DE1468230B2 - Verfahren zur herstellung von nitrilen, alkyl- oder arylestern gesaettigter aliphatischer di- oder tetracarbonsaeuren - Google Patents
Verfahren zur herstellung von nitrilen, alkyl- oder arylestern gesaettigter aliphatischer di- oder tetracarbonsaeurenInfo
- Publication number
- DE1468230B2 DE1468230B2 DE19621468230 DE1468230A DE1468230B2 DE 1468230 B2 DE1468230 B2 DE 1468230B2 DE 19621468230 DE19621468230 DE 19621468230 DE 1468230 A DE1468230 A DE 1468230A DE 1468230 B2 DE1468230 B2 DE 1468230B2
- Authority
- DE
- Germany
- Prior art keywords
- alkyl
- salt
- salts
- catholyte
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/29—Coupling reactions
- C25B3/295—Coupling reactions hydrodimerisation
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
3 4
Hinblick auf gute Ergebnisse ist es wichtig, auch welche bei Berührung mit in dem Anodenraum vorunerwünscht,
daß das Salzkation ein unlösliches handenen Wasserstoff!onen unlösliche Säuren bilden
Hydroxyd bei dem im Betrieb vorliegenden pH-Wert und die Poren der Membran verstopfen,
bildet oder daß es sich an der Kathode unter Bildung Im allgemeinen sind für die Verwendung in dem einer Legierung entlädt, weiche wesentlich die Wasser- ti Verfahren gemäß der Erfindung Amin- und quaternäre Stoffüberspannung ändert und zu geringeren Strom- Ammoniumsalze geeignet. Bestimmte Salze von Alkaliwirksamkeiten führt. Das Salzanion soll nicht durch und Erdalkalimetallen können in gewissem Ausmaß die Entladung an der Anode, gegebenenfalls unter, ebenfalls verwendet werden.
bildet oder daß es sich an der Kathode unter Bildung Im allgemeinen sind für die Verwendung in dem einer Legierung entlädt, weiche wesentlich die Wasser- ti Verfahren gemäß der Erfindung Amin- und quaternäre Stoffüberspannung ändert und zu geringeren Strom- Ammoniumsalze geeignet. Bestimmte Salze von Alkaliwirksamkeiten führt. Das Salzanion soll nicht durch und Erdalkalimetallen können in gewissem Ausmaß die Entladung an der Anode, gegebenenfalls unter, ebenfalls verwendet werden.
Bildung von Nebenprodukten, verlorengehen. Wenn Nach dem Verfahren gemäß der Erfindung werden
eine eine Trennmembran enthaltende Zelle verwendet io die α,/3-olefinisch ungesättigten Mononitrile wie folgt
wird, ist es zweckmäßig, Anionenarten zu vermeiden, in paraffinische Dinitrile umgewandelt:
RR' R' R R R" R" R
NC — C = CR" + R" — C = C- CN CN — C — C — C — C — CN
• ■■ . IiII :
H R' R' H
R, R' und R" bedeuten Wasserstoff oder Alkylreste nitrile werden nach dem Verfahren gemäß der Ergewöhnlich
mit 1 bis 5 Kohlenstoffatomen. findung wie folgt in paraffinische Tetranitrile umge-Die
aliphatischen α,/J-olefinisch ungesättigten Di- wandelt:
R' R'
I I
R-C = CR' + R' — C =—= CR —>
RCH — C — C — CHR
CN CN CN CN CN CN CN CN
worin R und R' die oben angegebene Bedeutung be- 35 ester werden nach dem Verfahren gemäß der Ersitzen.
■■■■-.; findung in paraffinische Dicarbonsäureester umge-Die
«,/S-olefinisch ungesättigten Monocarbonsäure- wandelt:
ORR' R' R O OR R" R" RO
YOC-C=C-R" + R" —C = C-COY YOC-CH-C —C —CH-C —OY
I I
R' R'
worin Y einen Alkyl- oder Arylrest mit vorzugsweise werden nach dem Verfahren gemäß der Erfindung zu
1 bis 8 Kohlenstoffatomen bedeutet und R, R', R" paraffinischen Tetracarbonsäureestern hydrodimeri-
die oben angegebene Bedeutung besitzen. · 55 siert:
Die α,/J-olefinisch ungesättigten Dicarbonsäureester
Die α,/J-olefinisch ungesättigten Dicarbonsäureester
R' R'
R — C = C-R' + R' — C=C- R — > R — CH- C C CH R
R — C = C-R' + R' — C=C- R — > R — CH- C C CH R
1: 1 ■ . ■ ι ι ■ ■ -ι ι- ι ■■■· 1
O = CC = O O = C C = O O = C C = OC = OC = O
Il Il : I Γ I I ·
YO OY YO OY OY OY OY OY
Worin R, R' und Y die oben angegebene Bedeutung 65 gleichen Kohlenstoffatom stehen, d.h. Methylenbesiizen.
.. ■ _ ; ; "malonsäureester, werden in ähnlicher Weise hydro-
Die 1,2-olefinisch ungesättigten Dicarbonsäureester; dimerisiert:
in'faelchen die beiden Carbonsäureestergruppen am id- '■'■ . . V
in'faelchen die beiden Carbonsäureestergruppen am id- '■'■ . . V
5 6
OY
O O C=OO
Ii !I I Il
R — HC = C C-OY + R — HC = C C-OY —■>
R — CH — CH C-OY
C=O C=O
Il
OY OY R — CH — CH C-OY
C = O
OY
In diesen Formeln besitzen R und Y die oben nitrile oder der α,/J-olefinisch ungesättigten Monoangegebene
Bedeutung. oder Dicarbonsäureester nach dem Verfahren gemäß
Obwohl die Molekulargröße der reduktiv zu di- der Erfindung ist in der nachstehenden Tabelle aufmerisierenden
olefinischen Verbindungen keiner Be- 20 geführt, in welcher die monomere α,/9-olefinisch ungeschrankung
unterliegt, sind im allgemeinen olefinische sättigte Verbindung und das daraus erhaltene geVerbindungen
mit mehr als 20 Kohlenstoffatomen im sättigte Dimere angegeben sind. Das Hydrodimeri- Q
Molekül nur von geringem Interesse. Vorzugsweise sationsprodukt ist das aus einer Kopf-zu-Kopfist
die Nitril- oder Carbonsäureestergruppe neben der Addition zu erwartende Produkt, d. h., daß die
olefinischen Doppelbindung die einzige funktioneile 25 Kupplung am Kohlenstoffatom in /3-Stellung zur
Gruppe, d. h., daß die Nitril- oder die Carbonsäure- funktionellen Gruppe erfolgt. Zum Beispiel wird
esterderivate mit Ausnahme der olefinischen Doppel- Methacrylsäurenitril nach dem Verfahren gemäß
bindung und der Nitril- oder Carbonsäureestergruppen der Erfindung in 2,5-Dimethyladipinsäuredinitril und
ein gesättigter Kohlenwasserstoff ist, z. B. 1-Cyanalk- das Ν,Ν-Dibutylmethacrylsäureamid in das Ν,Ν,Ν',
1-ene oder 1-Carbalkoxyalk-l-ene. 30 N'-Tetrabutyl-i^-dimethyladipinsaurediamid umge-
Die Hydrodimerisation der verschiedenen alipha- wandelt,
tischen Λ,/3-olefinisch ungesättigten Mono- oder Di-
tischen Λ,/3-olefinisch ungesättigten Mono- oder Di-
α,/3-olefinisch ungesättigte Verbindung ■ Hydrodimerisationsprodukt .
Methacrylnitril 2,5-Dimethyladiponitril
Butylmethacrylat Dibutyl-2,5-dimethyladipat
Crotonnitril 3,4-Dimethyladiponitril
Äthylcrotonat Diäthyl-3,4-dimethyladipat
2-Methylenbutyronitril 2,5-Diäthyladiponitril
2-Pentennitril 3,4-Diäthyladiponitril
2-Methylenvaleronitril 2,5-Dipropyladiponitril ,
2-Methylenhexannitril .' 2,5-Dibutyladiponitril ν
2,3-Dimethylcrotonnitril 2,3,3,4,4,5-Hexamethyladiponitrü
Tiglinsäurenitril 2,3,4,5-Tetramethyladiponitril
Senecionitril 3,3,4,4-Tetramethyladiponitril
2-Äthylidenhexannitril 2,5-Dibutyl-3,4-dimethyladiponitril :
Methyl-2-isopropylcrotonat Dimethyl-2,5-diisopropyl-3,4-dimethyladipat : .
Tiglinsäurebutylester Dibutyl-2,3,4,5-tetramethyladipat
Pentylacrylat Dipentyladipat
2-Pentensäureäthylester Diäthyl-3,4-diäthyladipat
Seneciosäureisopropylester Diisopropyl-3,3,4,4-tetramethyladipat
Fumaronitril Butan-l,2,3,4-tetracarbonsäurenitril
Itacononitril Hexan-l^Sjo-tetracarbonsäurenitril
Citracononitril Hexan-2,3,4,5-tetracarbonsäurenitril
Butylfumaronitril Dodecan-Sjö^S-tetracarbonsäurenitril
Pentylfumarat Tetrapentylbutan-l^^^-tetracarbonsäureester
Äthylcitraconat Tetraäthylhexan-2,3,4,5-tetracarboxylat
Die aromatischen oder aromatisch-aliphatischen Beim Arbeiten mit einigen der substituierten Acryl-
Ester der α,/3-monoolefinisch ungesättigten Carbon- säuren oder Maleinsäuren erhält man häufig ein
säuren, wie Acrylsäurephenylester oder Maleinsäure- 65 Gemisch der stereoisomeren hydrierten Dimeren.
di-p-tolylester oder Fumarsäurebenzylpropylester, wer- So erhält man aus Methacrylsäurenitril ein Gemisch
den in ähnlicher Weise nach dem Verfahren gemäß der dl- und meso-2,5-Dimethyladipinsäuredinitrile,
der Erfindung hydrodimerisiert. und aus Methacrylsäureamid erhält man ein Gemisch
7 8
der dl- und meso^.S-Dimethyladipinsäureamide. Für gemessene Erzeugung von Wasserstoff vorliegt, aus-
die meisten industriellen Zwecke, z. B. zur Her- geführt werden.
stellung von Kondensationspolymerisaten, sind jedoch Die angeführten pH-Werte sind die sich in der
beide Isomere brauchbar, so daß im allgemeinen kein Masse der Kathodenflüssigkeit ergebenden Werte,
Grund vorhanden ist, die beiden Isomere zu trennen. 5 wie sie durch ein pH-Meter an einer Probe der aus
Bei der Durchführung des Verfahrens gemäß der der Zelle entfernten Kathodenflüssigkeit bestimmt
Erfindung wird für die Elektrolyse eine Lösung her- werden können. Die Elektrolyse erzeugt im Betrieb
gestellt, indem man die α,/5-olefinisch ungesättigte an der Anode Säure und an der Kathode Base; es ist
Verbindung zu einer konzentrierten wäßrigen Lösung ersichtlich, daß in einer ungeteilten Zelle der pH-Wert
des leitenden Salzes zugibt. Je nach der Menge und 10 in der unmittelbaren Nachbarschaft der Kathode
der Art des vorliegenden Salzes kann man auf diese beachtlich von demjenigen in Nähe der Anode ab-Weise
echte Lösungen erhalten, die bis zu 50 Ge- weichen kann, insbesondere, wenn kein gründliches
Wichtsprozent oder mehr an olefinischer Verbindung oder gutes Rühren angewendet wird. In gewissem
enthalten. Die Konzentration der olefinischen Ver- Ausmaß kann den Wirkungen der Azidität mittels
bindung in gelöstem Zustand ist in gewissem Ausmaß 15 hoher Stromdichte entgegengewirkt werden, um eine
von der Salzkonzentration abhängig. Bei Tempe- raschere Erzeugung von Hydroxylionen hervorzuraturen
oberhalb Raumtemperatur, d. h. oberhalb rufen. Jedoch erfordern auch hohe Stromdichten ein
etwa 35°C, ist jedoch weniger Salz erforderlich als bei kräftiges Rühren oder eine turbulente Bewegung, um
Raumtemperatur, um eine optimale Konzentration die Reaktionsteilnehmer zu der Kathode zu bewegen,
an gelöster olefinischer Verbindung zu erhalten. Da 20 Während der Elektrolyse in einer unterteilten Zelle
das Ausmaß der Hydrodimerisation von der Konzen- nimmt der pH-Wert in der Kathodenflüssigkeit zu,
tration der olefinischen Verbindung in der Elektrolyt- während die Anodenflüssigkeit sauer wird. Bei Verlosung
abhängt, gibt man, wenn Elektrolyse bei Wendung eines porösen Diaphragmas zur Trennung
Raumtemperatur durchgeführt werden soll, zweck- der Kathodenflüssigkeit von der Anodenflüssigkeit
mäßigerweise die olefinische Verbindung zu einer 25 hängt der pH-Wert der Kathodenflüssigkeit von der
gesättigten wäßrigen Lösung des Salzes, um hierdurch Diffusionsgeschwindigkeit der Säure aus der Anodeneine
möglichst hohe Konzentration der gelösten flüssigkeit durch die poröse Trennwand ab. Die
olefinischen Verbindung zu erhalten. Die Konzen- Regelung des pH-Wertes des Katholyten ist jedoch
tration der olefinischen Verbindung in der Elektrolyt- in dem Verfahren gemäß der Erfindung, bei welchem
lösung kann auch durch Verwendung eines Gemisches 30 der Katholyt bei einem pH-Wert von bis zu 7 gevon
Wasser und einem polaren Lösungsmittel, wie halten wird, d. h. im sauren Gebiet, wesentlich ver-Acetonitril,
Dioxan, Äthylenglykol, Dimethylform- einfacht. Eine Regelung der Alkalinität in der Kaamid,
Dimethylacetamid, Äthanol oder Isopropanol thodenflüssigkeit bei Verwendung eines Diaphragmas
zusammen mit dem Salz, erhöht werden. kann dadurch erreicht werden, daß man absichtlich
Eine Elektrolysezelle mit einer Kathode hoher 35 Säure aus der Anodenflüssigkeit in die Kathoden-Wasserstoffüberspannung
wird mit der auf diese flüssigkeit entweichen läßt oder daß man gesondert Weise hergestellten Lösung beschickt, und zur Durch- der Kathodenflüssigkeit ein saures Material, wie Eisführung
der Hydrodimerisationsreaktion wird Strom essig, Phosphorsäure oder p-Toluolsulfonsäure, zudurch
die Zelle geleitet. Je nach der Konzentration setzt.
der olefinischen Verbindung und der Wasserstoff- 40 Die Alkalinität kann auch dadurch gesteuert werionenkonzentration
der Lösung können sich neben den — unabhängig davon, ob in der Zelle ein Diadem
gesättigten Dimeren gegebenenfalls noch Neben- phragma verwendet wird oder nicht —, indem man
produkte bilden. So können sich beim Arbeiten mit Puffersysteme von Kationen verwendet, welche den
Konzentrationen der olefinischen Verbindung von pH-Bereich aufrechterhalten, jedoch unter den Reakweniger
als 10 Gewichtsprozent oder von 10 bis 45 tionsbedingungen keine Umsetzungen eingehen. Die
20 Gewichtsprozent der Lösung neben dem. Hydro- Regelung der Alkalinität ist insbesondere erforderlich,
dimerisationsprodukt z. B. noch reduzierte Mono- wenn die elektrolytische Hydrodimerisierung bis zu
mere oder andere Kondensationsprodukte bilden. hohen Umwandlungen durchgeführt wird oder wenn
Mit Acrylnitril z.B. kann man auf diese Weise als sie in kontinuierlicher Weise mit kontinuierlichen oder
Nebenprodukte Propionitril und bzw. oder Bis- 50 zeitweiligen Zugaben an olefinisch ungesättigter Ver-(2-cyanoäthyl)-äther
erhalten. Viele der olefinischen bindung geleitet wird, wobei der Elektrolyt selbst in der
Verbindungen neigen zur Polymerisation bei der Zelle verbleibt oder der Zelle im Kreislauf zurückge-Elektrolyse
in stark saurer Lösung, wie Lösungen führt wird.
von Mineralsäuren, und es ist zweckmäßig, in solchen Durch gutes Rühren wird eine geeignete Reaktions-Fällen
übermäßige Azidität zu vermeiden, wobei die 55 teilnehmerkonzentration in Kathodennähe aufrecht-Anwendung
von pH-Werten von oberhalb etwa 5 erhalten und die unnötige Beschränkung der Elektro-
oder 6, welche durch Salzlösungen von starken Säuren lysengeschwindigkeit und der Verwendung von hohen
erhalten werden, zweckmäßig ist. Ferner hat das Stromdichten durch langsame Diffusionsgeschwindig-Wasserstoffion
ein Kathodenentladungspotential von keiten vermieden.
etwa — 1,5VoIt, so daß es zweckmäßig ist, hohe 60 Bei Anwendung einer geteilten Zelle ist die Verwen-
Wasserstoffkonzentrationen in der Kathodenflüssig- dung einer Säure als Anodenflüssigkeit häufig er-
keit zu vermeiden, wenn die reduktive Kupplung bei wünscht, wobei irgendeine Säure geeignet ist, insbe-
ähnlichen oder negativeren Kathodenpotentialen statt- sondere verdünnte Mineralsäuren, wie Schwefel- oder
findet. Die reduktiven Kupplungsvorgänge können Phosphorsäure. Salzsäure kann verwendet werden,
in geeigneter Weise bei höheren pH-Werten als den- 65 zeigt jedoch den Nachteil der Chlorerzeugung an der
jenigen, bei welchen eine beachtliche Polymerisation Anode und der korrosiven Einwirkung mit Bezug auf
der olefinisch ungesättigten Verbindung stattfindet, einige Anodenmaterialien. Gegebenenfalls kann als
oder bei höheren pH-Werten, bei welchen eine unan- Anodenflüssigkeit eine Salzlösung verwendet werden,
9 10
wobei die als Kathodenflüssigkeit brauchbaren Lösun- druck »Überspannung« mit Bezug auf Kupfer als ein
gen auch als Anodenflüssigkeit geeignet sind. Bezugsmaßstab auf die Überspannung unter den Ge-
Für die Erzielung von guten Ausbeuten in der Ar- brauchsbedingungen in der Elektrolyse,
beitsweise eines kontinuierlichen Verfahrens über eine Brauchbare Salze bei dem Verfahren gemäß der Reihe von Tagen oder Wochen hinweg ist die Verwen- 5 Erfindung sind Aminsalze und quartäre Ammoniumdung einer unterteilten Zelle angebracht, um sich ge- salze, insbesondere solche von Sulfonsäuren und Alkylgenseitig störende Reaktionen zu vermeiden oder auf schwefelsäuren. Derartige Salze können die gesättigten ein Minimum zu beschränken, welche sich durch die aliphatischen Aminsalze oder heterocyclischen Amin-Erzeugung von Wasserstoffionen an der Anode oder salze sein, z. B. die Mono-, Di- oder Trialkylaminsalze bei Ablagerung oder Abscheidung von verschiedenen io oder die Mono-, Di- oder Trialkanolaminsalze, oder Salzmaterialien auf der Anode ergeben. Außerdem die Piperidin-, Pyrrolidin- oder Morpholinsalze, z. B. sind viele geeignete ,,Salze der Kathodenflüssigkeit die Äthylamin-, Dimethylamin- oder Triisopropyleinem Abbau ausgesetzt oder unterworfen, wenn sie in aminsalze der verschiedenen Säuren, insbesondere verBerührung mit der Anode gelassen werden, wobei es schiedener Sulfonsäuren. Besonders bevorzugt sind vorteilhaft ist, als Anodenflüssigkeit in einer unter- 15 aliphatische und heterocyclische quartäre Ammoniumteilten Zelle Mineralsäüren zu verwenden. salze, d. h. die Tetraalkylammonium- oder die Tetra-
beitsweise eines kontinuierlichen Verfahrens über eine Brauchbare Salze bei dem Verfahren gemäß der Reihe von Tagen oder Wochen hinweg ist die Verwen- 5 Erfindung sind Aminsalze und quartäre Ammoniumdung einer unterteilten Zelle angebracht, um sich ge- salze, insbesondere solche von Sulfonsäuren und Alkylgenseitig störende Reaktionen zu vermeiden oder auf schwefelsäuren. Derartige Salze können die gesättigten ein Minimum zu beschränken, welche sich durch die aliphatischen Aminsalze oder heterocyclischen Amin-Erzeugung von Wasserstoffionen an der Anode oder salze sein, z. B. die Mono-, Di- oder Trialkylaminsalze bei Ablagerung oder Abscheidung von verschiedenen io oder die Mono-, Di- oder Trialkanolaminsalze, oder Salzmaterialien auf der Anode ergeben. Außerdem die Piperidin-, Pyrrolidin- oder Morpholinsalze, z. B. sind viele geeignete ,,Salze der Kathodenflüssigkeit die Äthylamin-, Dimethylamin- oder Triisopropyleinem Abbau ausgesetzt oder unterworfen, wenn sie in aminsalze der verschiedenen Säuren, insbesondere verBerührung mit der Anode gelassen werden, wobei es schiedener Sulfonsäuren. Besonders bevorzugt sind vorteilhaft ist, als Anodenflüssigkeit in einer unter- 15 aliphatische und heterocyclische quartäre Ammoniumteilten Zelle Mineralsäüren zu verwenden. salze, d. h. die Tetraalkylammonium- oder die Tetra-
Das Verfahren gemäß der Erfindung kann sehr alkanolammoniumsalze oder gemischte Alkylalkanolwirksam
bei Stromdichte von mehr als 10 Ampere je ammoniumsalze, z. B. die Alkyltrialkanolammonium-,
qdm Kathodenoberfläche, ausgeführt werden, und die Dialkyldialkanolammonium-, Alkanoltrialkylammogeeignetsten
Stromdichten können im Bereich von 15 20 nium- oder die N-heterocyclischen N-Alkylammo-
oder 20 bis 40 oder 50 Ampere je qdm und darüber, niumsalze von Sulfonsäuren oder anderen geeigneten
selbst bis zu 100 öder noch mehr Ampere je qdm Säuren. Im allgemeinen besitzen die gesättigten alisein,
und es ist außerdem möglich, Zellen mit einer phatischen oder heterocyclischen quartären Ammogroßen
wirksamen Elektrodenfläche, sowohl in einem niumkationen geeignet hohe Kathodenentladungseinzelnen
Satz von Elektroden oder in einer Reihe von 25 potentiale für die Zwecke der Erfindung und bilden
Elektroden zu verwenden. Einzelzellen können ge- leicht Salze von geeigneter hoher Wasserlöslichkeit mit
wohnlich mindestens 20 bis 30 Ampere aufnehmen! Anionen, die sich zur Verwendung in den verwendeten
Es ist wichtig, einen ziemlich niedrigen Widerstand in Elektrolyten gemäß der Erfindung eignen. Die geder
Zelle zu haben, welcher durch die Benutzung von sättigten aliphatischen oder heterocyclischen quartären
ziemlich hohen Konzentrationen des Elektrolytsalzes 30 Ammoniumsalze sind daher im allgemeinen zur AufT
und eines verhältnismäßig geringen Abstandes zwischen lösung großer Mengen olefinischer Verbindungen,
den Elektroden, z. B. von nicht mehr als 1,25 cm und z. B. olefinischer Nitrile, in ihren wäßrigen Lösungen
vorzugsweise in der Größenordnung von 0,635 cm und zur Bewirkung der reduktiven Kupplung oder
und darunter erhalten'werden kann. Angelegte Span- Hydrodimerisation dieser olefinischen Verbindungen
nungen von 5 bis 20 Volt für Stromdichten von 15 bis 35 gut geeignet. Es ist natürlich selbstverständlich," daß
40 Ampere je qdm sind geeignet, und vorzugsweise die Ammoniumgruppen keine reaktionsfähigen Grupbesitzt
die angelegte Spannung in diesem Bereich sowie pen enthalten, welche in gewissem Ausmaß die Hydrobei
höheren Dichten einen numerischen Wert von nicht dimerisationsreaktion stören können. In diesem Zumehr
als dem halben· numerischen Wert der Strom- sammenhang sei bemerkt, daß eine aromatische Undichte
(in Ampere je qdm). 4° Sättigung als solche nicht stört, da man benzylsubsti-
Geeignete Materialien für den Aufbau der Elektro- tuierte Ammoniumkationen sowie auch Arylsulfonat-
lysezelle, welche gemäß dem Verfahren der Erfindung anionen verwenden kann,
verwendet wird, sind allgemein bekannt. Von den für die bei dem Verfahren gemäß der Er-
Die Anode kann praktisch aus einem beliebigen findung verwendeten Elektrolyte brauchbaren Anionen
Leitermaterial bestehen, obgleich üblicherweise die 45 sind die Aryl- und Alkarylsülfonsäuren besonders geVerwendung
von solchen vorteilhaft ist, die verhältnis- eignet, z. B. Salze der folgenden Säuren: Benzolsulf onmäßig
inert sind oder nur langsam durch die Elektroly- säure, o-, m- oder p-Toluolsulfonsäure, o-, m- oder
ten angegriffen oder. korrodiert werden. Geeignete p-Äthylbenzolsulfonsäure, o-, m- oder p-Cumolsul-Anodenmaterialien
sind z. B. Platin, Kohle, Gold, fonsäure, ο-, m- oder p-tert.-Amylbenzolsulfonsäurei
Nickel, Nickelsilicid, Eisen-Silicium-Legierung (Dur- 50 o-, m- oder p-Hexylbenzolsulfonsäure, o-XyIol-4-suleisen),
Blei und Blei-Antimon- und Blei-Kupfer-Le- fonsäure, p-Xylol-2-sulfonsäure, m-Xylol-4- oder 5-sulgierungen
und Legierungen von verschiedenen der fonsäure, Mesitylen-2-sulfonsäure, Durol-3-sulfonvorstehenden
und anderen Metalle. " säure, Pentamethylbenzolsulfansäure, o-Dipropylben-
AIs Kathode kann ein beliebiges gebräuchliches zol-4-sulfonsäure, <x- oder /J-Naphthalinsulfonsaure,
Material, z. B. verschiedene Metalle und Legierungen, 55 9-, m- oder p-Diphenylsulfonsäure und ä-Methylverwendet
werden. Die Verwendung von Metallen mit jS-Naphthalinsulfonsäure. Mit bestimmten Einschränziemlich
hoher Wasserstoff überspannung ist vorteil- kungen sind Alkalisalze bei dem Verfahren gemäß der
haft, um die Stromleistung zu erhöhen und die Er- Erfindung brauchbar, und es können die Alkalisalze
zcugung von Wasserstoff während der Elektrolyse auf dieser Sulfonsäuren verwendet werden, d. h. die
ein Minimum herabzusetzen. Geeignete Elektroden- 60 Natrium-, Kalium-, Lithium-, Caesium- oder Rubimaterialien
umfassen beispielsweise Quecksilber, Cad- diumsalze, wie Natriumbenzölsulfonat, Kalium-p-tomium,
Zinn, Zink, Wismut, Blei, Graphit, Aluminium, luolsulfonat, Lithium-o-diphenylsulfonat, Rubidium-Nickel,
rostfreien Stahl od. dgl., wobei im allgemeinen /J-naphthalinsulfonat, Caesium-p-äthylbenzolsulfonat,
solche mit höherer Überspannung bevorzugt sind; . Natrium-o-xylol-3-sulfonat oder Kaliumpentamethyl-Es
ist ersichtlich, daß die Überspannung sich in Ab- 65 benzolsulfonat. Die Salze solcher Sulfonsäuren könhängigkeit
von der Art. der Oberfläche Und der Vorbe- hen auch die gesättigten aliphatischen Arnih- oder
handlung des Metalls sowie von anderen Faktoren heterocyclischen Aminsalze sein, z. B. die Mono-, Diändert.
Deshalb bezieht'Sich der hier verwendete Aus- oder Trialkylaminsalze oder'die Mono-, Di:" oder Tri-
11 12
alkanolaminsalze oder die Piperidin-, Pyrrolidin- oder denspannung auch einige der Alkalikationen entladen.
Morpholinsalze, z. B. das Äthylamin, Dimethyl- Auf Grund der Anwesenheit der hieraus sich ergeben-
amin- oder Triisopropylaminsalz der Benzolsulfon- den Metalle wird ein chemischer Weg eingeschlagen,
säure oder der o-, p- oder m-ToluolsuIfonsäure; das der auch zur Bildung des gesättigten Monomeren an
Isopropanolamin-, Dibutanolamin- oder Triäthanol- 5 Stelle des Hydrodimerisationsproduktes führt. Im
aminsalz der o-, p- oder m-ToluolsuIfonsäure oder der Falle der Verwendung von Acrylnitril wird . bei-
o-, p- oder m-Diphenylsulfonsäure; das Piperidinsalz spielsweise als Nebenprodukt Propionitril erhalten,
der κ- oder /3-Naphthalinsulfonsäure oder der Cumol- Dies erfolgt wahrscheinlich durch 1,4- oder 1,2-Addi-
sulfonsäuren; das Pyrrolidinsalz der o-,m- oder p-Amyl- tion des Alkaliions an das Acrylnitril und Zersetzung
benzolsulfonsäure; das Morpholinsalz der Benzolsul- io des sich ergebenden Anlagerungsproduktes durch
fonsäure, der o-, m- oder p-Toluolsulfonsäure oder Wasser zum Propionitril. Während man nach dem Ver-
der κ- oder /3-Naphthalinsulfonsäure usw. Im auge- fahren gemäß der Erfindung die zwei konkurrierenden
meinen kann man für die Zwecke der Erfindung Reaktionen, d. h. die Bildung der Hydrodimerisations-
die Sulfonate irgendeines der allgemein oder produkte und die Bildung von gesättigten Monomeren,
speziell in der Beschreibung genannten Kationen 15 zugunsten der Hydrodimerisation lenken kann, bildet
verwenden. sich nichtsdestoweniger etwas an gesättigtem Mono-
Andere zur Zeit brauchbare quartäre Ammonium- meren, wenn die Elektrolytlösung die Alkalisulf onate
sulfonate sind z. B. das Tetraäthylammonium-o- oder an Stelle der Tetraalkylammoniumsulfonate enthält,
m-toluolsulfonat oder -benzolsulfonat, das Tetraäthyl- wodurch die Ausbeute an Hydrodimerisationsprodukt
ammonium-o-, m- oder p-cumolsülfonat oder o-, m- 20 verringert ist. Andererseits erfolgt keine rein chemische,
oder p-äthylbenzolsulfonat, das Tetramethylammo- Reaktion, wenn an Stelle der Alkalisulf onate die Tetra-
niumbenzolsulfonat oder o-, m- oder p-toluolsulfonat; alkylammoniumsulfonate verwendet werden. Dies be-
das Ν,Ν-Dimethylpiperidinium-o-, m- oder p-toluol- ruht darauf, weil bei Kathodenspannungen, welche die
sulfonat oder o-, m- oder p-diphenylsu]fonat; das Hydrodimerisation begünstigen, die Tetraalkylammo-
Tetrabutylammonium-a- oder /3-naphthalinsulfonat 25 niumionen nicht entladen werden. Im Falle von
oder o-, m- oder p-toluolsulfonat; das Tetrapropyl- Acrylnitril z. B. kann die optimale Kathodenspannung
ammonium-o-, m- oder p-amylbenzolsulfonat oder zur Umwandlung in das Hydrodimerisationsprodukt
a-äthyl-/?-naphthalinsulfonat; das Tetraäthanolammo- (Adipinsäuredinitril) von etwa —1,8 bis etwa —2,1 Volt
nium-o-, m- oder p-cumolsulfonat oder o-, m- oder variieren, gemessen bei einem unter Rühren durchge-
p-toluolsulfonat; das Tetrabutanolammoniumbenzol- 30 führten Versuch (gegen die gesättigte Kalomelelek-
sulfonat oder -p-xylol-3-sulfonat; das Tetrapentyl- trode). Es erfolgt keine Verminderung der Ausbeute an
ammonium-o-, m- oder p-Toluolsulfonat oder o-, m- Hydrodimerisationsprodukt durch chemischeZwischen-
oder. p-Hexylbenzolsulfonat, das Tetrapentanolam- schaltung, wie sie z. B. bei Verwendung der Alkalisul-
monium-p-cymol-3-sulfonat oder -benzolsulfonat; das fonate auftritt, da das Tetraalkylammoniumion bei der
Methyltriäthylammonium-o-, m- oder p-toluolsulfo- 35 Arbeitsspannung nicht entladen wird. Elektrolysiert
nät oder -mesitylen-2-sulfonat; das Trimethyläthyl- man z. B. eine Lösung von Acrylnitril in wäßriger Te-
ammonium-oxylol-4-sulfonat oder o-, m- oder p-toluol- traäthylammonium-p-toluolsulfonatlösüng, so erfolgt
sulfonat; das Triäthylpentylammonium-«- oder /?-na- die Umwandlung von Acrylnitril in Adipinsäuredini-
phthalinsulfonat oder o-, m- oder p-butylbenzolsulfo- tril bei etwa —1,91 Volt, während das Tetraäthylam-
nat, das Trimethyläthanolammonium-benzolsulfonat 4° monium bis zu einer Kathodenspannung von etwa
oder o-, in- oder p-toluolsulfonät; das Ν,Ν-Diäthyl- —2,5VoIt nicht entladen wird. Andererseits werden
piperidinium- oder N-Methylpyrrolidinium-o-, m- einige olefinische Verbindungen bei weniger negativen
oder p-hexylbenzolsulfonat oder o-, m- oder p-toluol: Kathodenspannungen hydrodimerisiert, so daß man
sulfonat, das Ν,Ν-Diisopropyl- oder N,N-Di-butyl- bei Verwendung von Alkalisalzen geeignete Ergebnisse
„morpholinium-o-, m- oder p-toluolsulfonat oder o-, 45 erhalten kann. Zur Vermeidung störender Reaktionen
m- öder p-diphenylsulfonat. verwendet man jedoch zweckmäßig Salze von Kat-
Die Tetraalkylammoniumsalze der Aryl- oder Alka.- ion mit stärker negativen Entladungspotentialen, z. B.
rylsulfonsäuren werden im allgemeinen als Salzbe- stärker negativ als—2,2 Volt Kathodenspannung gegen
standteile der Elektrolytlösung bevorzugt, da die die gesättigte Kalomelelektrode; Bei der Hydrodimeri-
Elektrolysevorgänge in den Tetraalkylammoniumsul- 50 sierung von Acrylnitril werden eindeutig solche Bedin-
fonatlösungen ausschließlich elektrochemische Ver- gungen bevorzugt, daß das Kathodenpotential nicht
fahren darstellen. Bei Anwendung der gleichen Kon- weniger negativ als —1,7.VoIt (gegen die gesättigte
zentration an «,/^-olefinisch ungesättigter Verbindung, Kalomelelektrode) ist. -:.
der gleichen Kathodenspännung, jedoch unter Verwen- Unter den Ammonium- und Aminsulfonaten, die
dung der Alkalisulfonate anstatt der Tetraalkylammo- 55 sich als Elektrolyte bei dem Verfahren gemäß der
hiumsulf onate, sind die Ausbeuten an Hydrodimeri- Erfindung eignen, befinden sich die Alkyl-, Aralkylsationsprodukten
beachtlich niedriger als die bei Ver- und heterocyclischen Amin- und Ammoniumsulfonate,
Wendung der Tetraalkylammoniumsulfonate erhalte- in welchen gewöhnlich die einzelnen Substituenten am
nen. Dies ist sogar der Fall, wenn die olefinische Ver- Stickstoffatom höchstens 10 Kohlenstoffatome entbindung
in der Kathodenflüssigkeit in hoher Konzen- 60 halten. Gewöhnlich enthält der Amin-oder Ammohiümtration
vorliegt, was man durch Verwendung eines rest 3 bis , 20 Kohlenstoff atome. Selbstverständlich
Colösungsmittels, wie Dimethylformamid, zusammen können auch Di- und Polyamine und Di- und PoIymit
dem Alkalisulf onat erreicht. Dies beruht vermut- ammoniumreste verwendet werden; sie fallen unter die
lieh darauf, daß bei den Kathodenspannungen, bei Bezeichnung Amin und Ammonium. Der Sulfonatrest
denen die Hydrodimerisation erfolgt, die Alkalisalze 65 kann sich von Aryl-, Alkyl-, Älkaryl- oder Aralkylebenfalls
angegriffen werden. Insbesondere, wenn die sulfonsäuren mit verschiedenen Molekulargewichten
Alkalisulfonate enthaltenden Lösungen gerührt werden', bis herauf z.B. zu 20 Kohlenstoffatomen, vorzugskann
die zur Hydrodimerisation erforderliche Kätho- weise etwa 6 bis 20 Kohlenstoffatomen, ableiten und
kann eine, zwei oder mehrere Sulfonatgruppen einschließen.
Tetraäthylammonium-p-toluolsulfonat ist als Salzbestandteil
der Elektrolyselösung für das Hydrodimerisationsverfahren
gemäß der Erfindung von besonderem Wert. Jedoch sind das Tetraäthylammoniump-toluolsulf
onat ebenso wie die anderen hier genannten Tetraalkylammonium-aryl- oder -alkarylsulfonate von
allgemeiner Brauchbarkeit bei den elektrolytischen Reduktionsverfahren. Somit schafft die Erfindung
ganz allgemein ein elektrolytisches Reduktionsverfahren, das dadurch gekennzeichnet ist, daß man eine
wäßrige Lösung einer reduzierbaren Verbindung und eines Tetraalkylammoniumsalzes einer Sulfonsäure
aus der Gruppe der aromatischen, aliphatischen und aliphatisch-aromatischen Sulfonsäuren mit 1 bis
6 Kohlenstoffatomen in jedem Alkylrest und 6 bis 12 Kohlenstoffatomen im sauren Teil des Moleküls der
Elektrolyse unterwirft.
Eine andere, zur Verwendung bei dem Verfahren gemäß der Erfindung besonders geeignete Klasse von
Salzen sind die Alkylsulfatsalze, z. B. Methosulf atsalze,
insbesondere die Amin- und quartären Ammoniummethosulfatsalze. Methosulfatsalze, wie das Salz
des Methyltriäthylammoniums, Triamylmethylammoniums, Tri-n-butylmethylammoniums usw., sind sehr
hygroskopisch, und: das Salz des Tri-n-butylmethylammoniums insbesondere bildet sehr konzentrierte
wäßrige Lösungen, welche großen Mengen an organischen Materialien auflösen. Im allgemeinen sind
die Amin- und Ammoniumkationen, die sich zur Verwendung in den Alkylsulfatsalzen eignen, die
gleichen wie bei den Sulfonaten.
Verschiedene andere Kationen eignen sich zur Verwendung bei dem Verfahren gemäß der Erfindung,
z. B. Tetraalkylphosphonium- und Trialkylsulfoniumkationen, insbesondere als Sulfonatsalze, die, wie vorstehend
beschrieben, aus Sulfonsäuren hergestellt werden, oder als Methosulfatsalze.
Die nachstehend aufgeführten Salze sind z. B. alle mit Erfolg bei Hydrodimerisationen zur Gewinnung
von Hydrodimeren als Hauptprodukt unter geringer oder keiner Bildung von Verunreinigungen verwendet
worden.
Im allgemeinen wurden konzentrierte wäßrige Lösungen der Salze verwendet, die mindestens 15 % und
gewöhnlich 20 bis 40 Gewichtsprozent an olefinischer Verbindung enthielten. Es wurde nach den allgemeinen
Verfahren der Ausführungsbeispiele gearbeitet.
1. N-Trimethyl-N'-trimethyläthylendiammonium-dip-toluolsulfonat,
2. Benzyltrimethylammonium-p-toluolsulfonat,
3. Methyltri-n-butylphosphonium-p-toluolsulfonat,
4. Tetraäthylammoniumsulfat,
5. Di-tetraäthylammonium-benzolphosphonat,
6. Trimethylsulfonium-p-toluolsulfonat,
7. Methyltri-n-hexylammonium-p-toluolsulfonat,
8. Benzyltrimethylammoniumphosphat,
9. Benzyltrimethylammoniumacetat,
10. Methyltri-n-butylammoniummethosutfat,
11. Benzyltrimethylammoniumbenzoat,
12. Tetraäthylammoniummethansulfonat,
13. Benzyltrimethylammonium-2-naphthalinsulfonat,
5
14. Bis-benzyltrimethylammonium-m-benzoldisulfo-
nat,
15. Benzyltrimethylammoniumthiocyanat, ίο 16. Tetramethylammoniummethosulfat.
Bei der ansatzweisen Durchführung des Elektrolyseverfahrens und im Labormaßstab kann folgende
Arbeitsweise und Vorrichtung verwendet werden: Die Elektrolysezelle setzt sich aus einem Werkstoff, der
beständig gegen die Mischung der Elektrolyte ist, z. B. aus Glas, zusammen. Innerhalb der Zelle kann zur
Trennung in einem Anodenraum und einem Kathodenraum ein Diaphragma in Form einer porösen Tasse,
z. B. aus unglasiertem Porzellan, angeordnet sein. Die Anode, welche z. B. aus Platin oder Kohlenstoff oder
jedem anderen Elektrodenmaterial besteht, welches (2 unter den Reaktionsbedingungen inert ist, wird in die in
a5 der porösen Tasse enthaltene Anodenfiüssigkeit eingetaucht.
Die Anodenfiüssigkeit besteht aus einer wäßrigen Lösung des Salzes. Wenn in der Zelle kein
Diaphragma verwendet wird, kann man zur Steuerung des pH-Wertes rühren. Hierbei wird die Anode nur
wenig oder überhaupt nicht angegriffen, so daß sie aus praktisch jedem Elektrodenmaterial bestehen kann.
Man kann daher z. B. eine Anode aus Blei, das auf einem Kupferdrahtnetz niedergeschlagen ist, verwenden.
Die Kathode, welche aus Quecksilber, Blei oder einem anderen Metall bestehen kann, und die gegebenenfalls
angewendete poröse Tasse werden in die Lösung der «,/^-olefinischen Verbindung in der konzentrierten
wäßrigen Salzlösung oder einer Mischung derselben mit einem polaren Lösungsmittel eingetaucht.
Die gesamte Zelle kann durch einen ein Kühlmittel enthaltenden Mantel gekühlt werden, und sowohl
der Anoden- als auch der Kathodenraum können mit Kondensatoren ausgerüstet sein. Jedoch führt, wie
nachstehend gezeigt wird, eine Zunahme der Tempera- ζ
tür, welche während der Elektrolyse erzeugt wird, im ^
allgemeinen zu keiner so großen Abnahme der Ausbeute, daß eine andere Kühlung als mit umlaufendem
Wasser wirtschaftlich erforderlich ist. Im allgemeinen ♦ kann die Elektrolyse z. B. bei einer Temperatur von
weniger als etwa 100C und bis nahezu der Rückflußtemperatur
des Elektrolysebades und auch bei höheren Temperaturen unter Druck durchgeführt werden. Tatsächlich
führen etwas höhere Temperaturen als gewöhnliche Raumtemperaturen zu verbesserten Ergebnissen,
höheren Löslichkeiten und erniedrigtem elektrischem Widerstand. Dies wird bis zu einem gewissen
Grad durch die Neigung von einigen Diaphragma-Materialien, sich bei erhöhten Temperaturen, beispielsweise
von etwa 70° C, zu verschlechtern, und durch die Neigung von einigen der olefinischen Verbindungen,
wie Acrylnitril, bei höheren Temperaturen zu verdampfen, entgegenwirkend ausgeglichen. Es ist
im allgemeinen vorteilhaft, in dem Bereich von etwa 40 bis zu etwa 60°C, insbesondere etwa 45 bis 55°C,
zu arbeiten. Erwünschtenfalls kann das Rühren der Lösung während der Elektrolyse mittels mechanischer
oder magnetischer Einrichtungen erfolgen. Die der Zelle zugeführte Strommenge hängt von der Art und
der Menge des Bades, den Elektroden und der Arbeitstemperatur ab; sie liegt jedoch gewöhnlich bei einem
größeren Wert als 0,5 Ampere und liegt in der Größenordnung einer Stromdichte von etwa 2,0 bis 20,0 Ampere
je qdm oder 40 oder mehr Ampere je qdm (qdm bezieht sich auf den Bereich der Kathodenoberfläche in
qdm). Die Leistung oder Wirksamkeit des Verfahrens hängt in gewissem Ausmaß von der angewendeten
Stromdichte ab. So wurde festgestellt, daß zur wirksamen Herstellung von Adipinsäuredinitril oder Dialkyladipat
bei Verwendung einer Quecksilberkathode die Stromdichte mindestens etwa 5 Ampere je qdm
betragen soll, wobei praktische Herstellungsgeschwindigkeiten üblicherweise die Anwendung von weit höheren
Stromdichten erfordern.
Nach der Elektrolyse kann man das Hydrodimerisationsprodukt aus dem Reaktionsgemisch in an sich
bekannter Weise abtrennen, z. B. durch Extraktion, Fraktionierung usw. Im allgemeinen wird das Reaktionsgemisch
neutralisiert; nach dem Verdünnen trennt man die organische Phase durch Dekantieren und bzw.
oder Lösungsmittelextraktion ab. Nach dem Entfernen restlicher anorganischer Stoffe durch Waschen mit
Wasser wird das organische Material zur Abtrennung des Lösungsmittels destilliert. Der Rückstand enthält
das Hydrodimerisationsprodukt und ebenfalls nicht umgesetzte olefinische Reaktionsteilnehmer zusammen
mit Nebenprodukten. Diese Produkte können voneinander beispielsweise durch fraktionierte Destillation
getrennt werden. In Vorversuchen können die Ergebnisse der Elektrolyse leicht festgestellt werden,
wenn die Produkte Flüssigkeiten sind, indem man das Hydrodimerisationsprodukt und den gegebenenfalls
vorhandenen, nicht umgesetzten Reaktionsteilnehmer z. B. durch Gaschromatographie analysiert.
Die Erfindung wird nachstehend an Hand eines Beispiels näher erläutert.
Es wurde ein kontinuierliches Verfahren zur Hydrodimerisierung
von Acrylnitril in einer Zelle ausgeführt, in welcher Bleiplatten, die durch eine Membran getrennt
waren, als Kathode und Anode verwendet, und der Zwischenraum zwischen diesen Platten betrug weniger
als 1,2 cm. Die Zelle wurde mit Pumpeinrichtungen versehen, um getrennt die Kathodenflüssigkeit und die
Anodenflüssigkeit zu ihren jeweiligen Elektroden hin im Umlauf zu halten, und außerdem mit Einrichtungen
für die kontinuierliche Zugabe von Acrylnitril und Einrichtungen für die Abtrennung des Adipinsäurenitril-Produkts
aus der Kathodenflüssigkeit und der Rückführung der Kathodenflüssigkeit im Kreislauf. Als
Anodenflüssigkeit wurde verdünnte Mineralsäure angewendet, und die eingesetzte Kathodenflüssigkeit bestand
aus 17,6 Gewichtsprozent Acrylnitril, 37,2% Wasser und 42,2 % Tetramethylammoniumtoluolsulf onat,
bezogen jeweils auf Gewicht. Die Hydrodimerisation wurde bei einer linearen Geschwindigkeit der
Umlaufführung der Kathodenflüssigkeit gegen die Kathode von etwa 36 cm/sec, einer Stromdichte von
20 Ampere/dm2 und einem pH-Wert, wie nachstehend angegeben, durchgeführt. Es wurden dabei die in
der nachstehenden Tabelle angegebenen Ausbeuten an Adipinsäurenitril, bezogen auf den Acrylnitrilverbrauch,
erhalten. In diesen Versuchen enthielt das Acrylnitril eine geringe Menge an p-Methoxyphenol
als Polymerisationsinhibitor.
Kathodenflüssigkeit, pH
Stromdichte (Amp/dm2)
Kathodenflüssigkeit-Umlaufgeschwindigkeit, cm/sec
Kathodenflüssigkeit-Beschikkungszusammensetzung
%AN*)
%H2O
% TMATS**)
Kathode
Stromleistung, bezogen auf ADN
erzeugt, %
ADN-Ausbeute***), bezogen auf
AN verbraucht, %
PN-Ausbeute****), %
6,0
20
20
36
17,6
37,2
45,2
Pb
66,6
80,85
11,46
11,46
5,0
20
20
36
17,6
37,2
45,2
Pb
37,2
45,2
Pb
56,7
74,7
22,0
22,0
*) AN = Acrylnitril.
**) TMATS = Tetramethylammoniumtoluolsulfonat
**) TMATS = Tetramethylammoniumtoluolsulfonat
(65·/.p, 35"/„ο).
***) ADN = Adipinsäurenitril.
****) PN = Propionsäurenitril.
***) ADN = Adipinsäurenitril.
****) PN = Propionsäurenitril.
Die besonderen Verfahrensbedingungen variieren natürlich mit den verschiedenen Zellstrukturen, mit
dem Verhältnis von Vulumen des Katholyten zur Oberfläche der Kathode sowie mit anderen Veränderliehen,
wie Temperatur, Kathodenspannung, Stromdichte od. dgl. Eine Anzahl von Zellen konnte zu einer
einzigen Einheit kombiniert oder verbunden werden, und das Verfahren kann gewünschtenfalls kontinuierlich
mittels einer Umlaufpumpe ausgeführt werden, wodurch die Kathodenflüssigkeit aus der Zelle während
des Verfahrensablaufs abgezogen wird, das Hydrodimerisationsprodukt daraus abgetrennt wird
und der Rückstand wieder in die Zelle zusammen mit zusätzlicher olefinischer Verbindung wieder eingeführt
wird, um die anfängliche Stärke wiederherzustellen.
Das Verfahren gemäß der Erfindung schafft ein
sehr einfaches und wirtschaftliches Verfahren für die Herstellung von einer großen Vielzahl aliphatischer
polyfunktioneller Verbindungen, insbesondere der Di- und Tetranitrile und -ester. Das elektrolytische Verfahren
gemäß der Erfindung ist darin vorteilhaft, daß während der Elektrolyse Elektrodenflüssigkeit nicht
verbraucht wird, nur eine geringe Menge des olefinischen Monomeren gegebenenfalls in das gesättigte
Monomere übergeführt wird und die Elektrolyse gewünschtenfalls ohne Anwendung von den die Kosten
steigernden Kühlungssystemen und mit hoher Nutzleistung des elektrischen Stroms durchgeführt werden
kann.
Das Verfahren gemäß der Erfindung ist besonders in solchen Fällen brauchbar, in welchen die di- oder tetrafunktionellen
Alkane nur unter Schwierigkeiten oder überhaupt nicht durch andere Verfahrensweisen erhältlich
waren. Bei der Hydrodimerisierung beispielsweise eines olefinischen Nitrils ist es häufig möglich, bei
Anwendung des Verfahrens gemäß der Erfindung ein verzweigtes paraffinisches Dinitril leichter und wirtschaftlicher
zu erhalten, als dies in anderer Weise möglich ist. Beispielsweise werden die a-Alkylacrylnitrile,
wie im Beispiel 5 gezeigt, zu den 2,5-Dialkyladipinsäurenitrilen
hydrodimerisiert. Die Anordnung der beiden Alkylgruppen in diesem Fall ist besonders
wichtig, da überlegene Harzprodukte vom Polyamid-
309 525/535
17 18
typ durch Umsetzung der Dicarbonsäureverbindungen Verfahren der Erfindung hergestellt werden, sind allge-
mit 2,5-Dimethylhexamethylendiamin erhältlich sind. mein brauchbar in der Herstellung von hochmolekula-
Das hier geschaffene 2,5-Dimethyladipinsäurenitril ren Kondensationspolymerisaten, z. B. durch Umset-
wird leicht durch Hydrierung in das äußerst wertvolle zungmitDihydroxy-oderDicarbonsäureverbindungen;
2,5-Dimethylhexamethylendiamin übergeführt. Die pa- 5 die tetrafunktionellen Verbindungen sind ebenso wie
raffinischen Dinitrile und Dicarboxylate und die paraf- die difunktionellen Verbindungen wichtige Weich-
fmischen und anderen Diamide, welche gemäß dem macher für synthetische Harze und Kunststoffe.
Claims (1)
1 2
Erfindung ist darin zu sehen, daß ein Durchsickern
Patentanspruch: des sauren Anolyten durch die Membran mit den
Katholyten in größerem Maße und/oder mit gerin-Verfahren zur Herstellung von Nitrilen, Alkyl- geren Verfahrensstörungen geduldet werden.. kann,
, oder Arylestern gesättigter aliphatischer Di- oder 5 wenn der Katholyt selbst sauer ist. Außerdem ist bei
Tetracarbonsäuren, wobei man eine wäßrige, einem sauren Katholyten die Membran in geringerem
einen Elektrolyt und wenigstens 10 Gewichts- Ausmaß einer Beanspruchung unterworfen und demprozent
eines «,/^-monoolefinisch ungesättigten gemäß haltbarer, da der pH-Unterschied durch die
Mono- bzw. Dicarbonsäurenitrils, -alkyl- oder Membran hindurch gerichtet ist.
-arylesters enthaltende Lösung, die einen pH-Wert io Die bei dem Verfahren gemäß der Erfindung veroberhalb 7, jedoch unterhalb des Wertes, bei wendeten «,^-olefinischen Verbindungen können 3 bis welchem eine nennenswerte Hydrolyse der Ester- 8 Kohlenstoffatome enthalten.
-arylesters enthaltende Lösung, die einen pH-Wert io Die bei dem Verfahren gemäß der Erfindung veroberhalb 7, jedoch unterhalb des Wertes, bei wendeten «,^-olefinischen Verbindungen können 3 bis welchem eine nennenswerte Hydrolyse der Ester- 8 Kohlenstoffatome enthalten.
gruppe oder eine Anlagerung von Wasser an die Bei der Ausführung des Verfahrens gemäß der
Doppelbindung der ungesättigten Verbindung Erfindung wird eine ziemlich hohe Salzkonzentration
erfolgt, besitzt, elektrolysiert, indem man einen 15 in der Kathodenflüssigkeit, die mindestens 5 Geelektrischen
Strom durch die in Verbindung mit wichtsprozent des Katholyts bilden und üblicherweise
einer Kathode mit einer Wasserstoffüberspannung 30 Gewichtsprozent oder mehr ausmachen, bezogen
oberhalb der des Kupfers stehende Lösung leitet, auf die Gesamtmenge von Salz und Wasser in der
worauf man das Endprodukt in üblicher Weise Kathodenflüssigkeit, angewendet, um die erwünschte
isoliert (Zusatz zum Patent 1 297 091), dadurch 20 Löslichkeit der Olefinverbindungen und die gegekennzeichnet,
daß man die Elektro- wünschte Leitfähigkeit zu erhalten. Einige olefinische lyse bei einem pH-Wert im Bereich von etwa Verbindungen sind der Polymerisation oder anderen *-
3 bis 12, mit Ausnahme von oberhalb 7 bis 12, Nebenreaktionen unterworfen, wenn der Elektrolyt {%.
in Gegenwart eines Polymerisationsinhibitors aus- sauer ist, und es ist in solchen Fällen zweckmäßig,
führt. 25 die Elektrolyse in Lösungen auszuführen, welche
nicht übermäßig sauer sind. Beispiele für Inhibitoren
für die Verhinderung der Polymerisationen mit freiem
.,-...; Radikal sind Hydrochinon, p-tert.-Butylbrenzcate-
chin, Chinon, p-Nitrosodimethylanilin, Di-tert-
30 butylhydrochinon, 2,5-Dihydroxy-l,4-benzochinon,
In der deutschen Patentschrift 1297 091 ist ein 1,4-Naphthochinon, Chloranil, 9,10-Phenanthrachi-Verfahren
zur Herstellung von Nitrilen, Alkyl- oder non, 4-Amino-l-naphthol.
Arylestern gesättigter aliphatischer Di- oder Tetra- Die Inhibitoren werden gewöhnlich in geringen
carbonsäuren beschrieben, das dadurch gekenn- Mengen, z. B. weniger als 1 Gewichtsprozent, bezeichnet
ist, daß man'eine wäßrige, einen Elektrolyt 35 zogen auf die olefinische Verbindung, beispielsweise
und mindestens 10 Gewichtsprozent eines α,/9-mono- 0,01 Gewichtsprozent, bezogen auf die olefinische
olefinisch ungesättigten Mono- bzw. Dicarbonsäure- Verbindung, verwendet, jedoch können sie in größeren
nitrils, -alkyl- oder -arylesters enthaltende Lösung, : Mengen, wie bis zu 5 Gewichtsprozent oder darüber,
die einen pH-Wert oberhalb 7, jedoch unterhalb des bezogen auf die olefinische Verbindung, zur An-Wertes,
bei welchem eine nennenswerte Hydrolyse 40 Wendung gelangen.
der Estergruppe oder eine Anlagerung von Wasser Die nachteiligen Einflüsse der Azidität können in
an die Doppelbindung der ungesättigten.Verbindung gewissen Ausmaß durch die Anwendung von ziemlich
erfolgt, besitzt, elektrolysiert," indem ' man einen hohen Stromdichten und eines rasch umlaufenden
elektrischen Strom durch die in Berührung mit einer Elektrolytsystems überwunden werden. (
Kathode, mit einer,-Wasserstoffüberspannung ober-45: Das. verwendete Salz soll· einen hohen Grad an
halb der des Kupfers stehenden Lösung leitet, worauf ! Wasserlöslichkeit aufweisen, um die Verwendung
man das Endprodukt in üblicher Weise' isoliert. >
von sehr konzentrierten Lösungen zu ermöglichen,
Aufgabe der vorliegenden Erfindung ist die Ver- da konzentrierte Salzlösungen größere Mengen der
besserung dieses Verfahrens. Insbesondere bezweckt olefinischen Verbindungen auflösen, insbesondere,
die Erfindung die Schaffung eines Verfahrens,: bei > 50 wenn die verwendeten Salze einen hydrotropischen
welchem keine scharfe Regelung des pH-Wertes Effekt besitzen. Es ist im allgemeinen zweckmäßig,
durch Säurezusatz erforderlich ist. daß das Salz mehr als 30 Gewichtsprozent der ge-
Das Verfahren zur Herstellung von Nitrilen, Alkyl- samten Menge von Salz und Wasser in der Lösung
oder 'Arylestern" "gesättigter aliphatischer Di- oder" ausmacht. Es~ können ~ jedoch niedrigere" Könzen-Tetracarbonsäuren
gemäß der Erfindung, wobei>man:55 trationen zur Anwendung gelangen, insbesondere,
eine wäßrige, einen Elektrolyt und wenigstens 10 Ge- " wenn polare Lösungsmittel zusammen mit dem
wichtsprozent eines «,^-monoolefinisch ungesättigten Wasser und dem Salz verwendet werden, obgleich
Mono- bzw. Dicarbonsäurenitrils, -alkyl- oder aryl- es hinsichtlich der Kosten bevorzugt wird, die Veresters
enthaltende Lösung elektrolysiert, indem man wendung von polaren Lösungsmitteln zu vermeiden,
einen elektrischen Strom durch die in Verbindung 60 Unter Berücksichtigung des pH-Wertes der Kathodenmit
einer Kathode stehende Lösung leitet, worauf lösung soll zweckmäßig eine hohe Konzentration
man das Endprodukt in üblicher Weise isoliert (vgl. an stark basischen oder sauren Salzen vermieden
Hauptpatent 1297 091), ist dadurch gekennzeichnet, werden.
daß man die Elektrolyse bei einem pH-Wert im Vorzugsweise sollen die hier verwendeten Salze
Bereich von etwa 3 bis 12, mit Ausnahme von ober- 65 »hydrotrope« Salze sein, d. h. die Eigenschaft besitzen,
halb 7 bis 12, in Gegenwart eines Polymerisations- die Löslichkeit von organischen Verbindungen in
inhibitors ausführt. Wasser zu fördern. Verschiedene organische SuIfo-
Ein besonderer Vorteil des Verfahrens gemäß der nate, Alkylsulfate besitzen hydrotrope Wirkungen. Im
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22874062A | 1962-10-05 | 1962-10-05 |
Publications (3)
Publication Number | Publication Date |
---|---|
DE1468230A1 DE1468230A1 (de) | 1969-01-09 |
DE1468230B2 true DE1468230B2 (de) | 1973-06-20 |
DE1468230C3 DE1468230C3 (de) | 1974-01-31 |
Family
ID=22858408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE1468230A Expired DE1468230C3 (de) | 1962-10-05 | 1962-12-01 | Verfahren zur Herstellung von Nitrilen, Alkyl- oder Arylestern gesättigter aliphatischer Di- oder Tetracarbonsäuren |
Country Status (6)
Country | Link |
---|---|
JP (1) | JPS499448B1 (de) |
BE (2) | BE623691A (de) |
DE (1) | DE1468230C3 (de) |
LU (1) | LU43077A1 (de) |
NL (3) | NL272454A (de) |
SE (1) | SE304753B (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1157442A (en) * | 1964-11-24 | 1969-07-09 | Ici Ltd | Reductive Dimerisation of Olefinic Compounds |
KR930001325B1 (ko) * | 1989-12-14 | 1993-02-26 | 몬산토 캄파니 | 부탄테트라 카복실산의 제조방법 |
-
0
- NL NL285564D patent/NL285564A/xx unknown
- BE BE623657D patent/BE623657A/fr unknown
- NL NL126367D patent/NL126367C/xx active
- NL NL272454D patent/NL272454A/xx unknown
- BE BE623691D patent/BE623691A/xx unknown
-
1962
- 1962-11-15 JP JP37050014A patent/JPS499448B1/ja active Pending
- 1962-12-01 DE DE1468230A patent/DE1468230C3/de not_active Expired
-
1963
- 1963-01-25 SE SE857/63A patent/SE304753B/xx unknown
- 1963-01-25 LU LU43077D patent/LU43077A1/xx unknown
Also Published As
Publication number | Publication date |
---|---|
DE1468230A1 (de) | 1969-01-09 |
BE623691A (de) | |
SE304753B (de) | 1968-10-07 |
BE623657A (de) | |
DE1468230C3 (de) | 1974-01-31 |
NL272454A (de) | |
NL126367C (de) | |
LU43077A1 (de) | 1963-03-25 |
NL285564A (de) | |
JPS499448B1 (de) | 1974-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10058304A1 (de) | Verfahren zur Herstellung von alkoxylierten Carbonylverbindungen durch ein anodisches Oxidationsverfahren unter Nutzung der kathodischen Koppelreaktion zur organischen Synthese | |
DE2356657A1 (de) | Verfahren zur elektrolytischen monocarboxylierung von aktivierten olefinen | |
DE1468230C3 (de) | Verfahren zur Herstellung von Nitrilen, Alkyl- oder Arylestern gesättigter aliphatischer Di- oder Tetracarbonsäuren | |
DE1263768B (de) | Vorrichtung zur Durchfuehrung elektrochemischer Reaktionen organischer Verbindungen mit stroemendem Elektrolyten | |
DE1804809A1 (de) | Verfahren zur Herstellung von Adipinsaeuredinitril | |
WO2009071478A1 (de) | Verfahren zur reduktiven hydrodimerisierung von ungesättigten organischen verbindungen mittels einer diamantelektrode | |
AT257559B (de) | Verfahren zur Herstellung von Hydrodimeren von aliphatischen, α,β-monoolefinisch ungesättigten Verbindungen | |
DE1468378A1 (de) | Verfahren zur Herstellung von reduktiv gekuppelten Cyanbutadienen | |
DE1793568C (de) | ||
DE1768584A1 (de) | Verfahren zur elektrolytischen Hydrodimerisation | |
DE1618066C3 (de) | Verfahren zur Herstellung von Ädipmsäurenitril durch elektrolytische Dimerisierung von Acrylnitril | |
EP0812822B1 (de) | Verfahren zur Herstellung von Aminoessigsäuren mit alpha-ständigem tertiären Kohlenwasserstoffrest oder deren Nitrilen | |
DE2812508C3 (de) | Verfahren zur Herstellung von N1N'dialkylsubstituierten Tetrahydro-4,4'bipyridylen | |
DE1618838C3 (de) | ||
DE1543249A1 (de) | Verfahren zur Herstellung von cyclischen Verbindungen durch Flcktrolyse | |
DE2157560A1 (de) | Verfahren zur Herstellung von Saligenin | |
EP0100498B1 (de) | Verfahren zur Herstellung von Dichlormilchsäure oder dem Nitril oder Amid der Dichlormilchsäure | |
CH433232A (de) | Verfahren zur Herstellung von Hydrodimeren von olefinischen Nitrilen | |
DE235955C (de) | ||
DE1568054C3 (de) | Verfahren zur Herstellung von Adipinsäuredinitril | |
EP0554564A1 (de) | Verfahren zur Herstellung von Benzaldehydacetalen | |
DE3421976A1 (de) | Verfahren zur herstellung von phthalaldehydacetalen | |
DE1297091B (de) | Verfahren zur Herstellung von Nitrilen, Alkyl- oder Arylestern gestaettigter aliphatischer Di- oder Tetracarbonsaeuren | |
DE2237612A1 (de) | Verfahren zur herstellung von benzylalkohol | |
DE2345461C3 (de) | Verfahren zur Herstellung von Pinacol durch elektrolytische Hydrodimerisierung von Aceton |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C3 | Grant after two publication steps (3rd publication) | ||
E77 | Valid patent as to the heymanns-index 1977 | ||
EGZ | Application of addition ceased through non-payment of annual fee of main patent |