WO2001004076A1 - Verfahren zur herstellung von biarylen unter palladaphosphacyclobutan-katalyse - Google Patents

Verfahren zur herstellung von biarylen unter palladaphosphacyclobutan-katalyse Download PDF

Info

Publication number
WO2001004076A1
WO2001004076A1 PCT/EP2000/006435 EP0006435W WO0104076A1 WO 2001004076 A1 WO2001004076 A1 WO 2001004076A1 EP 0006435 W EP0006435 W EP 0006435W WO 0104076 A1 WO0104076 A1 WO 0104076A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
phenyl
formula
atoms
bis
Prior art date
Application number
PCT/EP2000/006435
Other languages
English (en)
French (fr)
Inventor
Holger Geissler
Steffen Haber
Andreas Meudt
Frank VOLLMÜLLER
Stefan Scherer
Original Assignee
Clariant Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Gmbh filed Critical Clariant Gmbh
Priority to EP00947945A priority Critical patent/EP1200373A1/de
Publication of WO2001004076A1 publication Critical patent/WO2001004076A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper

Definitions

  • the catalyst systems known to date generally require the use of large amounts of catalyst (up to 5 mol% or more) in order to achieve conversions which can be used industrially. Nevertheless, the composition of the reaction mixtures obtained is often so complex that simple catalyst recycling is no longer possible and, as a result, the high catalyst costs stand in the way of industrial implementation.
  • the present invention was therefore based on the object of producing biaryls in high yields, high selectivity and high purity and, for this purpose, using catalyst systems which are easily and inexpensively accessible and which can be stored, lead to high TON (tumover number) and TOF (tumover frequency) and have a long service life to have.
  • the present invention relates to a process for the preparation of biarylene of the general formula (1),
  • R 1 to R 10 are the same or different and independent of each other
  • radicals R 'independently of one another are hydrogen, -CC 8 -alkyl, dC ⁇ -alkoxy or phenyl
  • the ring atoms Xi to X10 are either all C atoms (biphenyls) or in each of the two rings linked to one another A and B have at most one hetero atom in such a way that any ring member R'Xj is N (phenylpyridines, bipyridines), or two adjacent ring members R 2 X 2 and R 3 X 3 , or R and R 5 X 5) or R 7 X 7 and R 8 X 8 , or R 9 X 9 and R 10 X ⁇ 0 , are replaced by S, O or NR "(eg phenylthiophenes, phenylpyrroles, phenylfurans, pyridylfurans, pyridylpyrroles), where R" is hydrogen, alkyl having 1 to 8 C
  • LG is one of the leaving groups fluorine, chlorine, bromine, iodine, triflate, perfluoro (-C 8 ) alkyl sulfonate, mesylate, tosylate, nosylate (p-nitrophenyl sulfonate), bromobenzenesulfonate or N (OSO 2 CF 3 ) 2 ;
  • Qi and Q 2 are the same or different and OH or a radical of the formula -O- (CC 8 ) alkyl, -O- (C 2 -C 8 ) alkenyl, -O- (C 2 -C 8 ) alkynyl, -O-aryl or -O-alkylaryl, or Q 1 , Q 2 and the adjacent boron atom form a cyclic boric acid ester with the alcohols (C 3 -C 2 ) -cycloalkane-1, 2-diol, (C 5 -C 2 ) -cycloal
  • R-ib to R 8 b are the same or different and independently of one another the meaning hydrogen, -CC 2 alkyl, C 1 -C 2 hydroxyalkyl, C 2 -C 12 alkenyl, C 2 -C 2 alkynyl, C 3 -C ⁇ 2 cycloalkyl, (-CC- 2 ) -acyloxy, O-phenyl, O-benzyl, aryl, heteroaryl, fluorine, chlorine, bromine, iodine, NO 2 , NH 2 , N (alkyl) 2) N [Si (CC 4 - alkyl) 3 ] 2 , CF 3 , CCI 3 or CBr 3 , and / or two adjacent radicals R-ib to R 8 b together form a 5- to 8-membered aliphatic or aromatic ring, for example phenyl ring, and in which n is one is an integer from 2 to 12, or wherein Qi and Q 2 together form a divalent radical
  • R-ia and R 2 a independently of one another are hydrogen, (C 3 -Ci 2 ) - cycloalkyl, (-C-C 4 ) alkoxy, fluorine, N (CC 4 alkyl) 2 , CO 2 - (CrC 4 alkyl), OCO- (C
  • R 3 a, R 4 a, R 5 a and R 6 a independently of one another are (CC 8 ) alkyl, (C 3 -C 8 ) cycloalkyl, substituted or unsubstituted aryl; or in which Ria and R 2 a, or R 2 a and R 3 a, or R 3 a and R 4 a, together form an aliphatic ring with 4 to 10 C atoms, or in which R 5 a and R 6 a together with form the P atom a saturated or unsaturated 4- to 9-membered ring, or R 4 a and R 5 a form a bridging 1, ⁇ -alkanediyl chain with 2 to 7 C atoms; and
  • Y is an anion of an inorganic or organic acid, a , ⁇ -diketo compound or a 5- or 6-membered nitrogen-containing heterocycle means carried out in the presence of a base and a solvent at temperatures from 20 ° C to 200 ° C.
  • the process according to the invention can be used, for example, to produce biphenyls, phenylpyridines, phenylfurans, phenylpyrroles, phenylthiophenes, bipyridines, pyridylfurans and pyridylpyrroles.
  • Preferred compounds of the formula (1) are those in which
  • R 1 to R 10 are the same or different and are hydrogen, straight-chain or branched CC 4 alkyl, C 5 -C 6 cycloalkyl, methyl (C 5 -C 6 ) cycloalkyl, C 2 -C 4 alkenyl, C 2 - C 4 -alkynyl, fluorine, chlorine, hydroxy, C 2 -C -alkoxy, NH 2 , NHR ⁇ NR ' 2 , NHCOR', NHCOOR ', COOH, COOR', CN, phenyl, one with 1 to 3 residues from the CrC 4 alkyl, F, Cl, C 2 -C 4 alkoxy or NO 2 substituted phenyl, benzyl or pyridyl, or two adjacent radicals R (n) and R ( ⁇ + 1) form a 1, ⁇ - Alkyldiyl chain with 4 to 6 carbon atoms, and
  • R ' is hydrogen, CC 4 alkyl, CC 6 alkoxy or phenyl.
  • Preferred aromatic boron compounds of the formula (3) are those in which R 6 to R 10 have the meanings given above and Qi and Q 2 are a radical of the formula OH, -0- (C 1 -C 4 ) -alkyl, -O- (C 2 -C 4 ) alkenyl, -O- (C 2 -C 4 ) alkynyl, O-phenyl or -O-benzyl, or Qi, Q 2 and the adjacent boron atom form a cyclic boric acid ester with the alcohols ethylene glycol, 1 , 3-propanediol, 1, 4-butanediol, 2,2-dimethylpropane-1,3-diol, catechol, pinacol, 2,3-dihydroxynaphthalene, diethanolamine, triethanolamine, 1, 2-dihydroxycyclohexane, 1, 3-dihydroxycyclopentane or 1 , 2-Dihydroxycyclooctan.
  • the synthesis of the catalysts of the general formula (IV) is described in DE-A1- 19647584.
  • the palladaphosphacyclobutanes used generally have a dimeric structure.
  • Y acetylacetone, hexafluoroacetylacetone
  • monomeric, oligomeric or even polymeric structures can also be present.
  • Preferred compounds of the formula (IV) are those in which
  • R-ia and R 2 a independently of one another hydrogen, methyl, ethyl, cyclopentyl,
  • R 3 a and R 4 a independently of one another (C 1 -C 4 ) alkyl, (C 5 -C 6 ) cycloalkyl, substituted or unsubstituted C 6 -C aro or wherein R 3 a and R 4 a together form one form an aliphatic ring with 5 to 6 carbon atoms; R 5 a and R 6 a independently of one another (-CC 4 ) -alkyl, (C 5 -C 6 ) -cycloalkyl, phenyl, naphthyl, anthracenyl, which are unsubstituted or with 1 to 3 CF 3 -, (-C-C) Alkyl or (CrC 4 ) alkoxy groups are substituted; and Y represents acetate, propionate, benzoate, chloride, bromide, iodide, fluoride, sulfate, hydrogen sulfate, nitrate, phosphate, triflate,
  • R-ia and R 2 a independently of one another are hydrogen or methyl; R 3 a and R 4 a independently of one another methyl, ethyl or phenyl, R 5 a and R 6 a independently of one another phenyl, naphthyl, o-trifluoromethylphenyl, o-trifluoromethyl-p-tolyl, o-trifluoromethyl-p-methoxyphenyl, o- Methoxyphenyl, o, p-dimethoxyphenyl, anthracenyl, tert-butyl, n-butyl, isopropyl, isobutyl, cyclohexyl or 1-methylcyclohexyl.
  • trans-di- ⁇ -acetato-bis [2- [bis (1,1-dimethylethyl) phosphino] -2-methylpropyl-C, P] dipalladium (II), trans- Di- ⁇ -acetato-bis [2- [1, 1-dimethylethyl) phenylphosphino] -2-methylpropyl-C, P] dipalladium (II), trans-Di- ⁇ -chloro-bis- [2- [bis ( 1, 1-dimethylethyl) phosphino] -2-methylpropyl- C, P] dipalladium (II), trans-di- ⁇ -chloro-bis [2- [1,1-dimethylethyl) phenylphosphino] -2-methylpropyl-C
  • the dimeric structure is broken up by bridging reactions with inorganic and organic nucleophiles, so that the mononuclear complexes of the formulas (VI) and (VII) are to be considered as the actually catalytically active species.
  • the complexes of the formulas (VI) and (VII) are in exchange equilibrium with the dimers actually used and have a neutral or anionic character.
  • the mononuclear complex of the formula (VI) can optionally contain further donor ligands on the palladium atom.
  • the catalyst is expediently 10 to 6 to 1 times, preferably 10 to 5 to 0.1 times, in particular 10 to 5 to 0.01 times , molar amount used.
  • the stability of the palladaphosphacyclobutanes in solution can be increased by adding alkali, alkaline earth and transition metal salts of the 6th to 8th subgroup.
  • the addition of halides and pseudohalides of the metals mentioned brings about a significant increase in yield and an improvement in the service life of the catalyst in many cases. Are also suitable
  • Ammonium halides tri- and tetraalkylammonium salts and corresponding phosphonium and arsonium salts.
  • the ionic halide used is preferably ammonium bromide, lithium bromide, sodium bromide, potassium bromide, tetrabutylphosphonium bromide, ammonium chloride, tetramethylammonium chloride, diethanolammonium chloride, lithium chloride,
  • Lithium chloride is particularly preferred.
  • the salts mentioned above are expediently added in amounts of 0 to 250 mol%, for example 10 to 100 mol%, based on the compound of the formula (3).
  • Inert organic solvents are generally used as solvents.
  • aromatic hydrocarbons such as toluene, xylenes, anisole, tetralin and aliphatic ethers such as tetrahydrofuran, dimethoxyethane, dioxane, tetrahydropyran and formaldehyde acetals are particularly suitable.
  • the amount of solvent is advantageously 1 to 5000% by weight, preferably 25 to 2000% by weight, particularly preferably 50 to 1500% by weight, based on the weight of the compound of the formula (3).
  • the coupling according to the invention generally runs at temperatures from 20 to 200 ° C .; in many cases it has proven useful to work at temperatures of 50 to 165 ° C., preferably 60 to 160 ° C.
  • Bases include, in particular, alkali or alkaline earth alcoholates, alkali or alkaline earth amides, alkali or alkaline earth acetates, alkali or alkaline earth formates, alkali or alkaline earth propionates, alkali or alkaline earth carbonates, bicarbonates, hydroxides or oxides and aliphatic or aromatic amines application.
  • Particularly preferred bases are sodium or potassium carbonate, sodium or potassium hydroxide, sodium or potassium tert-butoxide and pyridine.
  • the base is preferably used in an amount of 0.5 to 5 equivalents, preferably 0.8 to 4 equivalents and particularly preferably 1 to 2 equivalents, based on the boron compound of the formula (3) used.
  • aqueous phase was extracted with a further 50 ml of toluene and the organic phase was washed with 50 ml of water. After distillation, 4-chlorobiphenyl was obtained from the combined organic phases in a yield of 97% (based on bromobenzene).

Abstract

Biaryle, z.B. Biphenyle, Phenylpyridine, Phenylfurane, Phenylpyrrole, Phenylthiophene, Bipyridine, Pyridylfurane oder Pyridylpyrrole, werden durch Kupplung von Aromaten mit einer aromatischen Borsäure oder Borsäureester in Gegenwart eines Palladaphosphacyclobutan-Katalysators in hohen Ausbeuten hergestellt.

Description

Verfahren zur Herstellung von Biarylen unter Palladaphosphacyclobutan-Katalyse
Die Zahl der bedeutsamen Zwischenprodukte in der chemischen Industrie, die eine Biaryl-Struktur enthalten, ist in den letzten Jahren sehr stark gestiegen. Für die Hersteller solcher Intermediate sind aufgrund der Anwendungsgebiete in den Bereichen Pharma und Agro nicht nur der Preis, sondern auch die hohen Reinheitsanforderungen von Bedeutung. Aus diesen Gründen wird nach hochaktiven, stabilen und hochseiektiven Katalysatorsystemen für die zur Herstellung unsymmetrischer Biaryle meist angewandten C,C-Kupplungen gesucht.
Insbesondere bei Kupplungen von nichtaktivierten Aromaten, vor allem Chloraromaten, ist bei den bisher bekannten Katalysatorsystemen allgemein der Einsatz großer Katalysatormengen (bis zu 5 mol-% oder mehr) erforderlich, um technisch nutzbare Umsätze zu erzielen. Dennoch sind die erhaltenen Reaktionsmischungen in ihrer Zusammensetzung oftmals so komplex, daß kein einfaches Katalysatorrecycling mehr möglich ist und im Ergebnis die hohen Katalysatorkosten einer technischen Realisierung entgegenstehen.
Der vorliegenden Erfindung lag damit die Aufgabe zugrunde, Biaryle in hohen Ausbeuten, hoher Selektivität und hoher Reinheit herzustellen und dafür einfach und kostengünstig zugängliche Katalysatorsysteme einzusetzen, die lagerfähig sind, zu hohen TON (tumover number) und TOF (tumover frequency) führen und hohe Standzeiten haben.
Überraschenderweise wurde gefunden, daß Palladaphosphacyclobutane den eingangs gestellten Forderungen genügen und schon in sehr geringen Mengen Suzuki-Kupplungen, auch von Chloraromaten, unter schonenden Bedingungen ermöglichen. Die Reaktionsprodukte werden in hohen Ausbeuten und schon nach einfachen und wenig aufwendigen Reinigungsschritten in hoher Reinheit erhalten. Erstaunlicherweise zeichnen sich die eingesetzten Palladaphosphacyclobutane gleichzeitig durch sehr hohe Aktivität und hohe Stabilität aus, so daß es möglich ist, sehr kleine Mengen an Katalysator zu verwenden. Die geringen Katalysatormengen bedingen gleichzeitig ökonomische und ökologische Vorteile, da Abfallprodukte und abfallintensive Aufarbeitungsverfahren vermieden werden. Das erfindungsgemäße Verfahren erfüllt damit die Voraussetzungen, die an einen technisch gut realisierbaren Prozeß gestellt werden.
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Biarylen der allgemeinen Formel (1),
R3
Figure imgf000003_0001
Rβ
worin
R1 bis R10 gleich oder verschieden sind und unabhängig voneinander
Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 8 C-Atomen, Cycloalkyl mit 3 bis 7 Ring-C-Atomen, das mit CrC4-Alkyl substituiert sein kann, C2-C8-Alkenyl, C2-C8-Alkinyl, Fluor, Chlor, Hydroxy, OLi, ONa, OK, OMg0,5l OMgCI, OMgBr, Alkoxy mit 1 bis 8 C-Atomen, NH2, NHR\ NR* 2l NH(C=0)R\ NH(C=O)OR', NH(C=O)NR'2, NO2, SO2R', SOR', POPhenyl2, PO-(Cι-C8-Alkyl)2 , PO3-(Cι-C8-Alkyl)2> C(=0)R\ C(=0)NR, 2, C(=O)OR', CN, C02Li, CO2Na, CO2K, CO2MgCI, CO2MgBr, Phenyl, substituiertes Phenyl, Aralkyl oder Heteroaryl bedeuten; oder zwei benachbarte Reste R(n) und R(n+1) einer überbrückenden 1 ,ω-AlkandiyI-Kette mit 3 bis 8
C-Atomen oder einer verbrückenden Ethylendioxy- oder Methylendioxy-Kette entsprechen; oder zwei benachbarte Reste R(n) und R(n+1) einer Einheit der Formel
Figure imgf000004_0001
entsprechen, und die Reste R' unabhängig voneinander Wasserstoff, Cι-C8-Alkyl, d-Cδ-Alkoxy oder Phenyl bedeuten, und die Ringatome X-i bis X10 entweder alle C-Atome sind (Biphenyle) oder sich in jedem der beiden miteinander verknüpften Ringe A und B maximal ein Heteroatom befindet dergestalt, daß ein beliebiges Ringglied R'Xj N bedeutet (Phenylpyridine, Bipyridine), oder jeweils zwei benachbarte Ringglieder R2X2 und R3X3, oder R und R5X5) oder R7X7 und R8X8, oder R9X9 und R100, durch S, O oder NR" ersetzt sind (z.B. Phenylthiophene, Phenylpyrrole, Phenylfurane, Pyridylfurane, Pyridylpyrrole), worin R" Wasserstoff, Alkyl mit 1 bis 8 C-Atomen, SiR'3 oder C(=O)R' bedeutet,
durch Kupplung von Aromaten der Formel (2) mit einer aromatischen Bor- Verbindung der Formel (3),
Figure imgf000004_0002
R8
(2) (3)
worin LG eine der Abgangsgruppen Fluor, Chlor, Brom, lod, Triflat, Perfluor- (Cι-C8)alkylsulfonat, Mesylat, Tosylat, Nosylat (p-Nitrophenylsulfonat), Brombenzolsulfonat oder N(OSO2CF3)2 bedeutet; Qi und Q2 gleich oder verschieden sind und OH oder einen Rest der Formel -O-(C C8)Alkyl, -O-(C2-C8)-Alkenyl, -O-(C2-C8)Alkinyl, -O-Aryl oder -O-Alkylaryl bedeuten, oder Q1, Q2 und das benachbarte Boratom bilden einen cyclischen Borsaureester mit den Alkoholen (C3-Cι2)-Cycloalkan-1 ,2-diol, (C5-Cι2)-Cycloalken-1 ,2-diol,
(C5-Cι2)-Cycloalkan-1 ,3-diol, (C5-Cι2)-Cycloalken-1 ,3-diol oder mit Alkoholen der
Formeln (Va) bis (Ve),
Figure imgf000005_0001
Va Vb Vc
Figure imgf000005_0002
Vd Ve
worin R-ib bis R8b gleich oder verschieden sind und unabhängig voneinander die Bedeutung Wasserstoff, Cι-Cι2-Alkyl, Cι-Cι2-Hydroxyalkyl, C2-C12-Alkenyl, C2- Cι2-Alkinyl, C3-Cι2-Cycloalkyl,
Figure imgf000005_0003
(Cι-Cι2)-Acyloxy, O-Phenyl, O- Benzyl, Aryl, Heteroaryl, Fluor, Chlor, Brom, Jod, NO2, NH2, N(Alkyl)2) N[Si(C C4- Alkyl)3]2, CF3, CCI3 oder CBr3, haben, und/oder zwei benachbarte Reste R-ib bis R8b zusammen einen 5- bis 8- gliedrigen aliphatischen oder aromatischen Ring, z.B. Phenylring, bilden, und worin n eine ganze Zahl von 2 bis 12 bedeutet, oder worin Qi und Q2 zusammen einen zweiwertigen Rest der Formel (Vf)
Figure imgf000006_0001
Vf R8
bilden, dadurch gekennzeichnet, daß die Kupplung in Gegenwart einer
Palladiumverbindung der allgemeinen Formel (IV),
Figure imgf000006_0002
IV
worin R-ia und R2a unabhängig voneinander Wasserstoff,
Figure imgf000006_0003
(C3-Ci2)- Cycloalkyl, (Cι-C4)-Alkoxy, Fluor, N(C C4-Alkyl)2, CO2-(CrC4-Alkyl), OCO-(C
C4)- Alkyl oder substituiertes oder unsubstituiertes Aryl;
R3a, R4a, R5a und R6a unabhängig voneinander (C C8)-Alkyl, (C3-C8)-Cycloalkyl, substituiertes oder unsubstituiertes Aryl bedeuten; oder worin Ria und R2a, oder R2a und R3a, oder R3a und R4a, zusammen einen aliphatischen Ring mit 4 bis 10 C-Atomen bilden, oder worin R5a und R6a zusammen mit dem P-Atom einen gesättigten oder ungesättigten 4- bis 9-gliedrigen Ring bilden, oder R4a und R5a eine überbrückende 1 ,ω-Alkandiyl-Kette mit 2 bis 7 C-Atomen bilden; und
Y ein Anion einer anorganischen oder organischen Säure, eine ,γ-Diketoverbindung oder einen 5- oder 6-gIiedrigen stickstoffhaltigen Heterocyclus bedeutet, in Gegenwart einer Base und eines Lösungsmittels bei Temperaturen von 20°C bis 200°C durchführt.
Mit dem erfindungsgemäßen Verfahren lassen sich beispielsweise Biphenyle, Phenylpyridine, Phenylfurane, Phenylpyrrole, Phenylthiophene, Bipyridine, Pyridylfurane und Pyridylpyrrole herstellen.
Bevorzugt sind Verbindungen der Formel (1 ), worin
R1 bis R10 gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes C C4-Alkyl, C5-C6-Cycloalkyl, Methyl-(C5-C6)cycloalkyl, C2-C4-Alkenyl, C2-C4-Alkinyl, Fluor, Chlor, Hydroxy, C2-C -Alkoxy, NH2, NHR\ NR'2, NHCOR', NHCOOR', COOH, COOR', CN, Phenyl, ein mit 1 bis 3 Resten aus der Gruppe CrC4-Alkyl, F, Cl, C2-C4- Alkoxy oder NO2 substituiertes Phenyl, Benzyl oder Pyridyl, bedeuten, oder zwei benachbarte Reste R(n) und R(π+1) bilden eine 1 ,ω- Alkyldiyl-Kette mit 4 bis 6 C-Atomen, und
R' bedeutet Wasserstoff, C C4-Alkyl, C C6-Alkoxy oder Phenyl.
Bevorzugte aromatische Borverbindungen der Formel (3) sind solche, worin R6 bis R10 die vorstehend genannten Bedeutungen haben und Qi und Q2 einen Rest der Formel OH, -0-(Cι-C4)-Alkyl, -O-(C2-C4)-Alkenyl, -O-(C2-C4)-Alkinyl, O-Phenyl oder -O-Benzyl bedeuten, oder Qi, Q2 und das benachbarte Boratom bilden einen cyclischen Borsaureester mit den Alkoholen Ethylenglykol, 1 ,3-Propandiol, 1 ,4-Butandiol, 2,2-Dimethylpropan- 1 ,3-diol, Brenzkatechin, Pinakol, 2,3-Dihydroxynaphthalin, Diethanolamin, Triethanolamin, 1 ,2-Dihydroxycyclohexan, 1 ,3-Dihydroxycyclopentan oder 1 ,2-Dihydroxycyclooctan. Die Synthese der Katalysatoren der allgemeinen Formel (IV) ist in DE-A1- 19647584 beschrieben. Die eingesetzten Palladaphosphacyclobutane haben in der Regel einen dimeren Aufbau. Bei bestimmten Verbindungen (z. B. Y = Acetylaceton, Hexafluoracetylaceton) können jedoch auch monomere, oligomere oder gar polymere Strukturen vorliegen.
Bevorzugt sind Verbindungen der Formel (IV), worin
R-ia und R2a unabhängig voneinander Wasserstoff, Methyl, Ethyl, Cyclopentyl,
Cyclohexyl, Methoxy, Ethoxy, Fluor, Phenyl, Tolyl oder Naphthyl;
R3a und R4a unabhängig voneinander (C-ι-C4)-Alkyl, (C5-C6)-Cycloalkyl, substituiertes oder unsubstituiertes C6-Cιo-Aryl oder worin R3a und R4a zusammen einen aliphatischen Ring mit 5 bis 6 C-Atomen bilden; R5a und R6a unabhängig voneinander (Cι-C4)-Alkyl, (C5-C6)-Cycloalkyl, Phenyl, Naphthyl, Anthracenyl, die unsubstituiert oder mit 1 bis 3 CF3-, (Cι-C )-Alkyl- oder (CrC4)-Alkoxy-Gruppen substituiert sind; und Y für Acetat, Propionat, Benzoat, Chlorid, Bromid, lodid, Fluorid, Sulfat, Hydrogensulfat, Nitrat, Phosphat, Triflat, Tetrafluoroborat, Tosylat, Mesylat, Acetylacetonat, Hexafluoracetylacetonat oder Pyrazolyl steht, bedeuten.
Besonders bevorzugt sind Verbindungen, worin R-ia und R2a unabhängig voneinander Wasserstoff oder Methyl; R3a und R4a unabhängig voneinander Methyl, Ethyl oder Phenyl, R5a und R6a unabhängig voneinander Phenyl, Naphthyl, o-Trifluormethylphenyl, o-Trifluormethyl-p-tolyl, o-Trifluormethyl-p-methoxyphenyl, o-Methoxyphenyl, o,p-Dimethoxyphenyl, Anthracenyl, tert.-Butyl, n-Butyl, Isopropyl, Isobutyl, Cyclohexyl oder 1-Methyicyclohexyl bedeuten.
Besonders bevorzugt sind folgende Verbindungen der Formel (IV): trans-Di-μ-acetato-bis[2-[bis(1 ,1-dimethylethyl)phosphino]-2-methylpropyl- C,P]dipalladium(ll), trans-Di-μ-acetato-bis[2-[1 ,1-dimethylethyl)-phenylphosphino]-2-methylpropyl- C,P]dipalladium(ll), trans-Di-μ-chloro-bis-[2-[bis(1 ,1-dimethylethyl)phosphino]-2-methylpropyl- C,P]dipalladium(ll), trans-Di-μ-chloro-bis[2-[1 ,1-dimethylethyl)-phenylphosphino]-2-methylpropyl-
C,P]dipalladium(ll), trans-Di-μ-bromo-bis-[2-[bis(1 ,1-dimethylethyl)phosphino]-2-methylpropyl-
C,P]dipalladium(ll) sowie trans-Di-μ-bromo-bis[2-[1 ,1-dimethylethyl)-phenylphosphino]-2-methylpropyl-
C,P]dipalladium(ll).
Während des Katalysezyklus wird durch Brückenspaltungsreaktionen mit anorganischen und organischen Nucleophilen die dimere Struktur aufgebrochen, so daß als eigentlich katalytisch aktive Spezies die einkernigen Komplexe der Formel (VI) bzw. (VII) in Betracht zu ziehen sind.
Figure imgf000009_0001
VI VII
Die Komplexe der Formel (VI) und (VII) stehen mit den tatsächlich eingesetzten Dimeren im Austauschgleichgewicht und haben neutralen oder anionischen Charakter. Der einkernige Komplex der Formel (VI) kann dabei gegebenenfalls weitere Donorliganden am Palladiumatom enthalten.
Der Katalysator wird, bezogen auf die Verbindung der Formel (2), zweckmäßig in der 10"6 bis 1 -fachen, vorzugsweise in der 10"5 bis 0,1 -fachen, insbesondere in der 10"5 bis 0,01 -fachen, molaren Menge eingesetzt. Die Stabilität der Palladaphosphacyclobutane in Lösung läßt sich durch Zusatz von Alkali-, Erdalkali- und Übergangsmetallsalzen der 6. bis 8. Nebengruppe erhöhen. Insbesondere der Zusatz von Halogeniden und Pseudohalogeniden der genannten Metalle bewirkt in vielen Fällen eine signifikante Ausbeutesteigerung und Standzeitverbesserung des Katalysators. Geeignet sind auch
Ammoniumhalogenide, Tri- und Tetraalkylammonium-Salze sowie entsprechende Phosphonium- und Arsonium-Salze.
Bevorzugt setzt man als ionisches Halogenid Ammoniumbromid, Lithiumbromid, Natriumbromid, Kaliumbromid, Tetrabutylphosphoniumbromid, Ammoniumchlorid, Tetramethylammoniumchlorid, Diethanolammoniumchlorid, Lithiumchlorid,
Natriumchlorid, Kaliumchlorid, Tetrabutylphosphoniumchlorid, Ammoniumiodid, Lithiumiodid, Natriumiodid, Kaliumiodid und/oder Tetrabutylphosphoniumiodid ein. Besonders bevorzugt ist dabei Lithiumchlorid.
Die vorstehend genannten Salze werden zweckmäßig in Mengen von 0 bis 250 Mol-%, beispielsweise 10 bis 100 MoI-%, bezogen auf die Verbindung der Formel (3) zugegeben.
Als Lösungsmittel finden im allgemeinen inerte organische Lösungsmittel Verwendung. Gut geeignet sind beispielsweise aromatische Kohlenwasserstoffe wie Toluol, Xylole, Anisol, Tetralin und aliphatische Ether wie Tetrahydrofuran, Dimethoxyethan, Dioxan, Tetrahydropyran und Formaldehydacetale. Die Lösungsmittelmenge beträgt zweckmäßigerweise 1 bis 5000 Gew.-%, vorzugsweise 25 bis 2000 Gew.-%, besonders bevorzugt 50 bis 1500 Gew.-%, bezogen auf das Gewicht der Verbindung der Formel (3).
Die erfindungsgemäße Kupplung läuft im allgemeinen bei Temperaturen von 20 bis 200°C ab; in vielen Fällen hat es sich bewährt, bei Temperaturen von 50 bis 165°C, bevorzugt 60 bis 160°C, zu arbeiten.
Als Basen finden insbesondere Alkali- oder Erdalkalialkoholate, Alkali- oder Erdalkaliamide, Alkali- oder Erdalkaliacetate, Alkali- oder Erdalkaliformiate, Alkalioder Erdalkalipropionate, Alkali- oder Erdalkalicarbonate, -hydrogencarbonate, -hydroxide oder -oxide sowie aliphatische oder aromatische Amine Anwendung. Besonders bevorzugte Basen sind Natrium- oder Kaliumcarbonat, Natrium- oder Kaliumhydroxid, Natrium- oder Kalium-tert.-butanolat und Pyridin. Die Base wird vorzugsweise in einer Menge von 0,5 bis 5 Äquivalenten, bevorzugt von 0,8 bis 4 Äquivalenten und besonders bevorzugt von 1 bis 2 Äquivalenten, bezogen auf die eingesetzte Borverbindung der Formel (3), eingesetzt.
Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen.
Synthese des Katalysators
trans-Di-μ-acetato-bis[2-[bis(1 ,1-dimethylethyl)phosphino]-2-methylpropyl- C,P]dipalladium
Eine Lösung von 5,1 g Pd(OAc)2 (22,7 mmol) in 200 ml Toluol wird mit 5,0 g (24,7 mmol) Tri-(tert.-butyl)phosphan versetzt. Die Farbe der Lösung verändert sich rasch von rotbraun nach hellorange. Nach 10-minütigem Erhitzen auf 70- 80°C, Abkühlen auf Raumtemperatur und Entfernung des Lösungsmittels im Vakuum gibt man 200 ml Hexan zu. Das nach kurzer Zeit kristallisierende Produkt wird abfiltriert und mit wenig Hexan gewaschen. Man erhält 6,65 g (80 %) des weißgelben Katalysators. Durch Umkristallisation aus Hexan und Filtration der Lösungen über Celite kann das Produkt in Form weißgelber Kristallnadeln analysenrein gewonnen werden. 31P-NMR (121 ,4 MHz, CDCI3): -8,5 (s)
Beispiel 1
Herstellung von 4-Chlorbiphenyl
Eine Mischung aus 100 mmol p-Chlorphenylboronsäure (15,7 g), 98 mmol Brombenzol (15,4 g), 110 mmol wasserfreiem Natriumcarbonat (11 ,7 g), 0,1 mmol trans-Di-μ-acetato-bis[2-[bis(1 ,1-dimethylethyl)phosphino]-2-methylpropyl- C,P]dipalladium (0,2 mol-%), 10 mmol Lithiumchlorid (0,43 g) und 100 ml Tetrahydrofuran wurde 2,5 Stunden lang am Rückfluß gekocht. Nach dem 1! möglichst vollständigen Abdestillieren von THF bei Normaldruck und Ersetzen durch 100 ml Toluol wurde mit 150 ml Wasser hydrolysiert. Die wäßrige Phase wurde mit weiteren 50 ml Toluol extrahiert, die organische Phase mit 50 ml Wasser gewaschen. Aus den vereinigten organischen Phasen wurde nach Destillation 4-Chlorbiphenyl in einer Ausbeute von 97 % (bezogen auf Brombenzol) erhalten.
Beispiel 2
Herstellung von 2-Phenylfuran-4-carbonsäuremethylester
50 mmol 2-Chlorfuran-4-carbonsäuremethylester wurden mit 52 mmol Phenylboronsäure, 50 mmol Kaliumcarbonat, 25 mmol Lithiumchlorid und 0,25 mmol trans-Di-μ-acetato-bis[2-[bis(1 , 1 -dimethyIethyl)phosphino]-2-methylpropyl- C,P]dipalladium (1 mol-%) in 150 ml Dibutylether 8 Stunden lang auf 80°C erhitzt. Nach wäßriger Aufarbeitung, Filtration über eine kurze Kieselgelsäule und Abdestillieren der Lösungsmittel verbleibt 2-Phenylfuran-4- carbonsäuremethylester als farbloser Rückstand. Ausbeute 85 %.
Beispiel 3 Herstellung von 2,2'-Bipyridyl
50 mmol 2-Chlorpyridin werden zusammen mit 50 mmol 2-Pyridylboronsäure- glykolester, 25 mmol Lithiumchlorid, 50 mmol Kaliumhydroxid, 1 mmol Tetrabutylammoniumchlorid und 0,05 mmol trans-Di-μ-acetato-bis[2-[bis(1 ,1- dimethylethyl)phosphino]-2-methylpropyI-C,P]dipalladium (0,2 mol-%) in 150 ml Tetrahydrofuran 5 Stunden lang am Rückfluß gekocht. Nach der üblichen wäßrigen Aufarbeitung und Kristallisation des Rohprodukts aus Ethanol erhält man 2,2'-Bipyridyl als farblose Kristalle (Smp. 70°C) in einer Ausbeute von 91 %.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Biarylen der allgemeinen Formel (1 ),
R3
Figure imgf000013_0001
R8
worin R1 bis R10 gleich oder verschieden sind und unabhängig voneinander Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 8 C-Atomen, Cycloalkyl mit 3 bis 7 Ring-C-Atomen, das mit C-ι-C4-Alkyl substituiert sein kann, C2-C8-Alkenyl; C2-C8-Alkinyl, Fluor, Chlor, Hydroxy, OLi, ONa, OK, OMg0,5, OMgCI, OMgBr, Alkoxy mit 1 bis 8 C-Atomen, NH2, NHR', NR'2, NH(C=O)R', NH(C=O)OR\ NH(C=O)NR'2, NO2, SO2R', SOR', POPhenyl2, PO-(C C8-Alkyl)2 , PO3-(C C8-Alkyl)2, C(=O)R', C(=O)NR'2, C(=O)OR', CN, CO2Li, CO2Na, CO2K, CO2MgCI, CO2MgBr, Phenyl, substituiertes Phenyl, Aralkyl oder Heteroaryl bedeuten; oder zwei benachbarte Reste R(n) und R(n+1) einer überbrückenden 1 ,ω-Alkandiyl-Kette mit 3 bis 8 C-Atomen oder einer verbrückenden Ethylendioxy- oder Methylendioxy-Kette entsprechen; oder zwei benachbarte Reste R(n) und R(n+1) einer Einheit der Formel
Figure imgf000014_0001
entsprechen, und die Reste R' unabhängig voneinander Wasserstoff, Cι-C8-Alkyl, C-i-Cs-Alkoxy oder Phenyl bedeuten, und die Ringatome Xi bis X10 entweder alle C-Atome sind oder sich in jedem der beiden miteinander verknüpften Ringe A und B maximal ein Heteroatom befindet dergestalt, daß ein beliebiges Ringglied R% N bedeutet, oder jeweils zwei benachbarte Ringglieder R2X2 und R3X3, oder R4X4 und R5X5, oder R7X7 und R8X8, oder R9X9 und R100, durch S, O oder NR" ersetzt sind, worin R" Wasserstoff, Alkyl mit 1 bis 8 C-Atomen, SiR'3 oder C(=0)R' bedeutet,
durch Kupplung von Aromaten der Formel (2) mit einer aromatischen Bor- Verbindung der Formel (3),
Figure imgf000014_0002
R8
(2) (3)
worin LG eine der Abgangsgruppen Fluor, Chlor, Brom, lod, Triflat, Perfluor-
(CrCβJalkylsulfonat, Mesylat, Tosylat, Nosylat, Brombenzolsulfonat oder
N(OSO2CF3)2 bedeutet;
Qi und Q2 gleich oder verschieden sind und OH oder einen Rest der Formel
-O-(C C8)Alkyl, -O-(C2-C8)-Alkenyl, -O-(C2-C8)Alkinyl, -O-Aryl oder -O-Alkylaryl bedeuten, oder Q1, Q2 und das benachbarte Boratom bilden einen cyclischen Borsaureester mit den Alkoholen (C3-Cι2)-Cycloalkan-1 ,2-diol, (C5-Cι2)-Cycloalken-1 ,2-diol, (C5-Cι2)-Cycloalkan-1 ,3-diol, (C5-Cι2)-Cycloalken-1 ,3-diol oder mit Alkoholen der Formeln (Va) bis (Ve),
Figure imgf000015_0001
Va Vb Vc
Figure imgf000015_0002
Vd Ve
worin R-ib bis R8b gleich oder verschieden sind und unabhängig voneinander die
Bedeutung Wasserstoff, CrC12-Alkyl, C Cι2-Hydroxyalkyl, C2-C12-Alkenyl, C2- Cι2-Alkinyl, C3-C12-Cycloalkyl, (C C12)-Alkoxy, (C Cι2)-Acyloxy, O-Phenyl, O-
Benzyl, Aryl, Heteroaryl, Fluor, Chlor, Brom, Jod, NO2, NH2, N(Alkyl)2, N[Si(Cι-C4-
Alkyl)3]2, CF3, CCI3 oder CBr3, haben, und/oder zwei benachbarte Reste R-ib bis R8b zusammen einen 5- bis 8- gliedrigen aliphatischen oder aromatischen Ring bilden, und worin n eine ganze Zahl von 2 bis 12 bedeutet, oder worin Qi und Q2 zusammen einen zweiwertigen Rest der Formel (Vf)
Figure imgf000016_0001
Vf R8
bilden, dadurch gekennzeichnet, daß die Kupplung in Gegenwart einer
Palladiumverbindung der allgemeinen Formel (IV),
Figure imgf000016_0002
IV
worin Ria und R2a unabhängig voneinander Wasserstoff, (d-C4)-Alkyl, (C3-Cι2)- Cycloalkyl, (C C4)-Alkoxy, Fluor, N(C C4-Alkyl)2, CO2-(C C4-Alkyl), OCO-(d-
C4)- Alkyl oder substituiertes oder unsubstituiertes Aryl;
R3a, R4a, R5a und Rβa unabhängig voneinander (Cι-C8)-Alkyl, (C3-C8)-Cycloalkyl, substituiertes oder unsubstituiertes Aryl bedeuten; oder worin Ria und R2a, oder R2a und R3a, oder R3a und R4a, zusammen einen aliphatischen Ring mit 4 bis 10 C-Atomen bilden, oder worin R5a und R8a zusammen mit dem P-Atom einen gesättigten oder ungesättigten 4- bis 9-gliedrigen Ring bilden; oder R4a und R5a eine überbrückende 1 ,ω-Alkandiyl-Kette mit 2 bis 7 C-Atomen bilden; und Y ein Anion einer anorganischen oder organischen Säure, eine α,γ-Diketoverbindung oder einen 5- oder 6-gliedrigen stickstoffhaltigen Heterocyclus bedeutet, in Gegenwart einer Base und eines Lösungsmittels bei Temperaturen von 20°C bis 200°C durchführt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Verbindung der Formel (1 ) ein Biphenyl, Phenylpyridin, Phenylfuran, Phenylpyrrol, Phenylthiophen, Bipyridin, Pyridylfuran oder Pyridylpyrrol ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß R1 bis R10 gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Cι-C4-Alkyl, C5-C6-Cycloalkyl, Methyl-(C5-C6)cycloalkyl, C2-C -Alkenyl, C2-C4-Alkinyl, Fluor, Chlor, Hydroxy, C2-C4-Alkoxy, NH2, NHR', NR'2, NHCOR', NHCOOR', COOH, COOR', CN, Phenyl, ein mit 1 bis 3 Resten aus der Gruppe C-ι-C-4-Alkyl, F, Cl, C2-C4-Alkoxy oder NO2 substituiertes Phenyl, Benzyl oder Pyridyl, bedeuten, oder zwei benachbarte Reste R(n) und R(n+1) bilden eine 1 ,ω-Alkyldiyl-Kette mit 4 bis 6 C-Atomen, und R' bedeutet Wasserstoff, C C4- Alkyl, Cι-C6-Alkoxy oder Phenyl.
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Qi und Q2 einen Rest der Formel OH, -O-(C C )-Alkyl, -O-(C2-C4)-Alkenyl, -O-(C2-C4)-Alkinyl, O-Phenyl oder O-Benzyl bedeuten; oder Q-, und Q2 und das benachbarte Boratom einen cyclischen Borsaureester mit den Alkoholen Ethylenglykol, 1 ,3-Propandiol, 1 ,4-Butandiol, 2,2-Dimethylpropan-1 ,3- diol, Brenzkatechin, Pinakol, 2,3-Dihydroxynaphthalin, Diethanolamin,
Triethanolamin, 1 ,2-Dihydroxycyclohexan, 1 ,3-Dihydroxycyclopentan oder 1 ,2-Dihydroxycyclooctan bilden.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß R-ia und R2a unabhängig voneinander Wasserstoff, Methyl, Ethyl, Cyclopentyl, Cyclohexyl, Methoxy, Ethoxy, Fluor, Phenyl, Tolyl oder Naphthyl; R3a und R a unabhängig voneinander (C C4)-Alkyl, (C5-C6)-Cycloalkyl, substituiertes oder unsubstituiertes Cδ-Cio-Aryl oder worin R3a und R a zusammen einen aliphatischen Ring mit 5 bis 6 C-Atomen bilden;
R5a und R6a unabhängig voneinander (C C4)-Alkyl, (C5-C6)-Cycloalkyl, Phenyl,
Naphthyl, Anthracenyl, die unsubstituiert oder mit 1 bis 3 CF3-, (CrC4)-Alkyl- oder
(CrC4)-Alkoxy-Gruppen substituiert sind; und Y für Acetat, Propionat, Benzoat, Chlorid, Bromid, lodid, Fluorid, Sulfat,
Hydrogensulfat, Nitrat, Phosphat, Triflat, Tetrafluoroborat, Tosylat, Mesylat,
Acetylacetonat, Hexafluoracetylacetonat oder Pyrazolyl steht, bedeuten.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß R-ia und R2a unabhängig voneinander Wasserstoff oder Methyl; R3a und R4a unabhängig voneinander Methyl, Ethyl oder Phenyl,
R5a und Rβa unabhängig voneinander Phenyl, Naphthyl, o-Trifluormethylphenyl, o-Trifluormethyl-p-tolyl, o-Trifluormethyl-p-methoxyphenyl, o-Methoxyphenyl, o,p-Dimethoxyphenyl, Anthracenyl, tert.-Butyl, n-Butyl, Isopropyl, Isobutyl, Cyclohexyl oder 1-Methylcyclohexyl bedeuten.
7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Verbindung der Formel (IV) trans-Di-μ-acetato-bis[2-[bis(1 ,1-dimethylethyl)phosphino]-2-methylpropyl-
C,P]dipalladium(ll), trans-Di-μ-acetato-bis[2-[1 ,1-dimethylethyl)-phenylphosphino]-2-methylpropyl-
C,P]dipalladium(ll), trans-Di-μ-chloro-bis-[2-[bis(1 ,1-dimethylethyl)phosphino]-2-methylpropyl-
C,P]dipalladium(ll), trans-Di-μ-chloro-bis[2-[1 , 1 -dimethylethyl)-phenylphosphino]-2-methylpropyl-
C,P]dipalladium(ll), trans-Di-μ-bromo-bis-[2-[bis(1 , 1 -dimethylethyl)phosphino]-2-methylpropyl- C,P]dipalladium(ll) oder trans-Di-μ-bromo-bis[2-[1 ,1-dimethylethyl)-phenylphosphino]-2-methylpropyl-
C,P]dipalladium(ll) ist.
8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Palladiumverbindung der Formel (IV) in der 10~6 bis 1-fachen, vorzugsweise 10"5 bis 0,1-fachen, molaren Menge, bezogen auf die Menge der Verbindung der Formel (2), eingesetzt wird.
9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Kupplung in Gegenwart eines Halogenides der Alkalioder Erdalkalimetalle oder Übergangsmetalle der 6. bis 8. Nebengruppe oder eines Ammonium-, Phosphonium- oder Arsoniumhalogenids durchgeführt wird.
10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß als Lösungsmittel ein aromatischer Kohlenwasserstoff oder ein aliphatischer Ether eingesetzt wird.
11. Verfahren nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß als Base Alkali- oder Erdalkalialkoholate, Alkali- oder Erdalkaliamide, Alkali- oder Erdalkaliacetate, Alkali- oder Erdalkaliformiate, Alkali oder Erdalkalipropionate, Alkali- oder Erdalkalicarbonate, -hydrogencarbonate, -hydroxide oder -oxide sowie aliphatische oder aromatische Amine eingesetzt werden.
12. Verfahren nach mindestens einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, daß die Kupplung bei einer Temperatur von 50 bis 165°C, vorzugsweise 60 bis 160°C, durchgeführt wird.
PCT/EP2000/006435 1999-07-13 2000-07-07 Verfahren zur herstellung von biarylen unter palladaphosphacyclobutan-katalyse WO2001004076A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00947945A EP1200373A1 (de) 1999-07-13 2000-07-07 Verfahren zur herstellung von biarylen unter palladaphosphacyclobutan-katalyse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19932571A DE19932571A1 (de) 1999-07-13 1999-07-13 Verfahren zur Herstellung von Biarylen unter Palladophosphacyclobutan-Katalyse
DE19932571.5 1999-07-13

Publications (1)

Publication Number Publication Date
WO2001004076A1 true WO2001004076A1 (de) 2001-01-18

Family

ID=7914530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/006435 WO2001004076A1 (de) 1999-07-13 2000-07-07 Verfahren zur herstellung von biarylen unter palladaphosphacyclobutan-katalyse

Country Status (4)

Country Link
US (1) US6392047B1 (de)
EP (1) EP1200373A1 (de)
DE (1) DE19932571A1 (de)
WO (1) WO2001004076A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1233009A2 (de) * 2001-02-16 2002-08-21 Clariant GmbH Verfahren zur Herstellung von 4-substituierten 2-Alkyl- und 2-Alkoxylbiphenylen
US7083762B2 (en) 2002-10-18 2006-08-01 Exxonmobil Chemical Patents Inc. Multiple riser reactor with centralized catalyst return
US7560563B2 (en) 2002-07-23 2009-07-14 Kuraray Co., Ltd. Process for producing 2-substituted pyridine derivative
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors
US11926616B2 (en) 2018-03-08 2024-03-12 Incyte Corporation Aminopyrazine diol compounds as PI3K-γ inhibitors

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270535A3 (de) * 2001-06-20 2004-02-18 Clariant GmbH Verfahren zur Herstellung von substituierten aromatischen Verbindungen
GB0124936D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
GB0124934D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
GB0124931D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
GB0124933D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
GB0124939D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
GB0124941D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
GB0124938D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
MXPA04007838A (es) 2002-02-12 2004-10-15 Smithkline Beecham Corp Derivados de nicotamida utiles como inhibidores p38.
GB0217757D0 (en) 2002-07-31 2002-09-11 Glaxo Group Ltd Novel compounds
GB0308185D0 (en) * 2003-04-09 2003-05-14 Smithkline Beecham Corp Novel compounds
GB0402143D0 (en) * 2004-01-30 2004-03-03 Smithkline Beecham Corp Novel compounds
CN1293084C (zh) * 2004-06-25 2007-01-03 大连理工大学 二苯基膦乙酸钯催化交叉偶联合成液晶化合物的方法
US20080051416A1 (en) * 2004-10-05 2008-02-28 Smithkline Beecham Corporation Novel Compounds
GB0512429D0 (en) * 2005-06-17 2005-07-27 Smithkline Beecham Corp Novel compound
JP5677425B2 (ja) 2009-06-29 2015-02-25 インサイト・コーポレイションIncyte Corporation Pi3k阻害剤としてのピリミジノン
WO2011075643A1 (en) * 2009-12-18 2011-06-23 Incyte Corporation Substituted heteroaryl fused derivatives as pi3k inhibitors
US8680108B2 (en) * 2009-12-18 2014-03-25 Incyte Corporation Substituted fused aryl and heteroaryl derivatives as PI3K inhibitors
CA2796311A1 (en) 2010-04-14 2011-10-20 Incyte Corporation Fused derivatives as pi3k.delta. inhibitors
WO2011163195A1 (en) 2010-06-21 2011-12-29 Incyte Corporation Fused pyrrole derivatives as pi3k inhibitors
WO2012007500A2 (de) 2010-07-15 2012-01-19 Bayer Cropscience Ag Neue heterocyclische verbindungen als schädlingsbekämpfungsmittel
EP2655374B1 (de) 2010-12-20 2019-10-23 Incyte Holdings Corporation N-(1-(substituierte phenyl)ethyl)-9h-purin-6-amine als pi3k-hemmer
WO2012125629A1 (en) 2011-03-14 2012-09-20 Incyte Corporation Substituted diamino-pyrimidine and diamino-pyridine derivatives as pi3k inhibitors
US9126948B2 (en) 2011-03-25 2015-09-08 Incyte Holdings Corporation Pyrimidine-4,6-diamine derivatives as PI3K inhibitors
KR102507287B1 (ko) 2011-09-02 2023-03-07 인사이트 홀딩스 코포레이션 Pi3k 억제제로서 헤테로시클릴아민
AR090548A1 (es) 2012-04-02 2014-11-19 Incyte Corp Azaheterociclobencilaminas biciclicas como inhibidores de pi3k
US10077277B2 (en) 2014-06-11 2018-09-18 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
PE20180129A1 (es) 2015-02-27 2018-01-18 Incyte Corp Sales de inhibidor de pi3k y procesos de preparacion
US9732097B2 (en) 2015-05-11 2017-08-15 Incyte Corporation Process for the synthesis of a phosphoinositide 3-kinase inhibitor
US9988401B2 (en) 2015-05-11 2018-06-05 Incyte Corporation Crystalline forms of a PI3K inhibitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690046A1 (de) * 1994-07-01 1996-01-03 Hoechst Aktiengesellschaft Verfahren zur Herstellung von Biphenylen mit Palladacyclen als Katalysatoren
DE19647582A1 (de) * 1996-11-18 1998-05-20 Hoechst Ag Verfahren zur Herstellung von aromatischen Olefinen mittels Katalyse durch Palladaphosphacyclobutane
DE19647584A1 (de) * 1996-11-18 1998-05-20 Hoechst Ag Neue Palladaphosphacyclobutane sowie ein Verfahren zu ihrer Herstellung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690046A1 (de) * 1994-07-01 1996-01-03 Hoechst Aktiengesellschaft Verfahren zur Herstellung von Biphenylen mit Palladacyclen als Katalysatoren
DE19647582A1 (de) * 1996-11-18 1998-05-20 Hoechst Ag Verfahren zur Herstellung von aromatischen Olefinen mittels Katalyse durch Palladaphosphacyclobutane
DE19647584A1 (de) * 1996-11-18 1998-05-20 Hoechst Ag Neue Palladaphosphacyclobutane sowie ein Verfahren zu ihrer Herstellung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1233009A2 (de) * 2001-02-16 2002-08-21 Clariant GmbH Verfahren zur Herstellung von 4-substituierten 2-Alkyl- und 2-Alkoxylbiphenylen
EP1233009A3 (de) * 2001-02-16 2004-01-21 Clariant GmbH Verfahren zur Herstellung von 4-substituierten 2-Alkyl- und 2-Alkoxylbiphenylen
US7560563B2 (en) 2002-07-23 2009-07-14 Kuraray Co., Ltd. Process for producing 2-substituted pyridine derivative
US7083762B2 (en) 2002-10-18 2006-08-01 Exxonmobil Chemical Patents Inc. Multiple riser reactor with centralized catalyst return
US11926616B2 (en) 2018-03-08 2024-03-12 Incyte Corporation Aminopyrazine diol compounds as PI3K-γ inhibitors
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors

Also Published As

Publication number Publication date
US6392047B1 (en) 2002-05-21
EP1200373A1 (de) 2002-05-02
DE19932571A1 (de) 2001-01-18

Similar Documents

Publication Publication Date Title
WO2001004076A1 (de) Verfahren zur herstellung von biarylen unter palladaphosphacyclobutan-katalyse
DE112014002844B4 (de) NHC-Palladium-Katalysator sowie dessen Herstellungsverfahren und Verwendung
DE10037961A1 (de) Neue Phosphanliganden, deren Herstellung und ihre Verwendung in katalytischen Reaktionen
EP0690046B1 (de) Verfahren zur Herstellung von Biphenylen mit Palladacyclen als Katalysatoren
DE19503119A1 (de) Verfahren zur Herstellung von aromatischen Olefinen unter Katalyse von Palladacyclen
DE19831246A1 (de) Verfahren zur Herstellung von Arylpyridinen
EP2096101A1 (de) Verfahren zur Herstellung von Ketonen aus alpha-Oxocarboxylaten und Arylbromiden
EP0938459B1 (de) Verfahren zur herstellung von aromatischen olefinen mittels katalyse durch palladaphosphacyclobutane
DE4421730C1 (de) Verfahren zur Herstellung von aromatischen Olefinen unter Katalyse von Palladacyclen
EP1171406B1 (de) Verfahren zur herstellung von biarylen
EP0979809B1 (de) Vefahren zur Herstellung von 4-Chlorbiphenylen
EP0970028B1 (de) Verfahren zur synthese von aromatisch substituierten olefinen
DE19815323C2 (de) Verfahren zur Herstellung von Isochroman-3-onen
EP1324964A2 (de) Verfahren zur herstellung von arylverbindungen
EP0962434B1 (de) Verfahren zur Herstellung von aromatischen Olefinen unter Katalyse von Palladiumkatalysatoren mit Phosphitliganden
DE69733607T2 (de) Herstellung von cycloalkyldiarylphosphinen
DE60316108T2 (de) Geträgerter Nanopalladium Katalysator für C-C Kupplungsreaktionen von Haloarenen
EP1235775B1 (de) Verfahren zur isomerisierung von allylalkoholen
EP1861343B1 (de) Verfahren zur herstellung von alkylsubstituierten aromaten und heteroaromaten durch kreuzkupplung von alkylboronsäuren mit aryl- oder heteroarylhalogeniden oder -sulfonaten unter pd-katalyse in gegenwart eines liganden
DE2018054C3 (de) Verfahren zur Herstellung von Octadienol
DE4225763A1 (de) Verfahren zur Herstellung von Halogenaromaten
EP1152005B1 (de) Verfahren zur Herstellung von substituierten 10-Chlor-phenoxaphosphinen oder 10-Brom-phenoxaphosphinen
DE19942961A1 (de) Verfahren zur Herstellung von aromatischen Aminen unter Katalyse von Palladaphosphacyclobutanen
DE19743985A1 (de) Verwendung von Tris(trifluoromethylsulfonyl)methan und dessen Alkali- und Erdalkalimetallsalzen als Katalysatoren bei C-C verknüpfenden Synthesen und das neue Mg-Salz von Tris(trifluoromethylsulfonyl)methan
DE60002503T2 (de) Herstellung von disubstituierten pentafulvenen über lithiierte silyl(halo)aromaten als zwischenstufen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN IL JP KR MX

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000947945

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000947945

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000947945

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP