EP0060057B1 - Expression von Polypeptiden in Hefen - Google Patents

Expression von Polypeptiden in Hefen Download PDF

Info

Publication number
EP0060057B1
EP0060057B1 EP82300949A EP82300949A EP0060057B1 EP 0060057 B1 EP0060057 B1 EP 0060057B1 EP 82300949 A EP82300949 A EP 82300949A EP 82300949 A EP82300949 A EP 82300949A EP 0060057 B1 EP0060057 B1 EP 0060057B1
Authority
EP
European Patent Office
Prior art keywords
yeast
gene
sequence
polypeptide
promoter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82300949A
Other languages
English (en)
French (fr)
Other versions
EP0060057A1 (de
Inventor
Ronald A. Hitzeman
Franklin E. Hagie Iv
Benjamin D. Hall
Gustav Ammerer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Washington Research Foundation
Original Assignee
University of Washington
Genentech Inc
Washington Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22895764&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0060057(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by University of Washington, Genentech Inc, Washington Research Foundation filed Critical University of Washington
Publication of EP0060057A1 publication Critical patent/EP0060057A1/de
Application granted granted Critical
Publication of EP0060057B1 publication Critical patent/EP0060057B1/de
Priority to MYPI87001666A priority Critical patent/MY101599A/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/56IFN-alpha
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/57581Thymosin; Related peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormone [GH], i.e. somatotropin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/655Somatostatins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi
    • Y10S435/94Saccharomyces
    • Y10S435/942Saccharomyces cerevisiae

Definitions

  • This invention relates to the production, via recombinant DNA technology, of useful polypeptides in Saccharomyces cerevisiae (yeast), and to the means and methods of such production.
  • the workhorse of recombinant DNA technology is the plasmid, a non-chromosomal loop of double-stranded DNA found in bacteria and other microbes, oftentimes in multiple copies per cell. Included in the information encoded in the plasmid DNA is that required to reproduce the plasmid in daughter cells (i.e., an "origin of replication") and, ordinarily one or more selection characteristics such as, in the case of bacteria, resistance to antibiotics, which permit clones of the host cell containing the plasmid of interest to be recognized and preferentially grown under selective conditions.
  • plasmids can be specifically cleaved by one or another restriction endonuclease or "restriction enzyme", each of which recognizes a different site on the plasmid DNA. Thereafter heterologous genes or gene fragments may be inserted into the plasmid by endwise joining at the cleavage site or at reconstructed ends adjacent to the cleavage site. DNA recombination is performed outside the cell, but the resulting "recombinant" plasmid can be introduced into it by a process known as transformation and large quantities of the heterologous gene-containing recombinant plasmid are then obtained by growing the transformant.
  • the resulting expression vehicle can be used to actually produce the polypeptide sequence for which the inserted gene codes, a process referred to as expression.
  • RNA polymerase RNA polymerase
  • the polymerase travels along the DNA, transcribing the information contained in the coding strand from its 5' to 3' end into messenger RNA which is in turn translated into a polypeptide having the amino acid sequence for which the DNA codes.
  • Each amino acid is encoded by a nucleotide triplet or "codon" within what may for present purposes be referred to as the "structural gene", i.e., that part which encodes the amino acid sequence of the expressed product.
  • the RNA polymerase After binding to the promoter, the RNA polymerase, transcibes a 5' leader region of messenger RNA, then a translation initiation or "start signal" (ordinarily ATG, which in the resulting messenger RNA becomes AUG), then the nucleotide codons within the structural gene itself. So-called stop codons are transcribed at the end of the structural gene whereafter the polymerase may form an additional sequence of messenger RNA which, because of the presence of the stop signal, will remain untranslated by the ribosomes. Ribosomes bind to the binding site provided on the messenger RNA, and themselves produce the encoded polypeptide, beginning at the translation start signal and ending at the previously mentioned stop signal.
  • the resulting product may be obtained by lysing the host cell and recovering the product by appropriate purification from other microbial protein or, in particular instances, possibly by purification from the fermentation medium into which the product has been secreted.
  • Plasmids employed in genetic manipulations involved in the construction of a vehicle suitable for the expression of a useful polypeptide product are referred to as DNA transfer vectors.
  • DNA transfer vectors employing restriction enzymes and associated technology, gene fragments are ordered within the plasmid in in vitro manipulations, then amplified in vivo in the transformant microbes into which the resulting, recombinant plasmid has been 'transferred'.
  • a "DNA expression vector” comprises not only a structural gene intended for expression but also a promoter and associated controls for effecting expression from the structural gene. Both transfer and expression vectors include origins of replication. Transfer vectors must and expression vectors may also include one or more genes for phenotypic selection of transformant colonies.
  • the useful products of expression from recombinant genes have fallen into two categories.
  • a polypeptide having the amino acid sequence of a desired end product is expressed directly, as in the case of human growth hormone and the interferons referred to above.
  • the product of expression is a fusion protein which includes not only the amino acid sequence of the desired end product but also one or more additional lengths of superfluous protein so arranged as to permit subsequent and specific cleavage away of the superfluous protein and so as to yield the desired end product.
  • cyanogen bromide cleavage at methionine residues has yielded somatostatin, thymosin alpha 1 and the component A and B chains of humun insulin from fusion proteins; enzymatic cleavage at defined residues has yielded beta endorphin (8);
  • a “biocompetent polypeptide”, as that term is used herein, refers to a product exhibiting bioactivity akin to that of a polypeptide innately produced within a living organism for a physiological purpose, as well as to intermediates which can be processed into such polypeptides, as by cleavage away of superfluous protein, folding, combination (as in the case of the A and B chains of human insulin), etc.
  • Saccharomyces cerevisiae or yeast
  • yeast are, like those of mammalian organisms, eukaryotic in nature as distinguished from the prokaryotic nature of bacteria.
  • eukaryotes are distinguished from bacteria by:
  • nucleotide sequences of all eukaryotic cells are transcribed, processed, and then translated in the context described above. There are reasons to believe that expression of eukaryotic genes may proceed with greater efficiency in yeast than in E. coli because yeast is a eukaryote cell.
  • yeast transformants A number of workers have previously expressed, or attempted to express, foreign genes in yeast transformants. Thus, attempted expression from a fragment comprising both a promoter and structural gene for rabbit globin is reported (9) to have yielded partial mRNA transcripts, seemingly unaccompanied either by translation into protein or maturation (intron elimination) of the message.
  • yeast proteins have hitherto been expressed in yeast via recombinant plasmids (see, e.g., 12). In the experiments, as in the Ade-8 case earlier discussed, expression occurred under the selective pressure of genetic complementation. Thus, each expression product was required for growth of the host strains employed, mutants whose chromosomal DNA was defective in the structural gene(s) from which expression occurred.
  • yeast has been employed in large scale fermentations for centuries, as compared to the relatively recent advent of large scale E. coli fermentation.
  • yeast can be grown to higher densities than bacteria, and is readily adaptable to continuous fermentation processing.
  • Many critical functions of the organism, e.g., oxidative phosphorylation, are located within organelles, and hence not exposed to the possible deleterious effects of the organism's overproduction of foreign proteins.
  • yeast may prove capable of glycosylating expression products where important to enhanced bioactivity.
  • yeast cells will exhibit the same codon preferences as higher organisms, tending toward more efficient production of expression products from mammalian genes or from complementary DNA (cDNA) obtained by reverse transcription from, e,g., mammalian messenger RNA.
  • cDNA complementary DNA
  • the present invention provides DNA expression vectors capable, in transformant strains of yeast, of expressing biologically competent (preferably pharmacologically active) polypeptides under the control of genetically distinct yeast promoters, the polypeptides being ordinarily exogenous to yeast and other than those required for growth of the transformant.
  • the invention also provides DNA transfer vectors for the transformation of yeast strains with genes encoding biocompetent polypeptides, as well as novel yeast organisms and cultures thereof incorporating such vectors and methods for the formation of the same.
  • the structural genes incorporated in the expression vectors and transformant organisms of the invention are under the control of genetically distinct yeast promoters, i.e. promoters different from those evolutionarily associated with the subject structural genes.
  • a DNA vector suitable for use in expressing exogenous genes in yeast comprising a sequence which is replicable in yeast, a 5' flanking sequence of a yeast structural gene including a promoter, a site downstream of said 5' flanking sequence in the direction of transcription for insertion of a structural gene coding for a polypeptide ordinarily exogenous to yeast so as to be transcribable under the control of said promoter and translatable from a start signal, and a sequence allowing phenotypic selection of yeast transformants.
  • the invention also provides a recombinant DNA vector for use in expressing an exogenous structural gene in a suitable yeast strain, comprising a DNA vector as described above and a said exogenous gene inserted at said site so as to be transcribable under the control of said promoter and translatable from a start signal.
  • the invention further includes yeast strains transformed with such a recombinant DNA vector, a method of forming such transformed yeast strains, and a method of producing a biocompetent polypeptide therefrom.
  • the present invention provides a method of producing a desired heterologous polypeptide in yeast by culturing a yeast strain transformed with a recombinant DNA expression vector replicable in said yeast strain, characterised in that the vector contains an exogenous DNA sequence coding for the polypeptide transcriptionally downstream of a 5' flanking sequence of a yeast structural gene containing a promoter which is functional in said yeast strain, and a translation initiation signal between said promoter and the exogenous coding sequence, so that the exogenous sequence is transcribed from said promoter and translated from said translation initiation signal.
  • A, T, C and G respectively connote the nucleotides containing the bases adenine, thymine, cytosine and guanine. Only the coding strands of plasmids and gene fragments are depicted. Though obviously not to scale, the representations of plasmids depict the relative position of restriction enzyme cleavage sites ("EcoRl", “Hindlll” etc.) and other functions such as tetracycline resistance (“Tc"') and ampicillin resistance (“Ap"').
  • Preferred embodiments of the invention are obtained by bringing an exogenous gene under the control of a yeast promoter carried by a plasmid suitable for the transformation of yeast.
  • a yeast promoter carried by a plasmid suitable for the transformation of yeast.
  • any yeast strain suited for the selection of transformants may be employed.
  • the parental plasmid is resected toward the promoter in the direction opposite that of transcription, so as to excise the ATG triplet which initiates translation of mRNA encoding the yeast protein referred to.
  • An ordinarily exogenous gene, with its associated start signal, may then be inserted at the endpoint of the resection, and thus positioned for direct expression under the control of the yeast promoter.
  • DNA restriction and metabolism enzymes were purchased from New England and Biolabs except for exonuclease 8al 31 and bacterial alkaline phosphatase, which were obtained from Bethesda Research Laboratories. DNA restriction enzyme and metabolic enzymes were used in conditions and buffers described by the respective manufacturers. ATP and the deoxynucleoside triphosphates dATP, dGTP, dCTP and dTTP were purchased from PL Biochemicals. Eco RI, 8am HI, Hind III and Xho I linkers were obtained from Collaborative Resarch, Inc. [ ⁇ - 32 P] was obtained from New England Nuclear Corp.
  • DNA Preparation and Transformation Purification of covalently closed circular plasmid DNAs from E. coli (13) and yeast (14) plus the transformation of E. coli (15) was as previously described. Transformation of yeast was as described by Hsiao and Carbon (16) with the exception that 1.2 M Sorbitol was used instead of 1.0 M Sorbitol. E. Coli miniscreens were as described by (17).
  • E. coli strain JA300 (thrleuB6 thi thyA trpC1117 hsdM - hsdR- str R ) (18) was used to select for plasmids containing functional trpl gene.
  • E. coli K-12 strain 294 (ATCC No. 31446, deposited 28 Oct. 1978) (19) was used for all other bacterial transformation.
  • Yeast strains RH218 having the genotype (a trpl gal2 suc2 mal CUPI) (20) and GM-3C-2 (a, /eu 2-3, /eu 2-112, trp 1-1, his 4-519, cyc 1-1, cyp 3-1) (21) were used for yeast transformations.
  • Yeast strain RH 218 was deposited without restriction in the American Type Culture Collection, ATCC No. 44076 on 8 Dec. 1980.
  • M9 minimal medium with 0.25 percent casamino acids (CAA) and LB (rich medium) were as described by Miller (22) with the addition of 20 ⁇ g/ml ampicillin (Sigma) after media is autoclaved and cooled.
  • Yeast were grown on the following media: YEPD contained 1 percent yeast extract, 2 percent peptone and 2 percent glucose ⁇ 3 percent Difco agar.
  • YNB+CAA contained 6.7 grams of yeast nitrogen base (without amino acids) (YNB) (Difco), 10 mg of adenine, 10 mg of uracil, 5 grams CAA, 20 grams glucose and ⁇ 30 grams agar per liter.
  • ADH promoter active fragments occurred on YEPGE plates containing 3 percent glycerol and 2 percent ethanol substituted for glucose in the YEPD formula.
  • Leucine prototrophy was determined on plates containing 6.7 gms YNB, 20 gms glucose, 50 mgs histidine and 50 mgs trytophan and 30 gms Difco agar per L.
  • pY9T6 was digested with Sau3A then run on a preparative 1 percent agarose gel. The 1600 bp fragment containing the ADH promoter region was cut from the gel, electroeluted then purified on a diethylamino cellulose (DE52, Whatman) column before ethanol precipitation. Fragment DNA was resuspended in DNA Polymerase I (Klenow fragment) buffer supplemented with the four deoxyribonucleoside triphosphates in a final concentration of 80 pM. Polymerase I was added and the thirty-minute room temperature reaction was terminated by ethanol precipitation of the DNA.
  • DNA Polymerase I Klenow fragment
  • coli strain RR1 was transformed to ampicillin in resistance using part of this ligation mix.
  • pJD221 which had the insert with the Hindlll linker added to the end of the fragment closest to the ATG of the ADH structural gene was isolated by plasmid preparation.
  • pJD221 was linearized with HindIII and the resulting fragment then successively treated with exonoclease III and 5 1 nuclease. The ends of these deleted plasmids were then made blunt using the Klenow fragment of DNA Polymerase I (see procedure above). After ethanol precipitation the ends of the DNA were ligated with Xhol linkers in a 12 hour reaction mixture. After digestion of resulting ligation mix with Xhol, plasmid solution was run in a 0.5 percent preparative agarose gel. DNA bands were cut from the gel, electroluted, then passed through a DE52 column before ethanol precipitation. Linear plasmid was circularized using T4 DNA ligase. The resulting ligation mix was used to transform E.
  • coli strain RR1 to ampicillin resistance All such colonies were pooled together. The resulting single plasmid pool was cut with Xhol and BamHl, then run on a preparative 0.7 percent agarose gel. The 1500bp bands containing the ADH promoter region were cut from the gel, electroeluted then passed through a DE52 column before ethanol precipitation and ligation into the vector pYecycl ⁇ x+ 1. This plasmid had previously been isolated from an agarose gel as having lost the Xhol to BamHl restriction fragment described in the Figure. The resulting ligation was used to transform E. coli strain RRI to ampicillin resistance.
  • Colonies were mixed for preparation of a plasmid pool which was then used to transform yeast strain GM-3C-2 to leucine prototrophy. Plasmids were then isolated from leucine prototrophs able to grow on glycerol plates.
