DE102014111780B4 - Verfahren zum Ausbilden von leitenden Strukturen in Vertiefungen - Google Patents

Verfahren zum Ausbilden von leitenden Strukturen in Vertiefungen Download PDF

Info

Publication number
DE102014111780B4
DE102014111780B4 DE102014111780.8A DE102014111780A DE102014111780B4 DE 102014111780 B4 DE102014111780 B4 DE 102014111780B4 DE 102014111780 A DE102014111780 A DE 102014111780A DE 102014111780 B4 DE102014111780 B4 DE 102014111780B4
Authority
DE
Germany
Prior art keywords
seed layer
recess
conductive material
well
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102014111780.8A
Other languages
English (en)
Other versions
DE102014111780A1 (de
Inventor
Pin-Wen Chen
Chih-Wei Chang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of DE102014111780A1 publication Critical patent/DE102014111780A1/de
Application granted granted Critical
Publication of DE102014111780B4 publication Critical patent/DE102014111780B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76862Bombardment with particles, e.g. treatment in noble gas plasmas; UV irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76865Selective removal of parts of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials

Abstract

Verfahren, das Folgendes umfasst: Bereitstellen eines Substrats, in dem eine Vertiefung ausgebildet ist, wobei die Vertiefung mit einer ersten Keimschicht beschichtet und teilweise mit einem ersten leitenden Material gefüllt ist, wobei die Vertiefung einen Überhang in der Nähe einer Öffnung der Vertiefung aufweist; Entfernen eines Abschnitts der ersten Keimschicht, der von dem ersten leitenden Material frei ist, um eine freiliegende Oberfläche der Vertiefung auszubilden; Beschichten der freiliegenden Oberfläche der Vertiefung mit einer zweiten Keimschicht; und Füllen der Vertiefung mit einem zweiten leitenden Material, wobei das zweite leitende Material das erste leitende Material und die zweite Keimschicht bedeckt.

Description

  • HINTERGRUND
  • Halbleitervorrichtungen werden in einer Vielzahl von elektronischen Anwendungen verwendet, beispielsweise PCs, Mobiltelefonen, Digitalkameras und anderer elektronischer Ausrüstung. Halbleitervorrichtungen werden üblicherweise hergestellt, indem nacheinander isolierende oder dielektrische Schichten, leitende Schichten und Halbleiterschichten verschiedener Materialien über einem Halbleitersubstrat abgeschieden werden und die verschiedenen Materialschichten mittels Lithographie strukturiert werden, um Schaltungskomponenten und Elemente darauf auszubilden.
  • Die Halbleiterindustrie verbessert weiterhin die Integrationsdichte von verschiedenen elektronischen Komponenten (z. B. Transistoren, Dioden, Widerstanden, Kondensatoren etc.) durch fortlaufende Verringerung der minimalen Einrichtungsgröße, was es ermöglicht, dass mehr Komponenten in eine vorgegebene Fläche integriert werden. Gleichzeitig haben leitende Strukturen, beispielsweise Kontaktstöpsel, die elektrische Verbindungen zu und/oder von den verschiedenen elektronischen Komponenten bereitstellen, auch fortlaufende Verringerungen der Strukturbreite und minimalen Einrichtungsgröße erlebt. Diese Verringerung der Strukturbreite und minimalen Einrichtungsgröße wird jedoch häufig durch eine Vergrößerung des Kontaktwiderstands der leitenden Strukturen begleitet.
  • In US 7 514 354 B2 ist ein konventionelles Verfahren zum Bilden einer Verdrahtungsstruktur mit Linien und Kontakten, die aus unterschiedlichem Material gebildet sind, offenbart. Außerdem offenbart US 2012/0181692 A1 eine hybride Kontaktstruktur mit einem geringen Aspektverhältnis in einer Halbleitervorrichtung. US 2003/0134510 A1 offenbart ein weiteres Verfahren zum Bilden von Metallschichten in integrierten Schaltungsstrukturen unter Nutzung von selektiven Abscheidungen auf Kanten von Vertiefungen und von leitfähigen Kontakten, die daran gebildet werden. In WO 2013/095433 A1 sind Techniken zum Bilden von Kontaktierungen, Metallgates oder anderen leitfähigen Merkmalen durch ein sogenanntes elektroloses Materialabscheiden offenbart.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Aspekte der vorliegenden Offenbarung werden am besten aus der folgenden detaillierten Beschreibung verstanden, wenn sie mit den beigefügten Figuren gelesen wird. Man beachte, dass in Übereinstimmung mit dem üblichen Vorgehen in der Branche verschiedene Einrichtungen nicht maßstabsgetreu gezeichnet sind. Tatsächlich können die Abmessungen der verschiedenen Einrichtungen zur Klarheit der Beschreibung beliebig vergrößert oder verkleinert sein.
  • 1 und 2 zeigen in Übereinstimmung mit einigen Ausführungsformen Verfahren zum Ausbilden von leitenden Strukturen.
  • 3A bis 3H zeigen einen Verfahrensfluss, der einige der Verfahrensschritte der Verfahren zeigt, die in 1 und 2 gezeigt sind, in Übereinstimmung mit einigen Ausführungsformen.
  • 4A bis 4H zeigen einen Verfahrensfluss, der einige der Verfahrensschritte eines Verfahrens zum Ausbilden einer leitenden Struktur in einer Vertiefung mit einem Überhang zeigt, in Übereinstimmung mit einigen Ausführungsformen.
  • 5 zeigt ein Konzentrationsprofil der leitenden Struktur, die gemäß den Verfahrensschritten ausgebildet wird, die in 4A bis 4H gezeigt sind.
  • 6 zeigt in Übereinstimmung mit einigen Ausführungsformen ein Verfahren zum Ausbilden einer leitenden Struktur.
  • DETAILLIERTE BESCHREIBUNG
  • Die folgende Offenbarung sieht viele verschiedene Ausführungsformen oder Beispiele vor, um verschiedene Merkmale der Erfindung zu implementieren. Spezielle Beispiele von Komponenten und Anordnungen sind unten beschrieben, um die vorliegende Offenbarung zu vereinfachen. Diese sind natürlich nur Beispiele und sollen nicht einschränkend wirken. Das Ausbilden einer ersten Einrichtung über oder auf einer zweiten Einrichtung in der folgenden Beschreibung kann beispielsweise Ausführungsformen umfassen, in denen die erste und die zweite Einrichtung in direktem Kontakt ausgebildet sind, und kann auch Ausführungsformen umfassen, in denen zusätzliche Einrichtungen zwischen der ersten und der zweiten Einrichtung ausgebildet sein können, so dass die erste und die zweite Einrichtung nicht in direktem Kontakt sein müssen. Zusätzlich kann die vorliegende Offenbarung Bezugszeichen und/oder Buchstaben in den verschiedenen Beispielen wiederholen. Diese Wiederholung dient der Einfachheit und Klarheit und erzwingt als solche keine Beziehung zwischen den verschiedenen beschriebenen Ausführungsformen und/oder Konfigurationen.
  • Weiter können räumlich relative Begriffe, wie „unten”, „unter”, „unterer”, „über”, „oberer” und ähnliche, hier zur Einfachheit der Beschreibung verwendet werden, um die Beziehung eines Elements oder einer Einrichtung mit einem oder mehreren anderen Elementen oder Einrichtungen zu beschreiben, wie sie in den Figuren gezeigt sind. Die räumlich relativen Begriffe sollen verschiedene Orientierungen der Vorrichtung, die verwendet oder betrieben wird, zusätzlich zu der in den Figuren gezeigten Orientierung umfassen. Die Vorrichtung kann anders orientiert sein (um 90 Grad gedreht oder in einer anderen Orientierung), und die räumlich relativen Begriffe, die hier verwendet werden, können ebenfalls demgemäß interpretiert werden.
  • 1 zeigt ein Verfahren 100 zum Ausbilden einer leitenden Struktur (z. B. eines Kontaktstöpsels), in Übereinstimmung mit einer oder mehreren Ausführungsformen. Das Verfahren 100 kann Folgendes umfassen: Bereitstellen eines Substrats, in dem eine Vertiefung ausgebildet ist, wobei die Vertiefung mit einer ersten Keimschicht beschichtet ist und teilweise mit einem ersten leitenden Material gefüllt ist (in 102); Entfernen eines Abschnitts der ersten Keimschicht, die von dem ersten leitenden Material frei ist, um eine freiliegende Oberfläche der Vertiefung auszubilden (in 104); Beschichten der freiliegenden Oberfläche der Vertiefung mit einer zweiten Keimschicht (in 106); und Füllen der Vertiefung mit einem zweiten leitenden Material, wobei das zweite leitende Material das erste leitende Material und die zweite Keimschicht bedeckt (in 108).
  • 2 zeigt ein Verfahren 200 zum Ausbilden einer leitenden Struktur (z. B. eines Kontaktstöpsels), in Übereinstimmung mit einer oder mehreren Ausführungsformen. Das Verfahren 200 kann Folgendes umfassen: Bereitstellen eines Substrats, das eine erste Vertiefung und eine zweite Vertiefung aufweist, die darin ausgebildet sind, wobei sich die erste Vertiefung in das Substrat um einen ersten Abstand erstreckt und die zweite Vertiefung sich in das Substrat um einen zweiten Abstand erstreckt, der kleiner als der erste Abstand ist (in 202); Beschichten der ersten Vertiefung und der zweiten Vertiefung mit einer ersten Keimschicht (in 204); die erste Keimschicht in der zweiten Vertiefung und ein Abschnitt der ersten Keimschicht in der ersten Vertiefung, die an eine Öffnung der ersten Vertiefung angrenzt, werden einem Behandlungs-Plasma ausgesetzt, um behandelte Abschnitte der ersten Keimschicht auszubilden (in 206); teilweises Füllen der ersten Vertiefung mit einem ersten leitenden Material, wobei die behandelten Abschnitte der ersten Keimschicht von dem ersten leitenden Material frei sind (in 208); Entfernen der behandelten Abschnitte der ersten Keimschicht, um freiliegende Oberflächen der ersten Vertiefung und der zweiten Vertiefung auszubilden (in 210); Beschichten der freiliegenden Oberflächen der ersten Vertiefung und der zweiten Vertiefung mit einer zweiten Keimschicht (in 212); und Bedecken der zweiten Keimschicht mit einem zweiten leitenden Material, wobei das zweite leitende Material die erste Vertiefung und die zweite Vertiefung füllt (in 214).
  • 3A bis 3H zeigen einen Verfahrensfluss, der einige der Verfahrensschritte des Verfahrens 100 zeigt, das in 1 gezeigt ist, und des Verfahrens 200, das in 2 gezeigt ist, in Übereinstimmung mit einer oder mehreren Ausführungsformen. Der Verfahrensfluss, der in 3A bis 3H gezeigt ist, kann beispielsweise während der Herstellung einer leitenden Struktur zum Kontaktieren (z. B. zum elektrischen Kontaktieren) eines darunter liegenden elektrischen Elements (z. B. einer Durchkontaktierung, einer Leiterbahn oder eines leitenden Weges etc.) und/oder einer darunter liegenden elektronischen Komponente (z. B. eines Transistors, einer Diode, eines Widerstands, eines Kondensators etc.) ausgeführt werden.
  • 3A zeigt ein Substrat 300, das eine Halbleitersubstratschicht 302, eine Isolierschicht 304, eine erste Vertiefung 306, eine zweite Vertiefung 308 und eine Sperrschicht 310 umfasst. Die Halbleitersubstratschicht 302 kann ein Elementhalbleitermaterial (etwa Silizium oder Germanium); ein Verbindungshalbleitermaterial (einschließlich Siliziumcarbid, Galliumarsenid, Galliumphosphid, Indiumphosphid, Indiumarsenid und/oder Indiumantimonid); ein Legierungshalbleitermaterial (einschließlich SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP und/oder GaInAsP); oder Kombinationen daraus umfassen oder daraus bestehen. Die Halbleitersubstratschicht 302 kann ein Halbleiter-auf-Isolator-(SOI)-Substrat umfassen oder aus ihm bestehen. Das SOI-Substrat kann eine vergrabene Oxid-(BOX)-Schicht umfassen, die durch ein Verfahren ausgebildet wird wie Abtrennung durch implantierten Sauerstoff (SIMOX) und/oder andere geeignete Verfahren. Weiter kann die Halbleitersubstratschicht 302 eine Epitaxialschicht (Epi-Schicht) umfassen, die beispielsweise zur Verbesserung der Leistungsfähigkeit gestreckt (engl. „strained”) sein kann.
  • Die Halbleitersubstratschicht 302 kann ein elektrisches Element und/oder eine elektronische Komponente aufweisen (in 3A durchsichtig als Bezugszeichen 303 gezeigt), die darin oder darauf ausgebildet sind. Das elektrische Element und/oder die elektronische Komponente 303 können beispielsweise auf oder in der Nähe einer Oberfläche 302a der Halbleitersubstratschicht 302 gegenüber der Isolierschicht 304 ausgebildet sein. Das elektrische Element kann zumindest eines einer Durchkontaktierung, einer Leiterbahn, eines Leiterweges oder Ähnlichem umfassen oder aus ihm bestehen, während die elektronische Komponente zumindest eines einer Diode, eines Transistors, eines Widerstands, eines Kondensators oder Ähnlichem umfassen oder aus ihm bestehen kann.
  • Die Isolierschicht 304 kann auf der Oberfläche 302a der Halbleitersubstratschicht 302 angeordnet sein. Die Isolierschicht 304 kann ein Dielektrikum umfassen oder aus ihm bestehen und kann eine Zwischendielektrikums-(ILD)-Schicht sein. Das Dielektrikum der Isolierschicht 304 kann ein low-k-dielektrisches Material umfassen oder aus ihm bestehen, beispielsweise mit einem k-Wert, der kleiner oder gleich etwa 3,0 oder sogar kleiner oder gleich etwa 2,5 ist. Die Isolierschicht 304 kann Phosphorsilikatglas (PSG), Borphosphorsilikatglas (BPSG), Fluorsilikatglas (FSG), SiOxCy, Tetraethylorthosilikat-(TEOS)-Oxid, Spin-on-Glas, Spin-on-Polymeren, Silizium-Kohlenstoff-Material, Verbindungen daraus, Verbundstoffe daraus, Kombinationen daraus oder Ähnliches umfassen oder aus ihnen bestehen. Die Isolierschicht 304 kann eine oder mehrere Schichten von isolierendem Material umfassen. Mit anderen Worten kann die Isolierschicht 304 eine Einschicht-Struktur (die z. B. eine Schicht aus isolierendem Material umfasst) oder eine Mehrschicht-Struktur (die z. B. zwei oder mehr Schichten von isolierendem Material umfasst) umfassen oder aus ihr bestehen. Die Isolierschicht 304 kann ein oder mehrere elektrische Elemente umfassen (z. B. Durchkontaktierungen, eine Leiterbahn, einen Leiterweg oder Ähnliches), die darin ausgebildet sind (in 3A nicht gezeigt). Die Isolierschicht 304 kann oben auf der Halbleitersubstratschicht 302 durch chemische Gasphasenabscheidung (CVD), physikalische Gasphasenabscheidung (PVD), Atomlagenabscheidung (ALD) einer dielektrischen Rotationsbeschichtung, Kombinationen daraus oder Ähnlichem ausgebildet werden.
  • Nach dem Ausbilden der Isolierschicht 304 auf der Halbleitersubstratschicht 302 werden ein erster Graben 304b und ein zweiter Graben 304c (der flacher als der erste Graben 304b sein kann) in der Isolierschicht 304 z. B. durch ein Ätzverfahren ausgebildet. Das Ätzverfahren kann mindestens eines eines Nassätzverfahrens oder eines Trockenätzverfahrens (z. B. eines Plasmaätzverfahrens) umfassen oder aus ihm bestehen. Beim Ausbilden des ersten Grabens 304b und des zweiten Grabens 304c kann eine strukturierte Ätzmaske (in 3A nicht gezeigt) zuerst über einem Abschnitt einer Oberfläche 304a der Isolierschicht 304 ausgebildet werden, der der Halbleitersubstratschicht 302 abgewandt ist. Die strukturierte Ätzmaske kann durch Beschichten mit einem Maskiermaterial (z. B. einem Photoresist) über der Oberfläche 304a der Isolierschicht 304 und Strukturieren des Maskiermaterials, um die strukturierte Ätzmaske auszubilden, ausgebildet werden. Das Strukturieren des Maskiermaterials kann ein Lithographieverfahren (z. B. ein photolithographisches Verfahren) umfassen oder aus ihm bestehen. Danach kann das Ätzverfahren zusammen mit der strukturierten Ätzmaske angewendet werden, um den ersten Graben 304b und den zweiten Graben 304c in der Isolierschicht 304 auszubilden. Die Oberfläche 304a der Isolierschicht 304 und Oberflächen des neu ausgebildeten ersten Grabens 304b und zweiten Grabens 304c können nach dem Ätzverfahren gereinigt werden. Als Beispiel kann zumindest eines eines Sputterverfahrens mit Inertgas (z. B. Argon-Sputtern) oder eines plasmabasierten Reinigungsverfahrens (z. B. eines SiCoNi-basierten Reinigungsverfahrens) verwendet werden, um die Oberflächen des ersten Grabens 304b, des zweiten Grabens 304c und der Isolierschicht 304 zu reinigen.
  • Die Sperrschicht 310 kann danach über den gereinigten Oberflächen des ersten Grabens 304b und des zweiten Grabens 304c sowie über der gereinigten Oberfläche 304a der Isolierschicht 304 ausgebildet werden. Die Oberflächen der Sperrschicht 310 in dem ersten Graben 304b können die Oberflächen der ersten Vertiefung 306 definieren. Ähnlich können die Oberflächen der Sperrschicht 310 in dem zweiten Graben 304c die Oberflächen der zweiten Vertiefung 308 definieren. Die Sperrschicht 310 kann verhindern, dass leitendes Material, das nachfolgend in der ersten Vertiefung 306 und der zweiten Vertiefung 308 ausgebildet wird, in die Isolierschicht 304 diffundiert.
  • Die Sperrschicht 310 kann durch mindestens eines von PVD, CVD, ALD oder Ähnlichem ausgebildet werden. Das Ausbilden der Sperrschicht 310 kann auch ein thermisches Verfahren umfassen (z. B. ein Ausheilverfahren), das als Beispiel bei einer Temperatur in einem Bereich von etwa 400 Grad Celsius bis etwa 650 Grad Celsius ausgeführt werden kann, z. B. in einem Bereich von etwa 450 Grad Celsius bis etwa 600 Grad Celsius, obwohl andere Temperaturbereiche auch möglich sein können.
  • Die Sperrschicht 310 kann eine Dicke im Bereich von etwa 1 Nanometer bis etwa 20 Nanometern haben, beispielsweise in dem Bereich von etwa 3 Nanometern bis etwa 15 Nanometern, obwohl andere Dicken auch möglich sein können. Die Sperrschicht 310 kann Tantalnitrid (TaN), Tantal (Ta), Ruthenium (Ru), Kombinationen daraus oder Ähnliches umfassen oder aus ihnen bestehen. Während dies üblicherweise berücksichtigte Materialien sind, können andere Sperrschicht-Materialien auch verwendet werden, etwa Titan (Ti), Wolfram (W), Zirkonium (Zr), Hafnium (Hf), Molybdän (Mo), Niob (Nb), Vanadium (V), Ruthenium (Ru), Iridium (Ir), Platin (Pt) und Chrom (Cr), als Beispiele.
  • Die Sperrschicht 310 kann eine oder mehrere Schichten eines Sperrmaterials umfassen. Mit anderen Worten kann die Sperrschicht 310 eine Einschicht-Struktur (die z. B. eine Schicht eines Sperrmaterials umfasst) oder eine Mehrschicht-Struktur (die z. B. zwei oder mehr Schichten eines Sperrmaterials umfasst) umfassen oder aus ihr bestehen. Als Beispiel kann die Sperrschicht 310 eine erste Schicht (die z. B. Ti umfasst und eine Dicke von z. B. 2 Nanometern aufweist) in der Nähe der Isolierschicht 304 und eine zweite Schicht (die z. B. TiN umfasst und eine Dicke von z. B. etwa 2 Nanometern aufweist) umfassen, die über der ersten Schicht ausgebildet ist.
  • Eine erste Breite W1 der ersten Vertiefung 306 kann als die breiteste seitliche Ausdehnung der ersten Vertiefung 306 gemessen werden. Ähnlich kann eine zweite Breite W2 der zweiten Vertiefung 308 als die breiteste seitliche Ausdehnung der zweiten Vertiefung 308 gemessen werden. Als ein Beispiel kann die erste Breite W1 als der Abstand zwischen gegenüberliegenden Oberflächen der Sperrschicht 310 in einer Öffnung der ersten Vertiefung 306 gemessen werden, wie in dem Beispiel der 3A gezeigt ist. Eine ähnliche Art der Messung der zweiten Breite W2 ist in dem Beispiel der 3A gezeigt. Die erste Breite W1 und die zweite Breite W2 können jeweils in einem Bereich von etwa 10 Nanometern bis etwa 100 Nanometern liegen, beispielsweise in einem Bereich von etwa 20 Nanometern bis etwa 50 Nanometern, beispielsweise bei etwa 25 Nanometern, obwohl andere Werte in Übereinstimmung mit anderen Ausführungsformen auch möglich sein können.
  • Die erste Vertiefung 306 kann sich in das Substrat 300 um einen ersten Abstand D1 erstrecken und die zweite Vertiefung 308 kann sich in das Substrat 300 um einen zweiten Abstand D2 erstrecken, der kleiner als der erste Abstand D1 sein kann. Der erste Abstand D1 und der zweite Abstand D2 können beispielsweise als eine Tiefe der ersten Vertiefung 306 bzw. eine Tiefe der zweiten Vertiefung bezeichnet werden. Wie in 3A gezeigt ist, kann der erste Abstand D1 beispielsweise als ein Abstand (z. B. ein Abstand im rechten Winkel) zwischen einer Oberfläche der Sperrschicht 310 außerhalb der ersten Vertiefung 306 und einer Oberfläche der Sperrschicht 310 an einem Boden der ersten Vertiefung 306 gemessen werden. Eine ähnliche Art, den zweiten Abstand D2 zu messen, ist in dem Beispiel von 3A gezeigt.
  • In dem Beispiel, das in 3A gezeigt ist, erstreckt sich die Vertiefung 306 vollständig durch die Isolierschicht 304 des Substrats 300, während sich die zweite Vertiefung 308 teilweise durch die Isolierschicht 304 des Substrats 300 erstreckt. In einer anderen Ausführungsform können sich sowohl die erste Vertiefung 306 als auch die zweite Vertiefung 308 teilweise durch die Isolierschicht 304 erstrecken. Der erste Abstand D1 kann im Bereich von etwa 50 Nanometern bis etwa 300 Nanometern liegen, beispielsweise im Bereich von etwa 100 Nanometern bis etwa 200 Nanometern, beispielsweise bei etwa 150 Nanometern, obwohl andere Werte in Übereinstimmung mit anderen Ausführungsformen auch möglich sein können. Der zweite Abstand D2 kann im Bereich von etwa 50 Nanometern bis etwa 100 Nanometern liegen, beispielsweise bei etwa 80 Nanometern, obwohl in anderen Ausführungsformen andere Werte auch möglich sein können.
  • Eine leitende Struktur, z. B. ein Kontaktstöpsel, kann nachfolgend in der ersten Vertiefung 306 und der zweiten Vertiefung 308 ausgebildet werden, z. B. um darunter liegende elektrische Elemente (z. B. Durchkontaktierungen, Leiterbahnen oder -wege etc.) und/oder darunter liegende elektronische Komponenten (z. B. Transistoren, Dioden, Widerstände, Kondensatoren etc.) zu kontaktieren. 3B bis 3H zeigen einige der Verfahrensschritte zum Ausbilden einer leitenden Struktur in der ersten Vertiefung 306 und der zweiten Vertiefung 308, die in 3A gezeigt sind.
  • Wie in 3B gezeigt ist, kann eine erste Keimschicht 312 in der ersten Vertiefung 306 und der zweiten Vertiefung 308 ausgebildet werden, indem ihre Oberflächen beschichtet werden. Die erste Keimschicht 312 wird auch über der Sperrschicht 310 ausgebildet, die oben auf der Oberfläche 304a der Isolierschicht 304 angeordnet ist. Die erste Keimschicht 312 ist eine dünne Schicht aus leitendem Material, die zum Ausbilden einer dickeren Schicht während nachfolgender Verfahrensschritte beiträgt (z. B. beim Ausbilden eines ersten leitenden Materials in der ersten Vertiefung 306, wie in 3D gezeigt ist). Die erste Keimschicht 312 kann durch mindestens eines eines gepulstes Keimbildungsschicht-(engl. „pulsed nucleation layer”, PNL)-Verfahrens oder eines ALD-Verfahrens ausgebildet werden, obwohl andere Verfahren auch möglich sein können. Das Verfahren zum Ausbilden der ersten Keimschicht 312 kann bei einer Temperatur in einem Bereich von etwa 200 Grad Celsius bis etwa 500 Grad Celsius ausgeführt werden, z. B. bei etwa 400 Grad Celsius. In einer Ausführungsform kann die erste Keimschicht 312 Wolfram umfassen oder aus diesem bestehen. In anderen Ausführungsformen sind andere leitende Materialien möglich, z. B. Kupfer, Titan, Tantal, Chrom, Platin, Silber, Gold, Kombinationen daraus oder Ähnliches. Die erste Keimschicht 312 kann eine Dicke im Bereich von etwa 1 Nanometer bis etwa 5 Nanometern haben (z. B. etwa 3 Nanometer), obwohl andere Dicken auch möglich sein können.
  • Danach können Abschnitte der ersten Keimschicht 312 einer Behandlung 314 ausgesetzt werden, um behandelte Abschnitte der ersten Keimschicht 312t auszubilden, wie in 3C gezeigt ist. Abschnitte der ersten Keimschicht 312, die der Behandlung 314 nicht ausgesetzt wurden, können als unbehandelte Abschnitte der ersten Keimschicht 312u bezeichnet werden. Behandelte Abschnitte der ersten Keimschicht 312t können Abschnitte der ersten Keimschicht 312 in der zweiten Vertiefung 308, Abschnitte der ersten Keimschicht 312, die über der Oberfläche 304a der Isolierschicht 304 angeordnet sind, und einen Abschnitt der ersten Keimschicht 312 in der ersten Vertiefung 306 in der Nähe der Öffnung der ersten Vertiefung 306 umfassen, wie in dem Beispiel von 3C gezeigt ist.
  • Die Abschnitte der ersten Keimschicht 312, die der Behandlung 314 ausgesetzt werden, können zumindest teilweise auf der Geometrie der ersten Vertiefung 306 und der zweiten Vertiefung 308 beruhen. Die zweite Vertiefung 308 beispielsweise, die in 3C gezeigt ist, ist flacher als die erste Vertiefung 306. Somit kann die Behandlung 314 fähig sein, den gesamten Abstand D2 der zweiten Vertiefung 308 zu durchdringen, wodurch alle Abschnitte der ersten Keimschicht 312 behandelt werden, die in der zweiten Vertiefung 308 angeordnet sind. Andererseits kann sich die erste Vertiefung 306 weiter in das Substrat 300 erstrecken. Somit kann die Behandlung 314 nur einen Abschnitt (z. B. einen oberen Abschnitt) der ersten Vertiefung 306 durchdringen, wodurch der Abschnitt der ersten Keimschicht 312 in der ersten Vertiefung 306 in der Nähe der Öffnung der ersten Vertiefung 306 behandelt wird.
  • Die Behandlung 314 kann Wachstum, Abscheidung oder Keimbildung von leitendem Material an den behandelten Abschnitten der ersten Keimschicht 312t hemmen oder unterdrücken. Diese Hemmung oder Unterdrückung kann durch verschiedene Mechanismen erreicht werden. In einem Mechanismus kann eine aktivierte Spezies freiliegende Abschnitte der ersten Keimschicht 312 passivieren. Die aktivierte Spezies kann beispielsweise ein Behandlungs-Plasma sein. Anders ausgedrückt kann die Behandlung 314 eine Plasma-Behandlung sein. Das Behandlungs-Plasma kann mindestens eines eines Plasmas, das Stickstoff enthält, eines Plasmas, das Wasserstoff enthält, eines Plasmas, das Sauerstoff enthält, oder eines Plasmas, das Kohlenwasserstoffverbindungen enthält, umfassen oder aus ihm bestehen. Der Grad, um den die Behandlung 314 Wachstum, Abscheidung oder Keimbildung von leitendem Material an den behandelten Abschnitten der ersten Keimschicht 312t hemmt, kann zumindest teilweise von der Zusammensetzung des Behandlungs-Plasmas abhängen. Als ein Beispiel kann Stickstoff eine stärkere hemmende Wirkung als Wasserstoff haben und die Anpassung der relativen Konzentrationen von Stickstoff und Wasserstoff in dem Behandlungs-Plasma kann den Grad ändern, um den Wachstum, Abscheidung oder Keimbildung von leitendem Material an den behandelten Abschnitten der ersten Keimschicht 312t unterdrückt oder gehemmt wird. In einer Ausführungsform, in der das Behandlungs-Plasma Stickstoff (z. B. N2) umfasst oder aus ihm besteht, kann das Behandlungs-Plasma mit einer Rate in einem Bereich von etwa 1 Standard-Kubikzentimetern pro Minute (sccm) bis etwa 20 sccm ausgestoßen werden. In dieser Ausführungsform kann die Behandlung 314 bei einer Temperatur im Bereich von etwa 300 Grad Celsius bis etwa 400 Grad Celsius und bei einem Druck im Bereich von etwa 0,8 hPar bis etwa 2,7 hPa ausgeführt werden, obwohl andere Temperaturen und Drücke auch möglich sein können. In einem anderen Mechanismus kann die Hemmung durch eine chemische Reaktion zwischen einer aktivierten Spezies und den freiliegenden Oberflächen der ersten Keimschicht 312 erreicht werden. Die chemische Reaktion kann eine dünne Schicht eines Verbundmaterials (z. B. Wolframnitrid oder Wolframkarbid) ausbilden. Die aktivierte Spezies kann durch Plasmaerzeugung und/oder das Aussetzen einer ultravioletten (UV) Strahlung als Beispiele ausgebildet werden und kann atomare Spezies, radikale Spezies und ionische Spezies umfassen. In noch einem anderen Mechanismus kann die Hemmung durch einen Oberflächeneffekt wie Adsorption erreicht werden, der die Oberfläche passiviert, ohne dass eine Schicht aus einem Verbundmaterial ausgebildet wird.
  • Die Behandlung 314 kann auch die Wirkung haben, dass eine Phase des Materials oder der Materialien in den behandelten Abschnitten der ersten Keimschicht 312t geändert wird. Als ein Beispiel kann die erste Keimschicht 312, die in 3B gezeigt ist, Wolfram mit einer ersten Phase umfassen oder aus ihm bestehen, das als Alpha-Wolfram bekannt ist. Nach der Behandlung 314, die in 3C gezeigt ist, kann die Phase des Wolframs in den behandelten Abschnitten der ersten Keimschicht 312t von der ersten Phase (Alpha-Wolfram) zu einer zweiten Phase geändert werden, die als Beta-Wolfram bekannt ist. Die Phase des Wolframs in den unbehandelten Abschnitten der ersten Keimschicht 312u bleibt unverändert und bleibt Alpha-Wolfram. Die Änderung der Phase des Wolframs in den behandelten Abschnitten der ersten Keimschicht 312t kann auch zu einer Änderung des spezifischen Widerstands des Wolframs führen. Alpha-Wolfram (in den unbehandelten Abschnitten der ersten Keimschicht 312u) hat beispielsweise einen spezifischen Widerstand im Bereich von etwa 5 Mikroohm-Zentimetern bis etwa 6 Mikroohm-Zentimetern bei etwa 300 Kelvin, während Beta-Wolfram (in den behandelten Abschnitten der ersten Keimschicht 312t) einen spezifischen Widerstand von mehr als 40 Mikroohm-Zentimetern bei etwa 300 Kelvin hat. Ein leitendes Material, das nachfolgend in dem Substrat 300 ausgebildet wird, kann vorzugsweise oder selektiv über den unbehandelten Abschnitten der ersten Keimschicht 312u ausgebildet werden und nicht über den behandelten Abschnitten der ersten Keimschicht 312t.
  • Wie in 3D gezeigt ist, kann die erste Vertiefung 306 teilweise mit einem ersten leitenden Material 316 gefüllt werden, das ähnliche Materialien wie die erste Keimschicht 312 umfasst oder aus ihnen besteht. Das erste leitende Material 316 kann die unbehandelten Abschnitte der ersten Keimschicht 312u bedecken. Da Wachstum, Abscheidung oder Keimbildung des leitenden Materials an den behandelten Abschnitten der ersten Keimschicht 312t unterdrückt oder gehemmt wird, wird das erste leitende Material 316 nicht über den behandelten Abschnitten der ersten Keimschicht 312t ausgebildet. Somit können die behandelten Abschnitte der ersten Keimschicht 312t von dem ersten leitenden Material 316 frei sein. Das erste leitende Material 316 kann auch als erstes leitendes Bulk-Material bezeichnet werden, das einen niedrigeren spezifischen Widerstand als die behandelten Abschnitte der ersten Keimschicht 312t haben kann.
  • Das erste leitende Material 316 kann in der ersten Vertiefung 306 durch ein Füllverfahren ausgebildet werden. In einer Ausführungsform kann das Füllverfahren mindestens ein PVD-Verfahren und/oder ein CVD-Verfahrens sein. Das Füllverfahren kann ein Füllverfahren vom Boden aus sein, was eine Folge der Behandlung 314 sein kann. Neben dem Hemmen der Ausbildung von leitendem Material an den behandelten Abschnitten der ersten Keimschicht 312t kann die Behandlung 314 beispielsweise dazu führen (in 3C gezeigt), dass leitendes Material über den unbehandelten Abschnitten der ersten Keimschicht 312u ausgebildet wird, um als Füllverfahren vom Boden her fortgeführt zu werden, im Gegensatz zu einem gleichmäßigen Füllverfahren. So wie es auf das Beispiel angewendet wird, das in 3D gezeigt ist, kann in dem Füllverfahren vom Boden her das erste leitende Material 316 anfänglich an einem Boden der ersten Vertiefung 306 als eine dünne Schicht ausgebildet werden, die in der Dicke hin zu der Öffnung der ersten Vertiefung 306 erhöht wird, bis die unbehandelten Abschnitte der ersten Keimschicht 312u durch das erste leitende Material 316 bedeckt sind. Dieses Füllverfahren vom Boden her verhindert, dass Lücken, Einschlüsse oder Löcher an Nahtstellen in dem ersten leitenden Material 316 ausgebildet werden, was Merkmale sind, die oft mit einem gleichförmigen Füllverfahren verbunden sind. Das Füllverfahren kann bei einer Temperatur im Bereich von etwa 300 Grad Celsius bis etwa 450 Grad Celsius und einem Druck im Bereich von etwa 133 hPa bis etwa 666 hPa (z. B. etwa 400 hPa) ausgeführt werden, obwohl andere Temperaturen und Drücke auch möglich sein können.
  • Wie oben beschrieben kann, obwohl die behandelten Abschnitte der ersten Keimschicht 312t und die unbehandelten Abschnitte der ersten Keimschicht 312u ähnliche Materialien umfassen oder aus ihnen bestehen können, die Phase der Materialien darin unterschiedlich sein. In dem Fall, in dem das leitende Material (z. B. eine zweite Keimschicht) über den behandelten Abschnitten der ersten Keimschicht 312t ausgebildet wird, können die behandelten Abschnitte der ersten Keimschicht 312t eine Änderung der Phase des Materials des leitenden Materials (z. B. der zweiten Keimschicht) umfassen. Insbesondere kann die Phase des Materials des leitenden Materials von seiner ursprünglichen Phase mit niedrigem spezifischem Widerstand zu der Phase mit hohem spezifischen Widerstand des Materials in den behandelten Abschnitten der ersten Keimschicht 312t geändert werden. Daher kann das Behalten der behandelten Abschnitte der ersten Keimschicht 312t einen Kontaktwiderstand der leitenden Strukturen in dem Substrat 300 negativ beeinflussen.
  • Daher können, wie in 3E gezeigt ist, die behandelten Abschnitte der ersten Keimschicht 312t entfernt werden (z. B. durch ein Ätzverfahren 320), um Oberflächen der ersten Vertiefung 306 und der zweiten Vertiefung 308 freizulegen (z. B. um Oberflächen der Sperrschicht 310 freizulegen, die die Oberflächen der ersten Vertiefung 306 und der zweiten Vertiefung 308 definieren). Zusätzlich kann eine Oberfläche des ersten leitenden Materials 316, die der Öffnung der ersten Vertiefung 306 zugewandt ist, durch das Ätzverfahren 320 geätzt werden, wodurch ein Abschnitt des ersten leitenden Materials 316 in der Nähe der Öffnung der ersten Vertiefung 306 entfernt wird.
  • In einer Ausführungsform kann das Ätzverfahren 320 ein Trockenätzverfahren (z. B. ein Plasmaätzverfahren) sein. Ein Ätzmittel, das in dem Ätzverfahren 320 verwendet wird, kann ein Ätzmittel umfassen oder aus ihm bestehen, das ein Halogen enthält. Die Zusammensetzung des Ätzmittels kann zumindest teilweise von dem Material oder den Materialien der behandelten Abschnitte der ersten Keimschicht 312t abhängen. In einer Ausführungsform beispielsweise, in der die behandelten Abschnitte der ersten Keimschicht 312t Wolfram umfassen oder aus ihm bestehen (z. B. Beta-Wolfram), kann das Ätzmittel, das in dem Ätzverfahren 320 verwendet wird, ein Ätzmittel sein, das Fluor enthält, etwa ein Plasma, das Fluor enthält (z. B. ein NF3-Plasma). Das Ätzmittel, dass in dem Ätzverfahren 320 verwendet wird, kann mit einer Rate eingebracht werden, die im Bereich von etwa 50 sccm bis etwa 200 sccm liegt, obwohl andere Durchflussraten auch möglich sein können. Als Ergebnis des Ätzverfahrens 320, das in 3E gezeigt ist, werden Abschnitte des Substrats 300 mit hohem spezifischem Widerstand entfernt.
  • Wie in 3F gezeigt ist, kann eine zweite Keimschicht 322 in der ersten Vertiefung 306 und der zweiten Vertiefung 308 ausgebildet werden, wodurch ihre freiliegenden Oberflächen beschichtet werden. Die zweite Keimschicht 322 wird auch auf der Sperrschicht 310 ausgebildet, die über der Oberfläche 304a der Isolierschicht 304 angeordnet ist, und über der Oberfläche des ersten leitenden Materials 316, die der Öffnung der ersten Vertiefung 306 zugewandt ist. Ähnlich zu der ersten Keimschicht 312 ist die zweite Keimschicht 322 eine dünne Schicht aus leitendem Material, die dazu beiträgt, dass eine dickere Schicht während nachfolgender Verfahrensschritte ausgebildet wird (z. B. beim Ausbilden eines zweiten leitenden Materials in der ersten Vertiefung 306 und der zweiten Vertiefung 308, wie in 3G gezeigt ist). Die zweite Keimschicht 322 kann ähnliche Materialien wie die erste Keimschicht 312 umfassen oder aus ihnen bestehen und die Materialien der zweiten Keimschicht 322 können eine Phase mit niedrigem spezifischem Widerstand haben (z. B. Alpha-Wolfram). Die zweite Keimschicht 322 kann eine Dicke im Bereich von etwa 1 Nanometer bis etwa 8 Nanometern (z. B. etwa 5 Nanometer) haben. Die zweite Keimschicht 322 kann durch ähnliche Verfahren ausgebildet werden wie die erste Keimschicht 312, obwohl das Verfahren zum Ausbilden der zweiten Keimschicht 322 bei einer Temperatur ausgeführt werden kann, die größer oder gleich 200 Grad Celsius ist, z. B. in einem Bereich von etwa 300 Grad Celsius bis etwa 400 Grad Celsius und bei einem Druck im Bereich von etwa 2,67 hPa bis etwa 13,3 hPa (z. B. etwa 6,7 hPa).
  • Wie in 3G gezeigt ist, werden die erste Vertiefung 306 und die zweite Vertiefung 308, in denen die zweite Keimschicht 322 ausgebildet ist, mit einem zweiten leitenden Material 324 überfüllt. In dem Beispiel, das in 3G gezeigt ist, bedeckt das zweite leitende Material 324 das erste leitende Material 316 und die zweite Keimschicht 322 in der ersten Vertiefung 306 und in der zweiten Vertiefung 308. Zusätzlich bedeckt das zweite leitende Material 324 die zweite Keimschicht 322, die über der Oberfläche 304a der Isolierschicht 304 angeordnet ist. Das zweite leitende Material 324 kann durch ein Füllverfahren vom Boden her oder durch ein gleichförmiges Füllverfahren ausgebildet werden. In dem Beispiel, in dem das Ausbilden des zweiten leitenden Materials 324 ein gleichförmiges Verfahren ist, wird aufgrund der flacheren Tiefe der ersten Vertiefung 306 und der zweiten Vertiefung 308, die mit dem zweiten leitenden Material 324 gefüllt werden müssen, verhindert, dass sich Lücken, Einschlüsse oder Löcher in den Nahtstellen bilden. Das zweite leitende Material 324 kann ähnliche Materialien umfassen oder aus ihnen bestehen wie das erste leitende Material 316. Das zweite leitende Material 324 kann auch als zweites leitendes Bulk-Material bezeichnet werden, das einen niedrigeren spezifischen Widerstand haben kann als behandelte Abschnitte der vorher entfernten ersten Keimschicht 312t.
  • Das zweite leitende Material 324 wird nachfolgend planarisiert, um ein planarisiertes zweites leitendes Material 324' auszubilden, wie in 3H gezeigt ist. Die Planarisierung kann durch ein chemisch-mechanisches Polier-(CMP)-Verfahren ausgeführt werden, das überschüssige Abschnitte des zweiten leitenden Materials 324 entfernen kann, die außerhalb der ersten Vertiefung 306 und der zweiten Vertiefung 308 angeordnet sind. Zusätzlich zum Entfernen von überschüssigen Abschnitten des zweiten leitenden Materials 324 werden Abschnitte der zweiten Keimschicht 322 und der Sperrschicht 310, die außerhalb der ersten Vertiefung 306 und der zweiten Vertiefung 308 angeordnet sind, auch entfernt, wie in dem Beispiel der 3H gezeigt ist.
  • Mittels der Verfahrensschritte, die in 3A bis 3H gezeigt sind, kann eine leitende Struktur (z. B. ein Kontaktstöpsel, z. B. ein Source/Drain-Kontaktstöpsel) sowohl in der ersten Vertiefung 306 als auch der zweiten Vertiefung 308 ausgebildet werden. Die leitende Struktur kann ein darunter liegendes elektrisches Element (z. B. eine Durchkontaktierung, eine Leiterbahn oder einen Leiterweg etc.) und/oder eine darunter liegende elektronische Komponente (z. B. einen Transistor, eine Diode, einen Widerstand, einen Kondensator etc.) kontaktieren (z. B. elektrisch kontaktieren), die in der Halbleitersubstratschicht 302 und/oder der Isolierschicht 304 ausgebildet sein können.
  • Da die erste Vertiefung 306 und die zweite Vertiefung 308 unterschiedliche Tiefen haben, haben die leitenden Strukturen, die darin ausgebildet werden, unterschiedliche Strukturbreiten bzw. „kritische Abmessungen” und Tiefen. Somit können die Verfahrensschritte, die in 3A bis 3H gezeigt sind, verwendet werden, um leitende Strukturen von unterschiedlicher Strukturbreite und Tiefe herzustellen. Des Weiteren besteht ein Effekt, der durch die Verfahrensschritte vorgesehen ist, die in 3A bis 3H gezeigt sind, darin, dass verhindert wird, dass Lücken, Einschlüsse oder Löcher in den Nahtstellen in den leitenden Strukturen gebildet werden, die in der ersten Vertiefung 306 und der zweiten Vertiefung 308 ausgebildet werden. In einem herkömmlichen Verfahrensfluss kann die zweite Keimschicht 322 über dem behandelten Abschnitt der erste Keimschicht 312t ausgebildet werden und das zweite leitende Material 324 kann nachfolgend über der zweiten Keimschicht 322 ausgebildet werden. In den Verfahrensschritten, die in 3A bis 3H gezeigt sind, wird der behandelte Abschnitt der ersten Keimschicht 312t jedoch entfernt. Durch das Entfernen des behandelten Abschnitts der ersten Keimschicht 312t wird der Raum, der von dem behandelten Abschnitt der ersten Keimschicht 312t ausgefüllt würde, nun von dem zweiten leitenden Bulk-Material ausgefüllt, das einen niedrigeren spezifischen Widerstand hat. Somit wird der spezifische Widerstand der leitenden Strukturen, die in der ersten Vertiefung 306 und der zweiten Vertiefung 308 ausgebildet werden, verringert. Darüber hinaus werden Änderungen der Phase eines leitenden Materials von einer Phase mit niedrigem spezifischem Widerstand zu einer Phase mit hohem spezifischem Widerstand durch das Entfernen des behandelten Abschnitts der ersten Keimschicht 312t vermieden, was eine Erhöhung des spezifischen Widerstands der leitenden Strukturen verhindert, die in der ersten Vertiefung 306 und der zweiten Vertiefung 308 ausgebildet werden.
  • 4A bis 4H zeigen einen Verfahrensfluss, der einige der Verfahrensschritte des Verfahrens 100, das in 1 gezeigt ist, und des Verfahrens 200, das in 2 gezeigt ist, in Übereinstimmung mit einer oder mehreren Ausführungsformen zeigt. 4A zeigt das Substrat 300, das die Halbleitersubstratschicht 302, die Isolierschicht 304, die Sperrschicht 310 und eine dritte Vertiefung 400 umfasst. Im Vergleich zu der ersten Vertiefung 306 und der zweiten Vertiefung 308 kann die dritte Vertiefung 400 einen Überhang 402 aufweisen, so dass die Sperrschicht 310 in der Nähe der Öffnung der dritten Vertiefung 400 dicker als innerhalb der dritten Vertiefung 400 ist. Trotzdem verlaufen die Verfahrensschritte zum Ausbilden einer leitenden Struktur in der dritten Vertiefung 400 ähnlich, wie oben mit Bezug auf 3A bis 3H beschrieben ist.
  • Wie in 4B gezeigt ist, kann die erste Keimschicht 312 die freiliegenden Oberflächen der Sperrschicht 310 beschichten. Wie in 4C gezeigt ist, können Abschnitte der ersten Keimschicht 312 der Behandlung 314 ausgesetzt werden, um behandelte Abschnitte der ersten Keimschicht 312t auszubilden. Abschnitte der ersten Keimschicht 312, die der Behandlung 314 nicht ausgesetzt werden, können als unbehandelte Abschnitte der ersten Keimschicht 312u bezeichnet werden. Abschnitte der ersten Keimschicht 312, die der Behandlung 314 ausgesetzt werden, können Abschnitte der ersten Keimschicht 312 umfassen oder aus ihnen bestehen, die über der Oberfläche 304a der Isolierschicht 304 angeordnet sind, und Abschnitte der ersten Keimschicht 312, die über dem Überhang 402 angeordnet sind. Abschnitte der ersten Keimschicht 312 auf den abgeschrägten Seitenwänden der dritten Vertiefung 400 können unbehandelt bleiben.
  • Wie in 4D gezeigt ist, kann das erste leitende Material 316 in der dritten Vertiefung 400 über den unbehandelten Abschnitten der ersten Keimschicht 312u ausgebildet werden. Trotz des Überhangs 402 wird verhindert, dass sich Lücken, Einschlüsse oder Löcher in den Nähten in dem ersten leitenden Material 316 aufgrund der Behandlung 314 bilden, was es erlaubt, dass das Füllen der dritten Vertiefung 400 in einem Verfahren vom Boden aus wie oben beschrieben ausgeführt wird.
  • Wie in 4E gezeigt ist, können die behandelten Abschnitte der ersten Keimschicht 312t über der Oberfläche 304a der Isolierschicht 304 entfernt werden (z. B. durch das Ätzverfahren 320). Teile der behandelten Abschnitte der ersten Keimschicht 312t bei dem Überhang 402 können ebenfalls entfernt werden. Zusätzlich kann das Ätzverfahren 320 Abschnitte des Überhangs 402 entfernen, wodurch eine Öffnung in der dritten Vertiefung 400 erweitert wird. Dies kann den Vorteil haben, dass ermöglicht wird, dass Material in der dritten Vertiefung 400 leichter abgeschieden oder ausgebildet wird. Wie in 4F gezeigt ist, kann die zweite Keimschicht 322 beispielsweise in der dritten Vertiefung 400 aufgrund der vergrößerten Öffnung der dritten Vertiefung 400 leichter ausgebildet werden. Die zweite Keimschicht 322 beschichtet die freiliegenden Oberflächen der dritten Vertiefung 400, die Oberfläche des ersten leitenden Materials 316, die der Öffnung der dritten Vertiefung 400 zugewandt ist, den Überhang 402 und die Sperrschicht 310, die über der Oberfläche 304a der Isolierschicht angeordnet ist.
  • Wie in 4G gezeigt ist, wird die dritte Vertiefung 400, in der die zweite Keimschicht 322 ausgebildet ist, mit dem zweiten leitenden Material 324 überfüllt. In dem Beispiel, das in 3G gezeigt ist, bedeckt das zweite leitende Material 324 das erste leitende Material 316 und die zweite Keimschicht 322 in der dritten Vertiefung 400. Zusätzlich bedeckt das zweite leitende Material 324 die zweite Keimschicht 322, die außerhalb der dritten Vertiefung 400 angeordnet ist.
  • Das zweite leitende Material 324 wird nachfolgend planarisiert, um das planarisierte zweite leitende Material 324' auszubilden, wie in 4H gezeigt ist. Wie oben beschrieben kann die Planarisierung durch ein CMP-Verfahren ausgeführt werden, das überschüssige Abschnitte des zweiten leitenden Materials 324 entfernen kann, die außerhalb der dritten Vertiefung 400 angeordnet sind, sowie Abschnitte der zweiten Keimschicht 322 und der Sperrschicht 310, die außerhalb der dritten Vertiefung 400 angeordnet sind. Indem man so vorgeht, kann ein Abschnitt des Überhangs 402 auch entfernt werden, wie in 4H gezeigt ist.
  • Mittels der Verfahrensschritte, die in 4A bis 4H gezeigt sind, kann eine leitende Struktur (z. B. ein Kontaktstöpsel) in der dritten Vertiefung 400 ausgebildet werden, die den Überhang 402 aufweist. Ähnlich zu den Verfahrensschritten, die in 3A bis 3H gezeigt sind, besteht eine Auswirkung, die durch die Verfahrensschritte bewirkt wird, die in 4A bis 4H gezeigt sind, darin, dass verhindert wird, dass sich Lücken, Einschlüsse oder Nahtstellen-Löcher in den leitenden Strukturen bilden, die in der dritten Vertiefung 400 ausgebildet werden. In einem herkömmlichen Verfahrensfluss kann die zweite Keimschicht 322 über dem behandelten Abschnitt der ersten Keimschicht 312t ausgebildet werden und das zweite leitende Material 324 kann nachfolgend über der zweiten Keimschicht 322 ausgebildet werden. In den Verfahrensschritten, die in 4A bis 4H gezeigt sind, wird jedoch der behandelte Abschnitt der ersten Keimschicht 312t entfernt. Indem der behandelte Abschnitt der ersten Keimschicht 312t entfernt wird, wird der Raum, der von dem behandelten Abschnitt der ersten Keimschicht 312t ausgefüllt worden wäre, nun von dem zweiten leitenden Bulk-Material belegt, das einen niedrigeren spezifischen Widerstand hat. Somit wird der spezifische Widerstand der leitenden Strukturen, die in der dritten Vertiefung 400 ausgebildet werden, verringert. Des weiteren werden Änderungen in der Phase eines leitenden Materials von einer Phase mit niedrigem spezifischem Widerstand zu einer Phase mit hohem spezifischem Widerstand durch das Entfernen des behandelten Abschnitts der ersten Keimschicht 312t vermieden, was einen Anstieg des spezifischen Widerstands der leitenden Strukturen verhindert, die in der dritten Vertiefung 400 ausgebildet werden.
  • 5 zeigt ein Konzentrationsprofil 500, das entlang der Linie A-A' genommen ist, die in 4H gezeigt ist. Das Konzentrationsprofil zeigt die Änderungen der Konzentration von verschiedenen Materialien in Abhängigkeit von der Position, wobei die Position bei 0 Mikrometern in 5 als Punkt A gezeigt ist und die Position bei 0,1 Mikrometern in 5 als Punkt A' gezeigt ist.
  • Es ist ersichtlich, dass selbst wenn die Anwendung des Ätzverfahrens 320 die behandelten Abschnitte der ersten Keimschicht 312t entfernt, es keine überschüssigen Anteile von unerwünschten Materialien gibt, die in die leitende Struktur eingeführt werden, die in der dritten Vertiefung 400 ausgebildet wird, die die Leitfähigkeit und/oder den spezifischen Widerstand der leitenden Strukturen negativ beeinflussen können. Wie in 5 gezeigt ist, sind Sauerstoff, Argon und Fluor (in 5 als die Gruppe von Kurven 506 gezeigt) in der leitenden Struktur, die in der dritten Vertiefung 400 ausgebildet ist, in niedrigen Konzentrationen vorhanden (z. B. weniger als 10 Einheiten). Andererseits haben Silizium (in 5 als die Kurve 502 gezeigt) und Wolfram (in 5 als Kurve 504 gezeigt) relativ hohe Konzentrationen in der dritten Vertiefung 400, wie zu erwarten war.
  • Gestützt auf die Verfahrensflüsse, die in 3A bis 3H und 4A bis 4H gezeigt sind, kann ein Verfahren 600 zum Ausbilden einer leitenden Struktur vorgesehen sein (das in 6 gezeigt ist). Wie in 6 gezeigt ist, kann das Verfahren 600 Folgendes umfassen: Beschichten eines Grabens, der in einer Isolierschicht ausgebildet ist, mit einer Sperrschicht, um eine Vertiefung auszubilden (in 602); Beschichten der Vertiefung mit einer ersten Keimschicht (in 604); teilweises Füllen der Vertiefung mit einem ersten leitenden Material, wobei ein Abschnitt der ersten Keimschicht, der in der Nähe einer Öffnung der Vertiefung liegt, von dem ersten leitenden Material frei ist (in 606); Entfernen des Abschnitts der ersten Keimschicht, der frei von dem ersten leitenden Material ist, um eine freiliegende Oberfläche der Vertiefung auszubilden (in 608); Beschichten der freiliegenden Oberfläche der Vertiefung mit einer zweiten Keimschicht (in 610); und Füllen der Vertiefung mit einem zweiten leitenden Material (in 612).
  • Gemäß verschiedener Ausführungsformen, die hier präsentiert sind, kann ein Verfahren zum Ausbilden einer leitenden Struktur vorgesehen sein. Das Verfahren kann Folgendes umfassen: Bereitstellen eines Substrats, in dem eine Vertiefung ausgebildet ist, wobei die Vertiefung mit einer ersten Keimschicht beschichtet ist und teilweise mit einem ersten leitenden Material gefüllt ist; Entfernen eines Abschnitts der ersten Keimschicht, der von dem ersten leitenden Material frei ist, um eine freiliegende Oberfläche der Vertiefung auszubilden; Beschichten der freiliegenden Oberfläche der Vertiefung mit einer zweiten Keimschicht; und Füllen der Vertiefung mit einem zweiten leitenden Material, wobei das zweite leitende Material das erste leitende Material und die zweite Keimschicht bedeckt.
  • Gemäß verschiedenen Ausführungsformen, die hier präsentiert sind, kann ein Verfahren zum Ausbilden einer leitenden Struktur vorgesehen sein. Das Verfahren kann Folgendes umfassen: Bereitstellen eines Substrats, das eine erste Vertiefung und eine zweite Vertiefung aufweist, die darin ausgebildet sind, wobei sich die erste Vertiefung in das Substrat um einen ersten Abstand erstreckt und die zweite Vertiefung sich in das Substrat um einen zweiten Abstand erstreckt, der kleiner als der erste Abstand ist; Beschichten der ersten Vertiefung und der zweiten Vertiefung mit einer ersten Keimschicht; die erste Keimschicht in der zweiten Vertiefung und ein Abschnitt der ersten Keimschicht in der ersten Vertiefung in der Nähe einer Öffnung der ersten Vertiefung wird einem Behandlungs-Plasma ausgesetzt, um behandelte Abschnitte der ersten Keimschicht auszubilden; teilweises Füllen der ersten Vertiefung mit einem ersten leitenden Material, wobei die behandelten Abschnitte der ersten Keimschicht von dem ersten leitenden Material frei sind; Entfernen der behandelten Abschnitte der ersten Keimschicht, um freiliegende Oberflächen der ersten Vertiefung und der zweiten Vertiefung auszubilden; Beschichten der freiliegenden Oberflächen der ersten Vertiefung und der zweiten Vertiefung mit einer zweiten Keimschicht; und Bedecken der zweiten Keimschicht mit einem zweiten leitenden Material, wobei das zweite leitende Material die erste Vertiefung und die zweite Vertiefung füllt.
  • Gemäß verschiedenen Ausführungsformen, die hier präsentiert sind, kann ein Verfahren zum Ausbilden einer leitenden Struktur vorgesehen sein. Das Verfahren kann Folgendes umfassen: Beschichten eines Grabens, der in einer Isolierschicht ausgebildet ist, mit einer Sperrschicht, um eine Vertiefung auszubilden; Beschichten der Vertiefung mit einer ersten Keimschicht; teilweises Füllen der Vertiefung mit einem ersten leitenden Material, wobei ein Abschnitt der ersten Keimschicht in der Nähe einer Öffnung der Vertiefung von dem ersten leitenden Material frei ist; Entfernen des Abschnitts der ersten Keimschicht, der von dem ersten leitenden Material frei ist, um eine freiliegende Oberfläche der Vertiefung auszubilden; Beschichten der freiliegenden Oberfläche der Vertiefung mit einer zweiten Keimschicht; und Füllen der Vertiefung mit einem zweiten leitenden Material.
  • Das Vorangegangene beschreibt Merkmale von mehreren Ausführungsformen, so dass der Fachmann die Aspekte der vorliegenden Offenbarung besser verstehen kann. Der Fachmann sollte anerkennen, dass er die vorliegende Offenbarung leicht als Basis verwenden kann, um andere Verfahren und Strukturen zu entwerfen oder modifizieren, um die gleichen Ziele zu erreichen und/oder die gleichen Vorteile der hier eingeführten Ausführungsformen zu realisieren.

Claims (20)

  1. Verfahren, das Folgendes umfasst: Bereitstellen eines Substrats, in dem eine Vertiefung ausgebildet ist, wobei die Vertiefung mit einer ersten Keimschicht beschichtet und teilweise mit einem ersten leitenden Material gefüllt ist, wobei die Vertiefung einen Überhang in der Nähe einer Öffnung der Vertiefung aufweist; Entfernen eines Abschnitts der ersten Keimschicht, der von dem ersten leitenden Material frei ist, um eine freiliegende Oberfläche der Vertiefung auszubilden; Beschichten der freiliegenden Oberfläche der Vertiefung mit einer zweiten Keimschicht; und Füllen der Vertiefung mit einem zweiten leitenden Material, wobei das zweite leitende Material das erste leitende Material und die zweite Keimschicht bedeckt.
  2. Verfahren nach Anspruch 1, wobei das Entfernen des Abschnitts der ersten Keimschicht, der von dem ersten leitenden Material frei ist, das Ätzen des Abschnitts der ersten Keimschicht, der von dem ersten leitenden Material frei ist, umfasst.
  3. Verfahren nach Anspruch 2, wobei das Ätzen des Abschnitts der ersten Keimschicht, der von dem ersten leitenden Material frei ist, das Plasmaätzen des Abschnitts der ersten Keimschicht, der von dem ersten leitenden Material frei ist, mit einem Plasmaätzmittel umfasst.
  4. Verfahren nach Anspruch 3, wobei das Plasmaätzmittel ein Plasmaätzmittel umfasst, das ein Halogen enthält.
  5. Verfahren nach Anspruch 4, wobei das Plasmaätzmittel, das ein Halogen enthält, ein Plasmaätzmittel umfasst, das Fluor enthält.
  6. Verfahren nach einem der Ansprüche 2 bis 5, wobei das Entfernen des Abschnitts der ersten Keimschicht, der von dem ersten leitenden Material frei ist, das Ätzen des Abschnitts der ersten Keimschicht, der von dem ersten leitenden Material frei ist, und einer Oberfläche des ersten leitenden Materials umfasst, das der Öffnung der Vertiefung zugewandt ist.
  7. Verfahren nach einem der vorangegangene Ansprüche, wobei das Beschichten der freiliegenden Oberfläche der Vertiefung mit der zweiten Keimschicht ein Verfahren umfasst, das aus einer Menge ausgewählt ist, die aus einem gepulsten Keimbildungsverfahren, einer Atomlagenabscheidung und Kombinationen daraus besteht.
  8. Verfahren, das Folgendes umfasst: Beschichten eines Grabens, der in einer Isolierschicht ausgebildet ist, mit einer Sperrschicht, um eine Vertiefung auszubilden, wobei die Vertiefung einen Überhang aufweist, so dass die Sperrschicht in der Nähe einer Öffnung der Vertiefung dicker als innerhalb der Vertiefung ist; Beschichten der Vertiefung mit einer ersten Keimschicht; teilweises Füllen der Vertiefung mit einem ersten leitenden Material, wobei ein Abschnitt der ersten Keimschicht in der Nähe einer Öffnung der Vertiefung von dem ersten leitenden Material frei ist; Entfernen des Abschnitts der ersten Keimschicht, der von dem ersten leitenden Material frei ist, um eine freiliegende Oberfläche der Vertiefung auszubilden; Beschichten der freiliegenden Oberfläche der Vertiefung mit einer zweiten Keimschicht; und Füllen der Vertiefung mit einem zweiten leitenden Material.
  9. Verfahren nach Anspruch 8, wobei das teilweise Füllen der Vertiefung mit dem ersten leitenden Material Folgendes umfasst: Behandeln des Abschnitts der ersten Keimschicht in der Nähe der Öffnung der Vertiefung, um einen behandelten Abschnitt der ersten Keimschicht auszubilden; und Füllen der Vertiefung mit dem ersten leitenden Material, wobei der behandelte Abschnitt der ersten Keimschicht von dem ersten leitenden Material frei ist.
  10. Verfahren nach Anspruch 9, wobei das Behandeln des Abschnitts der ersten Keimschicht es umfasst, den Abschnitt der ersten Keimschicht einem Behandlungs-Plasma auszusetzen.
  11. Verfahren nach Anspruch 10, wobei das Behandlungs-Plasma ein Plasma umfasst, das aus einer Menge ausgewählt ist, die aus einem Plasma, das Stickstoff enthält, einem Plasma, das Wasserstoff enthält, einem Plasma, das Sauerstoff enthält, einem Plasma, das Kohlenwasserstoffverbindungen enthält, und Kombinationen daraus besteht.
  12. Verfahren nach einem der Ansprüche 8 bis 11, wobei das teilweise Füllen der Vertiefung mit dem ersten leitenden Material das Wachsenlassen einer Dicke des ersten leitenden Materials von einem Boden der Vertiefung zu der Öffnung der Vertiefung umfasst.
  13. Verfahren nach einem der Ansprüche 8 bis 12, wobei das Beschichten der freiliegenden Oberfläche der Vertiefung mit der zweiten Keimschicht das Ausbilden der zweiten Keimschicht über der freiliegenden Oberfläche der Vertiefung und über einer Oberfläche des ersten leitenden Material umfasst, die der Öffnung der Vertiefung zugewandt ist.
  14. Verfahren nach einem der Ansprüche 8 bis 13, wobei das Beschichten der Vertiefung mit der ersten Keimschicht das Ausbilden der ersten Keimschicht umfasst, die eine Dicke im Bereich von etwa 1 Nanometer bis etwa 5 Nanometern aufweist.
  15. Verfahren nach einem der Ansprüche 8 bis 14, wobei das Beschichten der freiliegenden Oberfläche der Vertiefung mit der zweiten Keimschicht das Ausbilden der zweiten Keimschicht umfasst, die eine Dicke im Bereich von etwa 1 Nanometer bis etwa 8 Nanometern aufweist.
  16. Verfahren, das Folgendes umfasst: Bereitstellen eines Substrats, das eine erste Vertiefung und eine zweite Vertiefung aufweist, die darin ausgebildet sind, wobei sich die erste Vertiefung in das Substrat um einen ersten Abstand erstreckt und die zweite Vertiefung sich in das Substrat um einen zweiten Abstand erstreckt, der kleiner als der erste Abstand ist; Beschichten der ersten Vertiefung und der zweiten Vertiefung mit einer ersten Keimschicht; die erste Keimschicht in der zweiten Vertiefung und ein Abschnitt der ersten Keimschicht in der ersten Vertiefung in der Nähe einer Öffnung der ersten Vertiefung wird einem Behandlungs-Plasma ausgesetzt, um behandelte Abschnitte der ersten Keimschicht auszubilden; teilweises Füllen der ersten Vertiefung mit einem ersten leitenden Material, wobei die behandelten Abschnitte der ersten Keimschicht von dem ersten leitenden Material frei sind; Entfernen der behandelten Abschnitte der ersten Keimschicht, um freiliegende Oberflächen der ersten Vertiefung und der zweiten Vertiefung auszubilden; Beschichten der freiliegenden Oberflächen der ersten Vertiefung und der zweiten Vertiefung mit einer zweiten Keimschicht; und Bedecken der zweiten Keimschicht mit einem zweiten leitenden Material, wobei das zweite leitende Material die erste Vertiefung und die zweite Vertiefung füllt.
  17. Verfahren nach Anspruch 16, wobei der Schritt, in dem die erste Keimschicht in der zweiten Vertiefung und ein Abschnitt der ersten Keimschicht in der ersten Vertiefung in der Nähe der Öffnung der ersten Vertiefung der Behandlung ausgesetzt wird, das Behandeln der ersten Keimschicht in der zweiten Vertiefung und des Abschnitts der ersten Keimschicht in der ersten Vertiefung in der Nähe der Öffnung der ersten Vertiefung mit einem Behandlungs-Plasma umfasst.
  18. Verfahren nach Anspruch 17, wobei das Behandlungs-Plasma ein Plasma umfasst, das aus einer Menge ausgewählt ist, die aus einem Plasma, das Stickstoff enthält, einem Plasma, das Wasserstoff enthält, einem Plasma, das Sauerstoff enthält, einem Plasma, das Kohlenwasserstoffverbindungen enthält, und Kombinationen daraus besteht.
  19. Verfahren nach Anspruch 16, wobei das Entfernen der behandelten Abschnitte der ersten Keimschicht, um freiliegende Oberflächen der ersten Vertiefung und der zweiten Vertiefung auszubilden, es umfasst, die behandelten Abschnitte der ersten Keimschicht einem Ätzverfahren auszusetzen.
  20. Verfahren nach Anspruch 19, wobei das Ätzverfahren ein Plasmaätzverfahren umfasst.
DE102014111780.8A 2014-07-17 2014-08-19 Verfahren zum Ausbilden von leitenden Strukturen in Vertiefungen Active DE102014111780B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/333,961 US9564359B2 (en) 2014-07-17 2014-07-17 Conductive structure and method of forming the same
US14/333,961 2014-07-17

Publications (2)

Publication Number Publication Date
DE102014111780A1 DE102014111780A1 (de) 2016-01-21
DE102014111780B4 true DE102014111780B4 (de) 2017-12-21

Family

ID=55021586

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014111780.8A Active DE102014111780B4 (de) 2014-07-17 2014-08-19 Verfahren zum Ausbilden von leitenden Strukturen in Vertiefungen

Country Status (5)

Country Link
US (3) US9564359B2 (de)
KR (1) KR101617549B1 (de)
CN (1) CN105321873B (de)
DE (1) DE102014111780B4 (de)
TW (1) TWI548031B (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060900A (ja) * 2014-09-22 2016-04-25 株式会社クレハ 反応性金属及び分解性樹脂組成物を含有する坑井掘削用組成物、坑井掘削用成形品、及び坑井掘削方法
US20160336269A1 (en) * 2015-05-12 2016-11-17 United Microelectronics Corp. Semiconductor structure and process thereof
US9853123B2 (en) * 2015-10-28 2017-12-26 United Microelectronics Corp. Semiconductor structure and fabrication method thereof
US10431464B2 (en) * 2016-10-17 2019-10-01 International Business Machines Corporation Liner planarization-free process flow for fabricating metallic interconnect structures
KR20180087661A (ko) * 2017-01-25 2018-08-02 삼성전자주식회사 핵형성 구조물을 갖는 도전성 구조물을 포함하는 반도체 소자 및 그 형성 방법
US10157785B2 (en) 2017-05-01 2018-12-18 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
US10672653B2 (en) 2017-12-18 2020-06-02 International Business Machines Corporation Metallic interconnect structures with wrap around capping layers
JP7032148B2 (ja) * 2018-01-17 2022-03-08 新光電気工業株式会社 配線基板及びその製造方法と電子部品装置
US10546815B2 (en) * 2018-05-31 2020-01-28 International Business Machines Corporation Low resistance interconnect structure with partial seed enhancement liner
CN110875245B (zh) * 2018-09-04 2023-06-16 北京北方华创微电子装备有限公司 用于填充孔洞或沟槽的薄膜沉积方法
US11004735B2 (en) * 2018-09-14 2021-05-11 International Business Machines Corporation Conductive interconnect having a semi-liner and no top surface recess
KR20210117343A (ko) * 2019-02-13 2021-09-28 램 리써치 코포레이션 억제 제어를 사용한 텅스텐 피처 충진
KR20210144776A (ko) * 2019-03-28 2021-11-30 도쿄엘렉트론가부시키가이샤 반도체 장치의 제조 방법
US11476267B2 (en) * 2019-05-24 2022-10-18 Applied Materials, Inc. Liner for V-NAND word line stack
US11056347B2 (en) 2019-05-28 2021-07-06 Tokyo Electron Limited Method for dry etching compound materials
US10867808B1 (en) * 2019-07-09 2020-12-15 United Microelectronics Corp. Manufacturing method of connection structure
CN112530856A (zh) * 2019-09-18 2021-03-19 长鑫存储技术有限公司 半导体器件、半导体结构及互连结构的制造方法
US20240047267A1 (en) * 2022-08-05 2024-02-08 Applied Materials, Inc. Tungsten gap fill with hydrogen plasma treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030134510A1 (en) * 2002-01-14 2003-07-17 Hyo-Jong Lee Methods of forming metal layers in integrated circuit devices using selective deposition on edges of recesses and conductive contacts so formed
US7514354B2 (en) * 2005-12-30 2009-04-07 Samsung Electronics Co., Ltd Methods for forming damascene wiring structures having line and plug conductors formed from different materials
US20120181692A1 (en) * 2011-01-17 2012-07-19 Globalfoundries Inc. Hybrid contact structure with low aspect ratio contacts in a semiconductor device
WO2013095433A1 (en) * 2011-12-21 2013-06-27 Intel Corporation Electroless filled conductive structures

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260441A (ja) * 1993-03-03 1994-09-16 Nec Corp 半導体装置の製造方法
JP3415432B2 (ja) * 1998-03-31 2003-06-09 ティーディーケイ株式会社 薄膜磁気ヘッドおよびその製造方法
JP3562628B2 (ja) * 1999-06-24 2004-09-08 日本電気株式会社 拡散バリア膜、多層配線構造、およびそれらの製造方法
JP4371543B2 (ja) * 2000-06-29 2009-11-25 日本電気株式会社 リモートプラズマcvd装置及び膜形成方法
JP2002319551A (ja) * 2001-04-23 2002-10-31 Nec Corp 半導体装置およびその製造方法
US6755945B2 (en) * 2001-05-04 2004-06-29 Tokyo Electron Limited Ionized PVD with sequential deposition and etching
US20040222082A1 (en) * 2003-05-05 2004-11-11 Applied Materials, Inc. Oblique ion milling of via metallization
US7063518B2 (en) * 2003-07-11 2006-06-20 Tecumseh Products Company Bearing support and stator assembly for compressor
US7233073B2 (en) * 2003-07-31 2007-06-19 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US7754604B2 (en) * 2003-08-26 2010-07-13 Novellus Systems, Inc. Reducing silicon attack and improving resistivity of tungsten nitride film
KR100599434B1 (ko) 2003-10-20 2006-07-14 주식회사 하이닉스반도체 반도체 소자의 금속배선 형성방법
KR20050052105A (ko) 2003-11-29 2005-06-02 주식회사 하이닉스반도체 반도체소자의 제조방법
US7071095B2 (en) * 2004-05-20 2006-07-04 Taiwan Semiconductor Manufacturing Company Barrier metal re-distribution process for resistivity reduction
US7727888B2 (en) * 2005-08-31 2010-06-01 International Business Machines Corporation Interconnect structure and method for forming the same
US20070051622A1 (en) * 2005-09-02 2007-03-08 Applied Materials, Inc. Simultaneous ion milling and sputter deposition
US7807536B2 (en) 2006-02-10 2010-10-05 Fairchild Semiconductor Corporation Low resistance gate for power MOSFET applications and method of manufacture
US7528066B2 (en) * 2006-03-01 2009-05-05 International Business Machines Corporation Structure and method for metal integration
KR100753416B1 (ko) 2006-03-24 2007-08-30 주식회사 하이닉스반도체 반도체 소자의 제조방법
US20070243708A1 (en) * 2006-04-12 2007-10-18 Jens Hahn Manufacturing method for an integrated semiconductor contact structure having an improved aluminum fill
JP5161503B2 (ja) * 2007-07-09 2013-03-13 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US20090026618A1 (en) * 2007-07-25 2009-01-29 Samsung Electronics Co., Ltd. Semiconductor device including interlayer interconnecting structures and methods of forming the same
US20090111263A1 (en) * 2007-10-26 2009-04-30 Kuan-Neng Chen Method of Forming Programmable Via Devices
US10256142B2 (en) 2009-08-04 2019-04-09 Novellus Systems, Inc. Tungsten feature fill with nucleation inhibition
US20110266676A1 (en) * 2010-05-03 2011-11-03 Toshiba America Electronic Components, Inc. Method for forming interconnection line and semiconductor structure
US8633109B2 (en) 2010-08-04 2014-01-21 Taiwan Semiconductor Manufacturing Company, Ltd. Soft error rate (SER) reduction in advanced silicon processes
KR101333914B1 (ko) 2011-02-22 2013-11-27 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 진보된 실리콘 프로세스로 감소된 소프트 에러 레이트(ser)를 갖는 반도체 디바이스를 제조하는 방법 및 그러한 반도체 디바이스
US8697505B2 (en) * 2011-09-15 2014-04-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a semiconductor structure
DE102012202846A1 (de) * 2012-02-24 2013-08-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Integrierte sensorstruktur
US9624576B2 (en) * 2013-12-17 2017-04-18 Taiwan Semiconductor Manufacturing Company Limited Systems and methods for gap filling improvement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030134510A1 (en) * 2002-01-14 2003-07-17 Hyo-Jong Lee Methods of forming metal layers in integrated circuit devices using selective deposition on edges of recesses and conductive contacts so formed
US7514354B2 (en) * 2005-12-30 2009-04-07 Samsung Electronics Co., Ltd Methods for forming damascene wiring structures having line and plug conductors formed from different materials
US20120181692A1 (en) * 2011-01-17 2012-07-19 Globalfoundries Inc. Hybrid contact structure with low aspect ratio contacts in a semiconductor device
WO2013095433A1 (en) * 2011-12-21 2013-06-27 Intel Corporation Electroless filled conductive structures

Also Published As

Publication number Publication date
US10373907B2 (en) 2019-08-06
US20170133318A1 (en) 2017-05-11
CN105321873B (zh) 2018-11-30
TWI548031B (zh) 2016-09-01
US9917051B2 (en) 2018-03-13
KR20160010268A (ko) 2016-01-27
KR101617549B1 (ko) 2016-05-02
CN105321873A (zh) 2016-02-10
US20160020142A1 (en) 2016-01-21
US20180174963A1 (en) 2018-06-21
DE102014111780A1 (de) 2016-01-21
US9564359B2 (en) 2017-02-07
TW201604992A (zh) 2016-02-01

Similar Documents

Publication Publication Date Title
DE102014111780B4 (de) Verfahren zum Ausbilden von leitenden Strukturen in Vertiefungen
DE102016100766B4 (de) Strukturierung von durchkontaktierungen durch mehrfachfotolithografie und mehrfachätzung
DE102014117338B4 (de) Verfahren zum ausbilden einer verbindungsstruktur für eine halbleitervorrichtung
DE102012111574B4 (de) Verfahren zum Ausbilden einer leitfähigen Dual-Damaszener-Kontaktstruktur undHerstellungsverfahren für eine Halbleitervorrichtung
DE102009023377B4 (de) Verfahren zur Herstellung eines Mikrostrukturbauelements mit einer Metallisierungsstruktur mit selbstjustiertem Luftspalt
DE102015107271B4 (de) Zwei- oder mehrteilige Ätzstoppschicht in integrierten Schaltungen
DE102014115934B4 (de) Zwei-Schritt-Ausbildung von Metallisierungen
DE102008059650B4 (de) Verfahren zur Herstellung einer Mikrostruktur mit einer Metallisierungsstruktur mit selbstjustierten Luftspalten zwischen dichtliegenden Metallleitungen
DE102005052000B3 (de) Halbleiterbauelement mit einer Kontaktstruktur auf der Grundlage von Kupfer und Wolfram
DE112006000465B4 (de) Halbleiterbauelemente mit Barriereschichten für leitende Strukturmerkmale sowie zugehörige Herstellungsverfahren
DE102007020268B3 (de) Halbleiterbauelement und Verfahren zum Verhindern der Ausbildung von elektrischen Kurzschlüssen aufgrund von Hohlräumen in der Kontaktzwischenschicht
DE102014201446A1 (de) Integrierte Schaltungen und Verfahren zum Herstellen integrierter Schaltungen mit Deckschichten zwischen Metallkontakten und Zwischenverbindungen
DE102009006798B4 (de) Verfahren zur Herstellung eines Metallisierungssystems eines Halbleiterbauelements unter Anwendung einer Hartmaske zum Definieren der Größe der Kontaktdurchführung
DE112019003120B4 (de) Dünnfilmwiderstand in einer integrierten schaltung und herstellungsverfahren dafür
DE102017208466B4 (de) Verfahren zum Bilden einer niederohmschen Edelmetallzwischenverbindung
DE102005052001B4 (de) Halbleiterbauelement mit einem Kontaktpfropfen auf Kupferbasis und ein Verfahren zur Herstellung desselben
DE102016100323B4 (de) Verringern der Dual-Damascene-Verwerfung in integrierten Schaltkreisstrukturen
DE112004001530T5 (de) Versiegelte Poren in Damascene-Strukturen mit Low-k-Material
DE102006056626A1 (de) Verfahren zum selektiven Herstellen einer leitenden Barrierenschicht durch ALD
DE102010040071B4 (de) Verfahren zur Wiederherstellung von Oberflächeneigenschaften empfindlicher Dielektrika mit kleinem ε in Mikrostrukturbauelementen unter Anwendung einer in-situ-Oberflächenmodifizierung
DE102014118991A1 (de) Verbindungsstruktur für Halbleitervorrichtungen
DE102020119184A1 (de) Diffusionssperre für halbleitervorrichtung und verfahren
DE112018004421T5 (de) Damaszener-dünnschichtwiderstand (tfr) in polymetall-dielektrikum und verfahren zur herstellung
DE102010063294B4 (de) Verfahren zur Herstellung von Metallisierungssystemen von Halbleiterbauelementen, die eine Kupfer/Silizium-Verbindung als ein Barrierenmaterial aufweisen
DE10260619B4 (de) Verfahren zur Herstellung einer Deckschicht mit antireflektierenden Eigenschaften auf einem Dielektrikum mit kleinem ε

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final