EP0027173B1 - Verfahren zum Aufwickeln von Fäden - Google Patents

Verfahren zum Aufwickeln von Fäden Download PDF

Info

Publication number
EP0027173B1
EP0027173B1 EP80105190A EP80105190A EP0027173B1 EP 0027173 B1 EP0027173 B1 EP 0027173B1 EP 80105190 A EP80105190 A EP 80105190A EP 80105190 A EP80105190 A EP 80105190A EP 0027173 B1 EP0027173 B1 EP 0027173B1
Authority
EP
European Patent Office
Prior art keywords
stroke
length
period
cycle
fact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80105190A
Other languages
English (en)
French (fr)
Other versions
EP0027173A1 (de
Inventor
Heinz E.H. Dr. Dipl.-Ing. Schippers
Gerhard Dr. Dr.-Ing. Martens
Karl-Werner Frölich
Eckard Homuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Barmag AG
Original Assignee
Barmag Barmer Maschinenfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barmag Barmer Maschinenfabrik AG filed Critical Barmag Barmer Maschinenfabrik AG
Publication of EP0027173A1 publication Critical patent/EP0027173A1/de
Application granted granted Critical
Publication of EP0027173B1 publication Critical patent/EP0027173B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/38Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/38Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
    • B65H54/385Preventing edge raising, e.g. creeping arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2513/00Dynamic entities; Timing aspects
    • B65H2513/10Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a method for winding threads, in particular man-made fibers delivered at a constant speed, into wildly wound cross-wound bobbins, in which the traversing stroke length is shortened cyclically in a shortening cycle in the range of a maximum difference value compared to its predetermined maximum value, in an extension cycle to the predetermined one Maximum value is extended again and kept unchanged in a rest cycle.
  • the invention proposes that the breathing stroke - defined as the difference between the maximum and the smallest traversing stroke length of a breathing cycle - be changed several times during the winding cycle.
  • the breathing stroke can preferably be changed continuously from one breathing cycle to another, in particular in a non-periodic manner. This is technically solved in particular so that a sequence of numbers generated by a random number z. B. predefined directly or via a memory and the breathing path or breathing stroke in the successive breathing cycles is determined according to this sequence of numbers.
  • either the shortening speed can be changed according to the sequence of numbers, whereby the duration of the shortening cycle of breathing remains constant, or the duration of each shortening cycle or constant each breathing path can be changed according to the specified sequence of numbers if the shortening speed is constant for the winding cycle.
  • this time of the constant maximum traversing stroke is referred to as the resting time TR.
  • the ratio of the rest cycle to the entire movement cycle of a breathing cycle (sum of the duration of the shortening cycle and the extension cycle) is kept constant for the entire winding cycle.
  • This ratio is preferably greater than 1/4 and less than 1/2.
  • the adjustment of the traversing stroke is carried out by a breathing motor for adjusting a device such as that used for. B. is shown in DE-C 1 916 580.
  • This respiratory motor is preferably operated at the same speed during the shortening and lengthening of the traversing stroke, so that the duration of the shortening cycle of breathing is equal to the duration of the extension cycle.
  • the invention is based on the further problem that a so-called mirror formation is possible when winding threads into cross-wound bobbins in a wild winding, in which two layers of threads lie directly one on top of the other. In this case, the bobbin and the threads are damaged.
  • the problem of mirror formation is avoided by the so-called "mirror disturbance".
  • the traversing speed is usually changed continuously in a predetermined range of a maximum and a minimum traversing speed.
  • mirror disturbance and breathing can be coupled with one another in such a way that, according to claim 8, the times of greatest traversing speed and shortest traversing stroke length coincide.
  • the start of each breathing cycle with the start of the acceleration of the traversing speed for the purpose of mirror disturbance can be started with two or more than two alternately controlled time relays with different time constants. It has been shown that the best results in terms of coil structure, coil hardness and coil shape are achieved if the breathing is changed according to the invention and coupled with the mirror disturbance.
  • the mirror disturbance and the breathing are coupled to one another in such a way that the rise clock of the mirror disturbance (ie the timing for increasing the traversing speed) and the shortening clock of breathing (ie the timing for shortening the traversing stroke) are synchronous, while the sum of the extension cycle (that is, the timing for the extension of the traversing stroke) and the rest cycle (that is, the timing of the constant maximum traversing stroke) are identical in time to the descent cycle of the mirror disturbance (that is, the timing of the reduction in the traversing speed).
  • the rise clock of the mirror disturbance ie the timing for increasing the traversing speed
  • the shortening clock of breathing ie the timing for shortening the traversing stroke
  • the sum of the extension cycle that is, the timing for the extension of the traversing stroke
  • the rest cycle that is, the timing of the constant maximum traversing stroke
  • the method set out in claims 8 to 11 can be carried out in that the acceleration amounts and the deceleration amounts of the traversing speed remain constant during each cycle of the mirror disturbance and over all cycles of the mirror disturbance of a winding trip, the amount of retardation of the traversing speed in each descent cycle Mirror disturbance is chosen so that the mirror disturbance occurs by changing the traversing speed above a minimum traversing speed which is constant for the winding travel.
  • the amount of acceleration can preferably be greater than or at most equal to the amount of deceleration of the traversing speed.
  • This proposal is characterized in that the mirror disturbance stroke - as the difference between the respectively maximum traversing speed and the minimum traversing speed which is constant over the winding travel - is proportional to the respiratory stroke.
  • the drive for the mirror fault remains constant during the winding cycle. There is only a switchover from acceleration of the traversing speed to deceleration or from deceleration of the traversing speed to acceleration at the beginning and end of the shortening cycle of breathing, which is predetermined by a sequence of numbers, preferably a random number sequence, with a predetermined ratio of the acceleration amount to the delay amount.
  • the invention can be carried out by continuously changing the duration of the shortening cycle of breathing for each breathing cycle, while the traversing speed is first accelerated beyond the predetermined mean value during each shortening cycle of breathing, and that the deceleration amounts of the traversing speed are continuously adapted to the respective maximum value of the traversing speed in such a way that the maximum traversing speed and the minimum traversing speed are symmetrical to the predetermined mean traversing speed in a descent cycle.
  • the acceleration values and deceleration values in the previously described predetermined ratio depend on the minimum traversing speed initiating the respective mirror disturbance stroke and the respective mirror disturbance stroke as the difference between the maximum and the minimum traversing speed of the mirror disturbance cycle.
  • the dependence of the acceleration values is such that a maximum traversing speed which is above the predetermined mean traversing speed is achieved in each rise cycle of the mirror disturbance. It can therefore be provided for the implementation of the invention that the controller for coupling breathing and perturbation also contains a computer which calculates the acceleration value and the deceleration value for the traversing speed with a lead time before each breathing and mirror disturbance cycle.
  • a sequence of numbers for the change in breathing and the values for the acceleration values and the deceleration values of the traversing speed which are to be assigned to this sequence of numbers are stored in a memory for synchronous retrieval.
  • the latter values can be determined as a function of the differences in the numbers, which in their sequence determine the respective shortening cycle of breathing.
  • the change in the shortening cycle duration of the breathing and the breathing stroke, in particular at a constant shortening speed are controlled by changing the resting clock period.
  • the duration of the breathing cycle consisting of shortening cycle, extension cycle and resting cycle can remain constant over the winding cycle.
  • the invention can be carried out by a large number of controls, in which case an electronics specialist must be consulted.
  • the control which is only shown schematically, is constructed in such a way that it can carry out the functions of mirror disturbance and breathing shown in FIGS.
  • the "traversing speed” is the speed of the traversing thread guide.
  • the traversing speed is expressed in double strokes (back and forth stroke) per minute, also referred to as »number of strokes « for short.
  • a traversing device can have an average speed of 100 double strokes (DH) per minute, the number of strokes being able to move between 95 and 105 (DH / min) to avoid mirror formation.
  • the traversing speed changes continuously between the specified maximum and minimum values.
  • the traversing speed is expressed in m / min. If breathing alone - i.e. no mirror disturbance - is used, the number of strokes (DH / min) remains constant during the winding travel, and only the traversing stroke length changes during the winding travel given time periods. In this case the traversing speed in m / min results from:
  • the traversing speed is influenced both by the number of strokes (number of double strokes / min) and by the change in the traversing stroke length (m / DH).
  • the traversing speed is expressed as the number of double strokes / min [DH / min], although the influence of breathing on the change in traversing speed can be of the same order of magnitude as the influence of mirror interference on the change of traversing speed.
  • the essential criterion of the mirror disturbance according to FIG. 1 is that the acceleration of the traversing speed, which is represented by the tangent of the rise angle alpha, remains constant over the entire winding travel.
  • alpha and beta are not the same as each other, but that beta is preferably smaller than alpha.
  • the speed for shortening and lengthening the traversing stroke which are each represented by the angles gamma and delta, are constant over the entire winding travel.
  • Both the acceleration and deceleration values of the traversing speed and the speed of the stroke shortening can be set for the winding travel in terms of their absolute amount.
  • the duration of the breathing cycle TA is variably specified from one cycle to another. This can be done by specifying either the duration of the shortening cycle TK of each breathing cycle TA or the breathing stroke 4A of each breathing cycle using a sequence of numbers, preferably an arbitrary, ie non-periodic sequence of numbers, and then based on the boundary conditions: the time period for the extension clock TL and the resting clock TR of breathing is determined.
  • the traversing speed is then switched over to its constantly predetermined acceleration value at the constantly predetermined acceleration value at the beginning and end of the respective shortening cycle of breathing.
  • the breathing cycle is again specified for each breathing cycle TA by either specifying the duration of the shortening cycle TK or the respiratory path AA according to a number sequence programmed into a memory.
  • breathing and perturbation are coupled to one another in such a way that the times of greatest traversing speed VS max and smallest traversing stroke length HCH min i coincide.
  • the traversing speed VS is increased in such a way that, taking into account its output value at the end of the shortening cycle TK or the rising clock TAN, it is greater than the average traversing speed VS medium, which is constantly predetermined for a coil.
  • the acceleration of the traversing speed is therefore dependent on the one hand on the minimum traversing speed VS mini achieved at the beginning of the rise cycle and on the other hand on the length of the predetermined rise cycle or shortening cycle of the breathing cycle.
  • This acceleration value of the traversing speed VS can either be specified with a short lead time before each shortening cycle TK by a computer connected to the controller, which detects the minimum traversing speed VS min i at the beginning and the duration of the rising clock TAN.
  • the required acceleration values of the traversing speed VS which is the condition mentioned above are sufficient to calculate in advance and also store and retrieve from the memory with each number of the number sequence for the shortening cycle TK of a breathing cycle.
  • the deceleration of the traversing speed which is represented by the tangent of the angle beta, is chosen for each descent cycle TAB of the mirror disturbance such that the maximum traversing speed VS max and the minimum traversing speed VS min; of this descent cycle are symmetrical to the average traversing speed VS medium specified for this coil.
  • a prediction of the delay value which is represented by the tangent beta, is again required. This can also be done by a computer which, on the one hand, achieves the maximum traversing speed VS max; this mirror disturbance cycle and the duration of the shortening cycle TK of respiration or the duration of the rise cycle TAN of the increase in the traversing speed VS are detected and therefrom determined.
  • Corresponding values can, however, also be calculated in advance and then again entered into a memory with the corresponding acceleration values and specified for the mirror disturbance with each descent cycle TAB of the control device.
  • the traversing speed VS always oscillates around the mean traversing speed VS given for the spool, so that the spool is to be constructed with a pre-calculated mean value of the crossing angle.
  • the frequency generator 1 and the counter 2 generate an actual time signal which is given to the changeover switch 3.
  • a set time signal is generated by the time preset memory 4 and is likewise given to the changeover switch 3.
  • the breathing control 6 is first switched to shortening and then to an extension of the traversing stroke and then to a constant traversing stroke.
  • the duration of the shortening cycle TK, extension cycle TL and rest cycle TR can be stored directly in the time preset memory 4.
  • the output signal of the changeover switch 3 is simultaneously given to a timer 5 which, via the converter 7, gives a positive or negative voltage signal to the control device 8 for the mirror disturbance in alternating sequence if the target time signal and the actual time signal match.
  • the amplitude of the mirror interference can be influenced by the additional control device 9.
  • control device can be used for the embodiment of the invention described with reference to FIG. 1.
  • control is to be supplemented by a memory device 10, which converts the output signal of the converter 7 in such a way that the mirror interference is operated with the pre-calculated acceleration and deceleration values.
  • the traversing speed between the maximum value VS max and the minimum value of the traversing speed VS min is continuously changed in constant cycle times TS for the purpose of mirror interference.
  • the drive motor for traversing during the drive time TAN of the mirror fault is accelerated as a function of an additional drive pulse on a drive line 15 (FIG. 5), which is omitted during the descent time TAB of the mirror fault.
  • the breathing cycle TA is identical to the cycle TS of the mirror disorder.
  • the breathing stroke is between a maximum breathing path HCH max and a minimum breathing path HCH min; continuously changed in four stages. This is done by starting each breathing cycle with a rest period TRA, for which four different values are preprogrammed. Otherwise, the motor which causes the change in the traversing stroke HCH is switched so that it changes its direction of rotation when the pulse on the control line 15 ceases to exist and thus increases the traversing stroke again until it reaches a limit switch 43 when the maximum traversing stroke HCH max is reached (Fig. 5) drives, which puts the engine out of operation again. It then remains out of operation for the time period TRE until the next breathing cycle TA is started with another of the preprogrammed initial rest periods TRA.
  • This breathing with a modified breathing stroke L 1A and its synchronization with the mirror disturbance is carried out by a circuit according to FIG. 5.
  • the heart of this circuit is the timing relays 11, 12, 13 and 14, to which different time constants are programmed. These time constants correspond to the initial rest periods TRA1, TRA2, TRA3, TRA4.
  • the timing relays 11 to 14 are controlled by the so-called step-up relays 16 and 17 as a function of the pulse on the control line 15.
  • Step-by-step relays are commercially available components that assume a predetermined switching position due to an input pulse and which are retained even when the pulse is removed.
  • switches 26 to 33 are connected in series with the time relays 11 to 14 in pairs.
  • the lines 34 to 37 come from a control transformer, not shown.
  • the pulses on the control line 15 determine the start of the cycle for the mirror disturbance and breathing and, in addition, also the changeover time for the deceleration of the traversing speed VS and the extension of the traversing stroke HCH.
  • the time relays 11 to 14 control corresponding switches 11'-14 'after the preset initial sleep time TRA1 to TRA4 has elapsed.
  • the motor (respiratory motor) 38 with the direction of rotation 39 for reducing the traversing stroke is set in motion by the relay 40 and the switch 41 when or since the switch 42 is closed by the pulse on the control line 15.
  • switch 42 is opened.
  • the motor 38 with the direction of rotation 46 is now switched over via the relay 44 and the switch 45 to increase the traversing stroke.
  • the motor 38 remains in operation until it opens the limit switch 43 again. It is only put back into operation when another time relay is activated and the pulse on control line 15 reappears.
  • the lines 47 and 48, via which the motor 38 is controlled on the one hand by the time relays 11 to 14 and on the other hand by the limit switch 43, are interlocked with one another by the relays 40 and 44 already described and the switches 49, 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Winding Filamentary Materials (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Aufwickeln von Fäden, insbesondere von mit konstanter Geschwindigkeit angelieferten Chemiefasern, zu wild gewickelten Kreuzspulen, bei dem die Changierhublänge gegenüber ihrem vorgegebenen Maximalwert zyklisch in einem Verkürzungstakt im Bereich eines maximalen Differenzwertes verkürzt wird, in einem Verlängerungstakt bis auf den vorgegebenen Maximalwert wieder verlängert und in einem Ruhetakt unverändert beibehalten wird.
  • Beim Aufwickeln von Fäden zu Kreuzspulen, insbesondere zylindrischen und bikonischen Kreuzspulen in wilder Wicklung, entstehen an den Stirnkanten der Spulen harte und unter Umständen verdickte Stellen. Dem begegnet man durch die sogenannte »Atmung«. Bei der Atmung wird die Changierhublänge zyklisch verkürzt. Der Atmungsweg bzw. Atmungshub (Changierhubverkürzung, Hubverkürzung) ist titerabhängig. Verkürzungen bis 10 mm sind denkbar.
  • Es hat sich herausgestellt, daß die Atmung nach der bekannten Arbeitsweise das Problem der verdickten und verhärteten Stellen einer Kreuzspule noch nicht vollständig löst. Vielmehr wird zuweilen beobachtet, daß sich verhärtete Stellen sowohl an den Stirnkanten der Spule als auch am Ende des Atmungsweges bilden.
  • Zur Lösung dieses Problems wird erfindungsgemäß vorgeschlagen, daß der Atmungshub - definiert als Differenz zwischen der maximalen und der geringsten Changierhublänge eines Atmungszyklus - während der Spulreise mehrfach verändert wird.
  • Durch Versuche wurde festgestellt, daß sich hierdurch auch im Bereich der Spulenenden eine gleichmäßige Härte der Spulen und ein exakt zylindrischer Aufbau erzielen läßt.
  • Vorzugsweise kann der Atmungshub von einem Atmungszyklus zum anderen, insbesondere in nicht-periodischer Weise, fortlaufend verändert werden. Das wird technisch insbesondere so gelöst, daß eine durch einen Zufallsgenerator erzeugte Zahlenfolge z. B. direkt oder über einen Speicher vorgegeben und der Atmungsweg bzw. Atmungshub in den aufeinanderfolgenden Atmunggszyklen nach dieser Zahlenfolge festgelegt wird.
  • Hierzu kann entweder die Verkürzungsgeschwindigkeit entsprechend der Zahlenfolge verändert werden, wobei die Zeitdauer des Verkürzungstaktes der Atmung konstant bleibt, oder es kann bei für die Spulreise konstanter Verkürzungsgeschwindigkeit die Zeitdauer jedes Verkürzungstaktes oder aber unmittelbar jeder Atmungsweg entsprechend der vorgegebenen Zahlenfolge verändert werden.
  • Bei der Atmung und insbesondere auch bei der erfindungsgemäßen Art der Atmung hat sich als vorteilhaft herausgestellt, die Changierhublänge für eine gewisse Zeit auf ihrem Maximalwert konstant zu halten. Im Rahmen dieser Anmeldung wird diese Zeit des konstanten maximalen Changierhubes als Ruhezeit TR bezeichnet.
  • Es kann im Rahmen der obengenannten erfindungsgemäßen Vorschläge vorgesehen sein, daß das Verhältnis von Ruhetakt zu dem gesamten Bewegungstakt eines Atmungszyklus (Summe der Zeitdauer von Verkürzungstakt und Verlängerungstakt) für die gesamte Spulreise konstant gehalten wird.
  • Dieses Verhältnis, welches im Rahmen dieser Anmeldung mit k bezeichnet wird, ist vorzugsweise größer als 1/4 und kleiner als 1/2.
  • Die Verstellung des Changierhubes erfolgt durch einen Atmungsmotor zur Verstellung einer Einrichtung, wie sie z. B. in der DE-C 1 916 580 gezeigt ist. Vorzugsweise wird dieser Atmungsmotor bei der Verkürzung und bei der Verlängerung des Changierhubes mit gleicher Drehzahl betrieben, so daß die Dauer des Verkürzungstaktes der Atmung gleich der Dauer des Verlängerungstaktes ist.
  • Der Erfindung liegt das weitere Problem zugrunde, daß beim Aufspulen von Fäden zu Kreuzspulen in wilder Wicklung eine sogenannte Spiegelbildung möglich ist, bei der zwei Lagen von Fäden direkt aufeinanderliegen. In diesem Falle kommt es zu einer Schädigung der Spule und der Fäden. Das Problem der Spiegelbildung wird durch die sogenannte »Spiegelstörung« vermieden.
  • Zur Spiegelstörung wird üblicherweise die Changiergeschwindigkeit in einem vorgegebenen Bereich einer maximalen und einer minimalen Changiergeschwindigkeit laufend verändert.
  • Bei Kombination der vorliegenden Erfindung mit dem älteren Verfahren der Spiegelstörung nach der DE-A 2 855 616 können Spiegelstörung und Atmung derart miteinander gekoppelt werden, daß nach Anspruch 8, die Zeitpunkte größter Changiergeschwindigkeit und geringster Changierhublänge zusammenfallen. Unter der gleichen Bedingung kann auch der Start eines jeden Atmungszyklus mit Beginn der Beschleunigung der Changiergeschwindigkeit zum Zwecke der Spiegelstörung über zwei oder mehr als zwei abwechselnd angesteuerte Zeitrelais mit verschiedenen Zeitkonstanten in Gang gesetzt werden. Es hat sich gezeigt, daß die besten Ergebnisse hinsichtlich Spulenaufbau, Spulenhärte und Spulenform erzielt werden, wenn die Atmung erfindungsgemäß verändert und mit der Spiegelstörung gekoppelt wird.
  • Vorzugsweise werden die Spiegelstörung und die Atmung nach Anspruch 11 derart miteinander gekoppelt, daß der Anstiegtakt uer Spiegelstörung (d. h. der Zeittakt für die Erhöhung der Changiergeschwindigkeit) und der Verkürzungstakt der Atmung (d. h. der Zeittakt für die Verkürzung des Changierhubs) synchron liegen, während die Summe von Verlängerungstakt (d. h. Zeittakt für die Verlängerung des Changierhubs) und Ruhetakt (d. h. Zeittakt des konstanten maximalen Changierhubs) zeitlich mit dem Abstiegtakt der Spiegelstörung (d. h. dem Zeittakt der Verminderung der Changiergeschwindigkeit) identisch sind.
  • Das in den Ansprüchen 8 bis 11 wiedergegebene Verfahren kann dadurch ausgeführt werden, daß die Beschleunigungsbeträge und die Verzögerungsbeträge der Changiergeschwindigkeit während jedes Zyklus der Spiegelstörung und über alle Zyklen der Spiegelstörung einer Spulreise hin konstant bleiben, wobei der Betrag der Verzögerung der Changiergeschwindigkeit in jedem Abstiegtakt der Spiegelstörung so gewählt wird, daß die Spiegelstörung durch Veränderung der Changiergeschwindigkeit über einer für die Spulreise konstanten minimalen Changiergeschwindigkeit erfolgt. Dabei kann der Betrag der Beschleunigung vorzugsweise größer oder höchstens gleich sein dem Betrag der Verzögerung der Changiergeschwindigkeit. Dieser Vorschlag zeichnet sich dadurch aus, daß der Spiegelstörungshub - als Differenz zwischen der jeweils maximalen Changiergeschwindigkeit und der über die Spulreise hin konstanten, minimalen Changiergeschwindigkeit - proportional dem jeweiligen Atmungshub ist. Der Vorteil dieser Lösung besteht darin, daß sie technisch leicht realisierbar ist. Der Antrieb für die Spiegelstörung bleibt während der Spulreise konstant eingestellt. Es erfolgt lediglich eine Umschaltung von Beschleunigung der Changiergeschwindigkeit auf Verzögerung bzw. von Verzögerung der Changiergeschwindigkeit auf Beschleunigung am Anfangszeitpunkt und Endzeitpunkt des durch eine Zahlenfolge, vorzugsweise Zufallszahlenfolge, vorgegebenen Verkürzungstaktes der Atmung mit einem vorgegebenen Verhältnis von Beschleunigungsbetrag zu Verzögerungsbetrag.
  • Eine derartige Kopplung von Atmung und Spiegelstörung ist für viele Einsatzfälle durchaus ausreichend. Für einige Einsatzfälle besteht jedoch ein Nachteil darin, daß hierbei die mittlere Changiergeschwindigkeit und damit auch der Kreuzungswinkel nur sehr ungenau vorgebbar ist. Sofern eine derartige mittlere Changiergeschwindigkeit vorgebbar sein soll, kann die Erfindung dadurch ausgeführt werden, daß nach Anspruch 12 die Zeitdauer des Verkürzungstaktes der Atmung für jeden Atmungszyklus laufend verändert wird, während die Changiergeschwindigkeit zunächst während jedes Verkürzungstaktes der Atmung über den vorgegebenen Mittelwert hinaus beschleunigt wird, und daß die Verzögerungsbeträge der Changiergeschwindigkeit dem jeweiligen Maximalwert der Changiergeschwindigkeit laufend so angepaßt werden, daß in einem Abstiegtakt die maximale Changiergeschwindigkeit und die minimale Changiergeschwindigkeit symmetrisch zu der vorgegebenen mittleren Changiergeschwindigkeit liegen.
  • Dies kann in der Praxis dadurch erreicht werden, daß die Beschleunigungswerte und die Verzögerungswerte der Changiergeschwindigkeit in einem bestimmten Verhältnis zueinander eingestellt werden, derart, daß für jeden Atmungszyklus die Formel
    Figure imgb0001
    gilt (b = Beschleunigungs-, v = Verzögerungswert).
  • Bei der im Anspruch 12 angegebenen Lösung sind die Beschleunigungswerte und Verzögerungswerte in dem zuvor beschriebenen vorgegebenen Verhältnis abhängig von der den jeweiligen Spiegelstörungshub einleitenden minimalen Changiergeschwindigkeit und dem jeweiligen Spiegelstörungshub als Differenz zwischen der maximalen und der minimalen Changiergeschwindigkeit des Spiegelstörungszyklus. Die Abhängigkeit der Beschleunigungswerte ist derart, daß in jedem Anstiegtakt der Spiegelstörung eine über der vorgegebenen mittleren Changiergeschwindigkeit liegende maximale Changiergeschwindigkeit erreicht wird. Es kann daher zur Ausführung der Erfindung vorgesehen werden, daß die Steuerung zur Kopplung von Atmung und Störung auch einen Rechner enthält, der mit zeitlichem Vorlauf vor jedem Atmungs- und Spiegelstörungszyklus den Beschleunigungswert und den Verzögerungswert für die Changiergeschwindigkeit berechnet.
  • Bevorzugt ist jedoch, daß nach Anspruch 13, in einem Speicher eine Zahlenfolge für die Änderung der Atmung und die dieser Zahlenfolge zuzuordnenden Werte für die Beschleunigungswerte und die Verzögerungswerte der Changiergeschwindigkeit zum synchronen Abruf eingespeichert werden. Letztere Werte lassen sich in Abhängigkeit von den Differenzen der Zahlen ermitteln, die in ihrer Aufeinanderfolge den jeweiligen Verkürzungstakt der Atmung bestimmen.
  • Schließlich wird nach einem weiteren Vorschlag gemäß Anspruch 13 bis 15 die Änderung der Verkürzungstaktdauer der Atmung und der Atmungshub, insbesondere bei konstanter Verkürzungsgeschwindigkeit, durch Änderung der Ruhetaktdauer gesteuert. Hierbei kann die Zeitdauer des aus Verkürzungstakt, Verlängerungstakt und Ruhetakt bestehenden Atmungszyklus über die Spulreise konstant bleiben.
  • Die Erfindung ist durch eine Vielzahl von Steuerungen ausführbar, wobei ein Elektronikfachmann zugezogen werden muß.
  • Dabei ist die lediglich schematisch dargestellte Steuerung so aufgebaut, daß sie die in den Fig. 1 und 2 dargestellten Funktionen von Spiegelstörung und Atmung ausführen kann.
  • Ausführungsbeispiele der Erfindung werden im folgenden anhand der Fig. 1 bis 5 erläutert. Es zeigen
    • Fig. 1, 2 und 4 Diagramme der Changiergeschwindigkeit und des Changierhubes für verschiedene Ausführungsbeispiele; Fig. 3 ein Blockschaltbild der Steuerung;
    • Fig. 5 den Schaltplan für eine Steuerung des Ausführungsbeispiels nach Fig. 4.
  • In Fig. 1 bis 4 bedeuten die Buchstabenbezeichnungen:
    Figure imgb0002
    Zum Begriff der »Changiergeschwindigkeit« sei hier noch folgendes bemerkt:
  • Die »Changiergeschwindigkeit« ist die Geschwindigkeit des Changierfadenführers.
  • In Verbindung mit der Spiegelstörung wird die Changiergeschwindigkeit in Doppelhüben (Hin- und Herhub) pro Minute ausgedrückt, auch kurz als »Hubzahl« bezeichnet.
  • Zum Beispiel kann eine Changiereinrichtung eine mittlere Geschwindigkeit von 100 Doppelhüben (DH) pro Minute haben, wobei sich die Hubzahl zur Vermeidung einer Spiegelbildung zwischen 95 und 105 (DH/min) bewegen kann. Die Changiergeschwindigkeit ändert sich laufend zwischen den vorgegebenen Höchst- und Mindestwerten.
  • In Verbindung mit der Atmung wird die Changiergeschwindigkeit in m/min ausgedrückt. Wenn allein die Atmung - also keine Spiegelstörung - angewandt wird, bleibt die Hubzahl (DH/min) während der Spulreise konstant, und nur die Changierhublänge ändert sich während der Spulreise in vorgegebenen Zeitabschnitten. Da sich in diesem Falle die Changiergeschwindigkeit in m/min ergibt aus:
  • Doppelhübe pro Minute [DH/min] - Hublänge pro Doppelhub [m/DH] ändert sich bei wechselnder Hublänge ebenfalls die Changiergeschwindigkeit, ausgedrückt in m/min.
  • Bei der Kombination von Spiegelstörung und Atmung wird die Changiergeschwindigkeit sowohl durch die Hubzahl (Anzahl der Doppelhübe/min) als auch durch die Änderung der Changierhublänge (m/DH) beeinflußt. Im Rahmen dieser Erfindung wird die Changiergeschwindigkeit als Anzahl der Doppelhübe/min [DH/min] ausgedrückt, obwohl der Einfluß der Atmung auf die Änderung der Changiergeschwindigkeit in der gleichen Größenordnung liegen kann wie der Einfluß der Spiegelstörung auf die Änderung der Changiergeschwindigkeit.
  • Es sei vorab erwähnt, daß in den Diagrammen nach Fig. 1 und 2 der Faktor k = TR/TB = ½ ist.
  • Das wesentliche Kriterium der Spiegelstörung nach Fig. 1 ist, daß die Beschleunigung der Changiergeschwindigkeit, welche durch den Tangens des Anstiegwinkels alpha repräsentiert ist, über die gesamte Spulreise hin konstant bleibt. Dasselbe gilt für die Verzögerung der Changiergeschwindigkeit, welche durch den Tangens des Abstiegswinkeis beta repräsentiert ist. Es sei bemerkt, daß alpha und beta einander nicht gleich sind, sondern daß beta vorzugsweise kleiner als alpha ist. Grundsätzlich ist es auch möglich, die Steuerung derart vorzusehen, daß der Abstiegswinkel beta größer als der Anstiegswinkel alpha ist. Für die Atmung gilt, daß die Geschwindigkeit für die Verkürzung und die Verlängerung des Changierhubes, welche jeweils durch die Winkel gamma und delta repräsentiert werden, über die gesamte Spulreise hin konstant sind.
  • Sowohl die Beschleunigungs- bzw. Verzögerungswerte der Changiergeschwindigkeit als auch die Geschwindigkeit der Hubverkürzung können für die Spulreise hinsichtlich ihres Absolutbetrages eingestellt werden.
  • In Fig. 1 wird die Zeitdauer des Atmungstaktes TA von einem Zyklus zum anderen variabel vorgegeben. Das kann dadurch geschehen, daß durch eine Zahlenfolge, vorzugsweise eine willkürliche, d. h. nicht periodische Zahlenfolge, entweder die Zeitdauer des Verkürzungstaktes TK eines jeden Atmungstaktes TA oder aber der Atmungshub 4A eines jeden Atmungstaktes vorgegeben und sodann aufgrund der Randbedingungen:
    Figure imgb0003
    Figure imgb0004
    die Zeitdauer für den Verlängerungstakt TL und den Ruhetakt TR der Atmung bestimmt wird.
  • Die Changiergeschwindigkeit wird sodann zu Beginn und Ende des jeweiligen Verkürzungstaktes der Atmung auf ihren konstant vorgegebenen Beschleunigungswert ihren konstant vorgegebenen Verzögerungswert umgeschaltet. Dabei ist die Verzögerung so vorausberechnet, daß die Changiergeschwindigkeit nach jedem vollen Atmungstakt TA wieder ihre für die Spulreise konstant vorgegebene minimale Changiergeschwindigkeit erreicht. Das bedeutet, daß das Verhältnis der Absolutbeträge von
    Figure imgb0005
    im vorgegebenen Beispiel = 2 ist. In Fig. 1 ist dies darin abzulesen, daß tan alpha = 2 tan beta ist.
  • Wie aus Fig. 1 zu ersehen, läßt sich bei dieser Lösung keine mittlere Changiergeschwindigkeit für die Spulreise vorherbestimmen.
  • Bei der Lösung nach Fig. 2 wird wiederum der Atmungstakt für jeden Atmungszyklus TA dadurch vorgegeben, daß entweder die Zeitdauer des Verkürzungstaktes TK oder aber der jeweilige Atmungsweg AA nach einer in einen Speicher einprogrammierten Zahlenfolge vorgegeben wird.
  • Nach der Erfindung sind Atmung und Störung derart miteinander gekoppelt, daß die Zeitpunkte größter Changiergeschwindigkeit VS max und geringster Changierhublänge HCH mini zusammenfallen.
  • In dem Verkürzungstakt TK wird die Changiergeschwindigkeit VS derart erhöht, daß sie unter Berücksichtigung ihres Ausgangswertes bei Ende des Verkürzungstaktes TK bzw. des Anstiegstaktes TAN größer als die für eine Spule konstant vorgegebene mittlere Changiergeschwindigkeit VS mittel ist. Die Beschleunigung der Changiergeschwindigkeit ist daher einmal abhängig von der zu Beginn des Anstiegtaktes erzielten minimalen Changiergeschwindigkeit VS mini und zum anderen von der Länge des vorgegebenen Anstiegtaktes bzw. Verkürzungstaktes des Atmungszyklus. Die Vorgabe dieses Beschleunigungswertes der Changiergeschwindigkeit VS kann entweder mit geringem zeitlichen Vorlauf vor jedem Verkürzungstakt TK durch einen der Steuerung angeschlossenen Rechner erfolgen, der die minimale Changiergeschwindigkeit VS mini zu Beginn und die Dauer des Anstiegtaktes TAN erfaßt. Technisch einfacher ist es jedoch, für die einem Speicher eingegebene Zahlenfolge, welche die Verkürzungstakte TK der Atmung für die gesamte Zeitdauer der Spulreise bestimmt, die erforderlichen Beschleunigungswerte der Changiergeschwindigkeit VS, welche der obengenannten Bedingung genügen, vorauszuberechnen und ebenfalls einzuspeichern und mit jeder Zahl der Zahlenfolge für den Verkürzungstakt TK eines Atmungszyklus aus dem Speicher abzurufen.
  • Die Verzögerung der Changiergeschwindigkeit, welche durch den Tangens des Winkels beta repräsentiert wird, wird für jeden Abstiegstakt TAB der Spiegelstörung so gewählt, daß die maximale Changiergeschwindigkeit VS max und die minimale Changiergeschwindigkeit VS min; dieses Abstiegstaktes symmetrisch zu der für diese Spule vorgegebenen mittleren Changiergeschwindigkeit VS mittel liegen. Um dies zu erreichen, ist wiederum eine Vorausberechnung des Verzögerungswertes, welcher durch den Tangens beta repräsentiert wird, erforderlich. Auch dies kann wiederum durch einen Rechner erfolgen, welcher einerseits die erzielte maximale Changiergeschwindigkeit VS max; dieses Spiegelstörungstaktes sowie die Zeitdauer des Verkürzungstaktes TK der Atmung bzw. die Zeitdauer des Anstiegstaktes TAN der Erhöhung der Changiergeschwindigkeit VS erfaßt und daraus
    Figure imgb0006
    ermittelt.
  • Entsprechende Werte können aber auch vorausberechnet und sodann wiederum mit den entsprechenden Beschleunigungswerten in einen Speicher eingegeben und mit jedem Abstiegstakt TAB der Steuereinrichtung für die Spiegelstörung vorgegeben werden.
  • Hierdurch wird erreicht, daß die Changiergeschwindigkeit VS stets um die für die Spule vorgegebene mittlere Changiergeschwindigkeit VS mittel pendelt, so daß die Spule mit einem vorberechneten Mittelwert des Kreuzungswinkels aufzubauen ist.
  • In dem Blockschaltbild nach Fig. 3 wird durch den Frequenzgeber 1 und den Zähler 2 ein Istzeitsignal erzeugt, welches dem Umschalter 3 vorgegeben wird. Durch den Zeitvorgabespeicher 4 wird ein Sollzeitsignal erzeugt und ebenfalls dem Umschalter 3 aufgegeben. Bei Übereinstimmung mit dem Istzeitsignal erfolgt die Umschaltung der Atmungssteuerung 6 zunächst auf Verkürzung und sodann auf Verlängerung des Changierhubs und sodann auf konstanten Changierhub. In dem Zeitvorgabespeicher 4 können die Zeitdauer von Verkürzungstakt TK, Verlängerungstakt TL und Ruhetakt TR unmittelbar gespeichert werden.
  • Das Ausgangssignal des Umschalters 3 wird gleichzeitig einem Zeitgeber 5 aufgegeben, welcher über den Wandler 7 in wechselnder Folge bei Übereinstimmung von Sollzeitsignal und Istzeitsignal ein positives bzw. negatives Spannungssignal an die Steuereinrichtung 8 für die Spiegelstörung gibt. Die Amplitude der Spiegelstörung kann durch die Zusatzsteuereinrichtung 9 beeinflußt werden.
  • In dieser Form ist die Steuereinrichtung für die anhand von Fig. 1 beschriebene Ausführung der Erfindung verwendbar.
  • Für das Ausführungsbeispiel nach Fig. 2 ist die Steuerung um eine Speichereinrichtung 10 zu ergänzen, welche das Ausgangssignal des Wandlers 7 so umformt, daß die Spiegelstörung mit den vorberechneten Beschleunigungs- und Verzögerungswerten betrieben wird.
  • In Fig. 4 wird zum Zweck der Spiegelstörung die Changiergeschwindigkeit zwischen dem Maximalwert VS max und dem Minimalwert der Changiergeschwindigkeit VS min in konstanten Zykluszeiten TS fortwährend verändert. Hierzu wird der Antriebsmotor für die Changierung während der Antriebszeit TAN der Spiegelstörung in Abhängigkeit von einem zusätzlichen Ansteuerimpuls auf einer Ansteuerleitung 15 (Fig. 5), welcher während der Abstiegszeit TAB der Spiegelstörung wegfällt, beschleunigt.
  • Der Atmungszyklus TA ist mit dem Zyklus TS der Spiegelstörung identisch. Der Atmungshub wird in dem Ausführungsbeispiel zwischen einem maximalen Atmungsweg HCH max und einem minimalen Atmungsweg HCH min; in vier Stufen fortwährend verändert. Dies geschieht dadurch, daß jeder Atmungszyklus mit einem Ruhezeitabschnitt TRA begonnen wird, für welchen vier verschiedene Werte vorprogrammiert sind. Im übrigen ist der Motor, welcher die Veränderung des Changierhubs HCH bewirkt, so geschaltet, daß er durch Wegfall des Impulses auf der Ansteuerleitung 15 seine Drehrichtung ändert und damit den Changierhub wieder vergrößert, bis er bei Erreichen des maximalen Changierhubes HCH max vor einem Endschalter 43 (Fig. 5) fährt, welcher den Motor wieder außer Betrieb setzt. Er bleibt dann für den Zeitabschnitt TRE außer Betrieb, bis der nächste Atmungszyklus TA mit einer anderen der vorprogrammierten Anfangsruhezeiten TRA begonnen wird.
  • Diese Atmung mit verändertem Atmungshub LlA und ihre Synchronisation mit der Spiegelstörung erfolgt durch eine Schaltung nach Fig. 5. Kernstück dieser Schaltung sind die Zeitrelais 11, 12, 13 und 14, denen unterschiedliche Zeitkonstanten einprogrammiert sind. Diese Zeitkonstanten entsprechen den Anfangsruhezeiten TRA1, TRA2, TRA3, TRA4. Die Zeitrelais 11 bis 14 werden durch die sogenannten Fortschaltrelais 16 und 17 in Abhängigkeit von dem Impuls auf der Ansteuerleitung 15 angesteuert.
  • Fortschaltrelais sind handelsübliche Bauelemente, die aufgrund eines Eingangsimpulses eine vorherbestimmte Schaltstellung einnehmen und auch bei Wegfall des Impulses beibehalten.
  • Durch die Fortschaltrelais 16 und 17 werden über die Schalter 18 bis 21 die Schaltrelais 22 bis 25 angesteuert. Es betätigt
    • Relais 22 die Schalter 26 und 27
    • Relais 23 die Schalter 28 und 29
    • Relais 24 die Schalter 30 und 31
    • Relais 25 die Schalter 32 und 33
  • Diese Schalter 26 bis 33 sind den Zeitrelais 11 bis 14 paarweise seriell vorgeschaltet. Die Leitungen 34 bis 37 kommen von einem nicht dargestellten Steuertransformator. Die Impulse auf der Ansteuerleitung 15 bestimmen den Taktbeginn für die Spiegelstörung und die Atmung und daneben auch den Umsteuerzeitpunkt für die Verzögerung der Changiergeschwindigkeit VS und die Verlängerung des Changierhubes HCH.
  • Durch die fortlaufende Serie von Impulsen werden die Relais und Zeitrelais wie folgt betätigt:
    • Impuls 1 betätigt die Relais 22,23 und das Zeitrelais 11
    • Impuls 2 betätigt die Relais 23,24 und das Zeitrelais 12
    • Impuls 3 betätigt die Relais 22,25 und das Zeitrelais 13
    • Impuls 4 betätigt die Relais 23,25 und das Zeitrelais 14
  • Die Zeitrelais 11 bis 14 steuern nach Ablauf der voreingestellten Anfangsruhezeit TRA1 bis TRA4 entsprechende Schalter 11'-14' an. Über diese Schalter wird der Motor (Atmungsmotor) 38 mit der Drehrichtung 39 für die Changierhubminderung durch das Relais 40 und den Schalter 41 in Bewegung gesetzt, wenn bzw. da durch den Impuls auf der Ansteuerleitung 15 der Schalter 42 geschlossen ist. Sobald der Impuls auf der Leitung 15 abfällt, wird der Schalter 42 geöffnet. Da inzwischen jedoch der Motor 38 von dem Endschalter 43 abgefahren ist, wird nunmehr über das Relais 44 und den Schalter 45 der Motor 38 mit der Drehrichtung 46 zur Vergrößerung des Changierhubs umgeschaltet. Der Motor 38 bleibt so lange in Betrieb, bis er den Endschalter 43 wieder öffnet. Er wird erst wieder in Betrieb gesetzt, wenn ein weiteres Zeitrelais einfällt und der Impuls auf der Steuerleitung 15 wieder erscheint. Die Leitungen 47 und 48, über die der Motor 38 zum einen durch die Zeitrelais 11 bis 14, zum anderen durch den Endschalter 43 angesteuert wird, sind durch die bereits beschriebenen Relais 40 und 44 sowie die Schalter49, 50 gegeneinander verriegelt.
  • Es hat sich herausgestellt, daß sich durch die von Atmungstakt zu Atmungstakt erfolgende Änderung des Atmungshubes zwischen zwei, drei, vier oder einer sonstigen begrenzten Mehrzahl von Werten bei vielen Einsatzgebieten - wie z. B. beim Aufspulen von durch Falschzwirnen texturierten Chemiefasern - ein sehr guter Wickelaufbau ohne verdickte Kanten, Ablaufschwierigkeiten oder Schädigungen des Fadens erzielen läßt.
  • In anderen Anwendungsbereichen der Erfindung - wie z. B. beim Aufspulen von glatten Chemiefasern - ist eine fortlaufende und gegebenenfalls nicht-periodisch sich wiederholende Änderung des Atmungsweges vorzuziehen, wobei der erforderliche technische Aufwand den Erfordernissen des Aufspulprozesses anzupassen ist.
    Figure imgb0007
    Figure imgb0008

Claims (15)

1. Verfahren zum Aufwickeln von Fäden, insbesondere von mit konstanter Geschwindigkeit angelieferten Chemiefasern, zu wild gewickelten Kreuzspulen, bei dem die Changierhublänge (HCH) gegenüber ihrem vorgegebenen Maximalwert (HCH max) zyklisch in einem Verkürzungstakt (TK) im Bereich eines maximalen Differenzwertes (ΔA max) verkürzt wird, in einem Verlängerungstakt (TL) bis auf den vorgegebenen Maximalwert (HCH max) wieder verlängert und in einem Ruhetakt (TR) unverändert beibehalten wird (Atmung), dadurch gekennzeichnet, daß der Atmungshub (ΔA) - als Differenz zwischen der maximalen (HCH max) und der geringsten Changierhublänge (HCH mini) eines Atmungszyklus (TA) - während der Spulreise mehrfach verändert wird.
2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, daß der Atmungshub (dA) von einem Atmungszyklus (TA) zum anderen fortlaufend verändert wird.
3. Verfahren nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, daß der Atmungshub (dA) nicht-periodisch verändert wird.
4. Verfahren nach einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, daß die Änderung des Atmungshubs (dA) durch Änderung der Verkürzungsgeschwindigkeit bei zeitkonstantem Verkürzungstakt (TK) erfolgt.
5. Verfahren nach einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, daß die Änderung des Atmungshubs (dA) durch Änderung der Verkürzungstaktdauer (TK) bei konstanter Verkürzungsgeschwindigkeit erfolgt.
6. Verfahren nach einem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, daß die Dauer des Verkürzungstaktes (TK) gleich der Dauer des Verlängerungstaktes (TL) ist.
7. Verfahren nach Patentanspruch 2 und 6, dadurch gekennzeichnet, daß für die gesamte Spulreise das Verhältnis (k) von Ruhetakt (TR) zur Summe aus Verlängerungs-(TL) und Verkürzungstakt (TK) konstant gehalten wird, wobei für dieses Verhältnis (k) vorzugsweise die Beziehung gilt:
Figure imgb0009
8. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, daß die Changiergeschwindigkeit (VS) - zur Verhinderung von Spiegelbildung - im Bereich zwischen einem Maximalwert (VS max) und einem Minimalwert (VS min) in ununterbrochener Folge in einem Anstiegtakt (TAN) beschleunigt und in einem Abstiegtakt (TAB) verzögert wird, und daß Spiegelstörung und Atmung derart miteinander gekoppelt sind, daß die Zeitpunkte größter Changiergeschwindigkeit (VS max;) und geringster Changierhublänge (HCH mini) eines jeden Changierhubes (HCH) zusammenfallen.
9. Verfahren nach Patentanspruch 8, dadurch gekennzeichnet, daß der Beschleunigungsbetrag (I bl) größer oder gleich ist dem Verzögerungsbetrag (|v|) der Changiergeschwindigkeit (VS).
10. Verfahren nach Patentanspruch 8 oder 9, dadurch gekennzeichnet, daß der Start eines jeden Atmungszyklus (TA) mit Beginn der Beschleunigung der Changiergeschwindigkeit (VS) zum Zweck der Spiegelstörung über zwei oder mehr abwechselnd angesteuerte Zeitrelais (11, 12, 13, 14), denen jeweils verschiedene Zeitkonstanten vorgegeben sind, in Gang gesetzt wird.
11. Verfahren nach Patentanspruch 8 oder 9, dadurch gekennzeichnet, daß der Anstiegstakt (TAN) der Changiergeschwindigkeit (VS) und der Verkürzungstakt (TK) der Atmung synchron erfolgen, so daß der Verlängerungstakt (TL) und der Ruhetakt (TR) der Atmung zeitlich im Abstiegtakt (TAB) der Changiergeschwindigkeit (VS) liegen.
12. Verfahren nach Patentanspruch 11, dadurch gekennzeichnet,
daß die Zeitdauer des Verkürzungstaktes (TK) der Atmung für jeden Atmungszyklus (TA) verändert wird,
daß die Changiergeschwindigkeit (VS) während des Verkürzungstaktes (TK) der Atmung über einen vorgegebenen Mittelwert (VS mittel) hinaus erhöht wird
und daß die Verzögerungswerte der Changiergeschwindigkeit (VS) so gesteuert werden, daß die Maximalwerte und Minimalwerte der Changiergeschwindigkeit (VS) im Abstiegtakt (TAB) symmetrisch zu der vorgegebenen mittleren Changiergeschwindigkeit (VS mittel) liegen.
13. Verfahren nach Patentanspruch 12, dadurch gekennzeichnet,
daß die Steuerung der Zeitdauer des Verkürzungstaktes (TK) der Atmung durch einen Speicher mit eingespeicherterZahlenfolge erfolgt
und daß die Steuerung der Beschleunigungs- bzw. Verzögerungswerte für die Changiergeschwindigkeit (VS) in Abhängigkeit von den Differenzen der Zahlen der den jeweiligen Verkürzungstakt (TK) der Atmung bestimmenden Zahlenfolge erfolgt.
14.Verfahren nach Patentanspruch 8, dadurch gekennzeichnet, daß die Änderung der Verkürzungstaktdauer (TK) der Atmung und der Atmungshub (ΔA), insbesondere bei konstanter Verkürzungsgeschwindigkeit, durch Steuerung der Ruhetaktdauer (TRA, TRE) erfolgt.
15. Verfahren nach Patentanspruch 14, dadurch gekennzeichnet, daß die Zeitdauer des aus Verkürzungstakt (TK), Verlängerungstakt (TL) und Ruhetakt (TR) bestehenden Atmungszyklus (TA) für eine Spule konstant ist.
EP80105190A 1979-09-18 1980-09-01 Verfahren zum Aufwickeln von Fäden Expired EP0027173B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792937601 DE2937601A1 (de) 1979-09-18 1979-09-18 Verfahren zum aufwickeln von faeden
DE2937601 1979-09-18

Publications (2)

Publication Number Publication Date
EP0027173A1 EP0027173A1 (de) 1981-04-22
EP0027173B1 true EP0027173B1 (de) 1984-07-18

Family

ID=6081107

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80105190A Expired EP0027173B1 (de) 1979-09-18 1980-09-01 Verfahren zum Aufwickeln von Fäden

Country Status (4)

Country Link
US (1) US4325517A (de)
EP (1) EP0027173B1 (de)
JP (1) JPS5652363A (de)
DE (2) DE2937601A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3240484A1 (de) * 1981-11-02 1983-06-01 Murata Kikai K.K., Kyoto Verfahren und vorrichtung zum aufwickeln eines fadens auf einer auflaufspule
EP0093258A2 (de) * 1982-05-03 1983-11-09 b a r m a g Barmer Maschinenfabrik Aktiengesellschaft Verfahren zur Spiegelstörung beim Aufwickeln eines Fadens in wilder Wicklung
US4544108A (en) * 1983-09-30 1985-10-01 Hydrel Ag Method for winding a thread on a bobbin and electro-hydraulic traverse motion device for carrying out the method
EP0173118A2 (de) * 1984-08-18 1986-03-05 B a r m a g AG Zylindrische Kreuzspule
WO1988004273A1 (en) * 1986-12-08 1988-06-16 Barmag Ag Cross-winding device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817066A (ja) * 1981-07-22 1983-02-01 Teijin Seiki Co Ltd 糸条の巻取方法
US4504021A (en) * 1982-03-20 1985-03-12 Barmag Barmer Maschinenfabrik Ag Ribbon free wound yarn package and method and apparatus for producing the same
US4504024A (en) * 1982-05-11 1985-03-12 Barmag Barmer Maschinenfabrik Ag Method and apparatus for producing ribbon free wound yarn package
JPS5948357A (ja) * 1982-09-08 1984-03-19 Toray Ind Inc 糸条巻取方法およびその装置
US4731217A (en) * 1984-08-09 1988-03-15 Barmag Ag Method for melt spinning thermoplastic filament yarn
DE3505453A1 (de) * 1984-11-17 1986-05-28 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Aufspulen von faeden in wilder wicklung mit atmung
US4771960A (en) * 1985-02-20 1988-09-20 Teijin Seiki Co., Ltd. Method for winding a cross-wound package
EP0235557B1 (de) 1986-01-31 1990-03-28 B a r m a g AG Verfahren zum Aufwickeln eines Fadens zu einer Kreuzspule
DE3869043D1 (de) * 1987-09-16 1992-04-16 Barmag Barmer Maschf Spulapparat.
JPH0275572A (ja) * 1988-09-13 1990-03-15 Murata Mach Ltd 糸の巻取方法および巻取装置
DE58907348D1 (de) * 1988-12-22 1994-05-05 Barmag Barmer Maschf Aufspulmaschine.
JP2511711B2 (ja) * 1989-09-30 1996-07-03 帝人製機株式会社 糸条の巻取方法
DE19519542B4 (de) * 1994-06-29 2004-05-13 Saurer Gmbh & Co. Kg Verfahren und Vorrichtung zur Vermeidung von Bildwicklungen
DE19619706A1 (de) * 1995-05-29 1996-12-05 Barmag Barmer Maschf Verfahren zur Erzielung einer Spiegelstörung
DE19548887B4 (de) * 1995-12-29 2006-11-02 Rieter Ingolstadt Spinnereimaschinenbau Ag Verfahren zum Aufwickeln von Fäden
AU6270698A (en) 1997-02-05 1998-08-25 Plant Engineering Consultants, Inc. Precision winding method and apparatus
US6505791B1 (en) 1998-06-12 2003-01-14 Maschinenfabrik Rieter Ag Thread traversing device
DE50007296D1 (de) * 1999-05-06 2004-09-09 Saurer Gmbh & Co Kg Verfahren und vorrichtung zum aufwickeln eines kontinuierlich zulaufenden fadens
DE10021963A1 (de) * 1999-05-14 2000-12-21 Barmag Barmer Maschf Verfahren und Vorrichtung zum Aufwickeln eines kontinuierlich zulaufenden Fadens
DE19942722C1 (de) * 1999-09-08 2000-09-07 Saurer Allma Gmbh Aufwickelvorrichtung zur Herstellung zylindrischer Kreuzspulen
TR200301809T4 (tr) * 2000-01-13 2004-01-21 Barmag Ag Bir iplik bobinini sarmak için yöntem ve düzenek.
DE10020664A1 (de) * 2000-04-27 2001-10-31 Schlafhorst & Co W Verfahren zum Betreiben einer Kreuzspulen herstellenden Textilmaschine
JP5494324B2 (ja) * 2010-07-21 2014-05-14 村田機械株式会社 糸巻取装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2296420A (en) * 1940-05-01 1942-09-22 Foster Machine Co Yarn package
US2285439A (en) * 1940-12-12 1942-06-09 Universal Winding Co Winding machine
US2763824A (en) * 1953-06-19 1956-09-18 Westinghouse Electric Corp Frequency control systems for alternators
US2848173A (en) * 1956-09-05 1958-08-19 Du Pont Method and apparatus for yarn traverse
US3235191A (en) * 1963-08-29 1966-02-15 Monsanto Co Yarn winding process and yarn package
GB1113065A (en) * 1964-05-11 1968-05-08 Klinger Mfg Co Ltd Method and apparatus for forming a package of yarn
DE1916580C3 (de) * 1969-04-01 1974-02-28 Barmag Barmer Maschinenfabrik Ag, 5600 Wuppertal Changier vorrichtung an Aufwickelvorrichtungen
DE2150301A1 (de) * 1971-10-08 1973-04-12 Schuster & Co F M N Spul- und changiereinrichtung zum herstellen von wickeln aus garnen u.dgl
US3727855A (en) * 1971-04-05 1973-04-17 Leesona Corp Winding method and apparatus
GB1334852A (en) * 1971-04-19 1973-10-24 Courtaulds Ltd Winding method and apparatus
US3971517A (en) * 1972-05-15 1976-07-27 Teijin Limited Apparatus for winding a yarn round a bobbin
JPS5234046A (en) * 1975-09-08 1977-03-15 Toshiba Machine Co Ltd Byconical cheese winding method of edge area broken selvage
BG23472A1 (de) * 1975-12-05 1977-09-15
DE2855616A1 (de) * 1978-12-22 1980-06-26 Barmag Barmer Maschf Verfahren zum aufspulen von faeden
DE2856014C2 (de) * 1978-12-23 1986-10-30 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Changiervorrichtung an Aufwickelvorrichtungen für Fäden, Bändchen o.dgl.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3240484A1 (de) * 1981-11-02 1983-06-01 Murata Kikai K.K., Kyoto Verfahren und vorrichtung zum aufwickeln eines fadens auf einer auflaufspule
FR2522634A1 (fr) * 1981-11-02 1983-09-09 Murata Machinery Ltd Procede de bobinage de fil
GB2157725A (en) * 1981-11-02 1985-10-30 Murata Machinery Ltd Yarn winding methods
EP0093258A2 (de) * 1982-05-03 1983-11-09 b a r m a g Barmer Maschinenfabrik Aktiengesellschaft Verfahren zur Spiegelstörung beim Aufwickeln eines Fadens in wilder Wicklung
EP0093258A3 (en) * 1982-05-03 1984-07-18 B A R M A G Barmer Maschinenfabrik Aktiengesellschaft Method of avoiding images at the random cross winding of a yarn
US4544108A (en) * 1983-09-30 1985-10-01 Hydrel Ag Method for winding a thread on a bobbin and electro-hydraulic traverse motion device for carrying out the method
EP0173118A2 (de) * 1984-08-18 1986-03-05 B a r m a g AG Zylindrische Kreuzspule
EP0173118A3 (en) * 1984-08-18 1986-08-13 B A R M A G Barmer Maschinenfabrik Aktiengesellschaft Cylindrical cross-wound bobbin
WO1988004273A1 (en) * 1986-12-08 1988-06-16 Barmag Ag Cross-winding device

Also Published As

Publication number Publication date
EP0027173A1 (de) 1981-04-22
JPS6332702B2 (de) 1988-07-01
JPS5652363A (en) 1981-05-11
DE2937601A1 (de) 1981-04-02
US4325517A (en) 1982-04-20
DE3068600D1 (en) 1984-08-23

Similar Documents

Publication Publication Date Title
EP0027173B1 (de) Verfahren zum Aufwickeln von Fäden
EP0453622A1 (de) Verfahren und Vorrichtung zum Aufwickeln eines Fadens auf eine Spule
DE2449696A1 (de) Verfahren und vorrichtung zur elektrischen erregung eines herzens
DE3210450C2 (de)
DE3309789C2 (de)
EP2485227B1 (de) Verfahren zur Steuerung eines Prozesses zum Wickeln eines azentrischen Spulenkörpers und nach dem Verfahren arbeitende Vorrichtung
CH644819A5 (de) Verfahren zum aufspulen von faeden.
DE2434944A1 (de) Steuereinheit fuer die automatische fadenzufuehrung in einer kettenwirkmaschine
DE2951917C2 (de) Einrichtung zum Steuern der Zugspannung eines elektrischen Leiterdrahtes in einer Wickelmaschine
DE4223271C1 (de)
DE1510735A1 (de) Wicklungsverfahren zur Herstellung von Streckzwirnkopsen aus verstreckten Endlosfilamenten und Vorrichtung zur Durchfuehrung des Verfahrens
DE2245473A1 (de) Verfahren und vorrichtung zur steuerung der querfuehrung von spulmaschinen
DE2052117A1 (de) Verfahren und Vorrichtung zur Überwachung der Wickelbildung an der Fadenführungstrommel von Spulmaschinen
DE3924946C2 (de)
DE3206272A1 (de) Verfahren und vorrichtung zum sukzessiven fertigen von baeumen
DE2914924A1 (de) Aufspuleinrichtung
EP0349939B1 (de) Verfahren zum Spulenwechsel
DE3210244A1 (de) Verfahren zur spiegelstoerung beim aufwickeln eines fadens in wilder wicklung
DE19548887B4 (de) Verfahren zum Aufwickeln von Fäden
DE2614252A1 (de) Verfahren und vorrichtung zum herstellen einer fadenreserve
DE2406793B2 (de) Steuerung zum kontrollierten Abbremsen einer Wickelmaschine
DE1510532B2 (de) Verfahren zum wickeln eines kopses
DE426380C (de) Kreuzspule
DE2246161A1 (de) Verfahren und anordnung zur steuerung der streifendicke in einem kontinuierlichen tandemwalzwerk
DE3151448C2 (de) Einrichtung zur Regelung der Dicke von Beschichtungen auf Metallbändern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT

17P Request for examination filed

Effective date: 19810805

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3068600

Country of ref document: DE

Date of ref document: 19840823

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900823

Year of fee payment: 11

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920529

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920924

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930930

Ref country code: CH

Effective date: 19930930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940824

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951011

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970603