-11-18 Moteur diesel Expired - Lifetime EP0268988B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87117012T ATE76161T1 (de) 1986-11-20 1987-11-18 Dieselbrennkraftmaschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863639691 DE3639691A1 (de) 1986-11-20 1986-11-20 Dieselbrennkraftmaschine
DE3639691 1986-11-20

Publications (3)

Publication Number Publication Date
EP0268988A2 EP0268988A2 (fr) 1988-06-01
EP0268988A3 EP0268988A3 (en) 1989-03-29
EP0268988B1 true EP0268988B1 (fr) 1992-05-13

Family

ID=6314389

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117012A Expired - Lifetime EP0268988B1 (fr) 1986-11-20 1987-11-18 Moteur diesel

Country Status (7)

Country Link
US (1) US4834030A (fr)
EP (1) EP0268988B1 (fr)
JP (1) JPS63192935A (fr)
KR (1) KR880006448A (fr)
AT (1) ATE76161T1 (fr)
BR (1) BR8706249A (fr)
DE (2) DE3639691A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342800A1 (de) * 1993-12-15 1995-06-22 Kloeckner Humboldt Deutz Ag Hubkolbenbrennkraftmaschine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4407984A1 (de) * 1994-03-10 1995-09-14 Opel Adam Ag Kühlsystem für eine Hubkolbenbrennkraftmaschine
US20060062843A1 (en) * 1996-03-25 2006-03-23 Wyeth Extended release formulation
US5765282A (en) * 1996-06-26 1998-06-16 Cummins Engine Company, Inc. Internal combustion engine cylinder head method of manufacture
US5699760A (en) * 1997-03-21 1997-12-23 Ford Global Technologies, Inc. Cooling system for internal combustion engine
DE19714062C2 (de) * 1997-04-05 1999-01-21 Vaw Mandl & Berger Gmbh Zylinderkurbelgehäuse mit geschweißten Brücken
DE19743445A1 (de) * 1997-10-01 1999-04-08 Man Nutzfahrzeuge Ag Kühl- und Schmiermittelführung für Brennkraftmaschinen
DE19940144A1 (de) * 1999-08-24 2001-03-01 Reinhard Suttner Ölgekühlte Brennkraftmaschine
USRE40500E1 (en) 2000-07-25 2008-09-16 Deltahawk Engines, Inc. Internal combustion engine
US6769383B2 (en) * 2001-06-29 2004-08-03 Deltahawk, Inc. Internal combustion engine
US6622667B1 (en) 2000-07-25 2003-09-23 Deltahawk, Inc. Internal combustion engine
DE102004030352A1 (de) 2004-06-23 2006-01-19 Dr.Ing.H.C. F. Porsche Ag Brennkraftmaschine mit Druckumlaufschmierung nach dem Trockensumpfprinzip
DE102004030353A1 (de) * 2004-06-23 2006-01-19 Dr.Ing.H.C. F. Porsche Ag Brennkraftmaschine mit Druckumlaufschmierung nach dem Trockensumpfprinzip
AT505591B8 (de) * 2008-10-02 2010-04-15 Avl List Gmbh Brennkraftmaschine mit einem zylinderkopf
AT507479B1 (de) * 2009-11-19 2011-07-15 Avl List Gmbh Zylinderkopf für eine brennkraftmaschine
JP5903002B2 (ja) * 2012-06-08 2016-04-13 富士重工業株式会社 エンジンの冷却装置
JP6394899B2 (ja) * 2015-02-06 2018-09-26 トヨタ自動車株式会社 シリンダブロック
US10531932B2 (en) 2015-12-10 2020-01-14 Kirwan Surgical Products Llc Tip Protector for Electrosurgical Forceps

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR491526A (fr) * 1915-12-17 1919-06-06 Alessandro Anzani Fourreau étanche pour moteurs à explosions pourvus d'un refroidissement par circulation d'eau
GB259412A (en) * 1925-11-19 1926-10-14 Anthony Frank Lago Improved means for replacing existing side-by-side valves of internal combustion engines by overhead valves
US2085810A (en) * 1932-06-20 1937-07-06 Spontan Ab Cooling of internal combustion engines
CH268945A (de) * 1946-05-22 1950-06-15 Fritz Dr Preu Verfahren zur Herstellung von Verbrennungs-Kolbenkraftmaschinen.
FR996173A (fr) * 1949-08-13 1951-12-14 Procédé permettant de refroidir une paroi chaude
DE966913C (de) * 1950-11-17 1957-09-19 Gen Motors Corp Abdichtung der Trennfugen zwischen Zylinderkopf und Zylinderblock von Brennkraftmaschinen
DE1897680U (de) * 1959-03-09 1964-07-30 Hatz Motoren Brennkraftmaschine.
GB976323A (en) * 1962-09-11 1964-11-25 Ford Motor Co A method of producing two internal combustion engines having different compression ratios
AT240652B (de) * 1962-10-27 1965-06-10 Steyr Daimler Puch Ag Einrichtung zur Kühlmittelführung im Zylinderblock von flüssigkeitsgekühlten Brennkraftmaschinen
DE1576720C3 (de) * 1967-06-13 1973-12-13 Goetzewerke Friedrich Goetze Ag, 5673 Burscheid Zylinderkopfdichtung fur wassergekuhl te Brennkraftmaschinen
DE1966120B2 (de) * 1969-07-16 1977-12-08 Ausscheidung aus: 19 36 022 Klöckner-Humboldt-Deutz AG, 5000 Köln Fluessigkeitsgekuehlte hubkolbenbrennkraftmaschine
US4109617A (en) * 1976-12-22 1978-08-29 Ford Motor Company Controlled flow cooling system for low weight reciprocating engine
US4175503A (en) * 1976-12-22 1979-11-27 Ford Motor Company Method of making air engine housing
DE2839199C2 (de) * 1978-09-08 1983-01-05 Bayerische Motoren Werke AG, 8000 München Im Druckgießverfahren herstellbarer Zylinderkopf für wassergekühlte Brennkraftmaschinen
DE2904167C2 (de) * 1979-02-03 1982-07-08 Bayerische Motoren Werke AG, 8000 München Im Druckgießverfahren herstellbarer Zylinderkopf für wassergekühlte Brennkraftmaschinen
DE2911683A1 (de) * 1979-03-24 1980-10-02 Daimler Benz Ag Abdichtung eines zylinderkopfes einer brennkraftmaschine
FR2464375B1 (fr) * 1979-08-28 1985-09-27 List Hans Moteur a combustion interne a plusieurs cylindres, refroidi a l'eau
AT389565B (de) * 1980-06-16 1989-12-27 List Hans Wassergekuehlte mehrzylinder-brennkraftmaschine
FR2490723A3 (fr) * 1980-09-22 1982-03-26 Charbonnier Jean Paul Moteur a refroidissement par air transforme en moteur a refroidissement par eau
JPS58101224A (ja) * 1981-12-10 1983-06-16 Nissan Motor Co Ltd 自動車用エンジンのシリンダブロツク
DE3224945C1 (de) * 1982-07-03 1984-02-16 Bayerische Motoren Werke AG, 8000 München Zylinderkopf fuer fluessigkeitsgekuehlte Mehrzylinder-Brennkraftmaschinen
FR2554504A1 (fr) * 1983-11-08 1985-05-10 Pontet Lucien Dispositif de joint de culasse supprimant la circulation d'eau avec le groupe de cylindres
DE3403875A1 (de) * 1984-02-04 1985-08-08 Klinger Ag, Zug Flachdichtung
US4714058A (en) * 1984-12-10 1987-12-22 Mazda Motor Corporation Spark-ignited internal combustion engine
DE3512104A1 (de) * 1985-04-03 1986-10-09 Klöckner-Humboldt-Deutz AG, 5000 Köln Brennkraftmaschine mit mindestens zwei hintereinanderliegenden fluessigkeitsgekuehlten zylindern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342800A1 (de) * 1993-12-15 1995-06-22 Kloeckner Humboldt Deutz Ag Hubkolbenbrennkraftmaschine
US5551382A (en) * 1993-12-15 1996-09-03 Klockner-Humboldt-Deutz Ag Cooling system for an internal combustion engine
DE4342800C2 (de) * 1993-12-15 1999-12-09 Deutz Ag Hubkolbenbrennkraftmaschine

Also Published As

Publication number Publication date
DE3779056D1 (de) 1992-06-17
US4834030A (en) 1989-05-30
EP0268988A2 (fr) 1988-06-01
DE3639691A1 (de) 1988-06-01
KR880006448A (ko) 1988-07-23
EP0268988A3 (en) 1989-03-29
ATE76161T1 (de) 1992-05-15
JPS63192935A (ja) 1988-08-10
BR8706249A (pt) 1988-06-21

Similar Documents

Publication Publication Date Title
EP0268988B1 (fr) Moteur diesel
DE2756006C2 (fr)
DE2839199C2 (de) Im Druckgießverfahren herstellbarer Zylinderkopf für wassergekühlte Brennkraftmaschinen
DE3625947C2 (de) Brennkraftmaschinen-Zylinderkopf mit Kühlmittelkanälen
DE2420051A1 (de) Zylinderkopfblock
EP0838585B1 (fr) Culasse pour un moteur à combustion interne à plusieurs cylindres
DE10227690A1 (de) Gekühlter Zylinderkopf für eine Kolbenbrennkraftmaschine
DE10222078B4 (de) Mehrzylindermotor
AT402325B (de) Zylinderkopf einer flüssigkeitsgekühlten brennkraftmaschine mit in reihe angeordneten zylindern
DE3300924C2 (fr)
DE102006006121B4 (de) Verbrennungskraftmaschine mit in mindestens zwei parallelen Zylinderbänken angeordneten Zylindern
EP0819837B1 (fr) Circuit de refroidissement d'un moteur à combustion interne
DE3326317C2 (fr)
EP0062143A2 (fr) Culasse de cylindres pour un moteur à compression d'air, à auto-allumage et à injection
EP0154144B1 (fr) Moteur à combustion interne refroidi par air
EP0668440B1 (fr) Moteur à combustion interne
DE69838352T2 (de) Brennkraftmaschine mit Kraftstoffdirekteinspritzung und Funkenzündung
DE3435386A1 (de) Luftgekuehlte mehrzylinder-brennkraftmaschine
WO2019057408A1 (fr) Boîtier de moteur à combustion interne doté d'un refroidissement de cylindre
DE3629673A1 (de) Brennkraftmaschine mit fluessigkeitsgekuehlter zylinderlaufbuchse
DE19509002C2 (de) Thermostatanbaupositionsstruktur
DE3701083C1 (en) Engine housing of an internal combustion engine with banks of cylinders arranged in a V shape
DE19814099B4 (de) Kraftstoff-Leitungssystem bei einem Längsmotor
DE4140772C2 (fr)
DE3643674A1 (de) Mehrzylindrige brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE ES FR GB IT

17P Request for examination filed

Effective date: 19890220

17Q First examination report despatched

Effective date: 19900626

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KLOECKNER-HUMBOLDT-DEUTZ AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT

REF Corresponds to:

Ref document number: 76161

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3779056

Country of ref document: DE

Date of ref document: 19920617

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19921113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19921118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941014

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951118

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011220

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051118