DE112014002844T5 - NHC-Palladium-Katalysator sowie dessen Herstellungsverfahren und Verwendung - Google Patents

NHC-Palladium-Katalysator sowie dessen Herstellungsverfahren und Verwendung Download PDF

Info

Publication number
DE112014002844T5
DE112014002844T5 DE112014002844.4T DE112014002844T DE112014002844T5 DE 112014002844 T5 DE112014002844 T5 DE 112014002844T5 DE 112014002844 T DE112014002844 T DE 112014002844T DE 112014002844 T5 DE112014002844 T5 DE 112014002844T5
Authority
DE
Germany
Prior art keywords
group
nhc
reaction
formula
palladium catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE112014002844.4T
Other languages
English (en)
Other versions
DE112014002844B4 (de
Inventor
Yucai Cao
Xiangyang Wu
Chen Ni
An Shen
Xiaofeng Ye
Yongqing Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Research Institute of Chemical Industry SRICI
Original Assignee
Shanghai Research Institute of Chemical Industry SRICI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Research Institute of Chemical Industry SRICI filed Critical Shanghai Research Institute of Chemical Industry SRICI
Publication of DE112014002844T5 publication Critical patent/DE112014002844T5/de
Application granted granted Critical
Publication of DE112014002844B4 publication Critical patent/DE112014002844B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/26Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/321Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a non-metal atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/325Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a metal atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/325Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a metal atom
    • C07C1/326Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a metal atom the hetero-atom being a magnesium atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/06Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of halogen atoms
    • C07C209/10Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of halogen atoms with formation of amino groups bound to carbon atoms of six-membered aromatic rings or from amines having nitrogen atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • C07C49/67Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having two rings, e.g. tetralones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/782Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
    • C07C49/784Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with all keto groups bound to a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/301,4-Oxazines; Hydrogenated 1,4-oxazines not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • C07D295/096Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/36Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/08Hydrogen atoms or radicals containing only hydrogen and carbon atoms
    • C07D333/10Thiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/16Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4277C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Die vorliegende Erfindung betrifft einen NHC-Palladium-Katalysator sowie dessen Herstellungsverfahren und Verwendung, wobei Glyoxal als Rohstoff dient und es unter Beteiligung von Lewis-Säure oder Brønsted-Säure zu einer Synthese von Glyoxal-Diimin kommt und danach durch eine Reaktion mit Paraformaldehyd ein NHC-Palladium-Ligand erlangt wird; gleichzeitig wird durch eine Reaktion von Palladium(II) mit einer Stickstoff-Doppelbindung enthaltenen Verbindung ein Palladium(II)-Ring-Dimer erlangt und nach der Koordination des Palladium-Ring-Dimers und des NHC-Palladium-Liganden ein NHC-Palladium-Katalysator erzielt. Verglichen mit dem gegenwärtigen Stand der Technik bietet die vorliegende Erfindung einen Palladium-Katalysator mit einer völlig neuartigen Struktur mit einer hohen Aktivität und Multifunktionalität sowie mit einer ausgezeichnete Reaktivität bei Funktionen wie etwa der Suzuki-Miyaura-Reaktion, der Heck-Reaktion, der Buchwald-Hartwig-Reaktion, der Kumada-Tamao-Corriu-Reaktion, der Sonogashira-Reaktion, der Negishi-Reaktion sowie der α-Keto-Arylation-Reaktion und anderen Arten von katalysierten Kupplungsreaktionen. Einige der Reaktionen können sogar schon bei sehr geringen Katalysatorkonzentrationen durchgeführt werden, was eine gute Perspektive für den industriellen Einsatz bietet.