  • One plasmid, pACF 301 was found to contain a deletion extending toward the ATG of the ADH1 structural gene, leaving intact the first five triplets of the structural gene and the AC of the ACC of Thr 6 (Fig. 2b). This plasmid was digested with Xhol then treated with exonuclease Ba/31 for 15 and 30 seconds (two different aliquots).
  • Resulting plasmids were pooled, ethanol precipitated and then treated with DNA Polymerase I (reaction described above) so that all DNA ends were made blunt. EcoRl linkers were then added to the DNA solution and ligation allowed to proceed for 12 hours. After digestion with EcoRl and BamHl, ligation mix was run on a preparative agarose gel. A DNA band about 1500 bp in size was cut from the gel, electroeluted then passed through a sizing column before ethanol precipitation. This DNA was then ligated into the linear pBR322 DNA previously isolated as missing the EcoRl-to-BamHl restriction fragment. This ligation mix was used to transform E. coli strain 294 to ampicillin resistance. Plasmids isolated from these colonies are referred to as the pGBn plasmid series.
  • Miniscreen analysis of a number of different recombinant plasmids from the pGBn plasmid series indicated that nine particular plasmids had small Ba/ 31 generated deletions toward the ADH promoter region through the ATG of the ADH structural gene. All nine plasmids were digested with EcoRl, then end labeled by incubation with (a 32 P)dATP and DNA polymerase I (conditions as described above). After ethanol precipitation, seven plasmids were digested with Alul then electrophoresed on a 20 percent acrylamide-urea sequencing gel. 32 P-labelled plasmid DNAs from pGB904 and pGB906 were cut with BamHl then run on a preparative gel.
  • Labelled fragments containing the ADH promoter region were excised from the gel, electroluted, passed through a DE52 column before enthanol precipitation. These two resuspended fragments (from plasmids pGB904 and pGB906) were then subjected to the G+A and T+C sequence specific degradation reactions described by Maxam and Gilbert (procedure 11 and 12 respectively (23)). These sequencing reaction products were electrophoresed along with labeled fragments from pGB905, pGB914, pGB917, pGB919 and pGB921 on the thin 20 percent acrylamide sequencing gel (described in the sequencing reference). Autoradiography was as described. This procedure allowed the determination of the extent of deletion of ADH promoter region as this region had previously been sequenced using all four Maxam-Gilbert sequencing reactions (J. Bennetzen, Ph.D Thesis, University of Washington, 1980).
  • YRp7 10 ⁇ g of YRp7 (24 ⁇ 26) was digested with EcoRl. Resulting sticky DNA ends were made blunt using DNA Polymerase I (Klenow fragment). Vector and insert were run on 1 percent agarose (SeaKem) gel, cut from the gel, electroeluted and 2X extracted with equal volumes of chloroform and phenol before ethanol precipitation. The resulting blunt end DNA molecules were then ligated together in a final volume of 50 ⁇ l for 12 hours at 12°C. This ligation mix was then used to transform E. coli strain JA300 to ampicillin resistance and tryptophan prototrophy. Plasmids containing the TRPI gene in both orientations were isolated. pFRW1 had the TRPI gene in the same orientation as YRp7 while pFRW2 had the TRPI gene in the opposite orientation.
  • pGBn plasmid series was digested with BamHl and EcoRl then run on a 1 percent agarose gel.
  • The 1500 bp promoter containing fragment from each lane was cut from the gel, electroeluted, then purified on a 10 ml diethylamino cellulose (Whatman) column before ethanol precipitation.
  • Extracts of yeast were assayed for interferon by comparison with interferon standards by the cytopathic effect (CPE) inhibition assay (27).
  • PMSF phenylmethylsulfonylfluoride
  • plasmid vector for autonomous replication in yeast, it is necessary to have both an origin of replication and a gene present for selection in yeast. Furthermore, the plasmid must contain a bacterial plasmid origin of replication and a means of selection in bacteria (e.g., an antibiotic resistance gene). With these requirements a plasmid can be constructed and modified in vitro using recombinant DNA techniques, amplified in bacteria, preferably E. coli, and finally transformed into yeast.
  • Such a vector is shown in Fig. 1 and is designated YRp7 (24 ⁇ 26). It contains a chromosomal origin of replication from yeast (ars1) as well as the TRP1 gene which codes for N-(5'-phosphoribosyl)-anthranilate isomerase (28).
  • the TRP1 yeast gene can complement (allow for growth in the absence of tryptophan) trp 1 mutations in yeast (e.g., RH218, see Methods) and can also complement the trpC1117 mutation of E. coli (e.g. JA300) (18).
  • the plasmid is pBR322 (29) based so as it also permits growth and selection in E. coli using antibiotic resistance selection.
  • ADCI ADH gene
  • the first step was to show that the 5'-leader DNA sequence of the ADH gene could be used to express another structural gene from yeast without its leader sequence (CYC1).
  • CYC1 a structural gene from yeast without its leader sequence
  • a plasmid which can complement a cyc1 mutation in yeast can be used to isolate the ADH promoter fragment that will result in cyc1 expression.
  • This promoter fragment could then be used to express other eukaryotic genes (e.g., the Leukocyte Interferon D gene).
  • pY9T6 containing the ADC1 locus (Bennetzen, supra) was cut with Sau3A to isolate the 5'flanking sequence of the ADH gene on an approximately 1600 bp fragment.
  • the ATG translation start for the ADH coding sequence is shown with the A at position + 1, and transcription goes from left to right as shown.
  • This fragment was blunt ended using Klenow DNA polymerase I followed by a ligation with a mixture of BamHl and Hindlll linkers. After cutting with BamHl and HindIII, the fragments were ligated with the large BamHI/HindIII fragment of pBR322. The ligation products were used to transform E.
  • coli to Ap R and the desired pJD221 was isolated from a transformant colony using a standard miniscreen procedure (see Methods).
  • pJD221 was cut with Hindlll and then with exonuclease III and S 1 nuclease to remove base pairs toward but not through the ATG of the ADH structural gene.
  • This procedure also removes base pairs in the opposite direction (toward the EcoRl site) at approximately the same rate.
  • the reaction was designed so as to not remove the ATG of ADH since the ATG of CYC1 was not present in the fragment to be expressed under ADH promoter control. Therefore a complementation of cyc1 yeast would require a functional ADH1-CYC1 fusion protein.
  • Plasmid pACF301 was isolated from one such transformant. The junction between ADH1 and CYC1 is shown at the bottom of Fig. 2b. Six amino acid codons from the ADH sequence were present with 3 new amino acid codons due to the Xhol linker, and the rest represented the CYC1 structural gene. Thus the ADH promoter fragment is expressing a fusion gene product that produces a phenotypically active CYC1 gene fusion product.
  • the ATG codon of the non-yeast gene to be expressed be the one belonging to the same non-yeast gene rather than a vector ATG which would lead to the synthesis of an undesired fusion protein. Therefore, it proved appropriate to remove nucleotides through the ATG of the ADH promoter fragment by another series of deletions and supply a new translation start signal with the gene to be expressed. Since the functionality of upstream DNA sequence (-1 to -1500) during the expression process is not known, it was desirable to remove as little sequence as possible upstream from the ATG and to try different fragments lacking both the initially present ATG and various amounts of additional DNA sequence.
  • pACF301 was cut with Xhol and Ba/31. After blunt-ending, addition of EcoRl linker, BamHl/EcoRl cutting, and sizing fragments; the correct size class of fragments were ligated with EcoRI/BamHI-cut pBR322. Specific recloned ADH promoter fragments were isolated from plasmids from various E. coli Ap l transformants.
  • Fig. 3 shows the DNA sequences of the transcribed strand of 8 of the resulting, variously sized and numbered promoter fragments. The numbered lines show where the right end of the fragment ends and where the EcoRl linker sequence begins.
  • fragments 904 and 906 were exactly determined by sequencing.
  • the EcoRl sticky ends of these fragments were labelled with Klenow DNA polymerase using ⁇ - 32 P-dATP.
  • a sequencing gel was used to read from the A's into the linker through the junction.
  • the other 6 fragment ends were approximated to within about 1-2 base pairs by labelling as above, cutting with Alul, followed by sizing on the same denaturing gel.
  • the vector was designed to have ADH promoter transcription in the same direction as TRP1 gene transcription (31). Since the LelF D gene was to be inserted in the EcoRl site and was not known to contain proper 3' termination and processing sequences for yeast recognition. The TRP1 gene flanking sequence was aligned to perform these functions.
  • pFRPn series (where n is the promoter fragment number) was obtained as shown.
  • Ampicillin resistant transformants of E. coli K-12 strain 294 were screened to find plasmids containing both orientations of the LelF D fragment (pFRSn series-n refers to screening number). Orientations were determined by agarose gel electrophoresis using BglII digestion which cuts both in the vector and in the LelF D gene as shown.
  • pFRS7 and pFRS35 have an extra BglII fragment at 560 bp. This results from having two fragments of LelF D in line with ADH transcription.
  • pFRS16 has no proper orientation fragment but has a 1700 bp fragment which apparently resulted from the ligation of the two vector fragments together (two TRP1 containing "tails” together) with one LelF D fragment in between two "heads" containing ADH promoter fragments.
  • the interferon gene is in the proper orientation for expression by one of the ADH promoter fragments.
  • Table 1 shows the results of interferon assays which measure antiviral activity effects on VSV virus challenge of MDBK tissue culture cells (see Methods). Seven of the promoter fragments definitely express the LelF D gene when the gene is in the proper orientation (I). This is demonstrated by comparing units/(ml of extract) for the orientation I plasmids with the orientation II plasmids. All orientation II plasmids expressed ⁇ 1900 units/(ml of extract), a value 1 to 4 percent of the values for orientation I plasmids (actually background values are probably much lower than this since the 1900 value is a function of the assay procedure).
  • the percentages of cells containing plasmid are similar comparing yeast with orientation I and II plasmids. This suggests that the production of interferon in the yeast cell does not result in increased instability of the plasmid due to interferon toxicity to the cell.
  • Table 1 shows molecules/cell values which are very much higher than the 10,000 molecules/cell observed for interferon D expression in E coli on a high copy plasmid with a strong promoter (trp promoter) (32). Assessment of this extreme difference (up to 18 fold) in molecules per cell should recognize that the yeast cell volume is probably 2 orders of magnitude higher than that of E. coli; however, the amount of expression from only 1-2 copies of the yeast plasmid versus the high copy number of plasmids producing interferon in E coli is dramatic.
  • interferon gene uses its own ATG-initiation codon and since the alcohol dehydrogenase ATG has been removed in the construction, one would expect to find that the interferon expressed in yeast is the same size as the interferon in E. coli (32).
  • SDS-polyacrylamide gel electropheresis was accordingly done on a E. coli extract containing interferon D versus a yeast extract containing interferon D. After running the gel, two lanes containing yeast extract versus E. coli extracts were simultaneously sliced. The slices were put into assay dilution buffer and left at 4°C for 3 days. Interferon assays were then performed to compare sizes of the peptides.
  • yeast 5'-flanking DNA sequence without the translation start signal of the structural gene, can efficiently promote the expression of an inserted mammalian or other structural gene for a biocompetent polypeptide, and do so without the aid of selective pressure for the product of expression (i.e., the expression product is not required for cell growth).
  • yeast promoter-containing plasmids having both yeast and bacterial phenotypical genes and origins of replication, and a site downstream from the promoter convenient for the insertion of translation start- and stop-bearing structural genes permits the creation of DNA expression vectors for a wide variety of polypeptides.
  • pFRPn series yeast promoter-containing plasmids
  • a site downstream from the promoter convenient for the insertion of translation start- and stop-bearing structural genes permits the creation of DNA expression vectors for a wide variety of polypeptides.
  • product may be extracted and purified as in the case of bacterial expression, mutatis mutandis
  • the invention is not limited in its application to the particular expression vector exemplified above.
  • use of the so-called two micron origin of replication would provide additional stability, making unnecessary resort to selective pressure for maintenance of the plasmid in the yeast cell, particularly if the host strain is [CIR+], i.e., contains normal two micron plasmid (33).
  • Such an expression vector would be stable in yeast in the rich medium ordinarily best for large scale fermentations.
  • use of the two micron origin of replication could significantly increase plasmid copy number in each cell.
  • Stability of the expression vector in yeast may also be enhanced by inclusion within the plasmid of a yeast centromere (34), an element involved in maintenance of the yeast chromosome.
  • yeast centromere 34
  • the resulting plasmid will behave as a minichromosome, such that selective pressure will not be required during growth or maintenance of the plasmid.
  • yeast centromeres As many as 17 different yeast centromeres have been identified to the present date.
  • Transcription terminators other than that present on the TRP1 gene may be employed, e.g., other 3'-flanking sequences from yeast such as the 3'-flanking sequence contained on a Hind II-BamHI fragment of the ADH 1 gene.
  • promoters other than the ADH promoter exemplified above may be employed in variants of the invention.
  • the promoter of the yeast 3-phosphoglycerate kinase gene may be employed, doubtless increasing expression levels significantly over those observed for the ADH system.
  • one or more of the promoters for yeast glyceraldehyde-3-phosphate dehydrogenase may be employed. This system is nonfunctional in the absence of glucose, but induced 200-fold in its presence, and could accordingly be employed for fine control of expression.
  • the invention provides new means for the expression of valuable polypeptides.
  • efficiency of expression relative to that in recombinant bacteria may result from the different codon usage patterns as between yeast and bacteria, such that eukaryotic genes may be better expressed in yeast.
  • the yeast expression systems of the invention may also provide advantage in the glycosylation of biocompetent polypeptides, an ability bacteria lack.
  • the glycosylation system of yeast is very similar to that of higher eukaryotes, and glycosylation may prove to have profound effects on the functions of proteins.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Endocrinology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Diabetes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Saccharide Compounds (AREA)

Claims (26)

1. Ein DNS-Vektor, der für die Expression von exogenen Genen in Hefe geeignet ist, umfassend eine Sequenz, die in Hefe replizierbar ist, eine 5'-Flankensequenz eines Hefestrukturgens, das einen Promotor umfaßt, eine Stelle stromabwärts von der genannten 5'-Flankensequenz in Richtung der Transkription zur Einfügung einer Strukturgenkodierung für ein Polypeptid, das normalerweise exogen zu Hefe ist, sodaß es unter der Steuerung des genannten Promotors transkribierbar und von einem Startsignal translatierbar ist, und eine Sequenz, die die phenotypische Selektion von Hefetransformanten zuläßt.
2. Ein DNS-Vektor nach Anspruch 1, der zusätzlich eine Transkriptionsterminationssequenz stromabwärts von der genannten Einfügungsstelle aufweist.
3. Ein DNS-Vektor nach Anspruch 2, worin die genannte Transkriptionsterminationssequenz eine Flankierungssequenz eines Hefegens ist.
4. Ein DNS-Vektor nach Anspruch 3, worin das genannte Hefegen die Phenotypische Selektion von Hefetransformanten schafft.
5. Ein DNS-Vektor nach einem der vorhergehenden Ansprüche, worin der genannten 5'-Flankensequenz ein Translationsstartsignal stromaufwärts von der genannten Einfügungsstelle in bezug auf die Translationsrichtung fehlt.
6. Ein DNS-Vektor nach einem der vorhergehenden Ansprüche, worin der genannten 5'-Flankensequenz das Gens fehlt, aus dem sie abgeleitet ist.
7. Ein DNS-Vektor nach Anspruch 6, worin die genannte Einfügungsstelle in bezug auf die Translationsrichtung an der oder stromaufwärts von der Stelle gelegen ist, die normalerweise von dem Translationsstartsignal des Gens eingenommen wird, von dem sie abgeleitet ist.
8. Ein DNS-Vektor nach einem der vorhergehenden Ansprüche, worin die genannte 5'-Flankensequenz jene des AHD1-Strukturgens ist.
9. Ein DNS-Vektor nach einem der vorhergehenden Ansprüche, worin die genannte Sequenz für die phenotypische Selektion in Hefe das TRP1-Gen ist.
10. Ein DNS-Vektor nach einem der vorhergehenden Ansprüche, das zusätzlich einen bakteriellen Replikationsursprung und eine oder mehrere Sequenz(en) für die phenotypische Selektion in Bakterien umfaßt.
11. Ein rekombinanter DNS-VEktor für die Verwendung zur Expression eines exogenen Strukturgens in einem geeigneten Hefestamm, umfassend einen DNS-Vektor nach einem der vorhergehenden Ansprüche und ein genanntes exogenes Gen, das an der genannten Stelle eingefügt wird, um unter der Steuerung des genannten Promotors transkribierbar und von einem Startsignal translatierbar zu sein.
12. Ein rekombinanter DNS-Vektor nach Anspruch 11, worin das genannte exogene Gen ein biokompetentes Polypeptid kodiert.
13. Ein rekombinanter DNS-Vektor nach Anspruch 11, worin das genannte exogene Gen ein Säugetier-Polypeptid kodiert.
14. Ein rekombinanter DNS-Vektor nach Anspruch 13, worin das genannte Säugetier-Polypeptid aus normalen und hybriden menschlichen Interferonen, menschlichem Proinsulin, den A- und B-Ketten von menschlichem Insulin, menschlichem Wachstumshormon, Somatostatin und Thymos in Alpha 1 gewählt wird.
15. Ein rekombinanter DNS-Vektor nach Anspruch 13, worin das genannte Säugetier-Polypeptide das von Leukocyt-Interferon D ist.
16. Ein Hefestamm, der mit einem rekombinanten DNS-Vektor nach einem der Ansprüche 11-15 trnsformiert ist, der fähig ist, das genannte exogene Gen zu exprimieren, um ein Polypeptid zu erzeugen.
17. Ein transformierter Hefestamm nach Anspruch 16, worin das genannte Polypeptid für das Wachstum des Transformaten nicht erforderlich ist.
18. Ein transformierter Hefestamm nach Anspruch 16 oder 17, worin in dem genannten rekombinanten DNS-Vektor das phenotypische Gen für die Selektion in Hefe eine Mutation komplementiert, die vom Hefestamm getragen wird.
19. Ein transformierter Hefestamm nach einem der Ansprüche 16, 17 und 18, worin die Hefe zur Gattung Saccharomyces gehört.
20. Ein transformierter Hefestamm nach Anspruch 19, worin die Hefe zur Spezies Saccharomyces cerevisiae gehört.
21. Ein transformierter Hefestamm nach Anspruch 20, worin die Hefe der Stamm Saccharomyces cerevisiae RH 218 ist.
22. Ein Verfahren zur Bildung eines transformierten Hefestammes nach einem der Ansprüche 16-21, welches Verfahren umfaßt:
a) Schaffung eines DNS-Transfervektors, der sowohl in Bakterien als auch Hefe replizierbar ist und von Genen für die phenotypische Selektion von sowohl Bakterien-als auch Hefetransformanten;
b) Schaffung eines DNS-Fragmentes, das ein Strukturgen umfaßt, das ein Polypeptid kodiert, das normalerweise exogen zu Hefe ist;
c) Schaffung eines DNS-Fragmentes, das einen Hefepromotor umfaßt, der sich genetisch von dem genannten exogenen Strukturgen unterscheidet;
d) Einfügen der Fragmente aus b) und c) in den genannten Transfervektor mit in geeigneter Stellung vorgesehenen Translationsstart- und Haltesignalen für das genannte exogene Gen, um einem rekombinanten DNS-Vektor zu schaffen, in dem die Transkription des genannten exogenen Gens unter der Steuerung des genannten Promotors vor sich geht und die Translation vom genannten Startsignal aus vor sich geht, wobei die bakterielle Replikation und phenotypische Selektion für die Verstärkung der DNS in Bakterien in Zwischenstadien im Vektoraufbau verwendet wird; und
e) Transformation eines geeigneten Hefestammen mit dem entstandenen Vektor, sodaß das exogene Gen im Transformanten exprimierbar ist.
23. Ein Verfahren zur Herstellung eines heterologen Polypeptides, umfassend das Kultivieren eines Hefestammes nach einem der Ansprüche 16-22, und das Isolieren des genannten biokompetenten Polypeptides aus dem Kulturmedium.
24. Ein Verfahren zur Herstellung eines gewünschten heterologen Polypeptides in Hefe durch Kultivieren eines Hefestammes, der mit einem rekombinanten DNS-Expressionsvektor transformiert ist, der in dem genannten Hefestamm replizierbar ist, dadurch gekennzeichnet, daß der Vektor eine exogene DNS-Sequenzkodierung für das Polypeptid transkriptionell stromabwärts von einer 5'-Flankensequenz eines Hefestrukturgens enthält, das einen Promotor enthält, der in dem genannten Hefestamm funktionell ist, und ein Translationsauslösungssignal zwischen dem genannten Promotor und der exogenen Kodierungssequenz vorgesehen ist, sodaß die exogene Sequenz vom genannten Promotor transkribiert und vom genannten Translationsauslösungssignal translatiert wird.
25. Ein Verfahren nach Anspruch 24, worin der Expressionsvektor zusätzlich eine Transkriptionsterminationssequenz stromabwärts von der genannten exogenen Kodierungssequenz umfaßt.
26. Ein Verfahren nach Anspruch 24 oder 25, worin das Translationsauslösungssignal an der oder stromaufwärts von der Stelle gelegen ist, die normalerweise vom Translationsauslösungssignal des Hefestrukturgens eingenommen wird, von dem die genannte 5'-Flankensequenz abgeleitet ist.
EP82300949A 1981-02-25 1982-02-24 Expression von Polypeptiden in Hefen Expired EP0060057B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI87001666A MY101599A (en) 1981-02-25 1987-09-14 Expression of polypeptides in yeast

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23791381A 1981-02-25 1981-02-25
US237913 1981-02-25

Publications (2)

Publication Number Publication Date
EP0060057A1 EP0060057A1 (de) 1982-09-15
EP0060057B1 true EP0060057B1 (de) 1987-05-06

Family

ID=22895764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82300949A Expired EP0060057B1 (de) 1981-02-25 1982-02-24 Expression von Polypeptiden in Hefen

Country Status (10)

Country Link
US (4) US5856123A (de)
EP (1) EP0060057B1 (de)
JP (2) JPH0757190B2 (de)
AT (1) ATE27000T1 (de)
AU (1) AU553885B2 (de)
CA (1) CA1205026A (de)
DE (1) DE3276241D1 (de)
MY (1) MY101599A (de)
NZ (1) NZ199722A (de)
ZA (1) ZA821079B (de)

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI77877C (fi) * 1979-04-20 1989-05-10 Technobiotic Ltd Foerfarande foer framstaellning och rening av human le-formig interferonprotein.
US4460685A (en) * 1980-05-29 1984-07-17 New York University Method of enhancing the production of human γ Interferon
EP0062971B1 (de) * 1981-03-27 1990-03-07 Imperial Chemical Industries Plc Genetisch modifizierte Mikroorganismen
JPS58146281A (ja) * 1981-10-19 1983-08-31 Suntory Ltd 酵母細胞の形質転換法
US4775622A (en) * 1982-03-08 1988-10-04 Genentech, Inc. Expression, processing and secretion of heterologous protein by yeast
BR8307525A (pt) * 1982-05-19 1984-08-21 Unilever Nv Expressao de proteinas semelhantes a pretrotaumatina em leveduras kluyveromyces
GB2125047B (en) * 1982-08-09 1986-02-19 Ciba Geigy Ag Yeast hybrid vectors and their use for the production of polypeptides
AU584580B2 (en) * 1982-09-08 1989-06-01 Smith Kline - Rit Hepatitis B virus vaccine
JPH0716432B2 (ja) * 1982-10-20 1995-03-01 サントリー株式会社 酵母の高発現ベクタープラスミドを用いたペプチドの生産方法
DE3382547D1 (de) * 1983-01-12 1992-05-27 Chiron Corp Sekretorische expression in eukaryoten.
DK172882B1 (da) * 1983-02-07 1999-09-06 Rothwell Property Ltd DNA indeholdende udtrykkelseskontrolregion fra et eukaryot varmechokproteingen, vektor og eukaryot celle indeholdende DNA'e
CA1341116C (en) * 1983-02-22 2000-10-17 Rae Lyn Burke Yeast expression systems with vectors having gapdh or pyk promoters and synthesis or foreign protein
US4876197A (en) * 1983-02-22 1989-10-24 Chiron Corporation Eukaryotic regulatable transcription
US4661454A (en) * 1983-02-28 1987-04-28 Collaborative Research, Inc. GAL1 yeast promoter linked to non galactokinase gene
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
WO1984004330A1 (en) * 1983-04-22 1984-11-08 Amgen Secretion of exogenous polypeptides from yeast
US7198919B1 (en) 1983-04-25 2007-04-03 Genentech, Inc. Use of alpha factor sequences in yeast expression systems
ZA843275B (en) * 1983-05-05 1984-12-24 Hoffmann La Roche Novel vectors for interferon expression
EP0143821A1 (de) * 1983-05-19 1985-06-12 Transgene S.A. Verfahren zur herstellung von catechol 2,3-oxygenase durch hefe, plasmid für dessen herstellung und verwendung
JPS60501290A (ja) * 1983-05-19 1985-08-15 ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ 酵母細胞に新しく導入した遺伝子の発現改良
US4870008A (en) * 1983-08-12 1989-09-26 Chiron Corporation Secretory expression in eukaryotes
EP0140762A1 (de) * 1983-10-03 1985-05-08 Transgene S.A. Vektoren zur Expression eines antigenischen Tollwutproteins in eukaryotischen Zellen und ihre Verwendung zur Herstellung eines Vakzins
FR2562090B2 (fr) * 1984-03-27 1988-04-08 Transgene Sa Proteine antigenique de la rage glycosylee
FR2552776B1 (fr) * 1983-10-03 1986-05-09 Transgene Sa Vecteurs d'expression d'une proteine antigenique de la rage dans les cellules eucaryotes et leur application a la preparation d'un vaccin
US5639639A (en) * 1983-11-02 1997-06-17 Genzyme Corporation Recombinant heterodimeric human fertility hormones, and methods, cells, vectors and DNA for the production thereof
PH23920A (en) * 1983-12-20 1990-01-23 Cetus Corp Glucoamylase cdna
GB8334261D0 (en) * 1983-12-22 1984-02-01 Bass Plc Fermentation processes
EP0154576A1 (de) * 1984-02-06 1985-09-11 INTERFERON SCIENCES, INC a Delaware Corporation Hybrid-Nucleinsäuresequenzen mit tandemartig angeordneten Genen
US4626505A (en) * 1984-02-24 1986-12-02 E. I. Du Pont De Nemours And Company Selectable markers for yeast transformation
US4745057A (en) * 1984-05-18 1988-05-17 Eli Lilly And Company Method, vectors and transformants for high expression of heterologous polypeptides in yeast
DK58285D0 (da) * 1984-05-30 1985-02-08 Novo Industri As Peptider samt fremstilling og anvendelse deraf
US5683688A (en) * 1984-05-31 1997-11-04 Genentech, Inc. Unglycosylated recombinant human lymphotoxin polypeptides and compositions
SE8403929L (sv) * 1984-07-31 1986-02-21 Sten Gatenbeck Rekombinant-dna-molekyl, transformerade mikroorganismer och forfarande for framstellning av penicillin v-amidas
US4752473A (en) * 1984-10-12 1988-06-21 The Regents Of The University Of California Expression of glycosylated human influenza hemagglutinin proteins
US7273695B1 (en) 1984-10-31 2007-09-25 Novartis Vaccines And Diagnostics, Inc. HIV immunoassays using synthetic envelope polypeptides
CA1341482C (en) 1984-10-31 2005-05-10 Paul A. Luciw Process for preparing fragments of aids-associated retroviruses
US7285271B1 (en) 1984-10-31 2007-10-23 Novartis Vaccines And Diagnostics, Inc. Antigenic composition comprising an HIV gag or env polypeptide
US4812405A (en) * 1986-02-18 1989-03-14 Phillips Petroleum Company Double auxotrophic mutants of Pichia pastoris and methods for preparation
JPS6447380A (en) * 1987-08-19 1989-02-21 Agency Ind Science Techn Steroid-oxidizing yeast strain
US7442525B1 (en) 1987-12-24 2008-10-28 Novartis Vaccines And Diagnostics, Inc. Method for expressing HIV polypeptides
US5580734A (en) * 1990-07-13 1996-12-03 Transkaryotic Therapies, Inc. Method of producing a physical map contigous DNA sequences
DK0574402T3 (da) 1990-11-26 1998-05-18 Chiron Corp Ekspression af PACE i værtsceller og fremgangsmåder til anvendelse deraf
FR2686899B1 (fr) * 1992-01-31 1995-09-01 Rhone Poulenc Rorer Sa Nouveaux polypeptides biologiquement actifs, leur preparation et compositions pharmaceutiques les contenant.
US5629167A (en) 1994-04-19 1997-05-13 Biocine S.P.A. Detection of antibodies against Chlamydia trachomatis pgp3 antigen in patient sera by enzyme-linked immunosorbent assay
ES2125530T3 (es) * 1994-07-29 1999-03-01 Teijin Ltd Secuencia de acidos nucleicos que codifica una enzima semejante a tripsina y procedimiento para producir la enzima.
GB9526733D0 (en) 1995-12-30 1996-02-28 Delta Biotechnology Ltd Fusion proteins
AU4977697A (en) 1996-09-25 1998-04-17 Vanderbilt University Genetically engineered yeast with modified signal peptidase complex
MX9605082A (es) 1996-10-24 1998-04-30 Univ Autonoma De Nuevo Leon Levaduras metilotroficas modificadas geneticamente para la produccion y secrecion de hormona de crecimiento humano.
CA2308606A1 (en) 1997-11-06 1999-05-20 Chiron S.P.A. Neisserial antigens
DE69941567D1 (de) 1998-01-14 2009-12-03 Novartis Vaccines & Diagnostic Antigene aus neisseria meningitidis
EP2189791A3 (de) 1998-02-04 2011-03-09 Life Technologies Corporation Mikroarrays und Verwendungen dafür
GB9808932D0 (en) 1998-04-27 1998-06-24 Chiron Spa Polyepitope carrier protein
CN101293920B (zh) 1998-05-01 2012-07-18 诺华疫苗和诊断公司 脑膜炎奈瑟球菌抗原和组合物
US7081360B2 (en) * 1998-07-28 2006-07-25 Cadus Technologies, Inc. Expression of G protein-coupled receptors with altered ligand binding and/or coupling properties
GB9902000D0 (en) 1999-01-30 1999-03-17 Delta Biotechnology Ltd Process
NZ530640A (en) 1999-04-30 2006-06-30 Chiron S Conserved neisserial antigens
GB9911683D0 (en) 1999-05-19 1999-07-21 Chiron Spa Antigenic peptides
GB9916529D0 (en) 1999-07-14 1999-09-15 Chiron Spa Antigenic peptides
AU784203B2 (en) 1999-10-29 2006-02-23 Glaxosmithkline Biologicals S.A. Neisserial antigenic peptides
US6232074B1 (en) 1999-12-10 2001-05-15 Complegen, Inc. Functional gene array in yeast
RU2279889C2 (ru) 2000-01-17 2006-07-20 Чирон С.Р.Л. ВАКЦИНА ВЕЗИКУЛ НАРУЖНЫХ МЕМБРАН (OMV), СОДЕРЖАЩАЯ БЕЛКИ НАРУЖНОЙ МЕБРАНЫ N.Meningitidis СЕРОЛОГИЧЕСКОЙ ГРУППЫ В
US20030118598A1 (en) * 2000-02-08 2003-06-26 Allergan, Inc. Clostridial toxin pharmaceutical compositions
US20060269575A1 (en) * 2000-02-08 2006-11-30 Allergan, Inc. Botulinum toxin pharmaceutical compositions formulated with recombinant albumin
US7780967B2 (en) * 2000-02-08 2010-08-24 Allergan, Inc. Reduced toxicity Clostridial toxin pharmaceutical compositions
US8632785B2 (en) * 2000-02-08 2014-01-21 Allergan, Inc. Clostridial toxin pharmaceutical composition containing a gelatin fragment
CN1258379C (zh) * 2000-02-08 2006-06-07 阿勒根公司 肉毒杆菌毒素药物组合物
US20050100991A1 (en) * 2001-04-12 2005-05-12 Human Genome Sciences, Inc. Albumin fusion proteins
EP1278544A4 (de) 2000-04-12 2004-08-18 Human Genome Sciences Inc Albumin fusionsproteine
US8399383B2 (en) 2000-05-04 2013-03-19 Yale University Protein chips for high throughput screening of protein activity
US8697394B2 (en) * 2000-06-28 2014-04-15 Glycofi, Inc. Production of modified glycoproteins having multiple antennary structures
US7863020B2 (en) 2000-06-28 2011-01-04 Glycofi, Inc. Production of sialylated N-glycans in lower eukaryotes
US7598055B2 (en) * 2000-06-28 2009-10-06 Glycofi, Inc. N-acetylglucosaminyltransferase III expression in lower eukaryotes
US7449308B2 (en) 2000-06-28 2008-11-11 Glycofi, Inc. Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
US7625756B2 (en) 2000-06-28 2009-12-01 GycoFi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
EP1297172B1 (de) * 2000-06-28 2005-11-09 Glycofi, Inc. Verfahren für die herstellung modifizierter glykoproteine
US6737262B1 (en) * 2000-07-11 2004-05-18 Robert I. Bolla Animal feed containing polypeptides
JP2002057727A (ja) * 2000-08-10 2002-02-22 Hitachi Ltd 半導体集積回路および光通信モジュール
US7939087B2 (en) 2000-10-27 2011-05-10 Novartis Vaccines And Diagnostics, Inc. Nucleic acids and proteins from Streptococcus groups A & B
WO2002039951A2 (en) * 2000-11-15 2002-05-23 Globe Immune, Inc. Yeast-dentritic cell vaccines and uses thereof
US6861237B2 (en) 2000-11-30 2005-03-01 Novo Nordisk A/S Production of heterologous polypeptides in yeast
GB0107661D0 (en) 2001-03-27 2001-05-16 Chiron Spa Staphylococcus aureus
GB0107658D0 (en) 2001-03-27 2001-05-16 Chiron Spa Streptococcus pneumoniae
US20050054051A1 (en) * 2001-04-12 2005-03-10 Human Genome Sciences, Inc. Albumin fusion proteins
US7507413B2 (en) * 2001-04-12 2009-03-24 Human Genome Sciences, Inc. Albumin fusion proteins
DE10123980B4 (de) * 2001-05-17 2008-01-10 Tesa Ag Abschlussbandage
JP4413617B2 (ja) 2001-12-12 2010-02-10 カイロン ソチエタ ア レスポンサビリタ リミタータ Chlamydiatrachomatisに対する免疫化
EP1463752A4 (de) * 2001-12-21 2005-07-13 Human Genome Sciences Inc Albuminfusionsproteine
EP2277910A1 (de) 2001-12-21 2011-01-26 Human Genome Sciences, Inc. Albumin Fusionsproteine
WO2005003296A2 (en) 2003-01-22 2005-01-13 Human Genome Sciences, Inc. Albumin fusion proteins
AU2003243316A1 (en) 2002-05-24 2003-12-12 Nps Allelix Corp. Method for enzymatic production of glp-2(1-33) and glp-2-(1-34) peptides
US20040018581A1 (en) * 2002-07-24 2004-01-29 Pharmacia And Upjohn Company Method for discovering substances for inhibiting enzymes
AU2003288660A1 (en) 2002-11-15 2004-06-15 Chiron Srl Unexpected surface proteins in neisseria meningitidis
US7439042B2 (en) * 2002-12-16 2008-10-21 Globeimmune, Inc. Yeast-based therapeutic for chronic hepatitis C infection
US8343502B2 (en) * 2002-12-16 2013-01-01 Globeimmune, Inc. Yeast-based vaccines as immunotherapy
KR101241272B1 (ko) * 2002-12-16 2013-03-15 더 리젠츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코포레이트 면역 요법으로서의 효모계 백신
EP1433842B1 (de) 2002-12-18 2011-01-05 Roche Diagnostics GmbH Rekombinante Desoxyribonuclease I aus Rinder-Pankreas mit hoher spezifischer Aktivität
DE60335602D1 (de) * 2002-12-18 2011-02-17 Roche Diagnostics Gmbh Rekombinante Desoxyribonuclease I aus Rinder-Pankreas mit hoher spezifischer Aktivität
DE60319333D1 (de) * 2002-12-20 2008-04-10 Roche Diagnostics Gmbh Hitzelabile Desoxyribonuklease I-Varianten
US7332299B2 (en) 2003-02-20 2008-02-19 Glycofi, Inc. Endomannosidases in the modification of glycoproteins in eukaryotes
EP1460425A1 (de) * 2003-03-17 2004-09-22 Boehringer Mannheim Gmbh Entglykosilierte Enzymen für Konjugaten
GB0308198D0 (en) 2003-04-09 2003-05-14 Chiron Srl ADP-ribosylating bacterial toxin
US20040248323A1 (en) 2003-06-09 2004-12-09 Protometrix, Inc. Methods for conducting assays for enzyme activity on protein microarrays
AU2004203649B2 (en) 2003-08-12 2006-01-12 F. Hoffmann-La Roche Ag Thermostable Taq polymerase fragment
SI1704234T1 (sl) 2003-11-21 2012-08-31 Nps Pharma Inc Proizvodnja glukagonu podobnih peptidov 2 in analogov
JP4411192B2 (ja) * 2003-12-05 2010-02-10 エフ.ホフマン−ラ ロシュ アーゲー 組換えで発現されるカルボキシペプチダーゼbおよびその精製
GB0329681D0 (en) 2003-12-23 2004-01-28 Delta Biotechnology Ltd Gene expression technique
GB0329722D0 (en) 2003-12-23 2004-01-28 Delta Biotechnology Ltd Modified plasmid and use thereof
AU2005295317B2 (en) * 2004-10-18 2011-10-13 Globeimmune, Inc. Yeast-based therapeutic for chronic hepatitis C infection
JP5631533B2 (ja) 2004-12-23 2014-11-26 ノボザイムス バイオファーマ デーコー アクティーゼルスカブ 遺伝子発現技術
JP4690787B2 (ja) * 2005-06-14 2011-06-01 株式会社日立製作所 微生物検知チップ及び微生物検知システム並びに微生物検知方法
CN101300346B (zh) 2005-06-24 2013-04-24 帝人制药株式会社 新型生理物质nesfatin及其相关物质、以及它们的用途
BRPI0613025A2 (pt) * 2005-07-11 2010-12-14 Globeimmune Inc composiÇço para reduzir a resistÊncia a um agente, mÉtodo para a preparaÇço de um veÍculo de levedura e uso da composiÇço
AU2006291780B2 (en) * 2005-09-14 2011-12-08 F. Hoffmann-La Roche Ag Cleavage of precursors of insulins by a variant of trypsin
CA2623197A1 (en) * 2005-09-22 2007-03-29 Prosci Incorporated Glycosylated polypeptides produced in yeast mutants and methods of use thereof
US20070172503A1 (en) 2005-12-13 2007-07-26 Mycologics,Inc. Compositions and Methods to Elicit Immune Responses Against Pathogenic Organisms Using Yeast Based Vaccines
CA2647102A1 (en) * 2006-03-27 2007-11-22 Globeimmune, Inc. Ras mutation and compositions and methods related thereto
US20100015168A1 (en) 2006-06-09 2010-01-21 Novartis Ag Immunogenic compositions for streptococcus agalactiae
CN104120086A (zh) 2007-02-02 2014-10-29 环球免疫公司 用于生产基于酵母的疫苗的方法
CA2677383A1 (en) * 2007-02-09 2008-08-21 Medimmune, Llc Antibody library display by yeast cell plasma membrane
JP5579451B2 (ja) * 2007-03-19 2014-08-27 グローブイミューン,インコーポレイテッド ガンのための標的化治療の変異性回避の標的化アブレーションのための組成物
CA2695830A1 (en) 2007-08-08 2009-02-12 Novozymes Biopharma Dk A/S Transferrin variants and conjugates
JP2012503011A (ja) 2008-09-19 2012-02-02 グローブイミューン,インコーポレイテッド 慢性c型肝炎ウイルス感染の免疫療法
EP2393834B1 (de) 2009-02-06 2013-04-17 Novozymes Biopharma DK A/S Aufreinigungsverfahren
JP5936112B2 (ja) 2009-02-11 2016-06-15 アルブミディクス アクティーゼルスカブ アルブミン変異体及び複合体
CN102458458B (zh) 2009-04-17 2016-11-16 全球免疫股份有限公司 组合免疫疗法组合物和方法
CA2774326C (en) 2009-09-14 2023-11-07 Donald Bellgrau Modulation of yeast-based immunotherapy products and responses
WO2011112871A1 (en) 2010-03-11 2011-09-15 Immune Design Corp. Vaccines for pandemic influenza
EP2380905A1 (de) 2010-04-19 2011-10-26 Thrombotargets Europe, S.L. Phospholipidangereicherte Vesikel mit Gewebefaktor mit blutstillenden Aktivitäten sowie Verwendungen davon
EP2651439B1 (de) 2010-12-17 2018-09-19 Globeimmune, Inc. Zusammensetzungen und verfahren zur behandlung oder vorbeugung von menschlicher adenovirus-36-infektion
CA2827150C (en) 2011-02-12 2018-09-11 Globeimmune, Inc. Yeast-based therapeutic for chronic hepatitis b infection
RU2690180C2 (ru) 2011-03-17 2019-05-31 Глоубиммьюн, Инк. Иммунотерапевтические композиции на основе дрожжей с brachyury
SG195383A1 (en) 2011-06-14 2013-12-30 Globeimmune Inc Yeast-based compositions and methods for the treatment or prevention of hepatitis delta virus infection
CN104024429B (zh) 2011-08-17 2019-06-04 全球免疫股份有限公司 酵母-muc1免疫治疗组合物及其用途
JP6355630B2 (ja) 2012-06-26 2018-07-11 バイオデシックス・インコーポレイテッドBiodesix Inc 質量スペクトルを用いて免疫応答発生治療剤で治療する癌患者を選択または除外する方法
TWI674108B (zh) 2013-03-19 2019-10-11 美商環球免疫公司 索脊瘤之以酵母菌爲基礎之免疫療法
TWI728239B (zh) 2013-03-26 2021-05-21 美商環球免疫公司 治療或預防人類免疫缺乏病毒感染之組合物及方法
WO2015031778A2 (en) 2013-08-30 2015-03-05 Globeimmune, Inc. Compositions and methods for the treatment or prevention of tuberculosis
AU2015243256B2 (en) 2014-04-11 2020-11-05 Globeimmune, Inc. Yeast-based immunotherapy and type I interferon sensitivity
DK3154561T3 (da) 2014-06-12 2019-10-07 Ra Pharmaceuticals Inc Modulering af komplementaktivitet
LT3250230T (lt) 2015-01-28 2021-12-27 Ra Pharmaceuticals, Inc. Komplemento aktyvumo moduliatoriai
WO2017023840A1 (en) 2015-08-03 2017-02-09 Globeimmune, Inc. Modified yeast-brachyury immunotherapeutic compositions
SG11201804721SA (en) 2015-12-16 2018-07-30 Ra Pharmaceuticals Inc Modulators of complement activity
JP7301741B2 (ja) 2016-12-07 2023-07-03 ラ ファーマシューティカルズ インコーポレイテッド 補体活性のモジュレータ
AU2018265408A1 (en) * 2017-05-10 2020-01-02 Baymedica, Inc. Recombinant production systems for prenylated polyketides of the cannabinoid family
JP2022524103A (ja) 2019-03-08 2022-04-27 メビオン・メディカル・システムズ・インコーポレーテッド カラム別の放射線の照射およびそのための治療計画の生成

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237224A (en) * 1974-11-04 1980-12-02 Board Of Trustees Of The Leland Stanford Jr. University Process for producing biologically functional molecular chimeras
CA1114295A (en) * 1977-11-02 1981-12-15 John H. Growdon Process and composition for treating disorders by administering choline or a compound that dissociates to choline
US4366246A (en) * 1977-11-08 1982-12-28 Genentech, Inc. Method for microbial polypeptide expression
IE47890B1 (en) * 1977-11-08 1984-07-11 Genentech Inc Polypeptide production by expression in a recombinant microbial cloning vehicle, and cloning vehicles
US4356270A (en) * 1977-11-08 1982-10-26 Genentech, Inc. Recombinant DNA cloning vehicle
US4563424A (en) * 1979-11-05 1986-01-07 Genentech, Inc. Method and means for somatostatin protein conjugate expression
DE2862495D1 (en) * 1977-11-08 1989-05-24 Genentech Inc Plasmid for transforming bacterial host to render it capable of polypeptide expression
FR2441659A1 (fr) * 1978-11-14 1980-06-13 Anvar Nouveaux plasmides hybrides et microorganismes les contenant
FR2480779B2 (fr) * 1979-08-30 1986-07-18 Anvar Vecteur contenant une sequence nucleotidique de l'antigene de surface du virus de l'hepatite b et procede de fabrication d'une molecule immunogene mettant en oeuvre ce vecteur
DD147855A5 (de) * 1978-12-22 1981-04-22 Biogen Nv Verfahren zur erzeugung mindestens eines hbv-antigenwirkung aufweisenden polypeptids
GB2052516B (en) * 1979-06-01 1983-06-29 Searle & Co Plasmid vectors production and use thereof
FR2458585A1 (fr) * 1979-06-07 1981-01-02 Pasteur Institut Procede de production de proteines par expression des genes correspondants dans des micro-organismes et vecteurs susceptibles d'etre mis en oeuvre dans de tels procedes
US4342832A (en) * 1979-07-05 1982-08-03 Genentech, Inc. Method of constructing a replicable cloning vehicle having quasi-synthetic genes
US4425437A (en) * 1979-11-05 1984-01-10 Genentech, Inc. Microbial polypeptide expression vehicle
US4431739A (en) * 1979-11-05 1984-02-14 Genentech, Inc. Transformant bacterial culture capable of expressing heterologous protein
GB2068969B (en) * 1980-02-05 1983-07-27 Upjohn Co Gene expression
AU546577B2 (en) * 1980-02-25 1985-09-05 Trustees Of Columbia University, The Use of eucaryotic promoter sequences in the production of proteinaceous materials
JPS56138154A (en) * 1980-02-28 1981-10-28 Genentech Inc Desacetylthymosin-alpha-1 and manufacture
CH657141A5 (de) * 1980-07-01 1986-08-15 Hoffmann La Roche Dns-sequenzen, rekombinante expressionsvektoren zur mikrobiellen herstellung von human-leukozyten-interferonen und transformierte mikroorganismen.
IT1139487B (it) * 1980-09-25 1986-09-24 Genentech Inc Produzione microbica di interferone di fibroblasti umani
NZ199391A (en) * 1981-01-02 1985-12-13 Genentech Inc Chimeric polypeptides comprising a proinsulin sequence,and preparation by recombinant dna technique;production of human insulin
US4666847A (en) * 1981-01-16 1987-05-19 Collaborative Research, Inc. Recombinant DNA means and method
US4769238A (en) * 1981-08-04 1988-09-06 The Regents Of The University Of California Synthesis of human virus antigens by yeast
US4462199A (en) * 1981-08-13 1984-07-31 Xerox Corporation Rotary inserter
DK368882A (da) * 1981-08-25 1983-02-26 Alan John Kingsman Expessions vektorer
AU561343B2 (en) 1981-10-19 1987-05-07 Genentech Inc. Human immune interferon by recombinant dna

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
A. M. Chakrabarty, Genetic Engineering, CRC Press, 1978, pp 17-18, item E *
CURRENT GENETICS, vol.2, 1980, Springer Verlag J.J. PANTHIER et al.: "Cloned beta-galactosidase gene of Escherichia coli is expressed in the yeast saccharomyces cerevisiae" pages 109-113 *
EP 96910, EP 103201, EP 109560, WO 83/04050, EP 72318, EP 73635, EP 100561, EP 120 551, WO 84/01153, EP 77670, EP 73657 *
EP A2 0077670, p. 5, l. 33 to p. 6, l.5 *
NATURE, vol. 283, January 10, 1980, MacMillan Journals ltd. Basingstoke (GB) V.M. WILLIAMSON et al.: "Isolation of the structural gene for alcohol dehydrogenase by genetic complementation in yeast", pages 214-216 *
NATURE, vol.282, November 1, 1979, Macmillan Journals Ltd., Basingstoke (GB) D.T. STINCHCOMB et al.: "Isolation and characterisation of a yeast chromosomal replicator", pages 39-43 *
NATURE, vol.287, October 2, 1980, Macmillan Journals Ltd., Basingstoke (GB) D.V. GOEDDEL et al.: "Human leukocyte interferon produced by E. coli is biologically active", pages 411-416 *
NATURE, vol.287, September 18, 1980, Macmillan Journals Ltd., Basingstoke (GB) R. DERYNCK et al.: "Expression of human fibroplast interferon gene in Escherichia coli", pages 193-197 *
NATURE, vol.293, October 29, 1981, Macmillan Journals LTD., Basingstoke (GB) R.A. HITZEMAN et al.: "Expression of a human gene for interferon in yeast", pages 717-722 *
Proc. Nat. Acad. Sci. 80, Dec. 1983, pp. 7461-7465 (Urdee et al.) *
Proc. Nat. Acad. Sci. 80, Jan. 1983, pp. 1-5 (Miyanchara et al.) *
Proc. Nat. Acad. Sci. 81, Jan. 1984, pp. 367-370 (Kramer et al.) *
The EMBO Journal 1, 1982, pp. 603-608 (Tuite et al.) *

Also Published As

Publication number Publication date
JPS57159489A (en) 1982-10-01
NZ199722A (en) 1985-12-13
US5919651A (en) 1999-07-06
AU553885B2 (en) 1986-07-31
US5618676A (en) 1997-04-08
ZA821079B (en) 1983-04-27
DE3276241D1 (en) 1987-06-11
ATE27000T1 (de) 1987-05-15
MY101599A (en) 1991-12-17
CA1205026A (en) 1986-05-27
EP0060057A1 (de) 1982-09-15
US5854018A (en) 1998-12-29
AU8065782A (en) 1982-09-02
US5856123A (en) 1999-01-05
JPH0757190B2 (ja) 1995-06-21
JPH09182585A (ja) 1997-07-15

Similar Documents

Publication Publication Date Title
EP0060057B1 (de) Expression von Polypeptiden in Hefen
US4588684A (en) a-Factor and its processing signals
Bitter et al. [33] Expression and secretion vectors for yeast
CA1341302C (en) Yeast expression systems with vectors having gapdh or pyk promoters and synthesis of foreign protein
EP0123811B1 (de) Die Verwendung des GAL 1 Hefe-Promotors
EP0088632B1 (de) Expression, Bearbeitung und Ausscheidung von heterologem Protein durch Hefen
EP0123544A2 (de) Verfahren zur Expression von heterologen Proteinen in Hefe, Expressionsvektoren und Hefe-Organismen dafür
Derynck et al. Expression of the human interferon–γ cDNA in yeast
GB2107718A (en) Human immune interferon
EP0142268A1 (de) Saccharomyces cerevisiae mit dem Interleukin-2-polypeptidgen und Verfahren zur Herstellung von Interleukin-2 unter Verwendung der Hefe
US4935350A (en) Materials and methods for controlling plasmid copy number and stability
WO1988002779A1 (en) Composite yeast vectors
EP0127304A1 (de) Verfahren zur Herstellung von heterologem Protein in Hefe, Expressionsbildungsträger hierfür und damit transformierte Hefe
WO1992013951A1 (en) Production of human serum albumin in methylotrophic yeast cells
US7198919B1 (en) Use of alpha factor sequences in yeast expression systems
Hitzeman et al. Yeast: an alternative organism for foreign protein production
DE69616276T2 (de) Verfahren zur produktion von proteinen
WO1992004441A1 (en) Production of human lysozyme in methylotrophic yeast cells and efficient secretion therefrom
EP0343388A2 (de) Expression von Gamma-Interferon in methylotrophischen Hefen
WO1986000637A1 (en) Yeast cloning vehicle
WO1986000638A1 (en) Yeast cloning vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19821019

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 27000

Country of ref document: AT

Date of ref document: 19870515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3276241

Country of ref document: DE

Date of ref document: 19870611

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: GENENTECH, INC.

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: WASHINGTON RESEARCH FOUNDATION

Owner name: GENENTECH, INC.

ET Fr: translation filed
BECN Be: change of holder's name

Effective date: 19870506

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BOEHRINGER MANNHEIM GMBH

Effective date: 19880202

26 Opposition filed

Opponent name: GIST-BROCADES N.V.

Effective date: 19880208

Opponent name: NOVO INDUSTRI A/S

Effective date: 19880205

Opponent name: TAKEDA CHEMICAL INDUSTRIES, LTD

Effective date: 19880205

Opponent name: DELTA BIOTECHNOLOGY LIMITED

Effective date: 19880205

Opponent name: ZYMOGENETICS, INC.

Effective date: 19880208

Opponent name: CELLTECH LIMITED

Effective date: 19880208

Opponent name: CHIRON CORPORATION

Effective date: 19880208

Opponent name: BOEHRINGER MANNHEIM GMBH

Effective date: 19880202

NLR1 Nl: opposition has been filed with the epo

Opponent name: BOEHRINGER MANNHEIM GMBH

NLR1 Nl: opposition has been filed with the epo

Opponent name: NOVO INDUSTRI A/S

Opponent name: TAKEDA CHEMICAL INDUSTRIES, LTD.

Opponent name: CIBA-GEIGY AG

Opponent name: BEHRINGWERKE AKTIENGESELLSCHAFT

Opponent name: DELTA BIOTECHNOLOGY LIMITED

Opponent name: ZYMOGENETICS,INC.

Opponent name: CELLTECH LIMITED

Opponent name: CHIRON CORPORATION

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BOEHRINGER MANNHEIM GMBH * 880208 CHIRON CORPORATI

Effective date: 19880202

ITTA It: last paid annual fee
PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940214

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940215

Year of fee payment: 13

Ref country code: CH

Payment date: 19940215

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940217

Year of fee payment: 13

Ref country code: DE

Payment date: 19940217

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940222

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940223

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940228

Year of fee payment: 13

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BOEHRINGER MANNHEIM GMBH PATENTABTEILUNG * 880208

Effective date: 19880202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940331

Year of fee payment: 13

EPTA Lu: last paid annual fee
R26 Opposition filed (corrected)

Opponent name: BOEHRINGER MANNHEIM GMBH PATENTABTEILUNG * 880208

Effective date: 19880202

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 19940620

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 940620

NLR2 Nl: decision of opposition
EUG Se: european patent has lapsed

Ref document number: 82300949.3

Effective date: 19941102

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO