-
HINTERGRUND DER ERFINDUNG
-
Gebiet der Erfindung
-
Die vorliegende Erfindung bezieht sich auf epitaktische SiC-Wafer.
-
Beschreibung der Hintergrundtechnik
-
Siliziumcarbid (SiC) weist neben einer größeren Bandlücke als Silizium (Si) bessere Werte physikalischer Eigenschaften einer Durchbruchfeldstärke, gesättigten Elektronengeschwindigkeit, Wärmeleitfähigkeit und dergleichen auf und hat überlegene Eigenschaften als Material für Halbleiter-Leistungsvorrichtungen. Insbesondere kann eine unter Verwendung von SiC hergestellte Leistungsvorrichtung (worauf im Folgenden als „SiC-Leistungsvorrichtung“ verwiesen wird) einen Leistungsverbrauch signifikant reduzieren und kann verkleinert reduziert werden, was eine Energieeinsparung bei der Umwandlung einer Stromversorgungsleistung erlaubt. Die SiC-Leistungsvorrichtung hat somit Potential, zu einer höheren Leistungsfähigkeit von Elektroautos, einer größeren Funktionalität von Solarzellensystemen und dergleichen beizutragen, um zu einer Schlüsselvorrichtung zum Erreichen einer kohlenstoffarmen Gesellschaft zu werden.
-
Bei der Herstellung der SiC-Leistungsvorrichtung ist es notwendig, vorher einen aktiven Bereich einer Halbleitervorrichtung auf einem SiC-Substrat auszubilden. Der aktive Bereich wird über epitaktisches Wachstum unter Verwendung einer chemischen Gasphasenabscheidung (CVD) und dergleichen gebildet. Der aktive Bereich hierin ist ein Bereich, der gebildet wird, während eine Trägerdichte in Kristallen und deren Filmdicke genau gesteuert werden, und bezieht sich auf einen Querschnittsbereich, der eine Achse in einer Wachstumsrichtung einschließt. Solch eine epitaktische Wachstumsschicht ist zusätzlich zum Substrat erforderlich, da eine Trägerkonzentration und Filmdicke im Wesentlichen durch eine Designspezifikation der Vorrichtung reguliert werden und eine genauere Steuerbarkeit als eine für eine Trägerkonzentration des Substrats geforderte erforderlich ist, um den aktiven Bereich auszubilden.
-
Auf einen Wafer, der die auf dem SiC-Substrat ausgebildete epitaktische Wachstumsschicht enthält, wird hierin im Folgenden als epitaktischer Wafer verwiesen. SiC-Vorrichtungen werden hergestellt, indem verschiedene Arten einer Prozessierung auf dem epitaktischen Wafer durchgeführt werden. Eine Quote, mit der Vorrichtungen mit gewünschten Charakteristiken aus einem einzigen epitaktischen Wafer hergestellt werden, nämlich eine sogenannte Vorrichtungsausbeute, hängt somit stark von einer Einheitlichkeit elektrischer Charakteristiken der epitaktischen Wachstumsschicht ab.
-
Das heißt, falls ein Gebiet zur Ausbildung einer Vorrichtung des epitaktischen Wafers einen lokalen Bereich enthält, in welchem ein Durchbruchfeld kleiner als dasjenige im anderen Bereich ist oder in welchem ein verhältnismäßig großer Strom bei Anlegung einer bestimmten Spannung fließt, weist eine den Bereich enthaltende Vorrichtung schlechte elektrische Charakteristiken auf. Beispielsweise verursachen schlechte Eigenschaften einer Durchbruchspannung insofern ein Problem, als bei Anlegung einer verhältnismäßig kleinen Spannung ein Leckstrom fließt. Mit anderen Worten ist ein primäres Element, das die Vorrichtungsausbeute reguliert, eine kristallografische Einheitlichkeit des epitaktischen Wafers. Als ein Faktor einer Beeinträchtigung der Einheitlichkeit ist ein Carrot-Defekt bekannt, der auf der Oberfläche des epitaktischen Wafers aufgrund eines Problems beim epitaktischen Wachstum beobachtet wird. Der Carrot-Effekt wird typischerweise durch interne Spannung beim Wachstum der epitaktischen Schicht hervorgerufen und verursacht ein Vorrichtungsversagen. In einem herkömmlichen Verfahren kann jedoch ein epitaktischer SiC-Wafer, in welchem der Carrot-Defekt ausreichend reduziert ist, nicht erhalten werden.
-
Ein SiC-Kristall hat eine eindeutige Periodizität, auf die als Polytyp verwiesen wird. Das heißt, SiC-Kristalle mit einer Stöchiometrie von Si und C von 1:1 und Kristallgitter mit einer hexagonalen dicht gepackten Struktur können verschiedene Arten einer Periodizität in einer atomaren Anordnung entlang einer c-Achse in der Struktur aufweisen. Physikalische Eigenschaften von SiC werden durch die Periodizität auf atomarer Skala und Symmetrie eines Kristallgitters reguliert. Ein SiC-Kristall, der im Hinblick auf eine Vorrichtungsanwendung gegenwärtig die größte Aufmerksamkeit auf sich zieht, ist derjenige eines Typs, auf den als 4H-SiC verwiesen wird. Um die gleiche kristalline Form epitaktisch wachsen zu lassen, wird die Oberfläche eines SiC-Massesubstrats so eingerichtet, dass sie eine Ebene aufweist, die aus einer bestimmten Ebenen-Orientierung eines Kristalls geneigt ist, und wird typischerweise so prozessiert, dass sie eine Oberfläche ist, die unter 8° oder 4° aus einer (0001)-Ebene, zum Beispiel in einer <11-20>-Richtung, geneigt ist.
-
Um die Vorrichtungsausbeute zu verbessern, wurde ein Verfahren zum Verbessern einer Kristallinität des SiC-Massesubstrats und der epitaktischen SiC-Schicht vorgeschlagen. Beispielsweise offenbaren die offengelegte
japanische Patentanmeldung Nr. 2011-114252 und
WO 2016/092887 , dass eine Schicht mit einer hohen Trägerkonzentration in der epitaktischen SiC-Schicht ausgebildet wird.
-
Gemäß der in der offengelegten japanischen Patentanmeldung Nr.
2011-114252 und
WO 2016/092887 beschriebenen Erfindung wird die Vorrichtungsausbeute verbessert, indem die Schicht mit einer hohen Trägerkonzentration in der epitaktischen SiC-Schicht ausgebildet wird.
-
In der Erfindung gibt es jedoch eine extrem große Differenz in einer Trägerkonzentration zwischen der Schicht mit einer hohen Trägerkonzentration und anderen Teilbereichen der epitaktischen SiC-Schicht als der Schicht mit einer hohen Trägerkonzentration. Beispielsweise weist in der offengelegten japanischen Patentanmeldung Nr.
2011-114252 eine zweite SiC-Schicht, die der Schicht mit einer hohen Trägerkonzentration entspricht, eine Störstellenkonzentration von 5×10
17 cm
-3 oder mehr und 5×10
18 cm
-3 oder weniger auf, weisen eine erste SiC-Schicht und eine dritte SiC-Schicht, die den anderen Teilbereichen der epitaktischen SiC-Schicht als der Schicht mit einer hohen Trägerkonzentration entsprechen, jeweils eine Störstellenkonzentration von 1×10
15 cm
-3 oder mehr und 1×10
16 cm
-3 oder weniger auf, und somit beträgt eine Differenz in der Trägerkonzentration zwischen ihnen 4,9×10
17 cm
-3 oder mehr und 4,999×10
18 cm
-3 oder weniger. In
WO 2016/092887 hat eine zweite epitaktische Schicht, die der Schicht mit einer hohen Trägerkonzentration entspricht, eine Störstellenkonzentration von 1×10
17 cm
-3 oder mehr, weisen eine erste epitaktische Schicht und eine dritte epitaktische Schicht, die den anderen Teilbereichen der epitaktischen SiC-Schicht als der Schicht mit einer hohen Trägerkonzentration entsprechen, jeweils eine Störstellenkonzentration von 1×10
16 cm
-3 oder mehr auf, und folglich beträgt eine Differenz in der Trägerkonzentration zwischen ihnen 0,9×10
17 cm
-3 oder mehr.
-
Folglich kann eine interne Spannung in der epitaktischen SiC-Schicht nicht effektiv entlastet werden, und ferner hat eine hohe Trägerkonzentration in der Schicht mit einer hohen Trägerkonzentration einen Einfluss auf eine Durchbruchspannung eines SiC-Vorrichtungschips. Es kann kein zufriedenstellender Effekt zum Verbessern der Vorrichtungsausbeute erhalten werden.
-
ZUSAMMENFASSUNG
-
Es ist eine Aufgabe der vorliegenden Erfindung, einen epitaktischen SiC-Wafer mit einer ausreichend hohen Vorrichtungsausbeute bereitzustellen.
-
Ein epitaktischer SiC-Wafer gemäß der vorliegenden Erfindung umfasst ein SiC-Substrat und eine epitaktische SiC-Schicht. Die epitaktische SiC-Schicht ist auf dem SiC-Substrat angeordnet. Die epitaktische SiC-Schicht umfasst eine Schicht mit einer hohen Trägerkonzentration und zwei Schichten mit einer niedrigen Trägerkonzentration. Die beiden Schichten mit einer niedrigen Trägerkonzentration weisen eine niedrigere Trägerkonzentration als die Schicht mit einer hohen Trägerkonzentration auf und sind mit einer oberen Oberfläche und einer unteren Oberfläche der Schicht mit einer hohen Trägerkonzentration so in Kontakt, dass sie die Schicht mit einer hohen Trägerkonzentration sandwichartig umgeben. Eine Differenz zwischen einer Trägerkonzentration der Schichten mit einer niedrigen Trägerkonzentration in Bereichen eines Kontakts mit der Schicht mit einer hohen Trägerkonzentration und einem Maximalwert einer Trägerkonzentration der Schicht mit einer hohen Trägerkonzentration beträgt 5×1014/cm3 oder mehr und 2×1016/cm3 oder weniger.
-
Entsprechend dem epitaktischen SiC-Wafer gemäß der vorliegenden Erfindung beträgt die Differenz zwischen der Trägerkonzentration der Schichten mit einer niedrigen Trägerkonzentration in den Bereichen eines Kontakts mit der Schicht mit einer hohen Trägerkonzentration und dem Maximalwert der Trägerkonzentration der Schicht mit einer hohen Trägerkonzentration 5×1014/cm3 oder mehr und 2×1016/cm3 oder weniger. Dies reduziert einen Carrot-Defekt der epitaktischen SiC-Schicht und verbessert die V orri chtungsausbeute.
-
Diese und andere Aufgaben, Merkmale, Aspekte und Vorteile der vorliegenden Erfindung werden aus der folgenden detaillierten Beschreibung der vorliegenden Erfindung ersichtlicher werden, wenn sie in Verbindung mit den beiliegenden Zeichnungen vorgenommen wird.
-
Figurenliste
-
- 1 zeigt eine Korrelation zwischen einem Prozentsatz einer Reduzierung von Carrot-Defekten und einer Differenz in einer Trägerkonzentration zwischen Schichten mit einer niedrigen Trägerkonzentration und einer Schicht mit einer hohen Trägerkonzentration einer epitaktischen SiC-Schicht.
- 2 zeigt einen Querschnitt und eine Trägerkonzentration jedes Teilbereichs eines epitaktischen SiC-Wafers in einer Ausführungsform 1.
- 3 zeigt einen Querschnitt und eine Trägerkonzentration jedes Teilbereichs eines epitaktischen SiC-Wafers in einer ersten Modifikation der Ausführungsform 1.
- 4 zeigt einen Querschnitt und eine Trägerkonzentration jedes Teilbereichs eines epitaktischen SiC-Wafers in einer zweiten Modifikation der Ausführungsform 1.
- 5 zeigt einen Querschnitt und eine Trägerkonzentration jedes Teilbereichs eines epitaktischen SiC-Wafers in einer dritten Modifikation der Ausführungsform 1.
- 6 zeigt einen Querschnitt und eine Trägerkonzentration jedes Teilbereichs eines epitaktischen SiC-Wafers in einer Ausführungsform 2.
- 7 ist ein Blockdiagramm, das eine Konfiguration eines Leistungsumwandlungssystems zeigt, für das ein Leistungswandler in einer Ausführungsform 3 verwendet wird.
-
BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSFORMEN
-
<Ausführungsform 1>
-
<Konfiguration>
-
Ein Carrot-Defekt ist ein Killer-Defekt für eine Vorrichtung, der durch interne Spannung einer epitaktischen SiC-Schicht hervorgerufen wird, und hat eine lineare Form. Es ist bekannt, dass dieser Defekt ein fatales Problem wie etwa ein Durchbruchspannungsversagen insbesondere in einer Vorrichtung wie etwa einem MOSFET (Metall-Oxid-Halbleiter-Feldeffekttransistor) und einem IGBT (Bipolartransistor mit isoliertem Gate) hervorruft. Der Carrot-Defekt wird typischerweise auf der Oberfläche einer epitaktischen Wachstumsschicht mit einer Dichte von annähernd 1,0/cm2 erzeugt und hat einen nachteiligen Effekt auf die Vorrichtung. In einer herkömmlichen Technik kann jedoch kein epitaktischer SiC-Wafer, in welchem der Carrot-Defekt ausreichend reduziert ist, erhalten werden.
-
Die gegenwärtigen Erfinder haben den Carrot-Defekt mit dem nachteiligen Effekt auf die Vorrichtung intensiv untersucht und aufgedeckt, dass der Carrot-Defekt signifikant reduziert werden kann, indem eine Schicht mit einer hohen Trägerkonzentration in der epitaktischen SiC-Schicht vorgesehen wird und eine Differenz in einer Trägerkonzentration zwischen der Schicht mit einer hohen Trägerkonzentration und anderen Teilbereichen der epitaktischen SiC-Schicht als der Schicht mit einer hohen Trägerkonzentration (worauf im Folgenden als „Schichten mit einer niedrigen Trägerkonzentration“ verwiesen wird) so reduziert wird, dass die Differenz in einer Trägerkonzentration in einen festgelegten Bereich entlang einer Dicke der epitaktischen SiC-Schicht fällt. Die gegenwärtigen Erfinder haben ferner eine Beziehung zwischen einem Prozentsatz einer Reduzierung von Carrot-Defekten und der Differenz in einer Trägerkonzentration zwischen den Schichten mit einer niedrigen Trägerkonzentration und der Schicht mit einer hohen Trägerkonzentration aufgedeckt.
-
1 zeigt eine Korrelation zwischen dem Prozentsatz einer Reduzierung von Carrot-Defekten und der Differenz in einer Trägerkonzentration zwischen den Schichten mit einer niedrigen Trägerkonzentration und der Schicht mit einer hohen Trägerkonzentration der epitaktischen SiC-Schicht. Die vertikale Achse repräsentiert den Prozentsatz einer Reduzierung von Carrot-Defekten. Beispielsweise zeigt ein Prozentsatz einer Reduzierung von Carrot-Defekten von 50 %, dass verglichen mit einem herkömmlichen epitaktischen SiC-Wafer, der keine Konfiguration in der vorliegenden Ausführungsform aufweist, der Carrot-Defekt um 50 % reduziert wurde. Die horizontale Achse repräsentiert die Differenz in einer Trägerkonzentration zwischen den Schichten mit einer niedrigen Trägerkonzentration und der Schicht mit einer hohen Trägerkonzentration (worauf im Folgenden einfach als „Differenz in einer Trägerkonzentration“ verwiesen wird).
-
1 zeigt, dass der Carrot-Defekt um annähernd 40 % bis annähernd 50 % signifikant reduziert wurde, wenn die Differenz in einer Trägerkonzentration 5×1014/cm3 oder mehr und 2×1016/cm3 oder weniger beträgt. Dies gilt vermutlich, da die interne Spannung in der epitaktischen SiC-Schicht, die den Carrot-Defekt hervorrufen kann, effektiv entlastet wird, indem die Schicht mit einer hohen Trägerkonzentration so ausgebildet wird, dass die Differenz in einer Trägerkonzentration in den oben erwähnten Bereich fällt, und folglich kann der Carrot-Defekt signifikant unterdrückt werden. Auf der anderen Seite wird die interne Spannung in der epitaktischen SiC-Schicht nicht ausreichend entlastet, wenn die Differenz in einer Trägerkonzentration geringer als 5×1014/cm3 ist. Wenn die Differenz in einer Trägerkonzentration mehr als 2×1016/cm3 beträgt, ist die Differenz in einer Trägerkonzentration zwischen den Schichten mit einer niedrigen Trägerkonzentration und der Schicht mit einer hohen Trägerkonzentration groß genug, um eine Gitterfehlanpassung zu bewirken, was einen andern Killer-Defekt der Vorrichtung verursacht. Darüber hinaus ist die Differenz in einer Trägerkonzentration von mehr als 2×1016/cm3 nicht vorzuziehen, da ein Problem mit einer Durchbruchspannung Bedeutung gewinnt, wenn ein SiC-Vorrichtungschip hergestellt wird.
-
Wenn die Schicht mit einer hohen Trägerkonzentration eine Dicke von weniger als 0,1 µm hat, kann die interne Spannung in der epitaktischen SiC-Schicht nicht ausreichend entlastet werden. Wenn die Schicht mit einer hohen Trägerkonzentration eine Dicke von mehr als 0,5 µm hat, wird der Einfluss auf die Durchbruchspannung ein Problem, wenn der SiC-Vorrichtungschip hergestellt wird. Es ist somit wünschenswert, dass die Schicht mit einer hohen Trägerkonzentration eine Dicke von 0,1 µm oder mehr und 0,5 µm oder weniger aufweist. Zwei Schichten mit einer niedrigen Trägerkonzentration, die die Schicht mit einer hohen Trägerkonzentration sandwichartig umgeben, weisen eine Trägerkonzentration von 1×1014/cm3 oder mehr und 1×1016/cm3 oder weniger auf. Die zwei Schichten mit einer niedrigen Trägerkonzentration können im Design hierin die gleiche Konzentration aufweisen und weisen in einem zulässigen Bereich unterschiedliche Konzentrationen auf.
-
2 zeigt eine Konfiguration eines epitaktischen SiC-Wafers 11 in der Ausführungsform 1 basierend auf den obigen Feststellungen. 2 zeigt einen Querschnitt und eine Trägerkonzentration jedes Teilbereichs des epitaktischen SiC-Wafers 11. Der epitaktische SiC-Wafer 11 umfasst ein SiC-Substrat 1 und eine epitaktische SiC-Schicht 2. Die epitaktische SiC-Schicht 2 wird über epitaktisches Wachstum auf einer Si-Fläche oder einer C-Fläche des SiC-Substrats 1 ausgebildet. Die epitaktische SiC-Schicht 2 umfasst zwei Schichten 2A mit einer niedrigen Trägerkonzentration und eine Schicht 2B1 mit einer hohen Trägerkonzentration. Die zwei Schichten 2A mit einer niedrigen Trägerkonzentration sind mit einer oberen Oberfläche und einer unteren Oberfläche der Schicht 2B1 mit einer hohen Trägerkonzentration so in Kontakt, dass sie die Schicht 2B1 mit einer hohen Trägerkonzentration sandwichartig umgeben. Wie in 2 gezeigt ist, weisen die Schichten 2A mit einer niedrigen Trägerkonzentration eine niedrigere Trägerkonzentration als das SiC-Substrat 1 auf. Die Schicht 2B1 mit einer hohen Trägerkonzentration hat eine höhere Trägerkonzentration als die Schichten 2A mit einer niedrigen Trägerkonzentration. Die epitaktische SiC-Schicht 2 weist dadurch eine diskontinuierliche Verteilung der Trägerkonzentration an Grenzflächen zwischen der Schicht 2B1 mit einer hohen Trägerkonzentration und den Schichten 2A mit einer niedrigen Trägerkonzentration entlang einer Dicke der epitaktischen SiC-Schicht 2 auf. Die Schicht 2B1 mit einer hohen Trägerkonzentration hat entlang der Dicke der epitaktischen SiC-Schicht 2, mit anderen Worten entlang einer Dicke der Schicht 2B1 mit einer hohen Trägerkonzentration, eine konstante Trägerkonzentration, und man kann sagen, dass der konstante Wert ein Maximalwert einer Trägerkonzentration der Schicht 2B1 mit einer hohen Trägerkonzentration ist. Das heißt, eine Differenz zwischen einer Trägerkonzentration der Schichten 2A mit einer niedrigen Trägerkonzentration in Bereichen eines Kontakts mit der Schicht 2B1 mit einer hohen Trägerkonzentration und dem Maximalwert der Trägerkonzentration der Schicht 2B1 mit einer hohen Trägerkonzentration beträgt 5×1014/cm3 oder mehr und 2×1016/cm3 oder weniger.
-
<Herstellungsverfahren>
-
Im Folgenden wird ein Verfahren zum Herstellen des epitaktischen SiC-Wafers 11 beschrieben.
-
Zuerst wird das SiC-Substrat 1 vorbereitet. Das SiC-Substrat 1 wird beispielsweise erhalten, indem ein mittels Sublimation gezüchteter bzw. gewachsener Ingot in Scheiben geschnitten und der geschnittene Ingot spiegelpoliert wird. Das SiC-Substrat 1 ist ein 4H-SiC-Substrat vom n-Typ, das mit Stickstoff als Störstelle mit einer Störstellenkonzentration von 5,0×1017/cm3 oder mehr und 1×1020/cm3 oder weniger im Durchschnitt dotiert ist. Das SiC-Substrat 1 hat eine Dicke von 300 µm oder mehr und 400 µm oder weniger. Eine Hauptoberfläche des SiC-Substrats 1 weist einen Neigungswinkel aus einer (0001)-Ebene auf.
-
Als Nächstes wird als Vorprozessierung vor einer Prozessierung eines epitaktischen SiC-Wachstums das SiC-Substrat 1 in eine gemischte Lösung aus erhitztem Ammoniakwasser und Wasserstoffperoxid-Lösung eingetaucht und wird dann weiter in eine gemischte Lösung aus erhitzter Salzsäure und Wasserstoffperoxid-Lösung eingetaucht. Nachdem es in eine Salzsäure enthaltende wässrige Lösung eingetaucht ist, wird das SiC-Substrat 1 einer Substitution unter Verwendung von reinem Wasser unterzogen. Die Oberfläche des SiC-Substrats 1 wird durch eine Reihe dieser Prozesse gereinigt.
-
Das SiC-Substrat 1 wird dann in einem Reaktor einer CVD-Einrichtung platziert, und die Temperatur wird auf eine gewünschte Heiztemperatur erhöht. Wasserstoff als Trägergas und Reinigungsgas für die Oberfläche des SiC-Substrats 1, Monosilan und Propan als Materialgase und Stickstoff als Dotierstoffgas werden dann eingeleitet, um des epitaktische SiC-Wachstum zu beginnen.
-
Zuerst wird auf dem SiC-Substrat 1 eine epitaktische SiC-Schicht mit einer Trägerkonzentration von 1×1014/cm3 oder mehr und 1×1016/cm3 oder weniger ausgebildet. Die epitaktische SiC-Schicht entspricht einer der Schichten 2A mit einer niedrigen Trägerkonzentration.
-
Eine epitaktische SiC-Schicht mit einer Dicke von 0,1 µm oder mehr und 0,5 µm oder weniger wird dann auf der Schicht 2A mit einer niedrigen Trägerkonzentration unter geänderten Wachstumsbedingungen gebildet. Die epitaktische SiC-Schicht entspricht der Schicht 2B1 mit einer hohen Trägerkonzentration. Die Schicht 2B1 mit einer hohen Trägerkonzentration wird unter Wachstumsbedingungen gebildet, die erhalten werden, indem irgendeine Größe eines Volumenstroms des Dotierstoffgases, eines Volumenstroms des Materialgases (C/Si-Verhältnis) und einer Wachstumsrate von Wachstumsbedingungen für die Schicht 2A mit einer niedrigen Trägerkonzentration geändert wird. Der Volumenstrom des Dotierstoffgases wird so geändert, dass er zunimmt, und die Wachstumsrate wird so geändert, dass sie abnimmt.
-
Unter weiter geänderten Wachstumsbedingungen wird auf der Schicht 2B1 mit einer hohen Trägerkonzentration eine epitaktische SiC-Schicht mit einer Trägerkonzentration von 1×1014/cm3 oder mehr und 1×1016/cm3 oder weniger gebildet. Die epitaktische SiC-Schicht entspricht der anderen der Schichten 2A mit einer niedrigen Trägerkonzentration.
-
Es wird erwartet, dass die epitaktische SiC-Schicht 2, die die Schichten 2A mit einer niedrigen Trägerkonzentration und die Schicht 2B1 mit einer hohen Trägerkonzentration umfasst, beispielsweise eine Filmdicke von annähernd 5 µm oder mehr und 30 µm oder weniger aufweist, aber eine Filmdicke von 100 µm oder mehr aufweisen kann.
-
Der epitaktische SiC-Wafer 11, in welchem der Carrot-Defekt in einer extrem niedrigen Dichte erzeugt wird, wird durch die oben erwähnten Prozesse hergestellt.
-
In 2 enthält die epitaktische SiC-Schicht 2 eine einzige Schicht 2B1 mit einer hohen Trägerkonzentration. Die epitaktische SiC-Schicht 2 kann jedoch zwei oder mehr Schichten 2B1 mit einer hohen Trägerkonzentration enthalten. Das heißt, zwei oder mehr Schichten 2B1 mit einer hohen Trägerkonzentration können in der epitaktischen SiC-Schicht 2 ausgebildet werden. Die Tiefe einer Ausbildung der Schicht 2B1 mit einer hohen Trägerkonzentration weist keine Beschränkung auf.
-
<Modifikationen>
-
In dem epitaktischen SiC-Wafer 11 kann zwischen dem SiC-Substrat 1 und der epitaktischen SiC-Schicht 2 eine SiC-Pufferschicht vorgesehen werden. 3 zeigt einen Querschnitt und eine Trägerkonzentration jedes Teilbereichs solch eines epitaktischen SiC-Wafers 12 in einer ersten Modifikation. Der epitaktische SiC-Wafer 12 enthält eine SiC-Pufferschicht 3 zwischen dem SiC-Substrat 1 und der epitaktischen SiC-Schicht 2, und die übrige Konfiguration ist ähnlich der Konfiguration des epitaktischen SiC-Wafers 11. 3 zeigt, dass die SiC-Pufferschicht 3 eine niedrigere Trägerkonzentration als diejenige des SiC-Substrats 1 und eine höhere als diejenige der Schicht 2B1 mit einer hohen Trägerkonzentration aufweist. Die SiC-Pufferschicht 3 kann jedoch eine höhere Trägerkonzentration oder eine niedrigere Trägerkonzentration als das SiC-Substrat 1 aufweisen.
-
Ein Verfahren zum Herstellen des epitaktischen SiC-Wafers 12 ist das oben erwähnte Verfahren zum Herstellen des epitaktischen SiC-Wafers 11, dem ein Prozess zum Ausbilden der SiC-Pufferschicht 3 hinzugefügt wird. Die SiC-Pufferschicht 3 wird auf dem SiC-Substrat 1 ausgebildet, nachdem die Oberfläche des SiC-Substrats 1 gereinigt ist. Danach wird das epitaktische Wachstum auf der SiC-Pufferschicht 3 durchgeführt, um die Schichten 2A mit einer niedrigen Trägerkonzentration und die Schicht 2B1 mit einer hohen Trägerkonzentration auszubilden, um dadurch den epitaktischen SiC-Wafer 12 zu erhalten.
-
In dem epitaktischen SiC-Wafer 12 kann zwischen der epitaktischen SiC-Schicht 2 und der SiC-Pufferschicht 3 eine Schicht mit Konzentrationsgradienten vorgesehen werden. 4 und 5 zeigen jeweils eine Konfiguration solch eines epitaktischen SiC-Wafers 12 in einer Modifikation. 4 zeigt einen Querschnitt und eine Trägerkonzentration jedes Teilbereichs eines epitaktischen SiC-Wafers 13 in einer zweiten Modifikation, und 5 zeigt einen Querschnitt und eine Trägerkonzentration jedes Teilbereichs eines epitaktischen SiC-Wafers 14 in einer dritten Modifikation.
-
Der epitaktische SiC-Wafer 13 enthält zwischen der epitaktischen SiC-Schicht 2 und der SiC-Pufferschicht 3 eine Schicht 41 mit einem Konzentrationsgradienten und die übrige Konfiguration ist ähnlich der Konfiguration des epitaktischen SiC-Wafers 12. Wie in 4 gezeigt ist, wird in dem epitaktischen SiC-Wafer 13 die Schicht 41 mit einem Konzentrationsgradienten so eingerichtet, dass sie eine von der SiC-Pufferschicht 3 zur epitaktischen SiC-Schicht 2 stufenartig abnehmende Trägerkonzentration aufweist.
-
Der epitaktische SiC-Wafer 14 enthält zwischen der epitaktischen SiC-Schicht 2 und der SiC-Pufferschicht 3 eine Schicht 42 mit einem Konzentrationsgradienten, und die übrige Konfiguration ist ähnlich der Konfiguration des epitaktischen SiC-Wafers 12. Wie in 5 gezeigt ist, ist in dem epitaktischen SiC-Wafer 14 die Schicht 42 mit einem Konzentrationsgradienten so eingerichtet, dass sie eine von der SiC-Pufferschicht 3 zur epitaktischen SiC-Schicht 2 kontinuierlich abnehmende Trägerkonzentration aufweist.
-
Die epitaktischen SiC-Wafer 13 und 14 werden jeweils durch das oben erwähnte Verfahren zum Herstellen des epitaktischen SiC-Wafers 12 hergestellt, dem ein Prozess zum Ausbilden der Schicht 41 oder 42 mit einem Konzentrationsgradienten hinzugefügt wird. Die Schichten 41 und 42 mit einem Konzentrationsgradienten werden nach Ausbildung der SiC-Pufferschicht 3 unter eingestellten Wachstumsbedingungen für den epitaktischen Wafer auf der SiC-Pufferschicht 3 gebildet.
-
<Effekte>
-
Der epitaktische SiC-Wafer 11 in der Ausführungsform 1 umfasst das SiC-Substrat 1 und die auf dem SiC-Substrat 1 angeordnete epitaktische SiC-Schicht 2. Die epitaktische SiC-Schicht 2 umfasst die Schicht 2B1 mit einer hohen Trägerkonzentration und die beiden Schichten 2A mit einer niedrigen Trägerkonzentration, die eine niedrigere Trägerkonzentration als die Schicht 2B1 mit einer hohen Trägerkonzentration aufweisen und mit der oberen Oberfläche und der unteren Oberfläche der Schicht 2B1 mit einer hohen Trägerkonzentration so in Kontakt sind, dass sie die Schicht 2B1 mit einer hohen Trägerkonzentration sandwichartig umgeben. Die Differenz zwischen der Trägerkonzentration der Schichten mit einer niedrigen Trägerkonzentration in den Bereichen eines Kontakts mit der Schicht mit einer hohen Trägerkonzentration und dem Maximalwert der Trägerkonzentration der Schicht mit einer hohen Trägerkonzentration beträgt 5×1014/cm3 oder mehr und 2×1016/cm3 oder weniger. Die interne Spannung in der epitaktischen SiC-Schicht 2 kann somit effektiv entlastet werden, und der Carrot-Defekt kann signifikant reduziert werden. Dies kann die Dichte des Killer-Defekts einer Vorrichtung reduzieren, um die Vorrichtungsausbeute zu verbessern.
-
<Ausführungsform 2>
-
In einer Ausführungsform 2 tragen Komponenten ähnlich den in der Ausführungsform 1 beschriebenen Komponenten die gleichen Bezugszeichen wie jene in der Ausführungsform 1, und deren detaillierte Beschreibung wird gegebenenfalls weggelassen.
-
<Konfiguration>
-
6 zeigt einen Querschnitt und eine Trägerkonzentration jedes Teilbereichs eines epitaktischen SiC-Wafers 15 in der Ausführungsform 2. Verglichen mit dem epitaktischen SiC-Wafer 11 in der Ausführungsform 1 enthält der epitaktische SiC-Wafer 15 die epitaktische SiC-Schicht 2, die anstelle der Schicht 2B1 mit einer hohen Trägerkonzentration eine Schicht 2B2 mit einer hohen Trägerkonzentration enthält, und ist in sonstiger Hinsicht ähnlich dem epitaktischen SiC-Wafer 11.
-
Die Schicht 2B1 mit einer hohen Trägerkonzentration weist entlang ihrer Dicke ein konstantes Trägerkonzentrationsprofil auf. Im Gegensatz dazu weist die Schicht 2B2 mit einer hohen Trägerkonzentration entlang ihrer Dicke ein keilförmiges Trägerkonzentrationsprofil auf. Mit anderen Worten hat die Schicht 2B2 mit einer hohen Trägerkonzentration in ihrem Inneren einen Maximumpunkt, an welchem die Trägerkonzentration die höchste ist, und weist ein Trägerkonzentrationsprofil auf, in welchem die Trägerkonzentration von der oberen Oberfläche und der unteren Oberfläche zum Maximumpunkt der Schicht 2B2 mit einer hohen Trägerkonzentration entlang der Dicke der epitaktischen SiC-Schicht 2 kontinuierlich zunimmt. Die Differenz in einer Trägerkonzentration zwischen den Schichten 2A mit einer niedrigen Trägerkonzentration und der Schicht 2B2 mit einer hohen Trägerkonzentration beim Maximumpunkt beträgt 5×1014/cm3 oder mehr und 2×1016/cm3 oder weniger. Es ist aus einem dem in der Ausführungsform 1 ähnlichen Grund wünschenswert, dass die Schicht 2B2 mit einer hohen Trägerkonzentration eine Dicke von 0,1 µm oder mehr und 0,5 µm oder weniger aufweist. Die Schichten 2A mit einer niedrigen Trägerkonzentration weisen eine Trägerkonzentration von 1×1014/cm3 oder mehr und 1×1016/cm3 oder weniger auf.
-
<Herstellungsverfahren>
-
Der epitaktische SiC-Wafer 15 wird erhalten, indem anstelle der Schicht 2B1 mit einer hohen Trägerkonzentration die Schicht 2B2 mit einer hohen Trägerkonzentration in einem Prozess zum Herstellen des epitaktischen SiC-Wafers 11, der in der Ausführungsform 1 beschrieben wurde, gebildet wird. Konkret werden nach Ausbildung einer der Schichten 2A mit einer niedrigen Trägerkonzentration epitaktische Wachstumsbedingungen graduell bzw. allmählich geändert, um die Trägerkonzentration einer epitaktischen Wachstumsschicht zu erhöhen, und werden, wenn die Differenz in einer Trägerkonzentration von der Schicht 2A mit einer niedrigen Trägerkonzentration 5×1014/cm3 oder mehr und 2×1016/cm3 oder weniger erreicht, zu den Bedingungen bei Ausbildung der Schicht 2A mit einer niedrigen Trägerkonzentration allmählich zurückgeführt, um dadurch die Schicht 2B2 mit einer hohen Trägerkonzentration zu erhalten.
-
<Effekte>
-
In dem epitaktischen SiC-Wafer 15 in der Ausführungsform 2 weist die Schicht 2B2 mit einer hohen Trägerkonzentration in ihrem Inneren den Maximumpunkt auf, an welchem die Trägerkonzentration die höchste ist, und die Trägerkonzentration nimmt von der oberen Oberfläche und der unteren Oberfläche zum Maximumpunkt der Schicht 2B2 mit einer hohen Trägerkonzentration entlang der Dicke der epitaktischen SiC-Schicht 2 kontinuierlich zu. Wie oben beschrieben wurde, weist die Schicht 2B2 mit einer hohen Trägerkonzentration ein keilförmiges Trägerkonzentrationsprofil auf, um die Gitterfehlanpassung zwischen den Schichten 2A mit einer niedrigen Trägerkonzentration und der Schicht 2B2 mit einer hohen Trägerkonzentration zu entlasten, um die Dicke des Carrot-Defekts weiter zu reduzieren.
-
<Ausführungsform 3>
-
In einer Ausführungsform 3 wird eine unter Verwendung eines beliebigen der epitaktischen SiC-Wafer 11 bis 15 in den oben beschriebenen Ausführungsformen 1 und 2 gebildete Halbleitervorrichtung für einen Leistungswandler verwendet. Obgleich eine Verwendung der epitaktischen SiC-Wafer 11 bis 15 nicht auf eine Verwendung für einen besonderen Leistungswandler beschränkt ist, wird im Folgenden in der Ausführungsform 3 ein Fall beschrieben, in dem der epitaktische SiC-Wafer 11 für einen Dreiphasen-Inverter verwendet wird.
-
7 ist ein Blockdiagramm, das eine Konfiguration eines Leistungsumwandlungssystems zeigt, für das ein Leistungswandler in der Ausführungsform 3 verwendet wird. Das in 7 gezeigte Leistungsumwandlungssystem umfasst eine Stromversorgung 100, einen Leistungswandler 200 und eine Last 300. Die Stromversorgung 100 ist eine DC-Stromversorgung und stellt dem Leistungswandler 200 DC-Leistung bereit. Die Stromversorgung 100 kann von verschiedenen Komponenten gebildet werden. Beispielsweise kann die Stromversorgung 100 von einem DC-System, einer Solarzelle oder einer Speicherzelle gebildet werden und kann von einer gleichrichtenden Schaltung oder einem mit einem AC-System verbundenen AC/DC-Wandler gebildet werden. Die Stromversorgung 100 kann auch von einem DC/DC-Wandler gebildet werden, der von einem DC-System abgegebene DC-Leistung in eine vorbestimmte Leistung umwandelt.
-
Der Leistungswandler 200 ist ein zwischen die Stromversorgung 100 und die Last 300 geschalteter Dreiphasen-Inverter und wandelt die von der Stromversorgung 100 bereitgestellte DC-Leistung in AC-Leistung um und stellt der Last 300 die AC-Leistung bereit. Wie in 7 gezeigt ist, enthält der Leistungswandler 200 eine Hauptumwandlungsschaltung 201, die die DC-Leistung in die AC-Leistung umwandelt und die AC-Leistung abgibt, eine Ansteuerungsschaltung 202, die ein Ansteuerungssignal zum Ansteuern jedes Schaltelements der Hauptumwandlungsschaltung 201 abgibt, und eine Steuerschaltung 203, die an die Ansteuerungsschaltung 202 ein Steuersignal zum Steuern der Ansteuerungsschaltung 202 abgibt.
-
Die Last 300 ist ein durch die vom Leistungswandler 200 bereitgestellte AC-Leistung angetriebener Dreiphasen-Motor. Die Last 300 ist nicht auf diese für eine besondere Anwendung beschränkt, ist ein an verschiedenen Arten eines elektrischen Geräts montierter Motor und wird beispielsweise als Motor für ein Hybridauto, ein Elektroauto, ein Schienenfahrzeug, einen Lift oder eine Klimaanlage verwendet.
-
Im Folgenden werden Details des Leistungswandlers 200 beschrieben. Die Hauptumwandlungsschaltung 201 enthält Schaltelemente und Freilaufdioden (nicht dargestellt), wandelt die von der Stromversorgung 100 bereitgestellte DC-Leistung durch Schalten der Schaltelemente in die AC-Leistung um und stellt der Last 300 die AC-Leistung bereit. Obgleich die Hauptumwandlungsschaltung 201 verschiedene spezifische Schaltungskonfigurationen aufweist, ist die Hauptumwandlungsschaltung 201 in der vorliegenden Ausführungsform eine Dreiphasen-Vollbrückenschaltung mit zwei Niveaus und enthält sechs Schaltelemente und sechs Freilaufdioden, die mit den jeweiligen Schaltelementen antiparallel verbunden sind. Eine unter Verwendung irgendeines der epitaktischen SiC-Wafer 11 bis 15 in den oben beschriebenen Ausführungsformen 1 und 2 gebildete Halbleitervorrichtung wird als jedes der Schaltelemente der Hauptumwandlungsschaltung 201 verwendet. Je zwei der sechs Schaltelemente sind in Reihe geschaltet, um obere und untere Arme auszubilden, und Paare oberer und unterer Arme bilden jeweilige Phasen (eine U-Phase, eine V-Phase und eine W-Phase) der Vollbrückenschaltung. Ausgangsanschlüsse der jeweiligen Paare oberer und unterer Arme, das heißt drei Ausgangsanschlüsse der Hauptumwandlungsschaltung 201, sind mit der Last 300 verbunden.
-
Die Ansteuerungsschaltung 202 erzeugt das Ansteuerungssignal zum Ansteuern jedes der Schaltelemente der Hauptumwandlungsschaltung 201 und stellt das Ansteuerungssignal einer Steuerelektrode jedes der Schaltelemente der Hauptumwandlungsschaltung 201 bereit. Konkret gibt die Ansteuerungsschaltung 202 an die Steuerelektrode jedes der Schaltelemente ein Ansteuerungssignal zum Einschalten des Schaltelements und ein Ansteuerungssignal zum Ausschalten des Schaltelements gemäß dem Steuersignal von der Steuerschaltung 203, die im Folgenden beschrieben wird, ab. Das Ansteuerungssignal ist ein Spannungssignal (ein Ein-Signal), das gleich einer Schwellenspannung des Schaltelements oder höher ist, falls das Schaltelement in einem Ein-Zustand gehalten wird, und ist ein Spannungssignal (ein Aus-Signal), das gleich der Schwellenspannung des Schaltelements oder niedriger ist, falls das Schaltelement in einem Aus-Zustand gehalten wird.
-
Die Steuerschaltung 203 steuert die Schaltelemente der Hauptumwandlungsschaltung 201, so dass der Last 300 eine gewünschte Leistung bereitgestellt wird. Konkret berechnet die Steuerschaltung 203 eine Zeit (eine Ein-Zeit), während der jedes der Schaltelemente der Hauptumwandlungsschaltung 201 im Ein-Zustand sein muss, basierend auf einer der Last 300 bereitzustellenden Leistung. Beispielsweise kann die Hauptumwandlungsschaltung 201 durch eine PWM-Steuerung zum Modulieren der Ein-Zeit jedes der Schaltelemente gemäß einer abzugebenden Spannung gesteuert werden. Die Steuerschaltung 203 gibt einen Steuerbefehl (das Steuersignal) an die Ansteuerungsschaltung 202 ab, so dass zu jeder Zeit das Ein-Signal an ein Schaltelement abgegeben wird, das im Ein-Zustand sein muss, und das Aus-Signal an ein Schaltelement abgegeben wird, das im Aus-Zustand sein muss. Die Ansteuerungsschaltung 202 gibt das Ein-Signal oder das Aus-Signal als das Ansteuerungssignal gemäß dem Steuersignal an die Steuerelektrode jedes der Schaltelemente ab.
-
Im Leistungswandler in der vorliegenden Ausführungsform wird die unter Verwendung eines beliebigen der epitaktischen SiC-Wafer 11 bis 15 in den Ausführungsformen 1 und 2 gebildete Halbleitervorrichtung als jedes der Schaltelemente der Hauptumwandlungsschaltung 201 verwendet. Da der Carrot-Defekt in jedem der epitaktischen SiC-Wafer 11 bis 15 signifikant reduziert ist, kann eine unter Verwendung eines beliebigen der epitaktischen SiC-Wafer 11 bis 15 gebildete Halbleitervorrichtung aufgrund einer Reduzierung der Dichte des Killer-Defekts der Vorrichtung eine hohe Vorrichtungsausbeute aufweisen. Der Leistungswandler in der vorliegenden Ausführungsform kann somit ebenso eine hohe Ausbeute aufweisen.
-
Obgleich in der Ausführungsform 3 ein Beispiel, in welchem die epitaktischen SiC-Wafer 11 bis 15 in den Ausführungsformen 1 und 2 für den Dreiphasen-Inverter mit zwei Niveaus verwendet werden, beschrieben ist, ist eine Verwendung der epitaktischen SiC-Wafer 11 bis 15 nicht auf diese in diesem Beispiel beschränkt, und die epitaktischen SiC-Wafer 11 bis 15 können für verschiedene Leistungswandler verwendet werden. Beispielsweise kann der Leistungswandler nicht der Leistungswandler mit zwei Niveaus sein, sondern kann ein Leistungswandler mit drei Niveaus oder mehr Niveaus sein. Falls einer einphasigen Last Leistung bereitgestellt wird, können die epitaktischen SiC-Wafer 11 bis 15 in den Ausführungsformen 1 und 2 für einen einphasigen Inverter verwendet werden. Falls einer DC-Last und dergleichen Leistung bereitgestellt wird, können die epitaktischen SiC-Wafer 11 bis 15 in den Ausführungsformen 1 und 2 für den DC/-DC-Wandler oder den AC/DC-Wandler verwendet werden.
-
Der Leistungswandler, für den die epitaktischen SiC-Wafer 11 bis 15 in den Ausführungsformen 1 und 2 verwendet werden, ist nicht auf denjenigen in einem Fall beschränkt, in dem die oben erwähnte Last ein Motor ist, kann als Stromversorgungseinrichtung für eine Elektroerodiermaschine, eine Lasermaschine, eine Kocheinrichtung mit Induktionseinheizung oder ein berührungsfreies Stromversorgungssystem verwendet werden und kann ferner als Leistungskonditionierer für ein Photovoltaiksystem, ein Speichersystem oder dergleichen verwendet werden.
-
Ausführungsformen der vorliegenden Erfindung können innerhalb des Umfangs der Erfindung frei miteinander kombiniert werden und können gegebenenfalls modifiziert oder weggelassen werden.
-
Obgleich die Erfindung im Detail dargestellt und beschrieben wurde, ist die vorhergehende Beschreibung in allen Aspekten veranschaulichend und nicht beschränkend. Es versteht sich daher, dass zahlreiche Modifikationen und Variationen konzipiert werden können, ohne vom Umfang der Erfindung abzuweichen.
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-
- JP 2011114252 [0007, 0008, 0009]
- WO 2016/092887 [0007, 0008, 0009]