Description

  • Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft einen Palladium-Katalysator mit einer neuartigen Struktur, seine Herstellung und Verwendung, und insbesondere einen NHC-Palladium-Katalysator mit einer vollkommen neuartigen Struktur, Vielseitigkeit und hoher Aktivität, sowie dessen Herstellungsverfahren und Verwendung bei einer Vielzahl von Kupplungsreaktionen.
  • Stand der Technik
  • Übergangsmetall-katalysierte C-C-Kupplungsreaktionen sind ein sehr wirksames Mittel der organischen Synthese, wobei mit diesem Mittel unter relativ milden Bedingungen die Bildung einer C-C-Bindung an einer spezifischen Position erzielt wird. Daher ist dies für eine Vielzahl von Naturprodukten, pharmazeutischen Zwischenprodukten, synthetischen organischen Materialien sowie in der akademischen Forschung und industriellen Entwicklung sehr bedeutungsvoll. Dabei verläuft die Entwicklung der palladiumkatalysierten Kreuzkupplungsreaktion von Übergangsmetall besonders schnell. (Org. Process Res. Dev. 2005, 9, 253).
  • Im Laufe der Jahre wurden die metallorganischen Palladiumkatalysatoren ständig weiterentwickelt, so dass die Übergangsmetall-katalysierte C-C-Bindungs-Kupplungsreaktion revolutionäre Veränderungen erlebte. Durch die Wirkung dieser neuen Katalysatoren können halogenierte aromatische Kohlenwasserstoffe, halogenierte aromatische Kohlenwasserstoffklassen und Alkenylhalogenid usw. sehr gut eine Kupplungsreaktion mit verschiedenen Alkenen, Alkinen, aromatische Verbindungen oder metallorganischen Reagentien durchführen. Eine breite Palette von Toleranzen für funktionelle Gruppentoleranz und milde Reaktionsbedingungen zeigen ein gutes industrielles Potenzial. Aber es ist ein kritisches Problem, die Menge des Katalysators zu reduzieren.
  • Wenn man die vorliegende Literatur betrachtet (Chem Rev. 2002, 102, 1359), so nutzt die große Mehrheit der Kreuzkupplungsreaktionen 1% bis 10% der Menge an Katalysator. ( US-Patentdokument 2004,002,489 , 2002; JP-Patentdokument 2004,262,832 , 2003; JP-Patentdokument 2005,008,578 , 2003; WO-Patentdokument 2004,101,581 , 2004; WO-Patentdokument 2005,012,271 , 2004 usw.). Wenn jedoch die Menge des Katalysators nicht auf unter 1000 ppm verringert werden kann, so hat dies sowohl im Hinblick auf die Herstellungskosten, als auch auf den Index der Schwermetallrückstände im Endprodukt erhebliche negative Auswirkungen auf dessen industrielle Nutzung. (Chem. Rev. 2006, 106, 2651). Dokumente und Patentschriften in Bezug auf die nicht sehr häufigen Mikromengen-Palladiumkatalysatoren finden sich im Folgenden:
    Im Jahr 1991 meldete Syntec die Verwendung von tertiärem Phosphin mit Silikongruppe als Ligand, womit eine Buchwald-Reaktion mit 1000 ppm Essigsäure unter der Wirkung von Palladiumkatalyse von Arylbromiden mit Amiden verwirklicht wurde, wobei eine Ausbeute von 91% erreicht wurde. Der einzige Nachteil sei, dass in Bezug auf dessen Ligand 1 mol% benötigt würde. ( DE-Patentdokument 19,963,009 , 1991).
  • Figure DE112014002844T5_0001
  • Im Jahr 1996 veröffentlichte Hoechst ein Patentdokument in Bezug auf die Umsetzung einer Heck-Reaktion mit einem Mikromengen-Palladiumkatalysator, wobei für verschiedene Arten von Substraten mit durchschnittlich 500 ppm an Katalysatormenge eine Umwandlung mit hoher Ausbeute erreicht werden soll. ( DE-Patentdokument 19,647,584 , 1996).
  • Figure DE112014002844T5_0002
  • Im Jahr 2001 entwickelten OMG und Beller gemeinsam eine neue Katalysatorart für die Palladium-Olefin-Koordination zur Verwendung bei der Suzuki-Kupplungsreaktion für chlorierte aromatische Kohlenwasserstoffe mit Borsäure, wobei die besagte Art von Katalysator besonders geeignet dafür ist, dass Chlorbenzonitril als Substrat beim Durchführen der Reaktion verwendet wird. Bei einer Menge von 500 ppm Katalysator kann die Ausbeute der Reaktion mehr als 90% erreichen, und bei der Verwendung von Fluorchlorbenzol und Chloranisol als Substrat der Reaktion ist der Effekt sehr allgemein. ( EP-Patentdokument 1,199,292 , 2001).
  • Figure DE112014002844T5_0003
  • Im Jahr 2008 berichteten Hartwig et al. von einem Liganden auf der Basis einer Ferrocen-Struktur, wobei unter Verwendung einer Menge von Palladiumacetat von nur 50–2000 ppm eine Katalyse der Buchwald-Hartwig-Reaktion für Aryliodid, Arylbromid oder Arylchlorid erzielt wurde. Die Reaktionsausbeute erreichte dabei mehr als 90%. (J. Am. Chem. Soc. 2008, 130, 6586).
  • Figure DE112014002844T5_0004
  • Hieraus ist ersichtlich, dass die industrielle Anwendung der Kreuzkupplungsreaktion besonders von der Synthese hoch wirksamer Katalysatoren abhängig ist, ganz gleich, ob es sich um eine Weiterentwicklung auf der Basis bereits vorhandener Katalysatoren handelt, oder um die Erfindung einer völlig neuen Katalysatorstruktur. Beides ist von großer Bedeutung.
  • Aufgabe der Erfindung
  • Die Aufgabe der vorliegenden Erfindung liegt darin, die vorstehend beschriebenen technischen Mängel zu überwinden und einen NHC-Palladium-Katalysator mit einer völlig neuen Struktur, Vielseitigkeit und hohen Aktivität, sowie dessen Herstellungsverfahren und Verwendung bereitzustellen, besonders bei sieben Arten von häufig anzutreffenden katalysierten Kupplungsreaktionen wie etwa Suzuki-Miyaura, Heck, Buchwald-Hartwig, Kumada-Tamao-Corriu, Sonogashira, Negishi und α-Keto-Arylierungsreaktion und anderen.
  • Die hierin beschriebene Erfindung kann ihre Aufgabe durch die folgende technische Lösung erfindungsgemäß erfüllen:
    Der NHC-Palladium-Katalysator hat die folgende Molekülstruktur:
    Figure DE112014002844T5_0005
  • In der besagten Molekülstruktur repräsentieren R1, R2, R3, R4 und R5 jeweils unabhängig H, eine Alkylgruppe, eine Heteroalkylgruppe oder eine Arylgruppe, wobei R6, R7 und R8 jeweils unabhängig H, eine Alkylgruppe, eine Heteroalkylgruppe oder eine Arylgruppe repräsentieren, R9 eine Arylgruppe oder eine Arylalkenylgruppe repräsentiert, R10 und R11 jeweils unabhängig H, eine Alkylgruppe, eine Heteroalkylgruppe oder eine Arylgruppe repräsentieren und Y Cl oder OAc repräsentiert.
  • R1, R3 und R5 repräsentieren jeweils unabhängig H, eine geradkettige oder verzweigte C1-C15-Alkylgruppe, eine geradkettige oder verzweigte C1-C15-Alkygruppe mit Stickstoff- oder Sauerstoff-Heteroatomen und aromatischen Kohlenwasserstoff, bevorzugt dabei H, eine geradkettige oder verzweigte C1-C10-Alkylgruppe sowie geradkettige oder verzweigte C1-C10-Alkygruppe mit Stickstoff oder Sauerstoff-Heteroatomen;
    die geradekettige oder verzweigte C1-C10-Alkylgruppe und geradkettige oder verzweigte C1-C10-Alkygruppe mit Stickstoff- oder Sauerstoff-Heteroatomen H, eine Methylgruppe, Ethylgruppe, Isopropylgruppe, Isobutylgruppe, 1-Ethylpropylgruppe, 1-Phenylpropylgruppe, Cyclohexylgruppe, N-Dimethylgruppe, N-Diethylgruppe, Methoxygruppe und Ethoxygruppe aufweist.
  • Dabei ist eine bevorzugte Ausführungsform, dass R6 Substituenten auf verschiedenen Positionen eines Benzolrings repräsentiert, wobei diese folgendes beinhalten: H, F, eine 2-Methylgruppe, 4-Methylgruppe, 3,5-Dimethylgruppe, 2-Methoxygruppe, 4-Methoxygruppe, 3,5-Dimethoxygruppe, 4-Tert-butylgruppe, 3,5-Di-tert-butylgruppe, 2-Nitrogruppe, 4-Nitrogruppe, 4-Nitrilgruppe, 3,4-(Methylendioxygruppe), 4-Benzoylgruppe, 4-Ethoxycarbonyl, 4-Trifluormethylgruppe und eine Phenylgruppe (eine Verbindung zur kondensierten Ringverbindung ist möglich); R7 und R8 repräsentieren jeweils unabhängig H, eine Hydroxygruppe, Alkoxygruppe, geradkettige oder verzweigte C1-C10-Alkylgruppe, eine substituierte oder unsubstituierte C6-C18-Arylgruppe und die besagte C6-C18-Arylgruppe Folgendes beinhaltet: eine Phenylgruppe, 1-Naphthylgruppe, 4-tert-Butylphenylgruppe, 3,5-Di-tert-butylphenylgruppe, 4-Methylphenylgruppe, 3,5-Dimethylphenylgruppe, 4,4'-Biphenylgruppe oder eine 3,5-Diphenylphenylgruppe.
  • Dabei ist es eine bevorzugte Ausführungsform, dass der R9 H, eine geradkettige oder verzweigte C1-C10-Alkylgruppe oder Alkenylgruppe oder eine Allylgruppe repräsentiert, bevorzugt H, eine Methylgruppe und eine Methylengruppe; R10 und R11 repräsentieren jeweils unabhängig H, eine Hydroxygruppe, Alkoxygruppe oder eine geradkettige oder verzweigte C1-C10-Alkylgruppe oder eine substituierte oder unsubstituierte C6-C18-Arylgruppe, wobei die C6-C18-Arylgruppe Folgendes umfasst: eine Phenylgruppe, 1-Naphthylgruppe, 4-Tert-butylphenylgruppe, 3,5-Di-tert-butylphenylgruppe, 4-Methylphenylgruppe, 3,5-Dimethylphenylgruppe, 4,4'-Biphenylgruppe oder 3,5-Diphenylphenylgruppe.
  • Das Herstellungsverfahren für den NHC-Palladium-Katalysator umfasst folgende Schritte:
    • A. Mit Glyoxal als Rohstoff wird durch eine Reaktion mit der in Formel (I) dargestellten primären Aminverbindung und unter Beteiligung von Lewis-Säure oder Brønsted-Säure eine in Formel (II) dargestellte Glyoxal-Diimin-Zwischenverbindung erlangt.
      Figure DE112014002844T5_0006
    • B. Die in der Formel (II) gezeigte Glyoxal-Diimin-Zwischenverbindung bildet mit Paraformaldehyd unter Einwirkung von Additiv (III) in ringförmiger Weise die in Formel (IV) gezeigte Aza-Carben-Verbindung.
      Figure DE112014002844T5_0007
    • C. Durch Palladium(II) und die in der Formel (VI) oder Formel (VII) dargestellten Imin-Verbindungen mit Carbon-Stickstoff-Doppelbindung wird unter Einfluss von einem anorganischen Salz (V) jeweils ein in der Formel (VIII) oder (IX) dargestelltes Palladium(II)-Ring-Dimer erlangt.
      Figure DE112014002844T5_0008
    • D. Durch das Palladium(II)-Ring-Dimer, das in den Formeln (VIII) oder (IX) dargestellt ist, wird durch Koordination mit der in der Formel (IV) dargestellten Aza-Carbenverbindung unter alkalischen Bedingungen der in Formel (X) oder Formel (XI) dargestellte NHC-Palladium-Katalysator erlangt.
      Figure DE112014002844T5_0009
  • Die Lewis-Säure oder Brønsted-Säure aus Schritt A wird aus einer der folgenden Arten ausgewählt: Aluminiumtrichlorid, Zinntetrachlorid, Kaliumhydrogensulfat, Ameisensäure, Essigsäure, Trifluoracetat und Titantetraethoxid.
  • In Bezug auf die Cyclisierungsreaktion aus Schritt B reagieren die in der Formel (II) dargestellten Glyoxal-Diimin-Zwischenverbindung und das Paraformaldehyd unter Einwirkung des Additivs (III); beim Additiv (III) handelt es sich dabei um eine Chlorwasserstoffsäure-Dioxan-Lösung oder Trimethylchlorsilan und dabei bevorzugt um Chlortrimethylsilan.
  • In Schritt C wird das Palladium(II) aus Palladiumchlorid, Palladiumacetat, Palladiumnitrat, Palladiumacetylacetonat oder einer Mischung von zwei Arten hiervon ausgewählt, wobei das anorganische Salz (V) aus Lithiumchlorid, Natriumbromid, Natriumiodid oder Natriumacetat ausgewählt wird, und zwar bevorzugt Natriumacetat oder Lithiumchlorid.
  • In Schritt D wird die Koordinationsreaktion unter Abwesenheit von Luft durchgeführt, wobei das für die alkalischen Bedingungen nötige Alkali aus Kaliumtertiärbutylat, Natrium-tert-butoxid, Kaliumhydroxid, Natriumethoxid, Kaliumcarbonat oder Natriumacetat ausgewählt wird.
  • Der hergestellte NHC-Palladium-Katalysator wird bei den folgenden Kupplungsreaktionen angewendet: Suzuki-Miyaura, Heck, Buchwald-Hartwig, Kumada-Tamao-Corriu, Sonogashira, Negishi sowie α-Keto-Arylierung.
  • Der NHC-Palladium-Katalysator wird bei der Suzuki-Miyaura-Reaktion angewendet, wobei er unter dem Einfluss von Alkali die Kreuzkupplungsreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffen und Arylboronsäure katalysiert, wie in Formel E dargestellt:
    Figure DE112014002844T5_0010
  • In der Formel E repräsentieren Ar, Ar' jeweils eine unabhängig substituierte oder unsubstituierte C6-C18-Arylgruppe, Stickstoff-heterozyklische aromatische C4-C10-Kohlenwasserstoffe, Sauerstoff-heterozyklische aromatische Kohlenwasserstoffe oder Schwefel-heterozyklische aromatische Kohlenwasserstoffe, X1 ist bevorzugt Cl oder Br, wobei verwendete Alkaliarten folgendes beinhalten: Kaliumtertiärbutylat, Natrium-tert-butoxid, Kaliumhydroxid, Natriumhydroxid, Kaliumphosphat, Kaliumcarbonat, Natriumcarbonat oder Natriummethylat.
  • Der NHC-Palladium-Katalysator wird bei der Heck-Reaktion angewendet, wobei er die Kupplungsreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffen und Olefin katalysiert, wie in der Formel F dargestellt ist:
    Figure DE112014002844T5_0011
  • In der Formel F repräsentiert Ar eine substituierte oder unsubstituierte C6-C18-Arylgruppe, R12 repräsentiert eine substituierte oder unsubstituierte C6-C18-Arylgruppe, einschließlich eine Estergruppe oder Benzylgruppe usw., nämlich Methylester, Ethylester, Isopropyl, Tert-butylester, wobei für X2 bevorzugt Cl oder Br gewählt wird.
  • Der NHC-Palladium-Katalysator wird bei der Buchwald-Hartwig-Reaktion angewendet, wobei er unter dem Einfluss von Alkali die Kupplungsreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffen und primärem oder sekundärem Amin katalysiert wird, wie in Formel G dargestellt:
    Figure DE112014002844T5_0012
  • In der Formel G repräsentiert Ar eine substituierte oder unsubstituierte C6-C18-Arylgruppe, R13, R14 repräsentieren jeweils unabhängig H, eine C1-C6-Alkylgruppe oder Zycloalkylgruppe, eine substituierte oder unsubstituierte C6-C18-Arylgruppe, oder es handelt sich um einen in ringförmig verbundener Weise sechsgliedrigen carbocyclischen Ring, einen sechsgliedrigen Oxa-Stickstoffring oder einen sechsgliedrigen Aza-Stickstoffring, wobei für X3 bevorzugt Cl oder Br gewählt wird, wobei verwendete Alkaliarten folgendes beinhalten: Kaliumtertiärbutylat, Natrium-tert-butoxid, Kaliumhydroxid, Natriumhydroxid, Kaliumphosphat, Kaliumcarbonat, Natriumcarbonat oder Natriummethylat.
  • Der NHC-Palladium-Katalysator wird bei der Sonogashira-Reaktion angewendet, wobei unter dem Einfluss von Alkali die Kupplungsreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffen und terminalen Alkinen katalysiert wird, wie in Formel H dargestellt:
    Figure DE112014002844T5_0013
  • In der Formel G repräsentiert R15 eine C1-C10-Alkylgruppe und eine Zycloalkylgruppe, R16 repräsentiert eine substituierte oder unsubstituierte C6-C18-Arylgruppe, eine geradkettige C1-C10-Alkylgruppe, eine verzweigte Alkylgruppe oder Zycloalkylgruppe oder Alkoxygruppe, für X4 wird bevorzugt Br gewählt, wobei verwendete Alkaliarten folgendes beinhalten: Kaliumtertiärbutylat, Natrium-tert-butoxid, Kaliumhydroxid, Natriumhydroxid, Kaliumphosphat, Kaliumcarbonat, Natriumcarbonat oder Natriummethylat.
  • Der NHC-Palladium-Katalysator wird bei der Kumada-Tamao-Corriu-Reaktion verwendet, wobei er die Kupplungsreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffe mit Reagenzien im Arylgruppenformat katalysiert, wie in Formel I dargestellt:
    Figure DE112014002844T5_0014
  • In der Formel I repräsentiert Ar eine substituierte oder unsubstituierte C6-C18-Arylgruppe, R17 repräsentiert eine substituierte oder unsubstituierte C6-C18-Arylgruppe, eine fünf- oder sechsgliedrige Stickstoff-heterocyklische aromatische Gruppe, eine fünf- oder sechsgliedrige Sauerstoff-heterocyklische Arylgruppe oder eine fünfgliedrige Schwefel-heterocyklische Arylgruppe, wobei für X5 bevorzugt Cl oder Br gewählt wird.
  • Der NHC-Palladium-Katalysator wird bei der Negishi-Reaktion verwendet, wobei er die Kupplungsreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffen und organischem Zinkreagens katalysiert, wie in Formel J dargestellt:
    Figure DE112014002844T5_0015
  • In der Formel J repräsentiert Ar eine substituierte oder unsubstituierte C6-C18-Arylgruppe, R18 repräsentiert eine substituierte oder unsubstituierte C6-C18-Arylgruppe, eine Benzylgruppe oder Homoallylgruppe, wobei für X6 bevorzugt Cl oder Br gewählt wird.
  • Der NHC-Palladium-Katalysator wird bei einer α-Keto-Arylierungsreaktion verwendet, wobei er eine α-Ketonreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffen katalysiert, wie in Formel K dargestellt:
    Figure DE112014002844T5_0016
  • In der Formel K repräsentiert Ar eine substituierte oder unsubstituierte C6-C18-Arylgruppe, R19 repräsentiert eine substituierte oder unsubstituierte C6-C18-Arylgruppe, eine fünf- oder sechsgliedrige heterocyklische aromatische Gruppe, eine fünf- oder sechsgliedrige Sauerstoff-heterocyklische Arylgruppe oder eine fünfgliedrige Schwefel-heterocyklische Arylgruppe, R20 repräsentiert eine geradkettige C1-C6-Alkylgruppe, eine verzweigte Alkylgruppe oder eine Zycloalkylgruppe, wobei R19 und R20 zu einem Ring verbunden sein können und für X7 bevorzugt Cl oder Br gewählt werden, wobei die verwendeten Alkaliarten Folgendes beinhalten: Kaliumtertiärbutylat, Natrium-tert-butoxid, Kaliumhydroxid, Natriumhydroxid, Kaliumphosphat, Kaliumcarbonat, Natriumcarbonat oder Natriummethylat.
  • Verglichen mit den gegenwärtig bekannten Katalysatoren umfasst die vorliegende Erfindung die folgenden Vorteile einer völlig neuen Struktur eines Aza-Carben-Katalysators:
    • (1) Hohe Aktivität: Der Katalysator verwendet Aza-Carben als einen Teil der darin vorhandenen Verteilungskörper, wodurch nicht nur die Aktivität des Katalysators verbessert wird, sondern auch die Reaktionsgeschwindigkeit der oxidativen Addition der Kupplungsreaktion beschleunigt wird, und außerdem profitiert er von den Eigenschaften des Aza-Carbenliganden, was zu einer starken Verbesserung der Stabilität des Katalysators an der Luft führt. Weiterhin wird zum ersten Mal eine Imin-Struktur als Balance-Ligand eines Katalysators verwendet, und durch Modifizierung der Substituentengruppe auf dem Imin-Benzolring sowie der Variation der Substituenten an den Imin-Stickstoffgruppen wird die Fähigkeit des Balance-Liganden zur weiteren Anpassung für mögliche Katalysatoraktivität erheblich verbessert.
    • (2) Vielseitigkeit: Der Katalysator der vorliegenden Erfindung verfügt über eine sehr hohe katalytische Aktivität, die noch weiter angepasst ist und dadurch kann er bei sieben Arten von häufig anzutreffenden katalysierten Kupplungsreaktionen angewendet werden, wie etwa Suzuki-Miyaura, Heck, Buchwald-Hartwig, Kumada-Tamao-Corriu, Sonogashira, Negishi und α-Keto-Arylierungsreaktion und anderen. Insbesondere bei Bedingungen mit einer sehr geringen Katalysatormenge (weniger als 500 ppm) können gute Ergebnisse erzielt werden, wodurch gute Aussichten für eine industrielle Anwendung bestehen.
  • Beschreibung der bevorzugten Ausführungsbeispiele
  • Im Folgenden wird unter Einbeziehung von konkreten Ausführungsbeispielen in Bezug auf die vorliegende Erfindung eine detaillierte Erläuterung gegeben.
  • Ausführungsbeispiel 1
  • N,N'-Bis-(2,6-diisopropylphenyl)carbodiimidethan-Synthese:
  • In den Reaktor werden 36,3 g Glyoxal gegeben (0,25 Mol, 40%-ige Lösung), Ethanol 350 ml, und dann werden 88,5 g 2,6-Diisopropylanilin (0,5 Mol) sowie 1,15 g Ameisensäure (0,025 Mol) hinzugefügt; bei Umgebungstemperatur (15–20°C) wird unter Rühren die Reaktion für 3 Stunden ausgeführt. Die Reaktionslösung wird filtriert und mit 150 ml Methanol-Filterkuchen ausgewaschen, der Filterkuchen wird dann auf ein konstantes Gewicht getrocknet. Dann kann N,N'-Bis-(2,6-diisopropylphenyl)-carbodiimidethan erlangt werden. Das Produkt ist ein hellgelber Feststoff mit einem Gewicht von 85,1 g, wobei die Ausbeute bei 91% liegt. 1H NMR (500 MHz, Chloroform) δ 8,41 (s, 2H), 7,46 (t, J = 7.5 Hz, 2H), 7,21 (d, J = 7,5 Hz, 4H), 3,00 (hept, J = 6,3 Hz, 4H), 1,21 (d, J = 6,4 Hz, 24H). Durch Wiederholen des obigen Prozesses wird eine ausreichende Menge an N,N'-Bis-(2,6-diisopropylphenyl)ethan-diimin-Produkt für den Gebrauch produziert.
  • Verbindung von 1,3-Bis(2,6-diisopropylphenyl)chloraluminat:
  • In den Reaktor werden 8,1 g Paraformaldehyd (0,27 Mol), 101,5 g N, N'-Bis-(2,6-diisopropylphenyl)ethancarbodiimid (0,27 Mol) und 1,5 L Ethylacetat-Lösung gegeben, bis 70°C erhitzt und gleichmäßig verrührt; es werden dann langsam 45,8 g Tetrachlorsilan (0,27 Mol) tropfenweisse zugegeben, wobei das Zutropfen in kontrollierter Weise auf 45 Minuten bis 1 Stunde festgelegt wird, und unter Rühren wird die Reaktion dann 3 Stunden fortgesetzt. Die Reaktionslösung wird filtriert, der Filterkuchen wird mit 200 ml Ethylacetat gewaschen, und danach auf ein konstantes Gewicht getrocknet, wodurch das Zielprodukt 1,3-Bis-(2,6-diisopropylphenyl)chloraluminat erlangt wird. Das Produkt ist ein grau-weißer Feststoff, 97,4 g, bei einer Ausbeute von 85%. 1H NMR (500 MHz, Chloroform) δ 10,04 (s, 2H), 8,14 (s, 2H), 7,58 (t, J = 8,0 Hz, 2H), 7,36 (d, J = 7,5 Hz, 4H), 2,43-2,49 (m, 4H), 1,30 (d, J = 6,5 Hz, 12H), 1,25 (d, J = 7,0 Hz, 12H). Das Wiederholen des obigen Prozesses ergibt eine ausreichende Menge an 1,3-Bis-(2,6-diisopropylphenyl)chloraluminat, so dass ein Fungieren als NHC-Ligand des Katalysators möglich ist.
  • Ausführungsbeispiel 2
  • Die im Ausführungsbeispiel 1 zugegebenen 88,5 g 2,6-Diisopropylanilin (0,5 Mol) werden zu 67,5 g 2,4,6-Trimethylanilin (0,5 Mol) geändert, wobei die anderen Bedingungen unverändert sind; nach Beendigung der Reaktion werden 64,3 g N,N'-Bis-(2,4,6-trimethylphenyl)ethaniimin erlangt, wobei die Ausbeute bei 88% liegt. 1H NMR (500 MHz, Chloroform) δ 7,92 (s, 2H), 7,00 (s, 4H), 2,45 (s, 12H), 2,37 (s, 6H).
  • Unter Verwendung des erlangten N,N'-Bis-(2,4,6-trimethylphenyl)ethaniimin und dessen Reaktion mit Paraformaldehyd unter dem Einfluss von Tetrachlorsilan kann 1,3-Bis(2,4,6-trimethylphenyl)imidazoliumchlorid erzielt werden. 1H NMR (500 MHz, Chloroform) δ 6,68 (s, 4H), 5,56 (s, 2H), 4,02 (s, 1H), 2,34 (s, 6H), 2,26 (s, 12H). Die Verwendung als NHC-Ligand eines Katalysators ist möglich.
  • Ausführungsbeispiel 3
  • Die im Ausführungsbeispiel 1 hinzugegebenen 88,5 g 2,6-Diisopropylanilin (0,5 Mol) wurden zu 164,5 g 2,6-Bis(1-phenylpropyl)anilin (0,5 Mol) geändert, wobei die anderen Bedingungen gleich bleiben, und nach der Reaktion werden 147,9 g des Zielprodukts N,N'-bis-(2,6-di(1-phenyl-propyl)phenyl)ethandiimin erlangt, wobei die Ausbeute 87% beträgt. 1H NMR (500 MHz, Chloroform) δ 8,61 (s, 2H), 7,48 (t, J = 7,4 Hz, 2H), 7,34-7,23 (m, 20H), 7,22 (t, J = 6,9 Hz, 4H), 4,13 (t, J = 7,2 Hz, 4H), 1,96 (dd, J = 11,4, 4,5 Hz, 4H), 1,92 (dd, J = 11,3, 4,5 Hz, 4H), 1,03 (t, J = 6,7 Hz, 12H)
  • Unter Verwendung des erlangten N,N'-bis-(2,6-di(1-phenyl-propyl)phenyl)ethandiimin wird durch dessen Reaktion mit Paraformaldehyd unter Einfluss von Tetrachlorsilan 1,3-Bis(2,6-bis(1-phenylpropyl)phenyl)imidazoliumchlorid erhalten. 1H NMR (500 MHz, Chloroform) δ 7,61-7,20 (m, 21H), 7,13 (d, J = 7,3 Hz, 4H), 7,05 (dd, J = 8,0, 6,8 Hz, 2H), 5,78 (s, 2H), 4,38 (s, 1H), 4,19-4,12 (m, 4H), 1,99-1,86 (m, 8H), 1,02 (t, J = 6,7 Hz, 12H). Es kann als NHC-Ligand für den Katalysator verwendet werden.
  • Ausführungsbeispiel 4
  • Die in Ausführungsbeispiel 1 zugegebenen 88,5 g 2,6-Diisopropylanilin (0,5 Mol) werden durch den 89,5 g 2,6-Di-N-dimethylanilin (0,5 Mol) ersetzt, wobei die anderen Bedingungen unverändert bleiben, wobei nach Beendigung der Reaktion 87,4 g an N,N'-bis-(2,6-dimethyl-N-phenyl)ethandiimin erlangt werden, wobei die Ausbeute 92% beträgt. 1H NMR (500 MHz, Chloroform) δ 8,75 (s, 2H), 6,96 (t, J = 7,5 Hz, 3H), 6,16 (d, J = 7,5 Hz, 4H), 3,03 (s, 24H).
  • Unter Verwendung des erlangten N,N'-bis-(2,6-dimethyl-N-phenyl)ethandiimin wird durch eine Reaktion mit Paraformaldehyd unter der Wirkung von Tetrachlorsilan 1,3-Bis(2,6-distickstoffdimethylphenyl)imidazoliumchlorid erhalten. 1H NMR (500 MHz, Chloroform) δ 6,55 (t, J = 7,5 Hz, 2H), 5,96 (d, J = 7,5 Hz, 4H), 5,71 (s, 2H), 4,83 (s, 1H), 3,03 (s, 24H). Es kann als NHC-Ligand des Katalysators verwendet werden.
  • Ausführungsbeispiel 5
  • Die in Ausführungsbeispiel 1 zugegebenen 45,8 g an Tetrachlorsilan (0,27 Mol) werden zu 67,5 ml 4 M Salzsäure in Dioxan (0,27 Mol HCl) geändert, dabei bleiben die anderen Bedingungen unverändert, und nach der Reaktion wird gleichfalls das Zielprodukt 1,3-Bis-(2,6-diisopropylphenyl)imidazolchlorid erzielt, wobei die Ausbeute 50% beträgt.
  • Ausführungsbeispiel 6
  • Acetophenonoxim-Methylpalladiumring-Dimer-Verbindung:
  • Die in den Reaktionskolben gegebenen 17,7 g Palladiumchlorid (0,1 Mol), 8,5 g Lithiumcarbonat (0,2 Mol) und 500 ml Methanol-Chloridlösung werden bis zur vollständigen Lösung gerührt. Danach werden 8,2 g Natriumacetat (0,1 Mol) und 14,9 g Methyl-acetophenonoxim (0,1 Mol) zugegeben. Dann wird bei Raumtemperatur (15–20°C) die Reaktion für 3 Tage unter Rühren fortgeführt. Die Reaktionslösung wird filtriert und der Filterkuchen wird mit 100 ml Methanol gewaschen; der Filterkuchen wird bis zur Gewichtskonstanz getrocknet, woraufhin Acetophenonoxim-Methylpalladiumring-Dimere erlangt wird. Das Produkt ist ein gelb-grünes Pulver, 23,9 g, 83% Ausbeute. 1H NMR (500 MHz, Chloroform) δ 7,82-7,80 (m, 2H), 7,57-7,46 (m, 4H), 7,18-7,05 (m, 2H), 3,98 (s, 3H), 3,94 (s, 3H), 2,34 (s, 6H).
  • Ausführungsbeispiel 7
  • Die in Ausführungsbeispiel 6 hinzugefügten 14,9 g Methylacetophenonoxim (0,1 Mol) werden zu 13,5 g Oxim (0,1 Mol) geändert; sonst bleiben die Bedingungen gleich; nach der Reaktion werden 22,4 g Acetophenonoxim-Methylpalladiumring-Dimere erhalten, wobei die Ausbeute bei 80% liegt. 1H NMR (500 MHz, Chloroform) δ 7,82 (s, 1H), 7,68-7,55 (m, 2H), 7,55-6,72 (m, 2H), 3,37 (s, 3H).
  • Ausführungsbeispiel 8
  • Die im Ausführungsbeispiel 6 hinzugefügten 14,9 g Methylacetophenonoxim (0,1 Mol) werden zu 18,1 g Benzaldehyd-Benzol-Imin (0,1 Mol) geändert, wobei die anderen Bedingungen unverändert bleiben; und nach der Reaktion werden 27,3 g Benzaldehyd-Benzolring-Imid-Palladium-Dimere erlangt, wobei die Ausbeute bei 84% liegt. 1H NMR (500 MHz, Chloroform) δ 8,90 (s, 1H), 7,59 (dd, J = 17,1, 9,6 Hz, 5H), 7,49-7,43 (m, 2H), 7,41 (s, 1H), 7,36 (s, 1H), 7,13 (s, 1H).
  • Ausführungsbeispiel 9
  • Die im Ausführungsbeispiel 6 hinzugefügten 14,9 g Methylacetophenonoxim (0,1 Mol) werden zu 19,5 Benzyl-Formaldehyd-Benzol-Imin (0,1 Mol) geändert, wobei sonst alle Bedingungen gleich bleiben, und nach der Reaktion von Formaldehyd-Benzol-Imin werden 24,8 g an Benzyl-Palladiumring-Dimer erlangt, wobei die Ausbeute bei 74% liegt. 1H NMR (500 MHz, Chloroform) δ 7,90 (s, 1H), 7,50-7,38 (m, 2H), 7,38-7,17 (m, 5H), 7,16-7,07 (m, 3H), 3,83 (s, 1H).
  • Ausführungsbeispiel 10
  • NHC(IPR)-Acetophenonoxim Methylpalladiumkatalysator-Synthese:
  • In einer inerten Atmosphäre werden in den Reaktor 29,0 g Acetophenonoxim-Methylpalladiumring-Dimer (0,05 mol), 5,6 g Kalium-tert-butoxid (0,05 Mol) und 230 ml wasserfreies Tetrahydrofuran gegeben. Zugegeben werden auch noch 42,5 g 1,3-Bis-(2,6-diisopropylphenyl)imidazolchlorid (0,1 Mol), wobei die Reaktion der Reaktionsflüssigkeit bei Raumtemperatur (15–20°C) für 24 Stunden unter Rühren weitergeführt wird. Die Reaktionslösung wird filtriert, mit 100 ml Ethylacetat gewaschen, aus den vereinigten Filtraten das Lösungsmittel entfernt und diese getrocknet, wodurch das gewünschte Produkt NHC(IPr)-Acetophenonoxim-Methylpalladiumkatalysator erzielt wird. Das Produkt ist ein hellgelber Feststoff, 30,2 g, wobei die Ausbeute 44% beträgt. 1H NMR (500 MHz, Chloroform) δ 7,38 (t, J = 7,8 Hz, 2H), 7,31-7,29 (m, 2H), 7,23 (s, 2H), 7,17-7,16 (m, 2H), 7,08-7,06 (m, 1H), 6,90 (dt, J = 25, 7,5 Hz 2H), 6,70 (d, J = 7,5 Hz, 1H), 3,84 (s, 3H), 3,41-3,17 (m, 4H), 2,16 (s, 3H), 1,48 (d, J = 6,5 Hz, 6H), 1,14 (d, J = 7,0 Hz, 6H), 1,00 (d, J = 7,0 Hz, 6H), 0,80 (d, J = 6,5 Hz, 6H).
  • Ausführungsbeispiel 11
  • NHC(IPR)-Acetophenon-Oxim-Palladium-Katalysator-Synthese:
  • Die im Ausführungsbeispiel 10 hinzugefügten 29,0 g Acetophenon-Methyl-Oxim-Palladiumring-Dimer (0,05 Mol) werden zu 27,6 g Acetophenon-Oxim-Palladiumring-Dimer (0,05 Mol) geändert, wobei die anderen Bedingungen gleich bleiben und durch die Reaktion NHC(IPR)-Acetophenon-Oxim-Palladium-Katalysator erhalten wird. Das Produkt ist dabei ein gelbes Pulver, 30,4 g, wobei die Ausbeute bei 53% liegt. 1H-NMR (500 MHz, Chloroform) δ 10,46 (s, 1H), 7,42 (t, J = 7,8 Hz, 2H); 7,32-7,31 (m, 2H), 7,24 (s, 2H), 7,20-7,19 (m, 2H), 6,93-6,88 (m, 2H), 6,80 (dt, J = 7,3, 2,0 Hz 1H), 6,61 (d, J = 7,0 Hz, 1H), 3,24-3,09 (m, 4H), 2,06 (s, 3H), 1,46 (d, J = 6,5 Hz, 6H), 1,18 (d, J = 7,0 Hz, 6H), 1,00 (d, J = 7,0 Hz, 6H), 0,81 (d, J = 7,0 Hz, 6H)
  • Ausführungsbeispiel 12
  • Die im Ausführungsbeispiel 10 hinzugefügten 29,0 g Acetophenonoxim-Methylpalladiumring-Dimer (0,05 Mol) werden zu 32,2 g Benzaldehydimin-Benzolring-Palladium-Dimer (0,05 Mol) geändert, wobei die anderen Bedingungen unverändert bleiben, und durch die Reaktion wird NHC(Pr)-Benzaldehyd-Benzol-Imin-Palladium-Katalysator erhalten. Das Produkt ist ein gelbes Pulver, 34,3 g, bei einer Ausbeute von 48%. 1H NMR (500 MHz, Chloroform) δ 8,68 (s, 1H), 7,44 (dddd, J = 15,5, 9,5, 8,9, 4,4 Hz, 5H), 7,77-6,61 (m, 16H), 7,52-6,61 (m, 12H), 7,36-5,60 (m, 10H), 7,01 (dd, J = 8,0, 7,0 Hz, 2H), 7,07-5,60 (m, 5H), 5,73 (s, 2H), 3,23 (hept, J = 6,3 Hz, 4H), 1,47 (d, J = 6,5 Hz, 6H), 1,16 (d, J = 7,0 Hz, 6H), 1,00 (d, J = 7,0 Hz, 6H), 0,80 (d, J = 6,5 Hz, 6H).
  • Ausführungsbeispiel 13
  • Synthese von NHC-(IMES)-Acetophenonoxim-Methylpalladiumkatalysator:
  • Die im Ausführungsbeispiel 10 hinzugefügten 42,5 g 1,3-Bis-(2,6-diisopropylphenyl)imidazolchlorid (0,1 Mol) werden durch 34,9 g 1,3-Bis(2,4,6-trimethylphenyl)imidazoliumchlorid ersetzt, wobei die anderen Bedingungen gleich bleiben, und nach der Reaktion wird NHC(IMES)-Acetophenonoxim-Methylpalladiumkatalysator erhalten. Das Produkt ist ein hellgelber Feststoff, 29,0 g, bei einer Ausbeute von 44%. 1H NMR (500 MHz, Chloroform) δ 8,51-6,88 (m, 4H), 7,46 (dqd, J = 16,5, 7,5, 1,6 Hz, 2H), 7,46 (dqd, J = 16,5, 7,5, 1,6 Hz, 2H); 6,79 (s, 4H), 5,72 (s, 2H), 3,82 (s, 3H), 3,33 (s, 3H), 2,35 (s, 6H), 2,27 (s, 12H).
  • Ausführungsbeispiel 14
  • Anwendung bei der Suzuki-Miyaura-Kupplungsreaktion:
  • In einer inerten Atmosphäre werden in den Reaktor 12,6 g o-Chlortoluol (0,1 Mol), 12,2 g Phenylboronsäure (0,1 Mol), 8,4 g Kaliumhydroxid (0,15 Mol) und 500 ppm des in der Formel (X) oder Formel (XI) dargestellten Aza-Carben-Palladium-Katalysators gegeben, sowie 10 ml Isopropylalkohol. Nachdem das Reaktionsgemisch bei 80°C 2 Stunden gerührt wurde, wird die Reaktion gestoppt. Das Lösungsmittel der Reaktionslösung wird entfernt, um das Rohprodukt zu erhalten, wobei die Gasausbeute > 99% beträgt. Nach Reinigung durch Säulenchromatographie werden 16,1 g des Zielprodukts erhalten, und die Ausbeute nach Isolation 95% beträgt. 1H NMR (500 MHz, Chloroform) δ 7,63 (s, 1H), 7,46 (t, J = 8,8 Hz, 3H), 7,39-7,30 (m, 5H), 2,23 (s, 3H).
  • Ausführungsbeispiel 15
  • Die im Ausführungsbeispiel 14 hinzugefügten 18,1 g o-Chlortoluol (0,1 mol) werden zu 22,2 g Chlorbenzoltrifluorid (0,1 Mol) geändert, wobei die Bedingungen sonst gleich bleiben, und nach einer Reinigung durch Säulenchromatographie werden 21,5 g des Zielprodukts erhalten, wobei die Ausbeute nach Isolation 97% beträgt. 1H NMR (500 MHz, Chloroform) δ; 7,79-7,62 (m, 4H), 7,52-7,36 (m, 5H).
  • Ausführungsbeispiel 16
  • Die in Ausführungsbeispiel 14 hinzugefügten 18,1 g o-Chlortoluol (0,1 mol) werden zu 16,2 g α-Chlornaphthalin (0,1 mol) geändert, wobei die sonstigen Bedingungen gleich bleiben und nach Reinigung durch Säulenchromatographie 17,9 g des Zielprodukts erlangt werden, wobei die Trennungsausbeute bei 88% liegt. 1H NMR (500 MHz, Chloroform) δ 8,58 (m, 1H), 8,24 (dd, J = 7,5, 1,4 Hz, 1H), 7,89 (m, 3H), 7,76 (m, 3H), 7,69 (d, J = 7,5 Hz, 1H), 7,40 (m, 7H).
  • Ausführungsbeispiel 17
  • Die in Ausführungsbeispiel 14 hinzugefügten 18,1 g o-Chlortoluol (0,1 Mol) werden stattdessen durch 11,3 g von 3-Chlorpyridin (0,1 Mol) ersetzt, sonst bleiben die Bedingungen gleich, wobei nach der Säulenchromatographie 14,4 g erzielt werden und die Ausbeute 93% beträgt. 1H NMR (500 MHz, Chloroform) δ 8,94 (d, J = 1,3 Hz, 1H), 8,58 (dd, J = 7,5, 1,3 Hz, 1H), 8,24 (dt, J = 7,5, 1,6 Hz, 1H), 7,46 (m, 6H).
  • Ausführungsbeispiel 18
  • Die in Ausführungsbeispiel 14 hinzugefügten 12,2 g Benzolboronsäure (0,1 Mol) werden zu 15,0 g 3,5-Dimethylbenzol-Boronsäure (0,1 Mol) geändert, wobei die Bedingungen sonst gleich bleiben und nach Reinigung durch Säulenchromatographie 18,2 g des Zielprodukts erzielt werden, wobei die isolierte Ausbeute bei 93% liegt. 1H NMR (500 MHz, Chloroform) δ 7,68 (d, J = 1,4 Hz, 2H), 7,54 (d, J = 7,5 Hz, 2H), 7,40 (t, J = 1,4 Hz, 1H), 7,19 (d, J = 7,5 Hz, 2H), 2,44 (s, 6H), 2,42 (s, 3H).
  • Ausführungsbeispiel 19
  • Anwendung bei der Heck-Reaktion:
  • In einer inerten Atmosphäre werden in den Reaktor 14,3 g Chlor-Anisol (0,1 mol) und 12,8 g t-Butylacrylat (0,1 Mol) zugegeben, und es werden weiter 500 ppm der in der Formel (X) oder Formel (XI) beschriebenen Aza-Carben-Palladium-Katalysator und 10 ml N,N-Dimethylacetamid hinzugegeben. Die Reaktion wird unter Rühren bei 120°C 10 Stunden lang ausgeführt. Das Lösungsmittel der Reaktionslösung wird eliminiert, um das Rohprodukt zu erhalten. Nach Reinigung durch Säulenchromatographie werden 19,2 g des gewünschten Produkts, wobei die Ausbeute nach Isolierung bei 82% liegt. 1H NMR (500 MHz, Chloroform) δ 7,84 (d, J = 7,5 Hz, 2H), 7,69 (d, J = 15,0 Hz, 1H), 7,22 (d, J = 7,5 Hz, 2H), 6,45 (d, J = 15,2 Hz, 1H), 3,87 (s, 3H), 1,47 (s, 9H).
  • Ausführungsbeispiel 20
  • Die im Ausführungsbeispiel 19 hinzugefügten 12,8 g Acrylsäure-tert-butylester (0,1 Mol) werden durch 8,6 g Acrylsäuremethylester (0,1 Mol) ersetzt. Die anderen Bedingungen bleiben gleich. Nach der säulenchromatographischen Reinigung werden 16,3 g des Zielprodukts erhalten, wobei die Ausbeute nach Isolierung bei 85% liegt. 1H NMR (500 MHz, Chloroform) δ 7,84 (d, J = 7,5 Hz, 2H), 7,69 (d, J = 15,0 Hz, 1H), 7,22 (d, J = 7,3 Hz, 2H), 6,45 (d, J = 15,2 Hz, 1H), 3,87 (s, 3H), 3,84 (s, 3H).
  • Ausführungsbeispiel 21
  • Die in Ausführungsbeispiel 19 hinzugefügten 14,3 g p-Chlor Anisol (0,1 Mol) werden zu 14,1 g 3,5-Dimethyl-dichlorbenzol (0,1 Mol) geändert, wobei 12,8 g tert-Butylacrylat (0,1 Mol) zu 10,4 g Styrol (0,1 Mol) geändert werden, sonst bleiben die Bedingungen gleich und nach Reinigung durch Säulenchromatographie 18,3 g des Zielprodukts erhalten werden, die Ausbeute nach Isolierung liegt bei 88%. 1H NMR (500 MHz, Chloroform) δ 7,63 (dd, J = 7,5, 1,3 Hz, 2H), 7,42 (t, J = 7,5 Hz, 2H), 7,32-7,23 (m, 1H), 7,22-7,14 (m, 4H), 2,43 (s, 6H).
  • Ausführungsbeispiel 22
  • Die in Ausführungsbeispiel 19 hinzugefügten 14,3 g des Chloranisols (0,1 Mol) werden zu 16,2 g α-Chlornaphthalin (0,1 Mol) geändert, und sonst bleiben alle Bedingungen gleich. Nach der Reinigung durch Säulenchromatographie werden 20,1 g des Zielprodukts erlangt, wobei die Ausbeute bei 79% liegt. 1H NMR (500 MHz, Chloroform) δ 7,99 (m, 1H), 7,87 (m, 2H), 7,73 (m, 3H), 7,61 (t, J = 7,5, 1,4 Hz, 1H), 7,44 (td, J = 7,5, 1,4 Hz, 1H), 6,41 (d, J = 15,0 Hz, 1H), 1,48 (s, 9H).
  • Ausführungsbeispiel 23
  • Anwendung bei der Buchwald-Hartwig-Reaktion:
  • In einer inerten Atmosphäre wurden in den Reaktor 14,2 g Chlor-anisol (0,1 Mol), 9,9 g Cyclohexylamin (0,1 Mol) und 16,8 g Kalium-tert-butoxid (0,15 Mol) zugegeben. Außerdem werden 500 ppm des in der Formel (X) oder der Formel (XI) dargestellten Aza-Carben-Palladium-Katalysators und 15 ml N,N-Dimethylformamid tropfenweise hinzugegeben. Die Reaktion wird bei 80°C 5 Stunden lang unter Rühren fortgesetzt. Das Lösungsmittel der Reaktionslösung wird eliminiert, um das Rohprodukt zu erlangen. Durch eine Reinigung durch Säulenchromatographie werden 17,4 g des Zielprodukts erlangt, wobei die Ausbeute nach Isolierung 85% beträgt. 1H NMR (500 MHz, Chloroform) δ 6,70 (m, 4H), 3,89 (s, 1H), 3,87 (s, 3H), 3,01 (p, J = 7,3 Hz, 1H), 1,94 (dt, J = 7,3, 5,7 Hz, 2H), 1,73 (m, 3H), 1,37 (m, 5H).
  • Ausführungsbeispiel 24
  • Die in Ausführungsbeispiel 23 hinzugefügten 14,2 g Chloranisol (0,1 Mol) werden zu 15,4 g 2,4,6-Trimethyl-Chlorbenzol geändert; die hinzugefügten 9,9 g Cyclohexylamin (0,1 Mol) werden zu 9,3 g Anilin (0,1 Mol) geändert; alle übrigen Bedingungen bleiben gleich; nach Reinigung durch Säulenchromatographie werden 19,2 g des Zielprodukt erlangt, wobei die Ausbeute nach Isolierung bei 91% liegt. 1H NMR (500 MHz, Chloroform) δ 7,32 (dd, J = 16,1, 8,6 Hz, 3H), 7,14 (dd, J = 7,5, 1,4 Hz, 2H), 6,95 (tt, J = 7,6, 1,4 Hz, 1H), 6,83 (s, 2H), 2,35 (s, 3H), 2,20 (s, 6H).
  • Ausführungsbeispiel 25
  • Die in Ausführungsbeispiel 23 hinzugefügten 9,9 g Cyclohexylamin (0,1 Mol) werden zu 8,7 g Morpholin (0,1 Mol) geändert, wobei die anderen Bedingungen gleich bleiben und durch eine Reinigung mit Säulenchromatographie 17,0 g des Zielprodukts erlangt werden, wobei die Ausbeute nach Isolierung 88% beträgt. 1H NMR (500 MHz, Chloroform) δ 6,87 (d, J = 7,5 Hz, 1H), 6,70 (d, J = 7,5 Hz, 1H), 3,85 (dd, J = 12,8, 6,5 Hz, 4H), 3,46 (t, J = 6,2 Hz, 1H), 3,14 (t, J = 6,1 Hz, 1H).
  • Ausführungsbeispiel 26
  • Die in Ausführungsbeispiel 23 hinzugefügten 14,2 g Chloranisol (0,1 mol) werden zu 16,2 g 1-Chlor-naphthalin (0,1 Mol) geändert, und die zugegebenen 9,9 g Cyclohexylamin (0,1 Mol) werden zu 7,3 g Diethylamin gerändert. Alle übrigen Bedingungen bleiben gleich. Nach Reinigung durch Säulenchromatographie werden 16,5 g des Zielprodukts erlangt. Das sind 83% Ausbeute nach Isolierung. 1H NMR (500 MHz, Chloroform) δ 8,31 (m, 1H), 7,64 (m, 4H), 7,40 (m, 1H), 7,20 (m, 1H), 3,72 (q, J = 6,3 Hz, 2H), 3,56 (q, J = 6,2 Hz, 2H), 1,21 (t, J = 6,3 Hz, 6H).
  • Ausführungsbeispiel 27
  • Anwendung bei der Sonogashira-Reaktion:
  • In einer inerten Atmosphäre werden in den Reaktor 14,9 g Cyclo-Bromid (0,1 Mol), 10,8 g Cyclohexanacetylen (0,1 mol) und 29,0 g Cäsiumcarbonat (0,15 Mol) zugegeben, außerdem werden 500 ppm des in der Formel (X) oder der Formel (XI) dargestellten Aza-Palladium-Carben-Katalysators, 2000 ppm Kupferiodid und 15 ml N,N-Dimethylformamid tropfenweise hinzugefügt. Die Reaktion wurde bei 60°C 10 Stunden lang unter Rühren ausgeführt. Das Lösungsmittel der Reaktionslösung wird eliminiert, um das Rohprodukt zu erhalten. Durch Säulenchromatographie gereinigt werden 8,4 g des gewünschten Produkts erzielt, wobei die Ausbeute nach Isolierung 48% beträgt. 1H NMR (500 MHz, Chloroform) δ 2,55 (m, 1H), 2,47 (pd, J = 7,8, 2,6 Hz, 1H), 2,01 (dt, J = 7,9, 5,7 Hz, 2H), 1,77 (m, 9H) 1,53 (m, 4H), 1,35 (m, 3H).
  • Ausführungsbeispiel 28
  • Die im Ausführungsbeispiel 27 hinzugefügten 10,8 g Cyclohexan-Acetylen (0,1 Mol) werden zu 6,8 g 1-Pentinyl geändert, wobei sonst alle Bedingungen gleich bleiben. Nach der Reinigung durch Säulenchromatographie erhält man 7,8 g des Zielprodukts, wobei die Ausbeute bei Isolierung 57% beträgt. 1H NMR (500 MHz, Chloroform) δ 2,55 (m, 1H), 2,34 (td, J = 5,4, 2,5 Hz, 2H), 1,80 (dddd, J = 12,0, 9,0, 4,6, 2,0 Hz, 4H), 1,73 (dtd, J = 7,1, 3,8, 1,9 Hz, 2H), 1,68 (m, 2H), 1,54 (tdd, J = 6,9, 3,1, 2,0 Hz, 2H), 1,12 (t, J = 6,6 Hz, 3H).
  • Ausführungsbeispiel 29
  • Die in Ausführungsbeispiel 27 hinzugefügten 14,9 g zugegebenem Cyclo-Bromid (0,1 Mol) werden zu 17,1 g Benzylbromid (0,1 mol) geändert, und die 10,8 g Cyclohexan-Acetylen (0,1 mol) werden zu 10,2 g Phenylacetylen (0,1 Mol) geändert, wobei sonst alle Bedingungen gleich bleiben. Nach der Reinigung durch Säulenchromatographie, erhält man 13,2 g des Zielprodukts, wobei die Ausbeute bei Isolierung 69% beträgt. 1H NMR (500 MHz, Chloroform) δ 7,52 (m, 2H), 7,37 (m, 3H), 7,21 (m, 5H), 3,77 (s, 2H).
  • Ausführungsbeispiel 30
  • Anwendung bei der Kumada-Tamao-Corriu-Reaktion:
  • In einer inerten Atmosphäre werden in den Reaktor 15,5 g 2,4,6-Trimethylchlorbenzol (0,1 Mol) sowie 35,7 ml eines Naphthalin-Format-Reagenz (0,1 Mol, 2,8 M in Diethylether) gegeben, wobei außerdem 500 ppm von Aza-Carbene-Palladium-Katalysator der Formel (X) oder Formel (XI) und 10 ml wasserfreies Tetrahydrofuran zugegeben werden. Die Reaktion wird bei 50°C unter Rühren 24 Stunden fortgeführt. Das Lösungsmittel der Reaktionslösung wird eliminiert, um das Rohprodukt zu erlangen. Durch Säulenchromatographie gereinigt beträgt das gewünschte Produkt 22,6 g, die Ausbeute nach Isolierung liegt bei 92%. 1H NMR (500 MHz, Chloroform) δ 7,98 (m, 3H), 7,69 (t, J = 1,5 Hz, 1H), 7,56 (m, 2H), 7,44 (dd, J = 7,4, 1,5 Hz, 1H), 7,03 (s, 2H), 2,83 (s, 6H), 2,52 (s, 3H).
  • Ausführungsbeispiel 31
  • Die im Ausführungsbeispiel 30 hinzugefügten 15,5 g 2,4,6-Trimethylchlorbenzol (0,1 Mol) werden zu 11,9 g 2-Chlorthiophen (0,1 Mol), wobei die zugegebenen 35,7 ml Naphtalin-Format-Reagenz (0,1 Mol, 2,8 M Lösung in Diethylether), zu 35,7 ml O-Methoxyphenyl-Format-Reagenz geändert werden (0,1 Mol, 2,8 M in Diethylether), alle anderen Bedingungen bleiben gleich; nach der Reinigung durch Säulenchromatographie werden 13,1 g des Zielprodukts erlangt, was eine Ausbeute nach Isolierung von 69% bedeutet. 1H NMR (500 MHz, Chloroform) δ; 7,76 (dd, J = 7,5, 1,4 Hz, 1H), 7,45 (m, 3H), 7,12 (m, 3H), 3,88 (s, 3H).
  • Ausführungsbeispiel 32
  • Im Ausführungsbeispiel 30 werden das hinzugefügte 35,7 Naphthyl-Format-Reagenz (0,1 Mol, 2,8 M in Diethylether) zu 35,7 ml Furan-Format-Reagens (0,1 Mol, 2,8 M in Diethylether) geändert. Die anderen Bedingungen bleiben gleich, Nach säulenchromatographischer Reinigung werden 13,4 g des Zielprodukts erlangt, die Ausbeute nach Isolierung beträgt 72%. 1H NMR (500 MHz, Chloroform) δ 7,59 (dd, J = 7,5, 1,4 Hz, 1H), 7,04 (s, 2H) erhalten werden kann, 6,93 (dd, J = 7,5, 1,4 Hz, 1H), 6,49 (t, J = 7,4 Hz, 1H), 2,64 (s, 6H), 2,52 (s, 3H).
  • Ausführungsbeispiel 33
  • Anwendung bei der Negishi-Reaktion:
  • In einer inerten Atmosphäre werden in den Reaktor 14,0 g 2,6-Dimethyldichlorbenzol (0,1 Mol), 50 ml Tetrahydrofuranlösung für Phenylzinkchlorid (0,1 Mol, 2,8 M in Tetrahydrofuranlösung) gegeben, woraufhin 500 ppm des in Formel (X) oder Formel (XI) dargestellten Palladium-Katalysators hinzugefügt werden. Bei 25°C bis 50°C wird unter Rühren die Reaktion für 1–3 Stunden ausgeführt. Das Lösungsmittel der Reaktionslösung wird eliminiert, um das Rohprodukt zu erlangen. Durch eine Reinigung durch Säulenchromatographie können 14,1 g des Zielprodukts erlangt werden, die Ausbeute nach Isolierung beträgt 82%. 1H NMR (500 MHz, Chloroform) δ 7,61 (dd, J = 7,5, 1,4 Hz, 1H), 7,47 (t, J = 7,5 Hz, 1H), 7,21 (d, J = 7,5 Hz, 2H), 6,94 (dd, J = 7,5, 1,6 Hz, 1H), 6,50 (t, J = 7,5 Hz, 1H), 2,63 (s, 6H).
  • Ausführungsbeispiel 34
  • Die in Ausführungsbeispiel 33 hinzugefügten 14,0 g an 2,6-Dimethyldichlorbenzol (0,1 Mol) werden zu 16,2 g Chlornaphthalin (0,1 Mol) geändert, wobei die anderen Bedingungen gleich bleiben, und nach säulenchromatographischer Reinigung können 20,2 g des Zielprodukts erlangt werden, die Ausbeutungsrate nach Isolierung beträgt 87%. 1H NMR (500 MHz, Chloroform) δ 8,48 (m, 1H), 7,96 (m, 3H), 7,70 (t, J = 7,5 Hz, 1H), 7,41 (m, 3H), 7,21 (d, J = 7,5 Hz, 2H), 2,56 (s, 6H).
  • Ausführungsbeispiel 35
  • Die in Ausführungsbeispiel 33 hinzugefügten 14,0 g 2,6-Dimethyldichlorbenzol (0,1 mol) werden zu 11,2 g Chlorbenzol (0,1 Mol) geändert, wobei die zugegebenen 50 ml Tetrahydrofuran-Lösung für Phenylzinkchlorid (0,1 Mol, 2,8 M Tetrahydrofuranlösung) zu 50 ml Tetrahydrofuranlösung für Benzyl-Zinkchlorid (0,1 mol, 2,8 M Tetrahydrofuranlösung) geändert werden, wobei die anderen Bedingungen unverändert bleiben, und nach Reinigung durch Säulenchromatographie können 14,9 g des Zielprodukts erlangt werden, wobei die Ausbeute nach Isolierung 79% beträgt. 1H NMR (500 MHz, Chloroform) δ 7,25 (m, 10H), 3,86 (s, 2H).
  • Ausführungsbeispiel 36
  • Die im Ausführungsbeispiel 33 hinzugefügten 14,0 g 2,6-Dimethyldichlorbenzol (0,1 Mol) werden durch eine Zugabe von 11,2 g Chlorbenzol (0,1 Mol) geändert, wobei die zugegebenen 50 ml Tetrahydrofuranlösung des Phenyl-Zink-Chlorids (0,1 Mol, 2,8 M Tetrahydrofuranlösung) durch eine Zugabe von 50 ml von Tetrahydrofuranlösung für Homoallylzinkchlorid (0,1 Mol, 2,8 M an Tetrahydrofuranlösung) geändert werden und die anderen Bedingungen gleich bleiben. Nach der säulenchromatographischen Reinigung können 9,9 g des Zielprodukts erlangt werden, die Ausbeute nach Isolierung beträgt 75%. 1H NMR (500 MHz, Chloroform) δ 7,21 (m, 5H), 5,76 (ddt, J = 16.4, 10.1, 6.2 Hz, 1H), 4,99 (m, 2H), 2,59 (t, J = 7,9 Hz, 2H); 2,33 (dd, J = 14,3, 7,7 Hz, 2H).
  • Ausführungsbeispiel 37
  • Anwendung in einer α-Keto-Arylierungsreaktion:
  • In einer inerten Gasatmosphäre werden in einen Reaktor 16,2 g 1-Chlornaphthalin (0,1 Mol), 13,4 g Propiophenon (0,1 Mol) und 14,4 g Natrium-tert-butoxid gegeben. Dann werden 500 ppm NHC(IPr)-Acetophenonoxim-Methylpalladiumkatalysator und 10 ml Toluol zugegeben und das Reaktionsgemisch bei 60°C 10 Stunden lang gerührt. Das Lösungsmittel der Reaktionslösung wird eliminiert, um das Rohprodukt zu erhalten. Nach säulenchromatographischer Reinigung werden 21,8 g des Zielprodukts erzielt, wobei die Ausbeute nach Isolierung bei 84% liegt. 1H NMR (500 MHz, Chloroform) δ 7.84 (m, 5H), 7,62 (t, J = 1,4 Hz, 1H), 7,51 (m, 6H), 4,63 (q, J = 6,4 Hz, 1H), 1,70 (d, J = 6,6 Hz, 3H).
  • Ausführungsbeispiel 38
  • Die im Ausführungsbeispiel 24 hinzugefügten 16,2 g 1-Chlornaphthalin (0,1 Mol) werden zu 14,1 g 2,6-Dimethyldichlorbenzol (0,1 Mol) geändert; die 13,4 g Phenylethylketon (0,1 Mol) werden zu 14,6 g 1-Tetralon (0,1 Mol) geändert, wobei die anderen Konditionen unverändert bleiben und nach der säulenchromatographischen Reinigung 19,5 g des gewünschten Produkts erlangt werden können, wobei die Ausbeutungsrate nach Isolierung 78% beträgt. 1H NMR (500 MHz, Chloroform) δ 7,57 (dd, J = 7,4, 1,5 Hz, 1H), 7,39 (td, J = 7,6, 1,8 Hz, 2H), 7,26 (m, 4H), 4,28 (t, J = 8,8 Hz, 1H), 2,81 (m, 2H), 2,40 (s, J = 8,0 Hz, 6H), 2,36 (m, 1H), 2,11 (ddd, J = 12,5, 7,7, 5,3 Hz, 1H).

Claims (17)

  1. NHC-Palladium-Katalysator, dadurch gekennzeichnet, dass die Molekülstruktur dieses Katalysators wie folgt ist:
    Figure DE112014002844T5_0017
    In der Molekülstruktur repräsentieren R1, R2, R3, R4 und R5 jeweils unabhängig H, eine Alkylgruppe, eine Heteroalkylgruppe oder eine Arylgruppe, wobei R6, R7 und R8 jeweils unabhängig H, eine Alkylgruppe, eine Heteroalkylgruppe oder eine Arylgruppe repräsentieren, R9 eine Arylgruppe oder eine Arylalkenylgruppe repräsentiert, R10 und R11 jeweils unabhängig H, eine Alkylgruppe, eine Heteroalkylgruppe oder eine Arylgruppe repräsentieren und wobei Y Cl oder OAc repräsentiert.
  2. NHC-Palladium-Katalysator nach Anspruch 1, dadurch gekennzeichnet, dass R1, R3 und R5 jeweils unabhängig H, eine geradkettige oder verzweigte C1-C15-Alkylgruppe, eine geradkettige oder verzweigte C1-C15-Alkygruppe mit Stickstoff- oder Sauerstoff-Heteroatomen und aromatischem Kohlenwasserstoff repräsentieren, wobei H, eine geradkettige oder verzweigte C1-C10-Alkylgruppe sowie geradkettige oder verzweigte C1-C10-Alkygruppe mit Stickstoff- oder Sauerstoff-Heteroatomen bevorzugt werden; wobei die geradekettige oder verzweigte C1-C10-Alkylgruppe und geradkettige oder verzweigte C1-C10-Alkygruppe mit Stickstoff- oder Sauerstoff-Heteroatomen H, eine Methylgruppe, Ethylgruppe, Isopropylgruppe, Isobutylgruppe, 1-Ethylpropylgruppe, 1-Phenylpropylgruppe, Cyclohexylgruppe, N-Dimethylgruppe, N-Diethylgruppe, Methoxygruppe und Ethoxygruppe aufweisen.
  3. NHC-Palladium-Katalysator nach Anspruch 1, dadurch gekennzeichnet, dass R6 Substituenten auf verschiedenen Positionen eines Benzolrings repräsentiert sind, wobei diese Folgendes beinhalten: H, F, eine 2-Methylgruppe, 4-Methylgruppe, 3,5-Dimethylgruppe, 2-Methoxygruppe, 4-Methoxygruppe, 3,5-Dimethoxygruppe, 4-Tert-butylgruppe, 3,5-Di-tert-butylgruppe, 2-Nitrogruppe, 4-Nitrogruppe, 4-Nitrilgruppe, 3,4-(Methylenedioxygruppe), 4-Benzoylgruppe, 4-Ethoxycarbonyl, 4-Trifluormethylgruppe und eine Phenylgruppe (eine Verbindung zur kondensierten Ringverbindung ist möglich); R7 und R8 jeweils unabhängig H, eine Hydroxygruppe, Alkoxygruppe, geradkettige oder verzweigte Alkylgruppe oder eine geradkettige oder verzweigte C1-C10-Alkylgruppe, eine substituierte oder unsubstituierte C6-C18-Arylgruppe repräsentieren und die C6-C18-Arylgruppe Folgendes beinhaltet: eine Phenylgruppe, 1-Naphthylgruppe, 4-Tert-butylphenylgruppe, 3,5-Di-tert-butylphenylgruppe, 4-Methylphenylgruppe, 3,5-Dimethylphenylgruppe, 4,4'-Biphenylgruppe oder eine 3,5-Diphenyl-Phenylgruppe.
  4. NHC-Palladium-Katalysator nach Anspruch 1, dadurch gekennzeichnet, dass R9 H, eine geradkettige oder verzweigte C1-C10-Alkylgruppe oder Alkenylgruppe oder eine Allylgruppe repräsentiert, bevorzugt H, eine Methylgruppe und eine Methylengruppe; R10 und R11 jeweils unabhängig H, eine Hydroxygruppe, Alkoxygruppe oder eine geradkettige oder verzweigte C1-C10-Alkylgruppe oder eine substituierte oder unsubstituierte C6-C18-Arylgruppe repräsentieren und die C6-C18-Arylgruppe Folgendes umfasst: eine Phenylgruppe, 1-Naphthylgruppe, 4-Tert-butylphenylgruppe, 3,5-Di-tert-butylphenylgruppe, 4-Methylphenylgruppe, 3,5-Dimethylphenylgruppe, 4,4'-Biphenylgruppe oder 3,5-Diphenyl-Phenylgruppe.
  5. Verfahren zur Herstellung eines NHC-Palladium-Katalysators nach einem der Ansprüche 1–4, dadurch gekennzeichnet, dass es folgende Schritte umfasst: A. Mit Glyoxal als Rohstoff wird durch eine Reaktion mit der in Formel (I) dargestellten primären Aminverbindung und unter Beteiligung von Lewis-Säure oder Brønsted-Säure eine in Formel (II) dargestellte Glyoxal-Diimin-Zwischenverbindung erhalten
    Figure DE112014002844T5_0018
    B. Die in der Formel (II) gezeigte Glyoxal-Diimin-Zwischenverbindung bildet mit Paraformaldehyd unter Einwirkung von Additiv (III) in ringförmiger Weise die in Formel (IV) gezeigte Aza-Carben-Verbindung.
    Figure DE112014002844T5_0019
    C. Durch Palladium(II) und die in der Formel (VI) oder Formel (VII) dargestellte Imin-Verbindungen mit Carbon-Stickstoff-Doppelbindung wird unter Einfluss von einem anorganischen Salz (V) jeweils ein in der Formel (VIII) oder (IX) dargestelltes Palladium(II)-Ring-Dimer erlangt.
    Figure DE112014002844T5_0020
    D. Durch das Palladium(II)-Ring-Dimer, das in den Formeln (VIII) oder (IX) dargestellt ist, wird durch Koordination mit der in der Formel (IV) dargestellten Aza-Carbenverbindung unter alkalischen Bedingungen der in Formel (X) oder Formel (XI) dargestellte NHC-Palladium-Katalysator erlangt.
    Figure DE112014002844T5_0021
  6. Verfahren zur Herstellung eines NHC-Palladium-Katalysators nach Anspruch 5, dadurch gekennzeichnet, dass die Lewis-Säure oder Brønsted-Säure aus Schritt A aus einer der folgenden Arten ausgewählt wird: Aluminiumtrichlorid, Zinntetrachlorid, Kaliumhydrogensulfat, Ameisensäure, Essigsäure, Trifluoracetat und Titantetraethoxid
  7. Verfahren zur Herstellung eines NHC-Palladium-Katalysators nach Anspruch 5, dadurch gekennzeichnet, dass in Bezug auf die Cyclisierungsreaktion aus Schritt B die in der Formel (II) dargestellte Glyoxal-Diimin-Zwischenverbindung und das Paraformaldehyd unter Einwirkung des Additivs (III) reagieren; bei dem Additiv (III) handelt es sich dabei um Chlorwasserstoffsäure-Dioxan-Lösung oder Trimethylchlorsilan und dabei bevorzugt um Chlortrimethylsilan.
  8. Verfahren zur Herstellung eines NHC-Palladium-Katalysators nach Anspruch 5, dadurch gekennzeichnet, dass in Schritt C das Palladium (II) aus Palladiumchlorid, Palladiumacetat, Palladiumnitrat, Palladiumacetylacetonat oder einer Mischung von zwei Arten hiervon ausgewählt wird, wobei das anorganische Salz (V) aus Lithiumchlorid, Natriumbromid, Natriumiodid oder Natriumacetat ausgewählt wird, und zwar bevorzugt Natriumacetat oder Lithiumchlorid.
  9. Verfahren zur Herstellung eines NHC-Palladium-Katalysators nach Anspruch 5, dadurch gekennzeichnet, dass in Schritt D die Koordinationsreaktion unter Abwesenheit von Luft durchgeführt wird, wobei das für die alkalischen Bedingungen nötige Alkali aus Kaliumtertiärbutylat, Natrium-tert-butoxid, Kaliumhydroxid, Natriumethoxid, Kaliumcarbonat oder Natriumacetat ausgewählt wird.
  10. Verwendung eines NHC-Palladium-Katalysators nach einem der Ansprüche 1–4, dadurch gekennzeichnet, dass der hergestellte NHC-Palladium-Katalysator bei den folgenden Kupplungsreaktionen angewendet wird: Suzuki-Miyaura, Heck, Buchwald-Hartwig, Kumada-Tamao-Corriu, Sonogashira, Negishi sowie α-Keto-Arylierung.
  11. Verwendung eines NHC-Palladium-Katalysators nach Anspruch 10, dadurch gekennzeichnet, dass der NHC-Palladium-Katalysator bei der Suzuki-Miyaura-Reaktion angewendet wird, wobei er unter dem Einfluss von Alkali die Kreuzkupplungsreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffen und Arylboronsäure katalysiert, wie in Formel E dargestellt:
    Figure DE112014002844T5_0022
    In der Formel E repräsentieren Ar, Ar' jeweils eine unabhängig substituierte oder unsubstituierte C6-C18-Arylgruppe, C4-C10-Stickstoff-heterozyklische aromatische Kohlenwasserstoffe, Sauerstoff-heterozyklische aromatische Kohlenwasserstoffe oder Schwefel-heterozyklische aromatische Kohlenwasserstoffe, X1 ist bevorzugt Cl oder Br, wobei verwendete Alkaliarten Folgendes beinhalten: Kaliumtertiärbutylat, Natrium-tert-butoxid, Kaliumhydroxid, Natriumhydroxid, Kaliumphosphat, Kaliumcarbonat, Natriumcarbonat oder Natriummethylat.
  12. Verwendung eines NHC-Palladium-Katalysators nach Anspruch 10, dadurch gekennzeichnet, dass der NHC-Palladium-Katalysator bei der Heck-Reaktion angewendet wird, wobei er die Kupplungsreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffen und Olefin katalysiert, wie in der Formel F dargestellt ist:
    Figure DE112014002844T5_0023
    In der Formel F repräsentiert Ar eine substituierte oder unsubstituierte C6-C18-Arylgruppe, R12 repräsentiert eine substituierte oder unsubstituierte C6-C18-Arylgruppe, einschließlich einer Ester- oder Benzylgruppe usw., nämlich Methylester, Ethylester, Isopropyl, Tert-butylester, wobei für X2 bevorzugt Cl oder Br gewählt wird.
  13. Verwendung eines NHC-Palladium-Katalysators nach Anspruch 10, dadurch gekennzeichnet, dass der NHC-Palladium-Katalysator bei der Buchwald-Hartwig-Reaktion angewendet wird, wobei unter dem Einfluss von Alkali die Kupplungsreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffen und primärem oder sekundären Amin katalysiert wird, wie in Formel G dargestellt:
    Figure DE112014002844T5_0024
    In der Formel G repräsentiert Ar eine substituierte oder unsubstituierte C6-C18 Arylgruppe, R13, R14 repräsentieren jeweils unabhängig H, eine C1-C6-Alkylgruppe oder Zycloalkylgruppe, eine substituierte oder unsubstituierte C6-C18-Arylgruppe, oder es handelt sich um einen in ringförmig verbundener Weise sechsgliedrigen carbocyklischen Ring, einen sechsgliedrigen Oxa-Stickstoffring oder einen sechsgliedrigen Aza-Stickstoffring, wobei für X3 bevorzugt Cl oder Br gewählt wird und verwendete Alkaliarten Folgendes beinhalten: Kaliumtertiärbutylat, Natrium-tert-butoxid, Kaliumhydroxid, Natriumhydroxid, Kaliumphosphat, Kaliumcarbonat, Natriumcarbonat oder Natriummethylat.
  14. Verwendung eines NHC-Palladium-Katalysators nach Anspruch 10, dadurch gekennzeichnet, dass der NHC-Palladium-Katalysator bei der Sonogashira-Reaktion angewendet wird, wobei unter dem Einfluss von Alkali die Kupplungsreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffen und terminalen Alkinen katalysiert wird, wie in Formel H dargestellt:
    Figure DE112014002844T5_0025
    In der Formel G repräsentiert R15 eine C1-C10-Alkylgruppe und eine Zycloalkylgruppe, R16 repräsentiert eine substituierte oder unsubstituierte C6-C18-Arylgruppe, eine geradkettige C1-C10-Alkylgruppe, eine verzweigte Alkylgruppe oder Zycloalkylgruppe oder Alkoxygruppe, wobei für X4 bevorzugt Br gewählt wird und verwendete Alkaliarten Folgendes beinhalten: Kaliumtertiärbutylat, Natrium-tert-butoxid, Kaliumhydroxid, Natriumhydroxid, Kaliumphosphat, Kaliumcarbonat, Natriumcarbonat oder Natriummethylat.
  15. Verwendung eines NHC-Palladium-Katalysators nach Anspruch 10, dadurch gekennzeichnet, dass der NHC-Palladium-Katalysator bei der Kumada-Tamao-Corriu-Reaktion verwendet wird, wobei er die Kupplungsreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffe mit Reagenzien im Arylgruppenformat katalysiert, wie in Formel I dargestellt:
    Figure DE112014002844T5_0026
    In der Formel I repräsentiert Ar eine substituierte oder unsubstituierte C6-C18-Arylgruppe, R17 repräsentiert eine substituierte oder unsubstituierte C6-C18-Arylgruppe, eine fünf- oder sechsgliedrige Stickstoff-heterocyklische aromatische Gruppe, eine fünf- oder sechsgliedrige Sauerstoff-heterocyklische Arylgruppe oder eine fünfgliedrige Schwefel-heterocyklische Arylgruppe, wobei für X5 bevorzugt Cl oder Br gewählt wird.
  16. Verwendung eines NHC-Palladium-Katalysators nach Anspruch 10, dadurch gekennzeichnet, dass der NHC-Palladium-Katalysator bei der Negishi-Reaktion verwendet wird, wobei er die Kupplungsreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffe und organischem Zinkreagens katalysiert, wie in Formel J dargestellt:
    Figure DE112014002844T5_0027
    In der Formel J repräsentiert Ar eine substituierte oder unsubstituierte C6-C18-Arylgruppe, R18 repräsentiert eine substituierte oder unsubstituierte C6-C18-Arylgruppe, eine Benzylgruppe oder Homoallylgruppe, wobei für X6 bevorzugt Cl oder Br gewählt wird.
  17. Verwendung eines NHC-Palladium-Katalysators nach Anspruch 10, dadurch gekennzeichnet, dass der NHC-Palladium-Katalysator bei einer α-Keto-Arylierungsreaktion verwendet wird, wobei er eine α-Ketonreaktion von verschiedenen halogenierten aromatischen Kohlenwasserstoffe katalysiert, wie in Formel K dargestellt:
    Figure DE112014002844T5_0028
    In der Formel J repräsentiert Ar eine substituierte oder unsubstituierte C6-C18-Arylgruppe, R19 repräsentiert eine substituierte oder unsubstituierte C6-C18-Arylgruppe, eine fünf- oder sechsgliedrige heterocyklische aromatische Gruppe, eine fünf- oder sechsgliedrige Sauerstoff-heterocyklische Arylgruppe oder eine fünfgliedrige Schwefel-heterocyclische Arylgruppe, R20 repräsentiert eine geradkettige C1-C6-Alkylgruppe, eine verzweigte Alkylgruppe oder eine Zycloalkylgruppe, wobei R19 und R20 zu einem Ring verbunden sein können, für X7 bevorzugt Cl oder Br gewählt werden und verwendete Alkaliarten Folgendes beinhalten: Kaliumtertiärbutylat, Natrium-tert-butoxid, Kaliumhydroxid, Natriumhydroxid, Kaliumphosphat, Kaliumcarbonat, Natriumcarbonat oder Natriummethylat.
DE112014002844.4T 2013-08-22 2014-05-28 NHC-Palladium-Katalysator sowie dessen Herstellungsverfahren und Verwendung Active DE112014002844B4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310370437.XA CN103418438B (zh) 2013-08-22 2013-08-22 一种氮杂卡宾类钯催化剂及其制备方法和应用
CN201310370437.X 2013-08-22
PCT/CN2014/078652 WO2015024403A1 (zh) 2013-08-22 2014-05-28 一种氮杂卡宾类钯催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
DE112014002844T5 true DE112014002844T5 (de) 2016-03-03
DE112014002844B4 DE112014002844B4 (de) 2020-04-02

Family

ID=49644123

Family Applications (1)

Application Number Title Priority Date Filing Date
DE112014002844.4T Active DE112014002844B4 (de) 2013-08-22 2014-05-28 NHC-Palladium-Katalysator sowie dessen Herstellungsverfahren und Verwendung

Country Status (4)

Country Link
US (1) US9656256B2 (de)
CN (1) CN103418438B (de)
DE (1) DE112014002844B4 (de)
WO (1) WO2015024403A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418438B (zh) * 2013-08-22 2015-08-19 上海化工研究院 一种氮杂卡宾类钯催化剂及其制备方法和应用
CN103691485B (zh) * 2013-12-19 2015-11-18 天津大学 用于催化加氢制备对苯二酚的方法及其使用的催化剂及制备方法
CN104624240B (zh) * 2015-02-05 2017-03-15 天津大学 一种催化还原苯醌为氢醌的络合物催化剂及其制备方法
CN105772094B (zh) * 2016-04-21 2018-07-20 上海化工研究院有限公司 一种手性氮杂环卡宾类催化剂及其应用
EP3339313A1 (de) * 2016-12-22 2018-06-27 Umicore Ag & Co. Kg Metallorganische verbindungen
CN107226874B (zh) * 2017-07-21 2020-10-27 中国科学技术大学 配合物催化剂、催化剂组合物及一种烯烃聚合物的制备方法
CN107880079B (zh) * 2017-11-27 2020-05-08 天津师范大学 环状氮杂环双卡宾钯配合物及其制备方法与用途
CN110105179B (zh) * 2019-05-24 2022-04-29 浙江大学 一种钯/咪唑盐催化硝基芳烃和硼酸化合物偶联合成芳香族化合物的方法
CN112300214B (zh) * 2019-07-26 2023-12-12 中国科学院上海有机化学研究所 钯复合物、其制备方法、轴手性联芳香化合物的制备方法
CN112574042A (zh) * 2019-09-27 2021-03-30 广东石油化工学院 二级芳香胺的制备方法
WO2021056466A1 (zh) * 2019-09-27 2021-04-01 广东石油化工学院 二级芳香胺的制备方法
CN110746253B (zh) * 2019-10-19 2021-02-05 南京工业大学 一种β,β-二取代丙酸酯衍生物的合成方法
CN110898856B (zh) * 2019-10-24 2022-10-18 沈阳化工大学 Pd(II)-NHC催化剂制备方法及在Suzuki-Miyaura反应中的应用
CN110922286B (zh) * 2019-11-23 2022-08-16 上海化工研究院有限公司 一种非对称芳基取代富烯化合物及其制备方法与应用
CN110818545B (zh) * 2019-11-23 2022-12-09 上海化工研究院有限公司 一种酮芳基化制备取代芳基酮的方法
US20230117830A1 (en) * 2020-01-08 2023-04-20 Rutgers, The State University Of New Jersey Complexes of n-heterocyclic carbenes for transition metal catalysis
CN111939983A (zh) * 2020-08-20 2020-11-17 淮北师范大学 磁性材料负载氮杂环卡宾铜催化剂及其制备方法和应用
CN112110817B (zh) * 2020-09-21 2022-07-26 陕西师范大学 一种吡啶钯高效催化制备二芳基酯类化合物的方法
CN112892595A (zh) * 2021-01-22 2021-06-04 邹育英 一种对位硝基取代的钯催化剂及其在Heck反应中的应用
CN112774731A (zh) * 2021-01-22 2021-05-11 邹育英 一种对位甲氧基取代的钯催化剂及其在Heck反应中的应用
CN112876516B (zh) * 2021-02-05 2022-02-15 昆明理工大学 N-(4-吲哚基)氮杂环卡宾钯络合物及应用
US20240181438A1 (en) * 2021-03-01 2024-06-06 Rutgers, The State University Of New Jersey Unsymmetrical n-heterocyclic carbene catalysts and methods using same
CN113024611B (zh) * 2021-03-16 2022-12-13 上海理工大学 一种氮杂环卡宾环钯化合物及其制备方法和应用
CN113264809B (zh) * 2021-05-21 2022-03-18 复旦大学 氮杂环卡宾金属化合物催化的一级醇偶联制备烷烃的方法
CN113355075B (zh) * 2021-05-27 2022-08-30 长江大学 一种稠油降黏剂及其制备方法和应用
CN113403056B (zh) * 2021-05-27 2022-08-16 长江大学 一种催化剂组合物及其制备方法和应用
CN113563200B (zh) * 2021-07-03 2022-10-11 复旦大学 一种烯烃选择性氢胺甲基化制备线性胺的方法
CN113651679B (zh) * 2021-07-20 2022-09-16 复旦大学 二级醇高选择性催化脱氢偶联制备β-取代酮/醇的方法
CN115433346B (zh) * 2022-09-30 2024-03-26 武汉工程大学 基于菲醌α-二胺的钯类催化剂及其制备方法和应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19647584A1 (de) 1996-11-18 1998-05-20 Hoechst Ag Neue Palladaphosphacyclobutane sowie ein Verfahren zu ihrer Herstellung
DE19963009A1 (de) 1999-12-22 2001-08-09 Syntec Ges Fuer Chemie Und Tec Verfahren zur Herstellung von Arylaminen
DE10051316A1 (de) * 2000-10-17 2002-04-25 Omg Ag & Co Kg Verfahren zur Herstellung von mono-, bi- oder polyfunktionellen Biarylen
DE10149348A1 (de) 2001-10-06 2003-04-10 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Olefin mit Palladiumcarbenverbindungen
US6759533B2 (en) 2002-06-28 2004-07-06 Boehringer Ingelheim Pharmaceuticals, Inc. Process and intermediates for making non-nucleoside HIV-1 reverse transcriptase inhibitors
JP4413507B2 (ja) 2003-02-28 2010-02-10 独立行政法人科学技術振興機構 ピンサー型金属錯体及びその製造方法、並びにピンサー型金属錯体触媒
DE10322408A1 (de) 2003-05-16 2004-12-02 Degussa Ag Stickstoffhaltige monodentate Phosphine und deren Verwendung in der Katalyse
JP4321131B2 (ja) 2003-06-20 2009-08-26 住友化学株式会社 カップリング化合物の製造方法
EP1660465B1 (de) 2003-07-29 2014-12-17 Melinta Therapeutics, Inc. Verfahren zur synthese von biaryloxazolidinonen
CN102027001A (zh) * 2007-06-20 2011-04-20 新加坡科技研究局 N-杂环卡宾金属环催化剂和方法
CN101219399B (zh) * 2008-01-24 2011-04-13 浙江大学 氮杂环卡宾金属钯催化剂的制备方法和用途
CN102276655A (zh) * 2011-06-20 2011-12-14 徐州师范大学 双氮杂环卡宾双钯配合物及其制备方法
CN102627646A (zh) * 2012-03-19 2012-08-08 苏州四同医药科技有限公司 一种3-碘-5-溴-4,7-二氮杂吲哚的制备方法
CN102627672B (zh) 2012-03-22 2015-04-22 南开大学 含吡啶-2-甲酸根或吡啶-2,6-双甲酸根配体的氮杂环卡宾钯复合物和制备及应用
CN103418438B (zh) * 2013-08-22 2015-08-19 上海化工研究院 一种氮杂卡宾类钯催化剂及其制备方法和应用

Also Published As

Publication number Publication date
DE112014002844B4 (de) 2020-04-02
US20160175828A1 (en) 2016-06-23
CN103418438B (zh) 2015-08-19
CN103418438A (zh) 2013-12-04
US9656256B2 (en) 2017-05-23
WO2015024403A1 (zh) 2015-02-26

Similar Documents

Publication Publication Date Title
DE112014002844B4 (de) NHC-Palladium-Katalysator sowie dessen Herstellungsverfahren und Verwendung
DE60306795T2 (de) Ruthenium-komplexe als (pre)katalysatoren für metathesereaktionen
DE69634639T2 (de) Verfahren zur herstellung optische aktive verbindungen
EP1303525B1 (de) Adamantylgruppen enthaltende phosphanliganden, deren herstellung und ihre verwendung in katalytischen reaktionen
DE69806053T2 (de) Hochwirksame kationische ruthenium und osmiumkomplexe für die metathesereaktionen
WO2001004076A1 (de) Verfahren zur herstellung von biarylen unter palladaphosphacyclobutan-katalyse
EP2260047B1 (de) Verfahren zur herstellung von ruthenium-carben-komplexen
EP0496700B1 (de) Silangruppen enthaltende Diphosphine, immobilisierte Diophoshine und deren Verwendung als Hydrierkatalysatoren
DE19503119A1 (de) Verfahren zur Herstellung von aromatischen Olefinen unter Katalyse von Palladacyclen
WO1993015090A1 (de) Diphosphinliganden
EP1414833B1 (de) Neue übergangsmetall-komplexe und deren einsatz in übergangsmetall-katalysierten reaktionen
WO2004014550A2 (de) Neue nickel-, palladium- und platin-carbenkomplexe, ihre herstellung und verwendung in katalytischen reaktionen
EP0218970B1 (de) Chirale Rhodium-diphosphinkomplexe für asymmetrische Hydrierungen
Keithellakpam et al. A Simple and efficient procedure for the Knoevenagel condensation catalyzed by [MeHMTA] BF 4 ionic liquid
EP0979809B1 (de) Vefahren zur Herstellung von 4-Chlorbiphenylen
EP1324964A2 (de) Verfahren zur herstellung von arylverbindungen
EP1371657A1 (de) Übergangsmetall-Komplexe und deren Einsatz in Übergangsmetallkatalysierten Reaktionen
EP1437340B1 (de) Verfahren zur Herstellung von Aminodiphenylaminen
DE60011673T2 (de) Verfahren zur herstellung von dl-alpha-tocopherol mit hoher ausbeute und hoher reinheit
EP0257411B1 (de) Verfahren zur Herstellung von optisch aktiven Enaminen oder von den entsprechenden Aldehyden
EP1558621A2 (de) Verfahren zur herstellung von palladium(0)-haltigen verbindungen
WO2010099786A1 (de) Chirale disulfonimide
EP1409493B1 (de) Verfahren zur herstellung von nicht-chiralen und optisch aktiven hydroxygruppen enthaltenden organischen verbindungen
EP1152005B1 (de) Verfahren zur Herstellung von substituierten 10-Chlor-phenoxaphosphinen oder 10-Brom-phenoxaphosphinen
EP0811630B1 (de) Chirale Verbindungen

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: WINTER, BRANDL - PARTNERSCHAFT MBB, PATENTANWA, DE

Representative=s name: WINTER, BRANDL, FUERNISS, HUEBNER, ROESS, KAIS, DE

R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final