-
Die vorliegende Erfindung betrifft eine photohärtbare Harzzusammensetzung zur Photoherstellung von dreidimensionalen Gegenständen, mit der ein gehärtetes Produkt hergestellt werden kann, das überlegene Photohärtbarkeit und hervorragende mechanische Festigkeit zeigt. Genauer gesagt, betrifft die vorliegende Erfindung eine photohärtbare Harzzusammensetzung zur Photoherstellung von dreidimensionalen Gegenständen, die mit verschiedenen Lichtquellen, wie einer Laser- oder einer UV-Lampe, überlegene Photohärtbarkeit zeigt und mit der ein gehärteter dreidimensionaler Gegenstand hergestellt werden kann, der überlegene Faltbeständigkeit aufweist, und einen Fertigungsgegenstand, der durch Photohärten der Zusammensetzung hergestellt wird.
-
In den letzten Jahren wurde die Photoherstellung von dreidimensionalen Gegenständen vorgeschlagen, bestehend aus gehärteten Harzschichten, die durch Wiederholen eines Schritts der selektiven Bestrahlung einer photohärtbaren flüssigen Harzzusammensetzung einstückig laminiert wurden (siehe
Japanische Offenlegungsschriften Nr. 247515/1985 ,
35966/1987 ,
101408/1987 und
24119/1993 ).
-
Ein typisches Beispiel für eine derartige Photoherstellung ist wie folgt. Die Oberfläche einer photohärtbaren Harzzusammensetzung in einem Gefäß wird selektiv mit Licht eines Ultraviolett-Lasers und dergleichen unter Ausbildung einer gehärteten Harzschicht mit einem bestimmten Muster bestrahlt. Das Äquivalent einer Schicht photohärtbare Harzzusammensetzung wird über dieser gehärteten Harzschicht bereitgestellt und die flüssige Fläche unter Bildung einer neu gehärteten Harzschicht, die einstückig über der gehärteten Harzschicht laminiert ist, bestrahlt.
-
Dieser Schritt wird eine bestimmte Anzahl Gelegenheiten unter Verwendung desselben oder eines unterschiedlichen Bestrahlungsmusters wiederholt, um einen dreidimensionalen Gegenstand zu erhalten, der aus einstückig laminierten gehärteten Harzschichten besteht. Diese Photoherstellung hat erhebliche Aufmerksamkeit erregt, da ein dreidimensionaler Gegenstand mit einer komplizierten Form problemlos innerhalb eines kurzen Zeitraums gebildet werden kann.
-
Als photohärtbare Harzzusammensetzungen, die bei der Photoherstellung von dreidimensionalen Gegenständen verwendet werden, sind die folgenden Harzzusammensetzungen (a) bis (c) im Fachgebiet bekannt.
- (a) Harzzusammensetzung, umfassend eine radikalisch polymerisierbare organische Verbindung, wie Urethan(meth)acrylat, Oligoester-(Meth)acrylat, Epoxid(meth)acrylat und photoempfindliches Polyimid (siehe Japanische Offenlegungsschriften Nr. 204915/1989 , 208305/1990 und 160013/1991 ).
- (b) Harzzusammensetzung, umfassend eine kationisch polymerisierbare organische Verbindung, wie eine Epoxidverbindung, eine cyclische Etherverbindung, eine cyclische Lactonverbindung, eine cyclische Acetalverbindung, eine cyclische Thioetherverbindung, eine Spiroorthoesterverbindung und eine Vinyletherverbindung (siehe Japanische Offenlegungsschrift Nr. 213304/1989 ).
- (c) Harzzusammensetzung, umfassend sowohl die radikalisch polymerisierbare organische Verbindung als auch die kationisch polymerisierbare organische Verbindung (siehe Japanische Offenlegungsschriften Nr. 28261/1990 , 75618/1990 und 228413/1994 ).
-
Angesichts der Effizienz der Photoherstellung besitzen die photohärtbaren Harzzusammensetzungen, die zur Photoherstellung verwendet werden, vorzugsweise eine niedrige Viskosität, um sofort eine glatte flüssige Oberfläche bilden zu können, und eine überlegene Härtbarkeit, um sofort durch Bestrahlung gehärtet werden zu können. Ferner müssen die photohärtbaren Harzzusammensetzungen eine geringe Deformation zeigen, wie Verziehen, das durch Schrumpfen während des Photohärtens verursacht wird.
-
Durch Photoherstellung erzeugte dreidimensionale Gegenstände werden für Entwurfsmodelle, Prototypen für mechanische Teile usw. verwendet. Aus diesem Grund müssen derartige dreidimensionale Gegenstände mit einer hoch genauen Verarbeitung ausgebildet werden, genauer gesagt müssen sie mit einer maßstabsgetreuen genauen Mikroverarbeitung ausgebildet sein, ausreichende mechanische Festigkeit unter Anwendungsbedingungen zeigen und gleichbleibende mechanische Eigenschaften aufweisen, die sich im Laufe der Zeit nicht verändern.
-
Die aus der photohärtbaren Harzzusammensetzung gebildeten dreidimensionalen Gegenstände sind in den verschiedensten Bereichen weit verbreitet, in denen sie unterschiedliche Anforderungen erfüllen, wie Verarbeitungsgenauigkeit, Härte, ausreichende Elastizität und ein geringes Verziehen, das durch Schrumpfen des flüssigen Harzes beim Härten verursacht wird. Aufgrund der Eigenschaften der photohärtbaren Harze galt es als schwierig, einem Fertigungsgegenstand, der aus photohärtbaren Harzen hergestellt wurde, Zähigkeit zu verleihen. Mit zunehmender Expansion des Marktes wurden jedoch dreidimensionale Gegenstände verlangt, die Zähigkeit, insbesondere Faltbeständigkeit zeigten. Zur Verbesserung der physikalischen Eigenschaften des dreidimensionalen Produkts wurde versuchsweise eine Mischung aus feinen Teilchen und Harzzusammensetzung verwendet. Derartige Versuche zielen darauf ab, die Verarbeitungsgenauigkeit zu erhöhen (siehe
Japanische Offenlegungsschrift Nr. 114733/1991 ), die Lichtstreuung des hergestellten Produkts zu verändern (siehe
Japanische Offenlegungsschrift Nr. 103415/1991 ), die Zähigkeit des hergestellten Gegenstands zu verbessern (
Japanische Offenlegungsschrift Nr. 145616/1990 ) und dergleichen. Diese Erfindungen zielen jedoch nicht darauf ab, den Nachteil des dreidimensionalen Gegenstands einer unzureichenden Faltdeformation bei Wiederholung auszugleichen und haben dieses Problem nicht gelöst.
-
Die vorliegende Erfindung wurde voder dem Hintergrund der vorstehend beschriebenen Situation erreicht.
-
Eine Aufgabe der vorliegenden Erfindung ist die Bereitstellung einer neuen photohärtbaren Harzzusammensetzung zur Photoherstellung dreidimensionaler Gegenstände.
-
Eine zweite Aufgabe der vorliegenden Erfindung ist die Bereitstellung einer photohärtbaren Harzzusammensetzung zur Photoherstellung dreidimensionaler Gegenstände, mit der sich ein dreidimensionaler Gegenstand herstellen lässt, der überlegene mechanische Festigkeit, hohe Verarbeitungsgenauigkeit, ein geringes Verziehen und eine hervorragende Faltbeständigkeit aufweist, und der zweckmäßig für Prototypen für mechanische Teile und dergleichen verwendet wird.
-
Eine dritte Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines dreidimensionalen Gegenstands, der überlegene Faltbeständigkeit und eine geringe zeitliche Veränderung des Elastizitätsmoduls zeigt.
-
Weitere Aufgaben, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung.
-
Gemäß der vorliegenden Erfindung lassen sich die vorstehend genannten Aufgaben und Vorteile durch eine photohärtbare Harzzusammensetzung zur Photoherstellung von dreidimensionalen Gegenständen wie in Anspruch 1 definiert erzielen.
-
Gemäß der vorliegenden Erfindung lassen sich die vorstehend genannten Aufgaben und Vorteile durch einen Fertigungsgegenstand erzielen, der durch Photohärten der erfindungsgemäßen photohärtbaren Harzzusammensetzung erzeugt wird.
-
Oxetanverbindung (A)
-
Eine Oxetanverbindung (A) (nachstehend ”Bestandteil (A)” genannt), die die photohärtbare Harzzusammensetzung zur Photoherstellung von erfindungsgemäßen dreidimensionalen Gegenständen (nachstehend ”Harzzusammensetzung” genannt) darstellt, umfasst mindestens einen Oxetanring, der durch die folgende Formel (1) dargestellt ist.
-
Die Oxetanverbindung kann durch Bestrahlen mit Licht in Gegenwart eines kationisch polymerisierbaren Photoinitiators polymerisiert oder vernetzt werden.
-
Die Oxetanverbindung (A) umfasst mindestens einen Oxetanring. Beispiele für Verbindung (A) sind nachstehend angegeben.
-
Beispiele für Verbindung (A) mit einem Oxetanring im Molekül sind durch die folgende Formel (2) dargestellt:
worin Z ein Sauerstoffatom oder ein Schwefelatom darstellt; R
1 ein Wasserstoffatom, ein Fluoratom, eine Alkylgruppe mit 1-6 Kohlenstoffatomen, wie eine Methylgruppe, eine Ethylgruppe, eine Propylgruppe und eine Butylgruppe, eine Fluoralkylgruppe mit 1-6 Kohlenstoffatomen, wie eine Trifluormethylgruppe, eine Perfluorethylgruppe und eine Perfluorpropylgruppe, eine Arylgruppe mit 6-18 Kohlenstoffatomen, wie die Phenylgruppe und eine Naphthylgruppe, eine Furylgruppe oder eine Thienylgruppe, darstellt; und R
2 ein Wasserstoffatom, eine Alkylgruppe mit 1-6 Kohlenstoffatomen, beispielsweise eine Methylgruppe, eine Ethylgruppe, eine Propylgruppe und eine Butylgruppe, eine Alkenylgruppe mit 2-6 Kohlenstoffatomen, beispielsweise eine 1-Propenylgruppe, eine 2-Propenylgruppe, eine 2-Methyl-1-propenylgruppe, eine 2-Methyl-2-propenylgruppe, eine 1-Butenylgruppe, eine 2-Butenylgruppe und eine 3-Butenylgruppe, eine Arylgruppe mit 6-18 Kohlenstoffatomen, beispielsweise eine Phenylgruppe, eine Naphthylgruppe, eine Anthranylgruppe und eine Phenanthrylgruppe, eine substituierte oder nicht substituierte Aralkylgruppe mit 7-18 Kohlenstoffatomen, beispielsweise eine Benzylgruppe, eine Fluorbenzylgruppe, eine Methoxybenzylgruppe, eine Phenethylgruppe, eine Styrylgruppe, eine Cinnamylgruppe, eine Ethoxybenzylgruppe, eine Gruppe mit anderen aromatischen Ringen, zum Beispiel ein Aryloxyalkyl, beispielsweise eine Phenoxymethylgruppe und eine Phenoxyethylgruppe, eine Alkylcarbonylgruppe mit 2-6 Kohlenstoffatomen, beispielsweise eine Ethylcarbonylgruppe, eine Propylcarbonylgruppe, eine Butylcarbonylgruppe, eine Alkoxycarbonylgruppe mit 2-6 Kohlenstoffatomen, beispielsweise eine Ethoxycarbonylgruppe, eine Propoxycarbonylgruppe, eine Butoxycarbonylgruppe, eine N-Alkylcarbamoylgruppe mit 2-6 Kohlenstoffatomen, wie eine Ethylcarbamoylgruppe, eine Propylcarbamoylgruppe, eine Butylcarbamoylgruppe, eine Pentylcarbamoylgruppe, darstellt.
-
Als Beispiele für Verbindungen mit zwei Oxetanringen im Molekül können die durch die folgende Formel (3) dargestellten Verbindungen genannt werden:
worin R
1 wie vorstehend unter Formel (2) definiert ist; R
3 eine lineare oder verzweigte Alkylengruppe mit 1-20 Kohlenstoffatomen darstellt, beispielsweise eine Ethylengruppe, eine Propylengruppe und eine Butylengruppe, eine lineare oder verzweigte Poly(alkylenoxy)gruppe mit 1-120 Kohlenstoffatomen, beispielsweise eine Poly(ethylenoxy)gruppe und eine Poly(propylenoxy)gruppe, eine lineare oder verzweigte ungesättigte Kohlenwasserstoffgruppe, beispielsweise eine Propenylengruppe, eine Methylpropenylengruppe und eine Butenylengruppe, eine Carbonylgruppe, eine Alkylengruppe mit einer Carbonylgruppe, eine Alkylengruppe mit einer Carboxylgruppe in der Mitte der Molekülkette und eine Alkylengruppe mit einer Carbamoylgruppe in der Mitte der Molekülkette; und R
3 kann eine mehrwertige Gruppe sein, ausgewählt aus den Gruppen, die durch die folgenden Formeln (4), (5) und (6) dargestellt sind:
worin R
4 eine Alkylgruppe mit 1-4 Kohlenstoffatomen, eine Alkoxygruppe mit 1-4 Kohlenstoffatomen, ein Halogenatom, beispielsweise ein Chloratom oder ein Bromatom, eine Nitrogruppe, eine Cyanogruppe, eine Mercaptogruppe, eine Carboxylgruppe oder eine Carbamoylgruppe darstellt und x eine ganze Zahl von 1–4 ist;
worin R
5 ein Sauerstoffatom, ein Schwefelatom, eine Methylengruppe, -NH-, -SO-, -SO
2-, -C(CF
3)
2- oder -C(CH
3)
2- darstellt;
worin R
6 eine Alkylgruppe mit 1-4 Kohlenstoffatomen oder eine Arylgruppe mit 6-18 Kohlenstoffatomen, beispielsweise eine Phenylgruppe oder eine Naphthylgruppe, darstellt, y eine ganze Zahl von 0–200 ist, und R
7 eine Alkylgruppe mit 1-4 Kohlenstoffatomen, eine Arylgruppe mit 6-18 Kohlenstoffatomen, beispielsweise eine Phenylgruppe oder eine Naphthylgruppe, oder eine Gruppe, die durch die folgende Formel (7) dargestellt ist, darstellt:
worin R
8 eine Alkylgruppe mit 1-4 Kohlenstoffatomen oder eine Arylgruppe mit 6-18 Kohlenstoffatomen, beispielsweise eine Phenylgruppe oder eine Naphthylgruppe, darstellt, und z eine ganze Zahl von 0–100 ist.
-
Als spezifische Beispiele für die Verbindungen mit zwei Oxetanringen im Molekül können die durch die folgenden Formeln (8), (9) und (10) dargestellten Verbindungen genannt werden:
-
In Formel (10) ist R1 wie vorstehend unter Formel (2) definiert.
-
Als Beispiele für die Verbindungen mit drei oder mehr Oxetanringen im Molekül können die durch die folgende Formel (11) dargestellten Verbindungen genannt werden:
worin R
1 wie vorstehend unter Formel (2) definiert ist; R
9 eine organische Gruppe mit einer Wertigkeit von 3–10 darstellt, beispielsweise eine lineare oder verzweigte Alkylengruppe mit 1-30 Kohlenstoffatomen, beispielsweise Gruppen, die durch die folgenden Formeln (12)–(14) dargestellt sind, eine verzweigte Poly(alkylenoxy)gruppe, beispielsweise eine Gruppe, die durch die folgende Formel (15) dargestellt ist, oder ein lineares oder verzweigtes Polysiloxan mit einer Gruppe, die durch die folgende Formel (16) oder (17) dargestellt ist; j eine ganze Zahl von 3–10 ist, die gleich der Wertigkeit von R
9 ist:
worin R
10 eine Alkylgruppe mit 1-6 Kohlenstoffatomen darstellt:
worin jedes L jeweils ganze Zahl von 1–10 ist.
-
Als spezifische Beispiele für Verbindungen mit drei oder mehr Oxetanringen im Molekül können die durch die folgende Formel (18) dargestellten Verbindungen genannt werden.
-
Verbindungen, die durch die folgende Formel (19) dargestellt sind, können 1–10 Oxetanringe umfassen:
worin R
1 wie vorstehend unter Formel (2) definiert ist,
R
8 wie vorstehend unter Formel (7) definiert ist, R
11 eine Alkylgruppe mit 1-4 Kohlenstoffatomen oder eine Trialkylsilylgruppe (worin jede Alkylgruppe jeweils eine Alkylgruppe mit 1-12 Kohlenstoffatomen ist), beispielsweise eine Trimethylsilylgruppe, eine Triethylsilylgruppe, eine Tripropylsilylgruppe oder eine Tributylsilylgruppe, darstellt und r eine ganze Zahl von 1–10 ist.
-
Ferner können als Beispiele für die Oxetanverbindung (A) über die vorstehend genannten Verbindungen hinaus Verbindungen mit einem mittels Gelpermeationschromatographie gemessenen polystyrolreduzierten zahlengemittelten Molekulargewicht von 1.000–5.000 genannt werden. Als Beispiele für derartige Verbindungen können die in den folgenden Formeln (20), (21) und (22) dargestellten Verbindungen genannt werden:
worin p für eine ganze Zahl von 20–200 steht:
worin q für eine ganze Zahl von 15–100 steht:
worin s für eine ganze Zahl von 20–200 steht:
Spezifische Beispiele für die vorstehend beschriebene Oxetanverbindung (A) sind nachstehend angeführt.
-
Verbindungen mit einem Oxetanring im Molekül:
-
3-Ethyl-3-hydroxymethyloxetan, 3-(Meth)allyloxymethyl-3-ethyloxetan, (3-Ethyl-3-oxetanylmethoxy)methylbenzol, 4-Fluor-[1-(3-ethyl-3-oxetanylmethoxy)methyl]benzol, 4-Methoxy-[1-(3-ethyl-3-oxetanylmethoxy)methyl]benzol, [1-(3-Ethyl-3-oxetanylmethoxy)ethyl]phenylether, Isobutoxymethyl-(3-ethyl-3-oxetanylmethyl)ether, Isobornyloxyethyl-(3-ethyl-3-oxetanylmethyl)ether, Isobornyl-(3-ethyl-3-oxetanylmethyl)ether, 2-Ethylhexyl-(3-ethyl-3-oxetanylmethyl)ether, Ethyldiethylenglycol-(3-ethyl-3-oxetanylmethyl)ether, Dicyclopentadien-(3-ethyl-3-oxetanylmethyl)ether, Dicyclopentenyloxyethyl-(3-ethyl-3-oxetanylmethyl)ether, Dicyclopentenyl-(3-ethyl-3-oxetanylmethyl)ether, Tetrahydrofurfuryl-(3-ethyl-3-oxetanylmethyl)ether, Tetrabromphenyl-(3-ethyl-3-oxetanylmethyl)ether, 2-Tetrabromphenoxyethyl-(3-ethyl-3-oxetanylmethyl)ether, Tribromphenyl-(3-ethyl-3-oxetanylmethyl)ether, 2-Tribromphenoxyethyl-(3-ethyl-3-oxetanylmethyl)ether, 2-Hydroxyethyl-(3-ethyl-3-oxetanylmethyl)ether, 2-Hydroxypropyl-(3-ethyl-3-oxetanylmethyl)ether, Butoxyethyl-(3-ethyl-3-oxetanylmethyl)ether, Pentachlorphenyl-(3-ethyl-3-oxetanylmethyl)ether, Pentabromphenyl-(3-ethyl-3-oxetanylmethyl)ether, Bornyl-(3-ethyl-3-oxetanylmethyl)ether.
-
Verbindungen mit zwei oder mehr Oxetanringen im Molekül:
-
3,7-Bis(3-oxetanyl)-5-oxanonan, 3,3'-(1,3-(2-methylenyl)-propandiyl-bis(oxymethylen))-bis-(3-ethyloxetan), 1,4-Bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzol, 1,2-Bis[(3-ethyl-3-oxetanylmethoxy)methyl]ethan, 1,3-Bis[(3-ethyl-3-oxetanylmethoxy)methy]propan, Ethylenglycol-bis(3-ethyl-3-oxetanylmethyl)ether, Dicyclopentenyl-bis(3-ethyl-3-oxetanylmethyl)ether, Triethylenglycol-bis(3-ethyl-3-oxetanylmethyl)ether, Tetraethylenglycol-bis(3-ethyl-3-oxetanylmethyl)ether, Tricyclodecandiyldimethylen-(3-ethyl-3-oxetanylmethyl)ether, Trimethylolpropan-tris(3-ethyl-3-oxetanylmethyl)ether, 1,4-Bis(3-ethyl-3-oxetanylmethoxy)butan, 1,6-Bis(3-ethyl-3-oxetanylmethoxy)hexan, Pentaerythritol-tris(3-ethyl-3-oxetanylmethyl)ether, Pentaerythritol-tetrakis(3-ethyl-3-oxetanylmethyl)ether, Polyethylenglycol-bis(3-ethyl-3-oxetanylmethyl)ether, Dipentaerythritol-hexakis(3-ethyl-3-oxetanylmethyl)ether, Dipentaerythritol-pentakis(3-ethyl-3-oxetanylmethyl)ether, Dipentaerythritol-tetrakis(3-ethyl-3-oxetanylmethyl)ether, mit Caprolacton modifizierter Dipentaerythritol-hexakis(3-ethyl-3-oxetanylmethyl)ether, mit Caprolacton modifizierter Dipentaerythritol-pentakis(3-ethyl-3-oxetanylmethyl)ether, Ditrimethylolpropan-tetrakis(3-ethyl-3-oxetanylmethyl)ether, mit EO modifizierter Bisphenol-A-bis(3-ethyl-3-oxetanylmethyl)ether, mit PO modifizierter Bisphenol-A-bis(3-ethyl-3-oxetanylmethyl)ether, hydrierter mit EO modifizierter Bisphenol-A-bis(3-ethyl-3-oxetanylmethyl)ether, hydrierter mit PO modifizierter Bisphenol-A-bis(3-ethyl-3-oxetanylmethyl)ether, mit EO modifizierter Bisphenol-F-(3-ethyl-3-oxetanylmethyl)ether. Diese Verbindungen können entweder einzeln oder in Kombinationen aus zwei oder mehr verwendet werden.
-
Hierbei sind Oxetanverbindungen mit 1–10, vorzugsweise 1–4 und besonders bevorzugt zwei Oxetanringen im Molekül als Bestandteil (A) der erfindungsgemäßen Harzzusammensetzung geeignet. Am meisten bevorzugte Beispiele für Verbindung (A) sind (3-Ethyl-3-oxetanylmethoxy)methylbenzol, in der folgenden Formel (23) dargestellt, 1,4-Bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzol, in der folgenden Formel (24) dargestellt, 1,2-Bis(3-ethyl-3-oxetanylmethoxy)ethan, in der folgenden Formel (25) dargestellt, Trimethylolpropan-tris(3-ethyl-3-oxetanylmethyl)ether, in der folgenden Formel (26) dargestellt, 3-Ethyl-3-oxetanylmethoxybenzol, in der folgenden Formel (27) dargestellt, und die in der vorstehenden Formel (19) dargestellte Verbindung, wobei die Verbindungen entweder einzeln oder in Kombinationen aus zwei oder mehr verwendet werden können.
-
Diese Oxetanverbindungen können entweder einzeln oder in Kombinationen aus zwei oder mehr verwendet werden.
-
Der Gehalt an Bestandteil (A) in der erfindungsgemäßen Harzzusammensetzung beträgt 10–60 Gew.-%. Wenn der Gehalt zu niedrig ist, nimmt die Geschwindigkeit der kationischen Polymerisation (Härtegeschwindigkeit) ab, weswegen die Herstellung länger dauern kann oder die Auflösung abnehmen kann. Wenn der Gehalt zu hoch ist, kann die Zähigkeit des gehärteten Produkts herabgesetzt sein oder die Geschwindigkeit der kationischen Polymerisation (Härtegeschwindigkeit) neigt zur Verlangsamung.
-
Bestandteil (B): Epoxidverbindung
-
Die erfindungsgemäße photohärtbare Harzzusammensetzung umfasst eine Epoxidverbindung. Die in der vorliegenden Erfindung verwendete Epoxidverbindung weist eine dreigliedrige Epoxyethanstruktur auf und enthält keine Struktur mit vier Gliedern oder mehr, wie eine Oxetangruppe. Die in der vorliegenden Erfindung verwendete Epoxidverbindung enthält eine Glycidylgruppe oder eine Epoxycyclohexylgruppe im Molekül. Die Anzahl an in der Epoxidverbindung enthaltenen Epoxyethanstrukturen beträgt eine oder mehr, vorzugsweise 2–15 und noch mehr bevorzugt 2–8 pro Molekül.
-
In der vorliegenden Erfindung erhöht die kombinierte Verwendung der Epoxidverbindung mit der Oxetanverbindung (A) die Geschwindigkeit der Photohärtung, und verbessert insbesondere die Härtbarkeit.
-
Als in der vorliegenden Erfindung verwendete Epoxidverbindung (B) sind Verbindungen bevorzugt, die eine Epoxycyclohexylgruppe enthalten, und Verbindungen, die eine Glycidylgruppe enthalten. Die epoxycyclohexylgruppenhaltigen Verbindungen zeigen überlegene kationische Polymerisierbarkeit. Die glycidylgruppenhaltigen Verbindungen stellen ein Polymer mit Flexibilität bereit und verbessern die Mobilität des Polymerisationssystems, wodurch die Härtbarkeit weiter verbessert wird.
-
Zu Beispielen für die epoxycyclohexylgruppenhaltigen Verbindungen gehören 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat, 2-(3,4-Epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexanmetadioxan, Bis(3,4-epoxycyclohexylmethyl)adipat, Bis(3,4-epoxy-6-methylcyclohexylmethyl)adipat, 3,4-Epoxy-6-methylcyclohexyl-3',4'-epoxy-6'-methylcyclohexancarboxylat, Methylen-bis(3,4-epoxycyclohexan), Di(3,4-epoxycyclohexylmethyl)ether von Ethylenglycol, Ethylen-bis(3,4-epoxycyclohexancarboxylat, mit ε-Caprolacton modifiziertes 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat, mit Trimethylcaprolacton modifiziertes 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat, mit β-Methyl-δ-valerolactone modifiziertes 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat.
-
Hierbei sind 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat, Bis(3,4-epoxycyclohexylmethyl)adipat, mit ε-Caprolacton modifiziertes 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat, mit Trimethylcaprolacton modifiziertes 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat und mit β-Methyl-δ-valerolacton modifiziertes 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat bevorzugt. Besonders bevorzugt sind 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat und Bis(3,4-epoxycyclohexylmethyl)adipat.
-
Als im Handel erhältliche Produkte, die zweckmäßig als diese Verbindungen verwendet werden, können UVR-6100, UVR-6105, UVR-6110, UVR-6128, UVR-6200, UVR-6216 (hergestellt von Union Carbide Corp.), Celoxide 2021, Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, Epolead GT-300, Epolead GT-301, Epolead GT-302, Epolead GT-400, Epolead 401, Epolead 403 (hergestellt von Daicel Chemical Industries, Ltd.), KRM-2100, KRM-2110, KRM-2199 (hergestellt von Asahi Denka Kogyo Co., Ltd.) und dergleichen genannt werden. Diese Verbindungen können entweder einzeln oder in Kombinationen aus zwei oder mehr verwendet werden.
-
Zu Beispielen für die als Bestandteil (B) verwendeten glycidylgruppenhaltigen Verbindungen gehören Bisphenol-A-Diglycidylether, Bisphenol-F-Diglycidylether, Bisphenol-S-Diglycidylether, bromierter Bisphenol-A-Diglycidylether, bromierter Bisphenol-F-Diglycidylether, bromierter Bisphenol-S-Diglycidylether, hydrierter Bisphenol-A-Diglycidylether, hydrierter Bisphenol-F-Diglycidylether, hydrierter Bisphenol-S-Diglycidylether, 1,4-Butandiol-Diglycidylether, 1,6-Hexandiol-Diglycidylether, Glycerol-Triglycidylether, Trimethylolpropan-Triglycidylether, Polyethylenglycol-Diglycidylether, Polypropylenglycol-Diglycidylether; Polydiglycidylether von Polyetherpolyolen, erhalten durch die Zugabe von einem oder mehreren Alkylenoxiden zu aliphatischen mehrwertigen Alkoholen, wie Ethylenglycol, Propylenglycol und Glycerol; Diglycidylester von aliphatischen langkettigen zweibasigen Säuren; Monodiglycidylethern von höheren aliphatischen Alkoholen; Monodiglycidylether von Phenol, Cresol, Butylphenol oder Polyetheralkoholen, erhalten durch die Zugabe des Alkylenoxids zu diesen Verbindungen; und Glycidylester von höheren Fettsäuren.
-
Hierbei sind Bisphenol-A-Diglycidylether, Bisphenol-F-Diglycidylether, hydrierter Bisphenol-A-Diglycidylether, hydrierter Bisphenol-F-Diglycidylether, 1,4-Butandiol-Diglycidylether, 1,6-Hexandiol-Diglycidylether, Glycerol-Triglycidylether, Trimethylolpropan-Triglycidylether, Neopentylglycol-Diglycidylether, Polyethylenglycol-Diglycidylether und Polypropylenglycol-Diglycidylether bevorzugt.
-
Als im Handel erhältliche Produkte, die zweckmäßig als die glycidylgruppenhaltige Verbindungen verwendet werden, können UVR-6216 (hergestellt von Union Carbide Corp.), Glycidole, AOEX24, Cyclomer A200 (hergestellt von Daicel Chemical Industries, Ltd.), Epicoat 828, Epicoat 812, Epicoat 1031, Epicoat 872, Epicoat CT508 (hergestellt von Yuka-Shell K. K.), KRM-2400, KRM-2410, KRM-2408, KRM-2490, KRM-2720, KRM-2750 (hergestellt von Asahi Denka Kogyo Co., Ltd.) und dergleichen genannt werden. Diese Verbindungen können entweder einzeln oder in Kombinationen aus zwei oder mehr als Bestandteil (B) verwendet werden.
-
Der Gehalt an Bestandteil (B), der in der erfindungsgemäßen photohärtbaren Harzzusammensetzung verwendet wird, beträgt 20–70 Gew.-%. Wenn der Gehalt zu niedrig ist, kann die Härtbarkeit geringer sein. Wenn der Gehalt andererseits zu hoch ist, erhöht sich die Viskosität der Harzzusammensetzung, wodurch die Herstellung einen längeren Zeitraum verlangt.
-
(C) Photosäuregenerator
-
Der Photosäuregenerator (C), der in der erfindungsgemäßen photohärtbaren Harzzusammensetzung verwendet wird (nachstehend ”Bestandteil (C)” genannt), erzeugt einen Stoff, der nach Einwirken von Energiestrahlen, wie Licht, die kationische Polymerisation des Bestandteils (A) einleitet. Die hier verwendeten Energiestrahlen, wie Licht, beziehen sich auf sichtbares Licht, ultraviolettes Licht, Infrarotlicht, Röntgenstrahlen, α-Strahlen, β-Strahlen, γ-Strahlen und dergleichen.
-
Als Beispiel für die als Bestandteil (C) verwendeten Verbindungen kann ein Oniumsalz mit einer Struktur, die durch die nachfolgende Formel (28) dargestellt ist, genannt werden. Das Oniumsalz setzt nach Einwirken von Licht eine Lewis-Säure frei. [R21 a 22 bR23 cR24 dW]+m[MXn+m]–m (28) worin das Kation ein Oniumion ist; W S, Se, Te, P, As, Sb, Bi, O, I, Br, Cl oder N≡N darstellt; R21, R22, R23 und R24 jeweils dieselben oder verschiedene organische Gruppen darstellen; a, b, c und d unabhängig eine ganze Zahl von 0 bis 3 darstellen, und mit der Maßgabe, dass a + b + c + d gleich der Wertigkeit von W ist. M stellt ein Metall oder Metalloid dar, das ein Zentrumsatom eines Halogenidkomplexes darstellt. Typische Beispiele für M sind B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn und Co. X stellt ein Halogenatom, wie ein Fluoratom, Chloratom oder Bromatom, dar. m ist eine wesentliche elektrische Ladung des Halogenidkomplexions und n ist die Wertigkeit von M.
-
Als typische Beispiele für die durch die Formel (28) dargestellten Oniumsalze werden Diphenyliodonium, 4-Methoxydiphenyliodonium, Bis(4-methylphenyl)iodonium, Bis(4-tert-butylphenyl)iodonium, Bis(dodecylphenyl)iodonium, Triphenylsulfonium, Diphenyl-4-thiophenoxyphenylsulfonium, Bis[4-(diphenylsulfonio)-phenyl]sulfid, Bis[4-(di-(4-(2-hydroxyethyl)phenyl)sulfonio)phenyl]sulfid und η5-2,4-(Cyclopentadienyl)-[(1,2,3,4,5,6-η)-(methylethyl)benzol]-Eisen(1+) genannt.
-
Als Beispiele für das negative Ion (MXn + m) in der vorstehenden Formel (28) sind Tetrafluorborat (BF4 –), Hexafluorphosphat (PF6 –), Hexafluorantimonat (SbF6 –), Hexafluorarsenat (AsF6 –) und Hexachlorantimonat (SbCl6 –) genannt.
-
Es können Oniumsalze verwendet werden, die ein Anion aufweisen, das durch [MXn(OH)-] dargestellt ist. Ferner können auch Oniumsalze verwendet werden, die andere Anionen aufweisen, wie ein Perchlorsäureion (ClO4–), ein Trifluormethansulfonsäureion (CF3SO3-), ein Fluorsulfonsäureion (FSO3-), ein Toluolsulfonsäureion, ein Trinitrobenzolsulfonsäureanion und ein Trinitrotoluolsulfonsäureanion.
-
Hierbei sind als Oniumsalze aromatische Oniumsalze als der Photosäuregenerator des Bestandteils (C) besonders wirksam. Beispielsweise sind aromatische Haloniumsalze, die in den
Japanischen Offenlegungsschriften Nr. 151996/1975 und
158680/1975 offenbart sind, aromatische Oniumsalze der Gruppe VIA, die in den
Japanischen Offenlegungsschriften Nr. 151997/1975 ,
30899/1977 ,
55420/1981 und
125105/1980 offenbart sind, aromatische Oniumsalze der Gruppe VA, die in der
Japanischen Offenlegungsschrift Nr. 158698/1975 offenbart sind, Oxosulfoxoniumsalze, die in den
Japanischen Offenlegungsschriften Nr. 8428/1981 ,
149402/1981 und
192429/1982 offenbart sind, aromatische Diazoniumsalze, die in der
Japanischen Offenlegungsschrift Nr. 17040/1974 offenbart sind, Thiopyryliumsalze, die in
US-Patent Nr. 4,139,655 offenbart sind, und dergleichen bevorzugt. Darüber hinaus können auch Eisen/Allen-Komplexinitiatoren, Aluminiumkomplex/Photolyse-Silikonverbindungsinitiatoren und dergleichen als Beispiele genannt werden.
-
Als Beispiele für im Handel erhältliche Produkte des Photosäuregenerators, die zweckmäßig als Bestandteil (C) verwendet werden, können UVI-6950, UVI-6970, UVI-6974, UVI-6990 (hergestellt von Union Carbide Corp.), Adekaoptomer SP-150, SP-151, SP-170, SP-171, SP-172 (hergestellt von Asahi Denka Kogyo Co., Ltd.), Irgacure 261 (hergestellt von Ciba Specialty Chemicals Co.), CI-2481, CI-2624, CI-2639, CI-2064 (hergestellt von Nippon Soda Co., Ltd.), CD-1010, CD-1011, CD-1012 (hergestellt von Sartomer Co., Ltd.), DTS-102, DTS-103, NAT-103, NDS-103, TPS-103, MDS-103, MPI-103, BBI-103 (hergestellt von Midori Chemical Co., Ltd.), PCI-061T, PCI-062T, PCI-020T, PCI-022T (hergestellt von Nippon Kayaku Co., Ltd.) und dergleichen genannt werden. Hierbei sind UVI-6970, UVI-6974, Adekaoptomer SP-170, SP-171, SP-172, CD-1012 und MPI-103 aufgrund der hohen Photohärtungsempfindlichkeit, die der gebildeten Harzzusammensetzung verliehen werden kann, besonders bevorzugt.
-
Diese Photosäuregeneratoren können entweder einzeln oder in Kombinationen aus zwei oder mehr als Bestandteil (C) verwendet werden.
-
Der Gehalt an Bestandteil (C), der in der erfindungsgemäßen photohärtbaren Harzzusammensetzung verwendet wird, beträgt 0,2–6 Gew.-% und bevorzugt 0,3–4 Gew.-%. Wenn der Gehalt an Bestandteil (C) zu gering ist, nimmt die Photohärtbarkeit der gebildeten Harzzusammensetzung ab, sodass kein dreidimensionaler Gegenstand mit ausreichender mechanischer Festigkeit hergestellt werden kann. Wenn der Gehalt andererseits zu hoch ist, lässt sich die Härtungstiefe der gebildeten Harzzusammensetzung aufgrund einer unzureichenden Phototransmission bei der Photoherstellung nur schwer steuern, sodass die gebildeten dreidimensionalen Gegenstände möglicherweise eine unzureichende Verarbeitungsgenauigkeit aufweisen.
-
Elastomere Kern-Schale-Teilchen (D) mit einem durchschnittlichen Teilchendurchmesser von 10–700 nm
-
Die elastomeren Teilchen (D) mit einem durchschnittlichen Teilchendurchmesser von 10–700 nm, die in der erfindungsgemäßen photohärtbaren Harzzusammensetzung verwendet werden (nachstehend ”Bestandteil (D)” genannt), sind elastomere Kern-Schale-Teilchen wie in Anspruch 1 definiert. Ferner können auch Teilchen vom Kern-Schale-Typ verwendet werden, die durch Beschichten dieser elastomeren Teilchen mit einem Methylmethacrylat-Polymer, Methylmethacrylat/Glycidylmethacrylat-Copolymer und dergleichen erzeugt werden. Diese elastomeren Kern-Schale-Teilchen können eine vernetzte Struktur aufweisen. Die elastomeren Kern-Schale-Teilchen können wahlweise unter Zuhilfenahme von vernetzenden Säuren mittels eines herkömmlichen Verfahrens vernetzt werden. Beispiele für vernetzende Säuren, die in einem derartigen Verfahren verwendet werden, sind Divinylbenzol, Ethylenglycoldi(meth)acrylat, Diallylmaleat, Triallylcyanurat, Triallylisocyanurat, Diallylphthalat, Trimethylolpropantriacrylat und Allylmethacrylat.
-
Die Teilchen vom Kern-Schale-Typ sind elastomere Teilchen, in denen ein Kern aus teilweise vernetztem Polybutadien, Polyisopren, Styrol/Butadien-Copolymer, Styrol/Isopren-Copolymer, Butadien/(Meth)acrylat-Copolymer, Styrol/Butadien-Blockcopolymer oder Styrol/Isopren-Blockcopolymer mit einem Methylmethacrylat-Polymer oder Methylmethacrylat/Glycidylmethacrylat-Copolymer beschichtet ist. Das Verhältnis von Kernradius zu Schalendicke der Teilchen vom Kern-Schale-Typ beträgt üblicherweise von 1/2 bis 1000/1, vorzugsweise von 1/1 bis 200/1 (wenn beispielsweise der Kernradius 350 nm und die Schalendicke 10 nm beträgt, wird das Verhältnis als 35/1 ausgedrückt).
-
Diese elastomeren Kern-Schale-Teilchen lassen sich mittels eines herkömmlichen Verfahrens, wie Emulsionspolymerisation, herstellen. Die Emulsionspolymerisation lässt sich beispielsweise durch Polymerisieren der gesamten Menge an einem Monomerbestandteil in einer einzigen Reaktion, zuerst Polymerisieren eines Teils des Monomerbestandteils mit anschließender ununterbrochener oder unterbrochener Zugabe des restlichen Monomerbestandteils zu Polymerisationszwecken, Polymerisieren eines Monomerbestandteils unter ununterbrochener Zugabe des Monomerbestandteils während der Polymerisation oder Polymerisieren eines Monomerbestandteils unter Verwendung von Keimteilchen durchführen.
-
Der durchschnittliche Teilchendurchmesser der derart hergestellten elastomeren Kern-Schale-Teilchen beträgt 10–700 nm und vorzugsweise 30–300 nm. Wenn elastomere Teilchen mit einem durchschnittlichen Teilchendurchmesser von weniger als 10 nm verwendet werden, zeigen die gebildeten dreidimensionalen Gegenstände möglicherweise nicht nur eine geringere Schlagfestigkeit, auch die Produktivität und Verarbeitungsgenauigkeit der dreidimensionalen Gegenstände kann aufgrund der erhöhten Viskosität der Harzzusammensetzung nachteilig beeinflusst werden. Wenn andererseits elastomere Teilchen mit einem durchschnittlichen Teilchendurchmesser von mehr als 700 nm verwendet werden, kann die Oberfläche der gebildeten dreidimensionalen Gegenstände uneben werden und sich die Verarbeitungsgenauigkeit verschlechtern.
-
Als Beispiele für im Handel erhältliche Produkte dieser elastomeren Kern-Schale-Teilchen können Resinous Bond RKB (hergestellt von Resinous Chemical Industries Co., Ltd.), Techno MBS-61, MBS-69 (hergestellt von Techno Polymer Co., Ltd.) und dergleichen genannt werden.
-
Diese elastomeren Kern-Schale-Teilchen können entweder einzeln oder in Kombinationen aus zwei oder mehr als Bestandteil (D) verwendet werden.
-
Der Gehalt an Bestandteil (D), der in der erfindungsgemäßen photohärtbaren Harzzusammensetzung verwendet wird, beträgt 1–35 Gew.-% bevorzugt 3–30 Gew.-% und besonders bevorzugt 5–20 Gew.-% Wenn der Gehalt an Bestandteil (D) zu gering ist, kann der gebildete dreidimensionale Gegenstand eine geringere Schlagfestigkeit zeigen. Wenn der Gehalt andererseits zu hoch ist, kann der gebildete dreidimensionale Gegenstand eine geringere Verarbeitungsgenauigkeit zeigen.
-
Bestanteil (E): Polyol
-
Das Polyol (E), das in der erfindungsgemäßen photohärtbaren Harzzusammensetzung als fakultativer Bestandteil (nachstehend ”Bestandteil (E)” genannt) verwendet wird, ist bei der Bereitstellung von Photohärtbarkeit in der Harzzusammensetzung sowie von Formstabilität (zeitliche Steuerung der Deformation) und physikalischer Stabilität (zeitliche Steuerung der Veränderung mechanischer Eigenschaften) für photohergestellte dreidimensionale Gegenstände nützlich. Das als Bestandteil (E) verwendete Polyol enthält vorzugsweise zwei oder mehr und noch mehr bevorzugt von 2 bis 6 Hydroxylgruppen in einem Molekül.
-
Wenn ein Polyol mit weniger als zwei Hydroxylgruppen in einem Molekül verwendet wird, wird die Photohärtbarkeit der Harzzusammensetzung möglicherweise nicht ausreichend verbessert und die mechanischen Eigenschaften, insbesondere der Elastizitätsmodul der gebildeten dreidimensionalen Gegenstände kann abnehmen. Wenn ein Polyol mit mehr als sechs Hydroxylgruppen in einem Molekül verwendet wird, können die gebildeten dreidimensionalen Gegenstände eine unzureichende Dehnung und herabgesetzte Feuchtigkeitsbeständigkeit zeigen.
-
Als Beispiele für derartige Polyole können Polyetherpolyole, Polycaprolactonpolyole, Polyesterpolyole, hergestellt durch Modifizieren mit Polyester bestehend aus zweibasigen Säuren und Diolen, und dergleichen genannt werden.
-
Bevorzugt sind hierbei Polyetherpolyole. Als Beispiele können beispielsweise Polyetherpolyole genannt werden, die durch Modifizieren von mehrwertigen Alkoholen, die drei oder mehr Hydroxylgruppen enthalten, wie Trimethylolpropan, Glycerol, Pentaerythritol, Sorbitol und Saccharose, Quadrol mit einer cyclischen Etherverbindung, wie Ethylenoxid (nachstehend EO genannt), Propylenoxid (nachstehend PO genannt), Butylenoxid und Tetrahydrofuran, erhalten werden. Zu spezifischen Beispielen gehören mit EO modifiziertes Trimethylolpropan, mit PO modifiziertes Trimethylolpropan, mit Tetrahydrofuran modifiziertes Trimethylolpropan, mit EO modifiziertes Glycerol, mit PO modifiziertes Glycerol, mit Tetrahydrofuran modifiziertes Glycerol, mit EO modifiziertes Pentaerythritol, mit PO modifiziertes Pentaerythritol, mit Tetrahydrofuran modifiziertes Pentaerythritol, mit EO modifiziertes Sorbitol, mit PO modifiziertes Sorbitol, mit EO modifizierte Saccharose, mit PO modifizierte Saccharose, mit EO modifiziertes Quadrol, Polyoxyethylendiol, Polyoxypropylendiol, Polyoxytetramethylendiol, Polyoxybutylendiol, Polyoxybutylen-Oxyethylen-Copolymerdiol und dergleichen. Hierbei sind mit EO modifiziertes Trimethylolpropan, mit PO modifiziertes Trimethylolpropan, mit PO modifiziertes Glycerol und mit PO modifiziertes Sorbitol bevorzugt.
-
Als Beispiele für im Handel erhältliche Produkte der Polyetherpolyole, die als Bestandteil (E) verwendet werden, können Sunnix TP-400, GP-600, GP-1000, SP-750, GP-250, GP-400, GP-600 (hergestellt von Sanyo Chemical Industries, Ltd.), TMP-3 Glycol, PNT-4 Glycol, EDA-P-4, EDA-P-8 (hergestellt von Nippon Nyukazai Co., Ltd.), G-300, G-400, G-700, T-400, EDP-450, SP-600, SC-800 (hergestellt von Asahi Denka Kogyo Co., Ltd.) und dergleichen genannt werden.
-
Als spezifische Beispiele für die Polycaprolactonpolyole können mit Caprolacton modifiziertes Trimethylolpropan, mit Caprolacton modifiziertes Glycerol, mit Caprolacton modifiziertes Pentaerythritol, mit Caprolacton modifiziertes Sorbitol und dergleichen genannt werden.
-
Zu Beispielen für im Handel erhältliche Produkte von Polycaprolactonpolyole gehören TONE 0301, TONE 0305, TONE 0310 (hergestellt von Union Carbide Corp.) und dergleichen. Zu Beispielen für im Handel erhältliche Produkte von Polyesterpolyol gehören PLACCEL 303, PLACCEL 305, PLACCEL 308 (hergestellt von Daicel Chemical Industries, Ltd.) und dergleichen.
-
Diese Polyole können entweder einzeln oder in Kombinationen aus zwei oder mehr als Bestandteil (E) verwendet werden.
-
Das Molekulargewicht des Polyols, das als Bestandteil (E) verwendet wird, beträgt vorzugsweise 100–50.000 und noch mehr bevorzugt 160–20.000. Wenn das Molekulargewicht des Polyols, das als Bestandteil (E) verwendet wird, zu gering ist, kann abhängig von der gebildeten Harzzusammensetzung kein dreidimensionaler Gegenstand hergestellt werden, der Formstabilität und physikalische Stabilität zeigt. Wenn das Molekulargewicht des Polyols zu groß ist, kann die Viskosität der Harzzusammensetzung ansteigen, wodurch der Elastizitätsmodul der photohergestellten dreidimensionalen Gegenstände reduziert wird.
-
Der Gehalt an Bestandteil (E), der in der erfindungsgemäßen photohärtbaren Harzzusammensetzung verwendet wird, beträgt 0–25 Gew.-%. Wenn der Gehalt an Bestandteil (E) zu groß ist, kann die Photohärtbarkeit der Harzzusammensetzung reduziert werden, wodurch der Elastizitätsmodul der gebildeten dreidimensionalen Gegenstände reduziert wird.
-
Ethylenisch ungesättigtes Monomer (F)
-
Das ethylenisch ungesättigte Monomer (F), das wahlweise in der erfindungsgemäßen photohärtbaren Harzzusammensetzung verwendet wird (nachstehend ”Bestandteil (F)” genannt), enthält eine ethylenisch ungesättigte Bindung (C=C) im Molekül. Als Beispiele für den Bestandteil (F) können monofunktionelle Monomere, die eine ethylenisch ungesättigte Bindung in einem Molekül enthalten, und polyfunktionelle Monomere, die zwei oder mehr und vorzugsweise drei oder mehr ethylenisch ungesättigte Bindungen in einem Molekül enthalten, genannt werden.
-
Zu Beispielen für monofunktionelle Monomere, die zweckmäßig als Bestandteil (F) verwendet werden, gehören Acrylamid, (meth)acryloylmorpholin, 7-Amino-3,7-dimethyloctyl(meth)acrylat, Isobutoxymethyl(meth)acrylamid, Isobornyloxyethyl(meth)acrylat, Isobornyl(meth)acrylat, 2-Ethylhexyl(meth)acrylat, Ethyldiethylenglycol(meth)acrylat, t-Octyl(meth)acrylamid, Diaceton(meth)acrylamid, Dimethylaminoethyl(meth)acrylat, Diethylaminoethyl(meth)acrylat, Lauryl(meth)acrylat, Dicyclopentadien(meth)acrylat, Dicyclopentenyloxyethyl(meth)acrylat, Dicyclopentenyl(meth)acrylat, N,N-Dimethyl(meth)acrylamidtetrachlorphenyl(meth)acrylat, 2-Tetrachlorphenoxyethyl(meth)acrylat, Tetrahydrofurfuryl(meth)acrylat, Tetrabromphenyl(meth)acrylat, 2-Tetrabromphenoxyethyl(meth)acrylat, 2-Trichlorophenoxyethyl(meth)acrylat, Tribromphenyl(meth)acrylat, 2-Tribromphenoxyethyl(meth)acrylat, 2-Hydroxyethyl(meth)acrylat, 2-Hydroxypropyl(meth)acrylat, Vinylcaprolactam, N-Vinylpyrrolidon, Phenoxyethyl(meth)acrylat, Butoxyethyl(meth)acrylat, Pentachlorphenyl(meth)acrylat, Pentabromphenyl(meth)acrylat, Polyethylenglycolmono(meth)acrylat, Polypropylenglycolmono(meth)acrylat, Bornyl(meth)acrylat, Methyltriethylendiglycol(meth)acrylat und Verbindungen, die durch die folgenden Formeln (29)–(31) dargestellt sind.
worin R
12 = H, Me
R
13 und R
15 sind Alkylengruppen mit 1-20 C-Atomen
R
14 = H oder eine Alkylengruppe mit 1-20 C-Atomen
r, t sind ganze Zahlen von 0 bis 100
-
Von diesen monofunktionellen Monomeren sind Isobornyl(meth)acrylat, Lauryl(meth)acrylat und Phenoxyethyl(meth)acrylat besonders bevorzugt.
-
Als Beispiele für im Handel erhältliche Produkte dieser monofunktionellen Monomere können ARONIX M-101, M-102, M-111, M-113, M-117, M-152, TO-1210 (hergestellt von Toagosei Co., Ltd.), KAYARAD TC-110S, R-564, R-128H (hergestellt von Nippon Kayaku Co., Ltd.), Viscoat 192, 220, 2311HP, 2000, 2100, 2150, BF, 17F (hergestellt von Osaka Organic Chemical Industry Co., Ltd.) und dergleichen genannt werden.
-
Zu Beispielen für polyfunktionelle Monomere, die zweckmäßig als Bestandteil (F) verwendet werden, gehören Ethylenglycol-di(meth)acrylat, Dicyclopentenyl-di(meth)acrylat, Triethylenglycol-diacrylat, Tetraethylenglycol-di(meth)acrylat, Tricyclodecandiyldimethylen-di(meth)acrylat, Tris(2-hydroxyethyl)isocyanurat-di(meth)acrylat, Tris(2-hydroxyethyl)isocyanurat-tri(meth)acrylat, mit Caprolacton modifiziertes Tris(2-hydroxyethyl)isocyanurat-tri(meth)acrylat, Trimethylolpropan-tri(meth)acrylat, mit Ethylenoxid (nachstehend mit ”EO” abgekürzt) modifiziertes Trimethylolpropan-tri(meth)acrylat, mit Propylenoxid (nachstehend mit ”PO” abgekürzt) modifiziertes Trimethylolpropan-tri(meth)acrylat, Tripropylenglycol-di(meth)acrylat, Neopentylglycol-di(meth)acrylat, beidseitig endständiges (Meth)acrylsäureaddukt von Bisphenol-A-Diglycidylether, 1,4-Butandiol-di(meth)acrylat, 1,6-Hexandiol-di(meth)acrylat, Pentaerythritol-tri(meth)acrylat, Pentaerythritol-tetra(meth)acrylat, Polyester-di(meth)acrylat, Polyethylenglycol-di(meth)acrylat, Dipentaerythritol-hexa(meth)acrylat, Dipentaerythritol-penta(meth)acrylat, Dipentaerythritol-tetra(meth)acrylat, mit Caprolacton modifiziertes Dipentaerythritol-hexa(meth)acrylat, mit Caprolacton modifiziertes Dipentaerythritol-penta(meth)acrylat, Ditrimethylolpropan-tetra(meth)acrylat, mit EO modifiziertes Bisphenol-A-di(meth)acrylat, mit PO modifiziertes Bisphenol-A-di(meth)acrylat, mit EO modifiziertes hydriertes Bisphenol-A-di(meth)acrylat, mit PO modifiziertes hydriertes Bisphenol-A-di(meth)acrylat, mit EO modifiziertes Bisphenol-F-di(meth)acrylat, (Meth)acrylat von Phenolnovolak-Polyglycidylether und dergleichen.
-
Als Beispiele für im Handel erhältliche Produkte dieser polyfunktionellen Monomere können SA 1002 (hergestellt von Mitsubishi Chemical Corp.), Viscoat 195, 230, 260, 215, 310, 214HP, 295, 300, 360, GPT, 400, 700, 540, 3000, 3700 (hergestellt von Osaka Organic Chemical Industry Co., Ltd.), KAYARAD R-526, HDDA, NPGDA, TPGDA, MANDA, R-551, R-712, R-604, R-684, PET-30, GPO-303, TMPTA, THE-330, DPHA, DPHA-2H, DPHA-2C, DPHA-2I, D-310, D-330, DPCA-20, DPCA-30, DPCA-60, DPCA-120, DN-0075, DN-2475, T-1420, T-2020, T-2040, TPA-320, TPA-330, RP-1040, RP-2040, R-011, R-300, R-205 (hergestellt von Nippon Kayaku Co., Ltd.), ARONIX M-210, M-220, M-233, M-240, M-215, M-305, M-309, M-310, M-315, M-325, M-400, M-6200, M-6400 (hergestellt von Toagosei Co., Ltd.), Lite Acrylate BP-4EA, BP-4PA, BP-2EA, BP-2PA, DCP-A (hergestellt von Kyoeisha Chemical Co., Ltd.), New Frontier BPE-4, TEICA, BR-42M, GX-8345 (hergestellt von Daiichi Kogyo Seiyaku Co., Ltd.), ASF-400 (hergestellt von Nippon Steel Chemical Co., Ltd.), Lipoxy SP-1506, SP-1 507, SP-1 509, VR-77, SP-4010, SP-4060 (hergestellt von Showa Highpolymer Co., Ltd.), NK Ester A-BPE-4 (hergestellt von Shin-Nakamura Chemical Co., Ltd.) und dergleichen genannt werden.
-
Jedes der vorstehend genannten monofunktionellen oder polyfunktionellen Monomere kann entweder einzeln oder in Kombinationen aus zwei oder mehr oder in Kombinationen aus mindestens einem monofunktionellen Monomer und mindestens einem polyfunktionellen Monomer als Bestandteil (F) verwendet werden. Es ist bevorzugt, dass 60 Gew.-% oder mehr von Bestandteil (F) aus den polyfunktionellen Monomeren mit drei oder mehr ethylenisch ungesättigten Bindungen in einem Molekül bestehen. Der prozentuale Anteil des polyfunktionellen Monomers von Bestandteil (F) mit drei oder mehr ethylenisch ungesättigten Bindungen beträgt mehr bevorzugt 70 Gew.-% oder mehr, noch mehr bevorzugt 80 Gew.-% oder mehr und besonders bevorzugt 100 Gew.-%. Wenn der Gehalt an diesen polyfunktionellen Monomeren weniger als 60 Gew.-% beträgt, kann die Photohärtbarkeit der Harzzusammensetzung abnehmen und die gebildeten dreidimensionalen Gegenstände neigen im Laufe der Zeit zu Deformation.
-
Diese polyfunktionellen Monomere mit drei oder mehr ethylenisch ungesättigten Bindungen können ausgewählt sein aus der Gruppe, bestehend aus den vorstehend genannten Tri(meth)acrylat-Verbindungen, Tetra(meth)acrylat-Verbindungen, Penta(meth)acrylat-Verbindungen und Hexa(meth)acrylat-Verbindungen. Hierbei sind Trimethylolpropan-tri(meth)acrylat, mit EO modifiziertes Trimethylolpropan-tri(meth)acrylat, Dipentaerythritol-hexa(meth)acrylat, Dipentaerythritol-penta(meth)acrylat und Ditrimethylolpropan-tetra(meth)acrylat besonders bevorzugt.
-
Der Gehalt an Bestandteil (F), der in der erfindungsgemäßen photohärtbaren Harzzusammensetzung verwendet wird, beträgt 3–35 Gew.-% und bevorzugt 5–10 Gew.-%. Wenn der Gehalt an Bestandteil (F) zu gering ist, kann die gebildete Harzzusammensetzung eine reduzierte Photohärtbarkeit zeigen, sodass kein dreidimensionaler Gegenstand mit ausreichender mechanischer Festigkeit hergestellt werden kann. Wenn der Gehalt zu hoch ist, kann beim Photohärten der gebildeten Harzzusammensetzung Schrumpfen auftreten und die gebildeten dreidimensionalen Gegenstände können eine unzureichende Wärmebeständigkeit und eine herabgesetzte Feuchtigkeitsbeständigkeit zeigen.
-
Radikal-Photopolymerisationsinitiator (G)
-
Der Radikal-Photopolymerisationsinitiator (G) der erfindungsgemäßen photohärtbaren Harzzusammensetzung (nachstehend ”Bestandteil (G)” genannt) wird durch die Einwirkung von Energiestrahlen, wie Licht, zersetzt, wodurch die Radikalpolymerisation von Bestandteil (G) mit Radikalen eingeleitet wird. Die hier verwendeten Energiestrahlen, wie Licht, beziehen sich auf sichtbares Licht, ultraviolettes Licht, Infrarotlicht, Röntgenstrahlen, α-Strahlen, β-Strahlen, γ-Strahlen und dergleichen.
-
Zu spezifischen Beispielen für die Radikal-Photopolymerisationsinitiatoren, die als Bestandteil (G) verwendet werden, gehören Acetophenon, Acetophenonbenzylketal, Anthrachinon, 1-(4-Isopropylphenyl)-2-hydroxy-2-methylpropan-1-on, Carbazol, Xanthon, 4-Chlorbenzophenon, 4,4'-Diaminobenzophenon, 1,1-Dimethoxydeoxybenzoin, 3,3'-Dimethyl-4-methoxybenzophenon, Thioxanethon-Verbindungen, 2-Methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-2-on, 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-on, Triphenylamin, 2,4,6-Trimethylbenzoyldiphenylphosphinoxid, Bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphinoxid, Benzylmethylketal, 1-Hydroxycyclohexylphenylketon, 2-Hydroxy-2-methyl-1-phenylpropan-1-on, Fluorenon, Fluoren, Benzaldehyd, Benzoinethylether, Benzoinpropylether, Benzophenon, Michler's Keton, 3-Methylacetophenon, 3,3',4,4'-Tetra(t-Butylperoxycarbonyl)benzophenon (BTTB), Kombinationen aus BTTB und Farbensensibilisierungsmitteln, wie Xanthen, Thioxanthen, Cumarin und Ketocumarin, und dergleichen. Hierbei sind Benzyldimethylketal, 1-Hydroxycyclohexylphenylketon, 2,4,6-Trimethylbenzoyldiphenylphosphinoxid, 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-on und dergleichen besonders bevorzugt.
-
Diese Radikal-Photopolymerisationsinitiatoren können entweder einzeln oder in Kombinationen aus zwei oder mehr als Bestandteil (G) verwendet werden.
-
Der Gehalt an Bestandteil (G), der in der erfindungsgemäßen photohärtbaren Harzzusammensetzung verwendet wird, beträgt 0,1–8 Gew.-%. Wenn der Gehalt zu niedrig ist, nimmt die Geschwindigkeit der Radikalpolymerisation (Härtegeschwindigkeit) ab, weswegen die Herstellung länger dauern kann, oder die Auflösung kann abnehmen. Wenn der Gehalt zu hoch ist, kann eine zu große Menge an Polymerisationsinitiator die Härtungseigenschaften der Harzzusammensetzung herabsetzen oder die Feuchtigkeitsbeständigkeit oder Wärmebeständigkeit der gebildeten dreidimensionalen Gegenstände nachteilig beeinflussen.
-
Andere Bestandteile
-
Der erfindungsgemäßen photohärtbaren Harzzusammensetzung können als fakultative Bestandteile über die Bestandteile (A)–(G) hinaus Photosensibilisatoren (Polymerisationsbeschleuniger), reaktive Verdünnungsmittel und dergleichen in dem Ausmaß zugegeben werden, dass die Wirkungen der Harzzusammensetzung nicht verschlechtert werden.
-
Als Beispiele für die Photosensibilisatoren können Aminverbindungen, wie Triethanolamin, Methyldiethanolamin, Triethylamin und Diethylamin, Thioxanethon, Derivate von Thioxanethon, Anthrachinon, Derivate von Anthrachinon, Anthracen, Derivate von Anthracen, Perylen, Derivate von Perylen, Benzophenon, Benzoinisopropylether und dergleichen genannt werden. Als reaktive Verdünnungsmittel sind kationisch polymerisierbare Stoffe, die mit den Bestandteilen (A) und (B) copolymerisierbar sind und die die Viskosität der Lösung der Zusammensetzung herabsetzen können, bevorzugt.
-
Ferner können der erfindungsgemäßen photohärtbaren Harzzusammensetzung als weitere fakultative Bestandteile verschiedene Zusätze in dem Ausmaß zugegeben werden, dass die Wirkungen der Harzzusammensetzung nicht verschlechtert werden. Zu Beispielen für derartige Zusätze gehören Polymere oder Oligomere, wie ein Epoxidharz, Polyamid, Polyamidimid, Polyurethan, Polybutadien, Polychloropren, Polyether, Polyester, Styrol-Butadien-Blockcopolymer, Petrolharz, Xylolharz, Ketonharz, Celluloseharz, fluorhaltiges Oligomer, siliconhaltiges Oligomer und Polysulfid-Oligomer, Polymerisationshemmer, wie Phenothiazin und 2,6-Di-t-butyl-4-methylphenol, Hilfsstoffe für die Polymerisationseinleitung, Egalisierungsmittel, Benetzbarkeitsverbesserungsmittel, Tenside, Weichmacher, UV-Absorptionsmittel, Silan-Haftvermittler, anorganische Füllstoffe, Pigmente, Farbstoffe und dergleichen. Die erfindungsgemäße photohärtbare Harzzusammensetzung kann durch homogenes Vermischen der vorstehend genannten Bestandteile (A)–(G) mit den fakultativen Bestandteilen, in dem erforderlichen Ausmaß, hergestellt werden.
-
Die Viskosität der photohärtbaren Harzzusammensetzung bei 25°C beträgt vorzugsweise 50–2.000 cps (mPa·s) und noch mehr bevorzugt 70–1.500 cps (mPa·s).
-
Die derart hergestellte erfindungsgemäße flüssige photohärtbare Harzzusammensetzung eignet sich zur Verwendung als ein flüssiges photohärtbares Harzmaterial für die Photoherstellung von dreidimensionalen Gegenständen. Bei der Photoherstellung wird die erfindungsgemäße photohärtbare Harzzusammensetzung mit der für das Härten erforderlichen Energie versorgt, indem sie selektiv mit Licht, wie sichtbarem Licht, ultraviolettem Licht oder Infrarotlicht bestrahlt wird, um einen dreidimensionalen Gegenstand der gewünschten Form zu bilden.
-
Als Mittel für die selektive Bestrahlung der photohärtbaren Harzzusammensetzung können ohne spezifische Begrenzungen verschiedene Mittel verwendet werden. Beispielsweise können ein Mittel zum Bestrahlen der Zusammensetzung während des Abtastens mit Laserstrahlen oder fokussierten, durch Linsen, Spiegel und dergleichen gesammelten Strahlen, ein Mittel zum Bestrahlen der Zusammensetzung mit nicht fokussierten Strahlen über eine Maske mit einer Licht transmittierenden Fläche mit einem bestimmten Muster, ein Mittel zum Bestrahlen der Zusammensetzung über Lichtleiter, die einem bestimmten Muster eines photoleitfähigen Materials entsprechen, umfassend mehrere Lichtleiter in Bündeln, und dergleichen verwendet werden. Es kann eine Maske verwendet werden, die ein Abbild der Maske bildet, bestehend aus einer Licht transmittierenden Fläche und einer Licht nicht transmittierenden Fläche in Übereinstimmung mit einem bestimmten Muster gemäß demselben Prinzip wie dem eines LCD-Monitors. Wenn der fragliche dreidimensionale Gegenstand winzige Teile oder eine hohe Dimensionsgenauigkeit verlangt, wird vorzugsweise ein Mittel zum Abtasten mit Laserstrahlen mit kleinem Fleckdurchmesser verwendet.
-
Die Oberfläche der Harzzusammensetzung in einem zu bestrahlenden Gefäß (beispielsweise die Abtastebene fokussierter Strahlen) kann die flüssige Oberfläche der Harzzusammensetzung oder die Schnittstelle zwischen der Harzzusammensetzung und der Wand des Gefäßes sein. Im letzteren Fall kann die Zusammensetzung entweder direkt oder indirekt über die Wand des Gefäßes bestrahlt werden.
-
Nach dem Härten einer vorbestimmten Fläche der Harzzusammensetzung wird die gehärtete Fläche bei der Photoherstellung von dreidimensionalen Gegenständen durch die kontinuierliche oder schrittweise Bewegung des Bestrahlungsflecks (Bestrahlungsoberfläche) von der gehärteten Fläche zur ungehärteten laminiert, um einen fraglichen dreidimensionalen Gegenstand zu bilden. Der Bestrahlungsfleck kann beispielsweise durch Bewegen einer beliebigen Lichtquelle, des Gefäßes mit der Harzzusammensetzung oder der gehärteten Fläche der Harzzusammensetzung oder durch Bereitstellung zusätzlicher Harzzusammensetzung im Gefäß bewegt werden.
-
Ein typisches Beispiel für die Photoherstellung ist wie folgt. Die Harzzusammensetzung wird auf einem Stativ mit Bühne bereitgestellt, das auf und ab bewegt werden kann und sich im Inneren des Behälters befindet, und geringfügig abgesenkt (eingetaucht), um eine dünne Schicht (1) der Harzzusammensetzung zu bilden. Diese dünne Schicht (1) wird selektiv bestrahlt, um eine feste gehärtete Harzschicht (1) zu bilden. Auf dieser gehärteten Harzschicht (1) wird flüssige Harzzusammensetzung bereitgestellt, um eine dünne Schicht (2) zu bilden. Diese dünne Schicht (2) wird selektiv bestrahlt, um eine feste gehärtete Harzschicht (2) zu bilden, die einstückig mit der gehärteten Harzschicht (1) laminiert ist. Dieser Schritt wird eine bestimmte Anzahl Gelegenheiten unter Verwendung entweder desselben oder eines unterschiedlichen Bestrahlungsmusters wiederholt, um einen dreidimensionalen Gegenstand zu bilden, der aus einstückig laminierten gehärteten Harzschichten (n) besteht.
-
Der gebildete dreidimensionale Gegenstand wird dann aus dem Gefäß entnommen. Nach dem Entfernen von Resten nicht umgesetzter Harzzusammensetzung, die auf der Oberfläche zurückbleiben, wird der dreidimensionale Gegenstand wahlweise gewaschen. Als Waschmittel können organische Lösungsmittel vom Alkoholtyp, wie Isopropylalkohol und Ethylalkohol, organische Lösungsmittel vom Ketontyp, wie Aceton, Ethylacetat und Methylethylketon, aliphatische organische Lösungsmittel, repräsentiert durch Terpene, und wärmehärtbare oder photohärtbare Harze mit geringer Viskosität genannt werden.
-
Bei der Herstellung eines dreidimensionalen Gegenstands mit glatter Oberfläche, ist es bevorzugt, die Oberfläche des dreidimensionalen Gegenstands unter Verwendung eines wärmehärtbaren oder photohärtbaren Harzes zu waschen. In diesem Fall ist ein Nachhärten mittels Bestrahlung mit Wärme oder Licht gemäß der Art des zum Waschen verwendeten härtbaren Harzes erforderlich. Da beim Nachhärten nicht nur die Harze auf der Oberfläche des Gegenstands, sondern auch die Harzzusammensetzung, die im Inneren der dreidimensionalen Gegenstände zurückgeblieben ist, gehärtet werden können, wird bevorzugt, das Nachhärten nach dem Waschen mit organischen Lösungsmitteln durchzuführen.
-
Ferner ist es bevorzugt, die Oberfläche des dreidimensionalen Gegenstands mit wärmehärtbaren oder photohärtbaren harten Beschichtungen zu beschichten, um die Oberflächenhärte und die Wärmebeständigkeit der dreidimensionalen Gegenstände nach dem Waschen des Gegenstands zu verbessern. Als derartige harte Beschichtungsmaterialien können organische Beschichtungen, wie ein Acrylharz, ein Epoxidharz und ein Silikonharz, oder anorganische harte Beschichtungen entweder einzeln oder in Kombinationen aus zwei oder mehr verwendet werden.
-
Der dreidimensionale Gegenstand, der zur Photoherstellung von erfindungsgemäßen dreidimensionalen Gegenständen durch Photohärten der photohärtbaren Harzzusammensetzung gebildet wurde, zeigt eine überlegene Verarbeitungsgenauigkeit, einen großen Elastizitätsmodul und hervorragende Faltbeständigkeit, was sich im Laufe der Zeit nur geringfügig ändert. Aus diesem Grund kann der dreidimensionale Gegenstand zweckmäßig für mechanische Teile, Maschinengehäuse und Prototypen für derartige Produkte verwendet werden.
-
Beispiele
-
Die vorliegende Erfindung wird in den Beispielen ausführlicher erklärt, was nicht als eine Begrenzung der vorliegenden Erfindung ausgelegt werden darf.
-
Beispiel 1
-
In einen Rührer wurden 50 Gewichtsteile 1,4-Bis(3-ethyl-3-oxetanylmethoxy)methylbenzol (Bestandteil (A)), 2 Gewichtsteile Triallylsulfoniumhexafluorantimonat (UVI-6974: hergestellt von Union Carbide Corp.) (Bestandteil (C)), 8 Gewichtsteile elastomere Teilchen mit einem durchschnittlichen Teilchendurchmesser von 200 nm, hergestellt mittels Emulsionspolymerisation (Kern: teilweise vernetztes Styrol/Butadien-Copolymer, Schale: Methylmethacrylat/Glycidylmethacrylat) (Bestandteil (D)), 30 Gewichtsteile 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat (UVR-6110: hergestellt von Union Carbide Corp.) (Bestandteil B1), 10 Gewichtsteile 1,6-Hexandioldiglycidylether (Epolite 1600: hergestellt von Kyoeisha Chemical Co., Ltd.) (Bestandteil (B)) eingetragen. Die Mischung wurde 3 Stunden lang bei 60°C gerührt, um die flüssige photohärtbare Harzzusammensetzung herzustellen.
-
Beispiel 2–8 und Vergleichsbeispiel 1–4
-
Es wurden photohärtbare Harzzusammensetzung auf dieselbe Weise wie in Beispiel 1 hergestellt, mit der Ausnahme, dass die Bestandteile (A)–(G) gemäß den in Tabelle 1 gezeigten Formulierungen gerührt und vermischt wurden. Die Werte für jeden Bestandteil in Tabelle 1 sind als ”Gewichtsteil(e)” angegeben. Die Viskosität aller Harzzusammensetzungen der Beispiele und Vergleichsbeispiele war für die Photoherstellung von dreidimensionalen Gegenständen geeignet.
-
Einzelheiten zu *1 bis *8 in Tabelle 1.
-
- *1: 1,4-Bis(3-ethyl-3-oxetanylmethoxy)methylbenzol
- *2: 3-Ethyl-[3-(phenoxy)methyl]oxetan
- *3: Triallylsulfoniumhexafluorantimonat (UVI-6974: hergestellt von Union Carbide Corp.)
- *4: Elastomere Teilchen mit einem durchschnittlichen Teilchendurchmesser von 200 nm, hergestellt mittels Emulsionspolymerisation (Kern: teilweise vernetztes Styrol/Butadien-Copolymer, Schale: Methylmethacrylat/Glycidylmethacrylat)
- *5: Elastomere Teilchen mit einem durchschnittlichen Teilchendurchmesser von 50 nm, hergestellt mittels Emulsionspolymerisation (Kern: teilweise vernetztes Styrol/Butadien-Copolymer, Schale: Methylmethacrylat/Glycidylmethacrylat)
- *6: 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat (UVR-6110: hergestellt von Union Carbide Corp.)
- *7: Bis(3,4-epoxycyclohexylmethyl)adipat
- *8: Mit Propylenoxid modifiziertes Glycerol (Sunnix GP-400: hergestellt von Sanyo Chemical Industries, Ltd.)
-
Jede in Beispiel 1–8 und Vergleichsbeispiel 1–4 hergestellte photohärtbare Harzzusammensetzung wurde gemäß dem folgenden Verfahren bewertet.
-
Härtbarkeit
-
Die photohärtbare Harzzusammensetzung wurde unter Verwendung einer Photoherstellungsvorrichtung ”Solid Creator JSC-2000” (hergestellt von SONY Corp.), ausgestattet mit einem Ar-Ionenlaser als Lichtquelle (Wellenlänge: 351 nm, 365 nm) mit einem Laserfleckendurchmesser von 200 μm und einer Laserleistung von 100 mW an der Bestrahlungsoberfläche (flüssige Oberfläche) selektiv bestrahlt, wobei die Abtastgeschwindigkeit zur Ermittlung des niedrigsten Energiewerts, mit dem die Harzzusammensetzung härtbar war, von 100 auf 1.000 mm/Sekunde verändert wurde. Es wurden folgende Bewertungskriterien verwendet: Wenn der niedrigste Energiewert kleiner als 20 mJ/cm2 war, wurde die Härtbarkeit als ”ausgezeichnet” eingestuft; bei 20 bis kleiner als 30 mJ/cm2, wurde die Härtbarkeit als ”gut” eingestuft; und bei 30 mJ/cm2 oder mehr oder wenn keine gehärteten Produkte gebildet wurden, wurde die Härtbarkeit als ”schlecht” eingestuft.
-
ELASTIZITÄTSMODUL
-
(1) Herstellung von Proben:
-
Die Zusammensetzung wurde unter Verwendung eines Applikators auf eine Glasplatte aufgebracht, um einen Film mit einer Dicke von 200 μm zu bilden. Die Oberfläche des Filmes wurde zur Herstellung eines halb gehärteten Harzfilms unter Verwendung einer Härtevorrichtung mit Förderband, die mit einer Metallhalogenidlampe ausgestattet war, mit UV-Licht mit einer Dosis von 0,5 J/cm2 bestrahlt. Der halb gehärtete Harzfilm wurde von der Glasplatte abgezogen und auf Trennpapier gelegt. Dann wurde die Seite des halb gehärteten Harzfilms gegenüber der zuvor bestrahlten Seite unter Bildung eines gehärteten Harzfilms mit UV-Licht mit einer Dosis von 0,5 J/cm2 bestrahlt.
-
Der derart hergestellte gehärtete Harzfilm wurde unter den folgenden Bedingungen stehend gelassen, um die Proben ➀ und ➁ zu bilden.
- Probe ➀: Stehenlassen in einem Thermohygrostat bei einer Temperatur von 23°C und einer relativen Feuchtigkeit von 50% über 24 Stunden.
- Probe ➁: Stehenlassen in einem Thermohygrostat bei einer Temperatur von 23°C und einer relativen Feuchtigkeit von 50% über 30 Tage.
-
(2) Messung:
-
Der Elastizitätsmodul von Probe ➀ (zum Messen des Anfangswerts) und Probe ➁ (zum Messen der zeitlichen Veränderung) wurde mit einer Zuggeschwindigkeit von 1 mm/min und einem Vergleichsabstand von 25 mm in einem Thermohygrostat bei einer Temperatur von 23°C und einer relativen Feuchtigkeit von 50% ermittelt.
-
Faltbeständigkeit
-
Als Probe wurde ein gehärteter Harzfilm verwendet, der unter denselben Bedingungen wie die Probe ➀ zur Ermittlung des Elastizitätsmoduls hergestellt wurde. Die Prüfung der Faltbeständigkeit wurde unter Verwendung einer MIT-Faltbeständigkeitsprüfvorrichtung durch wiederholtes Falten der Probe mit einer Häufigkeit von 60 Mal/Sekunde unter Anlegen einer Belastung von 1 kgf zur Ermittlung der Anzahl Faltungen bis zur Zerstörung der Probe durchgeführt. Eine Probe, die nach 30 oder mehr Faltungen an der Faltung kaputt ging, wurde als ”O” eingestuft, eine Probe, die nach 40 oder mehr Faltungen kaputt ging, wurde als ”⊙” eingestuft, eine Probe, die nach weniger als 25 Faltungen kaputt ging, wurde als ”X” eingestuft, und eine Probe, die nach 26–29 Faltungen kaputt ging, wurde als ”Δ” eingestuft.
-
VERZIEHUNGSAUSMASS DES DREIDIMENSIONALEN GEGENSTANDS
-
(1) Herstellung von Proben:
-
Die photohärtbare Harzzusammensetzung wurde unter Verwendung der vorstehend genannten Photoherstellungsvorrichtung (JSC-2000) mit einem Laserstrahl mit einer Laserleistung von 100 mW an der Bestrahlungsoberfläche (flüssige Oberfläche) und mit einer Abtastgeschwindigkeit, bei der die Härtungstiefe jeder Zusammensetzung 0,3 mm beträgt, unter Bildung einer gehärteten Harzschicht (Dicke: 0,20 mm) selektiv bestrahlt. Dieser Schritt wurde unter Bildung eines Messmodells (nachstehend ”Verziehmodell” genannt), das in 1(1) dargestellt ist, wiederholt. Das Verziehmodell wurde dann aus der Photoherstellungsvorrichtung entnommen. Die an der Oberfläche des Verziehmodells anhaftende Harzzusammensetzung wurde abgewischt und überschüssige Harzzusammensetzung wurde durch waschen mit einem Terpenlösungsmittel vom Modell entfernt.
-
(2) Messung:
-
Ein Bein 11 eines Verziehmodells 10 wurde an einem horizontalen Ständer 20 befestigt, wie in 1(2) dargestellt. Der Abstand zwischen dem horizontalen Ständer 20 und dem unteren Ende von Bein 12 (angehobener Zustand) wurde als Verziehungsausmaß (Anfangswert) angesetzt. Die Zusammensetzungen wurden in Abhängigkeit von dem Verziehungsausmaß als ”ausgezeichnet”, ”gut” oder ”schlecht” eingestuft.
-
Verarbeitungsgenauigkeit
-
Die Verarbeitungsgenauigkeit der dreidimensionalen Gegenstände wurde durch Ermittlung der Abmessungen der dreidimensionalen Gegenstände, die aus jedem flüssigen Harz gebildet wurden, bewertet.
-
(1) Bildung des dreidimensionalen Gegenstands:
-
Unter denselben Bedingungen wie vorstehend unter ”Verziehungsausmaß des dreidimensionalen Gegenstands” wurde eine H-förmige Probe hergestellt. Die dreidimensionalen Gegenstände wurden durch Stehenlassen in einem Thermohygrostat bei einer Temperatur von 23°C und einer relativen Feuchtigkeit von 50% über 24 Stunden konditioniert.
-
(2) Messen der Dimensionsgenauigkeit der dreidimensionalen Gegenstände:
-
Die in 2 gezeigten A, B und C der dreidimensionalen Gegenstände wurden unter Verwendung eines Greifzirkels mit einem Skalenabstand von 0,01 mm abgegriffen. Die Abmessungsunterschiede zwischen A und B und zwischen C und B wurden gemäß der folgenden Formeln (I) und (II) bestimmt. Abmessungsunterschied zwischen A und B = (A – B) (I) Abmessungsunterschied zwischen C und B = (C – B) (II)
-
Die Dimensionsgenauigkeit des dreidimensionalen Gegenstands wurde wie folgt bewertet:
- – Beide absoluten Werte des Abmessungsunterschieds zwischen A und B und zwischen C und B betrugen weniger als 0,1 mm: ”⊙”
- – Einer der absoluten Werte des Abmessungsunterschieds zwischen A und B und zwischen C und B betrug weniger als 0,1 mm und der andere betrug 0,1 oder mehr, aber weniger als 0,2 mm: ”O”
- – Beide absoluten Werte des Abmessungsunterschieds zwischen A und B und zwischen C und B betrugen 0,1 mm oder mehr, aber weniger als 0,2 mm: ”Δ”
- – Einer der absoluten Werte des Abmessungsunterschieds zwischen A und B und zwischen C und B betrug 0,2 mm oder mehr oder es wurde kein dreidimensionaler Gegenstand gebildet: ”X”
-
Aus Tabelle 1 geht eindeutig hervor, dass gehärtete Produkte aus Zusammensetzungen nach Beispiel 1–8 ausgezeichnete Härtbarkeit und Verarbeitungsgenauigkeit aufweisen und einen hohen Elastizitätsmodul, ein geringes Verziehungsausmaß und insbesondere ausgezeichnete Faltbeständigkeit zeigten.
-
Im Gegensatz hierzu zeigte die Zusammensetzung aus Vergleichsbeispiel 1, bei der keine Epoxidverbindung (B) verwendet wurde, schlechte Härtbarkeit. Obwohl die Zusammensetzung nicht unter denselben Härtungsbedingungen wie in den Beispielen gehärtet wurde, wurde die Zusammensetzung gehärtet, indem Zeit zur Ermittlung des Elastizitätsmoduls und der Faltbeständigkeit aufgewendet wurde. Was das Verziehungsausmaß und die Verarbeitungsgenauigkeit des dreidimensionalen Gegenstands betrifft, wurde die Zusammensetzung als ”nicht gebildet” bezeichnet, da die Zusammensetzung nicht unter denselben Bedingungen wie beim Beispiel gehärtet wurde. Ein gehärtetes Produkt der Zusammensetzung aus Vergleichsbeispiel 2, bei der keine elastomeren Teilchen (D) verwendet wurden, zeigte eine unzureichende Faltbeständigkeit. Die Zusammensetzung aus Vergleichsbeispiel 3, bei der keine Oxetanverbindung (A) verwendet wurde, zeigte schlechte Härtbarkeit. Obwohl die Zusammensetzung nicht unter denselben Härtungsbedingungen wie in den Beispielen gehärtet wurde, wurde die Zusammensetzung gehärtet, indem Zeit zur Ermittlung des Elastizitätsmoduls und der Faltbeständigkeit aufwendet wurde. Was das Verziehungsausmaß und die Verarbeitungsgenauigkeit des dreidimensionalen Gegenstands betrifft, wurde die Zusammensetzung als ”nicht gebildet” bezeichnet, da die Zusammensetzung nicht unter denselben Bedingungen wie beim Beispiel gehärtet wurde. Die Zusammensetzung aus Vergleichsbeispiel 4, bei der eine Überschussmenge an ethylenisch ungesättigtem Monomer (F) verwendet wurde, zeigte überlegene Härtbarkeit, aber der dreidimensionale Gegenstand zeigte ein hohes Verziehungsausmaß und unzureichende Verarbeitungsgenauigkeit.
-
Die erfindungsgemäße photohärtbare Harzzusammensetzung umfasst elastomere Teilchen und zeigt hervorragende Photohärtbarkeit. Das gehärtete Produkt der Zusammensetzung zeigte einen hohen Elastizitätsmodul, dessen Abnahme nach 30 Tagen ein akzeptables Ausmaß annahm, und überlegene Verarbeitungsgenauigkeit und der dreidimensionale Gegenstand aus dem gehärteten Produkt zeigte ein geringes Verziehungsausmaß. Das gehärtete Produkt der erfindungsgemäßen photohärtbaren Harzzusammensetzung zeigte insbesondere eine bemerkenswert überlegene Faltbeständigkeit im Vergleich zu herkömmlichen photohärtbaren Harzen. Aus diesem Grund kann die photohärtbare Harzzusammensetzung zweckmäßig für die Herstellung dreidimensionaler Gegenstände, wie Prototypen für Maschinenteile verwendet werden.
-
1 ist ein Diagramm, das ein Modell und ein Verfahren zum Messen eines Verziehungsausmaßes von gehärteten Produkten zeigt, die aus photohärtbaren Zusammensetzungen der Beispiele und Vergleichsbeispiele gebildet wurden.
-
2 ist eine schematische Ansicht eines Modells zur Ermittlung der Verarbeitungsgenauigkeit (Dimensionsgenauigkeit) von gehärteten Produkten zeigt, die aus photohärtbaren Zusammensetzungen der Beispiele und Vergleichsbeispiele gebildet wurden.
-
Schlüssel zu den Figuren
-
- Seite 1/2
- Explanation of Symbols
- – Erklärung der Symbole
- Warping model
- – Verziehmodell
- Leg
- – Bein
- Horizontal Stand
- – Horizontaler Ständer
- Drawing
- – Zeichnung