DE102008056776A1 - Galvanisches Bad und Verfahren zur Abscheidung von zinkhaltigen Schichten - Google Patents

Galvanisches Bad und Verfahren zur Abscheidung von zinkhaltigen Schichten Download PDF

Info

Publication number
DE102008056776A1
DE102008056776A1 DE102008056776A DE102008056776A DE102008056776A1 DE 102008056776 A1 DE102008056776 A1 DE 102008056776A1 DE 102008056776 A DE102008056776 A DE 102008056776A DE 102008056776 A DE102008056776 A DE 102008056776A DE 102008056776 A1 DE102008056776 A1 DE 102008056776A1
Authority
DE
Germany
Prior art keywords
zinc
anolyte
deposition
galvanic bath
cell space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102008056776A
Other languages
English (en)
Inventor
Axel Dr. Fuhrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MacDermid Enthone Inc
Original Assignee
Enthone Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enthone Inc filed Critical Enthone Inc
Priority to DE102008056776A priority Critical patent/DE102008056776A1/de
Priority to EP09014111A priority patent/EP2184384B1/de
Priority to PL09014111T priority patent/PL2184384T3/pl
Priority to US12/617,202 priority patent/US8282806B2/en
Publication of DE102008056776A1 publication Critical patent/DE102008056776A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/22Regeneration of process solutions by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc

Abstract

Die vorliegende Erfindung betrifft ein galvanisches Bad sowie ein Verfahren zur galvanischen Abscheidung einer zinkhaltigen Schicht auf einer Substratoberfläche. Erfindungsgemäß ist es vorgesehen, dass das galvanische Bad in wenigstens zwei Zellräume unterteilt ist, wobei die Unterteilung mittels einer Kationenaustauschmembran erfolgt und ein Zellraum einen sauren Abscheide-Elektrolyten aufnimmt und der weitere Zellraum einen neutralen oder sauren Anolyten aufnimmt. Der saure Anolyt wird hierbei aus dem ihn aufnehmenden Zellraum zumindest teilweise abgeführt und mittels einer Kationenaustauschereinrichtung um in ihm enthaltende Fremdmetallionen abgereichert.

Description

  • Die vorliegende Erfindung betrifft ein galvanisches Bad sowie ein Verfahren zur Abscheidung von zinkhaltigen Schichten auf Substratoberflächen. Insbesondere betrifft die vorliegende Erfindung ein galvanisches Bad sowie ein Verfahren zur Abscheidung von zinkhaltigen Schichten aus einem sauren Abscheide-Elektrolyten.
  • Die Abscheidung von zinkhaltigen Schichten auf Substratoberflächen findet weitverbreitete Anwendung in vielen Bereichen der Technik. Zinkhaltige Schichten zeichnen sich insbesondere durch ihre hohe Korrosionsbeständigkeit aus. Aufgrund des Aussehens der erhaltenen Zinkbeschichtungen werden Zinkschichten oder zinkhaltige Schichten weniger im Bereich der dekorativen Beschichtungen, als vielmehr im Bereich der funktionalen Beschichtungen eingesetzt. So ist es beispielsweise üblich, Kleinteile wie beispielsweise Schrauben, Muttern, Unterlegscheiben, vorgefertigte Konstruktionselemente wie Winkelbleche oder Verbindungsbleche und dergleichen in großer Stückzahl zu beschichten. Vielfach werden die Kleinteile dazu in sogenannten Trommelkörben in entsprechende Abscheidebäder getaucht und es wird zwischen dem Abscheidekorb und einer Anode ein Abscheidestrom angelegt.
  • Oft wird neben Zink ein weiteres Metall abgeschieden, wodurch die erhaltenen Eigenschaften der abgeschiedenen zinkhaltigen Schicht beeinflusst werden können. Insbesondere können das Aussehen, die Korrosionsbeständigkeit, sowie die mechanischen Eigenschaften der abgeschiedenen Schichten durch entsprechende Legierungsabscheidungen beeinflusst werden. So ist es beispielsweise aus der DE 103 06 823 A1 bekannt, Zink-Mangan-Legierungen abzuscheiden. In der DE 101 46 559 wird die galvanische Abscheidung von Zink-Nickel-Legierungen beschrieben.
  • Aus der DE 195 38 419 A1 ist es bekannt, Eisen, Cobalt und Nickel als Legierungsmetalle neben Zink mitabzuscheiden.
  • Ein Problem bei der galvanischen Abscheidung von zinkhaltigen Schichten auf Substratoberflächen aus sauren zinkhaltigen Elektrolyten ist, dass es bei der Verwendung von sich auflösenden Zink-Anoden zur Ausbildung von Ablagerungen auf der Anodenoberfläche kommt, welche diese passivieren und den Produktionszyklus nachteilig beeinflussen. Durch diese Ablagerungen kann auch die Effektivität der galvanischen Abscheidung herabgesetzt werden.
  • Diese, auch als Zementation bekannten Effekte zu vermeiden ist eine der Aufgaben der vorliegenden Erfindung. Darüber hinaus ist es die Aufgabe der vorliegenden Erfindung, allgemein die aus dem Stand der Technik bekannten Verfahren zur Abscheidung von zinkhaltigen Schichten auf Substratoberflächen zu verbessern.
  • Gelöst wird diese Aufgabe durch ein galvanisches Bad zur Abscheidung einer zinkhaltigen Schicht auf einer Substratoberfläche, aufweisend einen ersten Zellraum, welcher einen sauren Abscheide-Elektrolyten aufnimmt, sowie einen zweiten Zellraum, welcher einen neutralen oder sauren Anolyten aufnimmt, wobei der erste Zellraum von dem zweiten Zellraum durch eine für Kationen durchlässige Membran getrennt ist und wobei in dem den Anolyten aufnehmenden Zellraum eine sich auflösende Zink-Anode angeordnet ist, welches dadurch gekennzeichnet ist, dass der den Anolyten aufnehmende Zellraum in hydraulischer Verbindung mit einer Einrichtung steht, welche etwaige im Anolyten enthaltenden Fremdmetallionen gegen Zinkionen und/oder Protonen austauscht.
  • Hinsichtlich des Verfahrens wird die Aufgabe durch ein Verfahren zur galvanischen Abscheidung einer zinkhaltigen Schicht auf einer Substratoberfläche gelöst, wobei das zu beschichtende Substrat in einem galvanischen Bad mit einem sauren, zumindest Zinkionen enthaltenden Abscheide-Elektrolyten in Kontakt gebracht wird und zwischen dem Substrat und wenigstens einer Anode ein Strom angelegt wird, welcher geeignet ist, die Abscheidung einer zinkhaltigen Schicht auf der Substratoberfläche zu induzieren, wobei das galvanische Bad in wenigstens zwei Zellen unterteilt wird und die Zellen voneinander durch eine für Kationen durchlässige Membran getrennt werden, wobei eine Zelle den sauren Abscheide-Elektrolyten und die zweite Zelle einen neutralen oder sauren zinkionenhaltigen Anolyten aufnimmt und wobei in der den Anolyten aufnehmenden Zelle eine sich auflösende Zink-Anode angeordnet wird, welches dadurch gekennzeichnet ist, dass der saure Anolyt zumindest teilweise aus dem ihn aufnehmenden Zellraum abgeführt und über eine Einrichtung geleitet wird, in welcher etwaige Fremdmetallionen gegen Zinkionen und/oder Protonen ausgetauscht werden.
  • Überraschenderweise wurde festgestellt, dass die Unterteilung eines galvanischen Bades in einen den Abscheide-Elektrolyten aufnehmenden Raum und einen Anolytraum, welche voneinander durch eine Kationenaustauschmembran getrennt sind, geeignet ist, die aus dem Stand der Technik bekannten Probleme zu überwinden, sofern zumindest ein Teilstrom des Anolyten abgeleitet und über eine Einrichtung geleitet wird, in welcher etwaige Fremdmetallionen gegen Zinkionen und/oder Protonen ausgetauscht werden.
  • Erfindungsgemäß kann die Einrichtung, in welcher etwaige im Anolyten enthaltene Fremdmetallionen ausgetauscht werden beispielsweise ein Fällungsabteil oder ein Kationentauscher sein. Im Fall des Fällungsabteils wird beispielsweise der pH-Wert des Anolyten auf einen Wert angehoben werden, bei welchem die etwaig im Anolyten enthaltenen Fremdmetallionen als Hydroxide ausfallen. Der dabei entstandene Niederschlag kann mittels Sedimentation, Filtration, Zentrifugation oder dergleichen abgetrennt werden und der so um etwaige Fremdmetallionen abgereicherte Anolyt wieder in den die Anode aufnehmenden Zellraum zurückgeführt werden. Vor einer Rückführung wird der pH-Wert durch Zugabe einer Säure wieder auf einen entsprechenden sauren pH-Wert eingestellt. Hierdurch werden letztendlich Fremdmetallionen gegen Protonen ausgetauscht.
  • In einer bevorzugten Ausgestaltung der Erfindung ist die Einrichtung, in welcher etwaige im Anolyten enthaltene Fremdmetallionen gegen andere Kationen ausgetauscht werden ein Kationentauscher, welcher beispielsweise ein geeignetes Kationentauscherharz aufweist. Hierbei können die Fremdmetallionen vorteilhafterweise ohne Eintrag von Anionen in den Anolyten gegen andere Kationen ausgetauscht werden. Bevorzugt können die Fremdmetallionen hierbei gegen Protonen oder Zinkionen ausgetauscht werden.
  • In dem erfindungsgemäßen galvanischen Bad dient die für Kationen durchlässige Membran dazu, einen Großteil der im Abscheide-Elektrolyten enthaltenden Fremdmetallionen, wie beispielsweise auch mitabzuscheidenden Ionen der Gruppe bestehend aus Nickel, Cobalt, Mangan oder Eisen, zurückzuhalten, obwohl die Membran im Wesentlichen für diese Ionen ebenfalls durchlässig ist. Ohne an diese Theorie gebunden zu sein geht die Anmelderin davon aus, dass sich das an der Membran einstellende Spannungsgefälle von ca. 1 Volt eine für die im Abscheide-Elektrolyten enthaltenden Fremdmetallionen nur schwer zu überwindende Barriere darstellt. Die dennoch in den Anolyten einwandernden Fremdmetallionen werden über die erfindungsgemäß vorzusehende Einrichtung zum Austausch der Fremdmetallionen abgefangen und bevorzugt gegen Zinkionen und/oder Protonen ausgetauscht. Hierbei dient die Einrichtung nicht nur zum Abfangen von etwaig im Anolyten enthaltenden Fremdmetallionen, sondern auch zur Aufrechterhaltung eines bestimmten Zinkionenniveaus im Anolyten.
  • In einer Ausgestaltung des erfindungsgemäßen galvanischen Bades weist der Anolyt neben Zinkionen eine Säure und/oder Alkaliionen auf. Geeignete Säuren im Anolyten können beispielsweise Borsäure, Essigsäure, Zitronensäure, Weinsäure, Aminoessigsäure, Methansulfonsäure, Salzsäure, Schwefelsäure und dergleichen sein. Geeignete Quellen für Zinkionen im Anolyten können lösliche Zinkverbindungen wie beispielsweise Zinkchlorid, Zinksulfat oder auch organische Zinkverbindungen wie beispielsweise Zinkmethansulfonat sein. Geeignete Quellen für Alkaliionen können beispielsweise Alkalisalze wie Natriumfluorid, Natriumchlorid, Natriumbromid, Lithiumchlorid, Lithiumfluorid, Kaliumchlorid, Kaliumfluorid, Kaliumbromid und dergleichen sein.
  • Geeignete Membrane zur Trennung der Zellräume sind erfindungsgemäß Kationenaustauschmembranen die für 2-wertige Kationen durchlässig sind, wie beispielsweise perfluorierte Membrane. Des Weiteren sind auch mikroporöse Membranen wie beispielsweise Dialysemembranen zum Einsatz in dem erfindungsgemäßen galvanischen Bad geeignet.
  • In der Ausgestaltung der Erfindung, in welcher neben Zink weitere Metalle wie beispielsweise Nickel, Cobalt, Mangan oder Eisen abgeschieden werden, ist in dem den sauren Abscheide-Elektrolyten aufnehmenden Zellraum eine weitere Anode vorzusehen, welche vorzugsweise aus dem mitabzuscheidenden Metall besteht.
  • In einer besonderen Ausgestaltung der Erfindung können sowohl diese zweite Anode, als auch die in dem den Anolyten aufnehmenden Zellraum angeordnete Zink-Anode über einen einzigen Gleichrichter mit dem Substrat elektrisch verbunden sein. Die Einstellung des Abscheideverhältnisses zwischen Zink und dem weiteren abzuscheidenden Metall erfolgt erfindungsgemäß durch Variation der Anolytzusammensetzung. Insbesondere ist hierbei die Variation der Alkalimetallkonzentration maßgeblich, da diese einen wesentlichen Einfluss auf die Leitfähigkeit des Anolyten und somit auf dessen elektrischen Widerstand besitzt. Hierdurch kann in vorteilhafter Weise auf weitere Gleichrichter verzichtet werden, was hinsichtlich der konstruktiven Ausgestaltung zu einer deutlichen Kostenreduktion führt.
  • In einer weiteren Ausgestaltung der Erfindung können im galvanischen Bad mehrere getrennte Zellräume zur Aufnahme des Anolyten vorgesehen sein, welche jeweils mit einer Zink-Anode bestückt sind. Die einzelnen Anolyträume sind miteinander hydraulisch verbunden, so dass ein Austausch des Anolyten zwischen den einzelnen Anolyträumen möglich ist. In einer Weiterentwicklung dieser Ausgestaltung wird dabei der Anolyt in einem ersten Anolytraum abgezogen, der Einrichtung zum Austausch etwaiger im Anolyten enthaltenen Fremdmetallionen zugeführt und von dieser zu dem von dem ersten Anolytraum entferntesten Anolytraum zurückgeführt. Hierdurch ist vorteilhafterweise nur eine einzige Einrichtung zum Austausch der Fremdmetallionen vorzusehen.
  • In der erfindungsgemäß vorzusehenden Einrichtung zum Austausch etwaiger Fremdmetallionen kann zum Austausch der Fremdmetallionen gegen Zinkionen und/oder Protonen ein Ionenaustauscherharz vorgesehen sein. Geeignete Kationenaustauscher sind bspw. schwachsaure, makroporöse Harze mit chelatbildenden Iminodiessigsäure-Gruppen, die selektiv Schwermetall-Kationen binden. Bei der Auswahl des Ionenaustauscherharzes ist darauf zu achten, dass dieses eine hinreichende Selektivität zum Austausch von zweiwertigen Kationen besitzt und gegenüber einwertigen Kationen im Wesentlichen neutral ist. Die Kationenaustauscherharze werden üblicherweise konditioniert und mittels einer zinkionenhaltigen Lösung, wie beispielweise einer Zinkchloridlösung, mit Zinkionen beladen. Beim Durchströmen des Anolyten durch die Kationenaustauschereinrichtung werden dann die eventuell im Anolyten enthaltenden Fremdmetallionen von dem Kationenaustauscherharz aufgenommen und gegen Zinkionen ausgetauscht. Hierdurch wird einerseits die Kontaminierung des Anolyten mit Fremdmetallionen nachhaltig vermieden, zum anderen fungiert die Kationenaustauschereinrichtung als eine Art Zinkionenpuffer, wodurch das Zinkionenniveau im Anolyten auf einem gewünschten Niveau gehalten werden kann.
  • In einer weiteren Ausgestaltung der Erfindung kann es vorgesehen sein, den Austausch der etwaig im Anolyten enthaltenen Fremdmetallionen gegen Zinkionen und/oder Protonen bereits in dem den Anolyten aufnehmenden Zellraum durchzuführen. Hierzu kann es beispielsweise vorgesehen sein, einen mit einem entsprechenden Ionenaustauscherharz gefüllten flüssigkeitsdurchlässigen Beutel oder Hohlkörper in dem Anolyten aufnehmenden Zellraum vorzusehen. Hierdurch kann vorteilhafterweise auf Einrichtungen wie Pumpen oder dergleichen zur Förderung des Anolyten verzichtet werden.
  • 1 zeigt die schematische Darstellung eines erfindungsgemäßen galvanischen Bades,
  • 2 zeigt die schematische Darstellung eines erfindungsgemäßen galvanischen Bades in einer weiteren Ausgestaltung zur Abscheidung von Zink-Mangan-Schichten.
  • 1 zeigt eine Ausgestaltung eines erfindungsgemäßen galvanischen Bades 1, in welchem ein zu beschichtendes Substrat 2 angeordnet ist, wobei das galvanische Bad 1 mittels einer Kationenaustauschmembran 3 in einen Zellraum 5 und einen Zellraum 6 aufgeteilt ist, wobei der Zellraum 5 einen neutralen oder sauren Anolyten und der Zellraum 6 den Abscheide-Elektrolyten aufnimmt. In dem Zellraum 5 ist eine sich auflösende Zink-Anode 4 angeordnet. Im Falle der Mitabscheidung weiterer Metalle wie Nickel, Cobalt, Mangan oder Eisen ist im Zellraum 6 eine zweite Anode 7 vorgesehen, welche aus dem mitabzuscheidenden Metall besteht und vorzugsweise ebenfalls auflösend ausgestaltet ist. Die Anode 4, und im Fall der Mitabscheidung weiterer Metalle auch die Anode 7, sind über Gleichrichter 8 mit dem Substrat 2 elektrisch kontaktiert. Durch Anlegen eines geeigneten Abscheidestromes werden nun Metallionen aus dem Abscheide-Elektrolyten auf dem Substrat 2 abgeschieden. In dem Maße, in dem Zinkionen abgeschieden wurden, lösen sich Zinkionen von der Zinkelektrode 4 und diffundieren aus dem Zellraum 5 durch die Kationenaustauschmembran 3 in den Zellraum 6. Hierdurch wird in dem Zellraum 6 ein gleichbleibendes Zinkniveau erhalten. An der Kationenaustauschmembran 3 entsteht durch die angelegte Abscheidespannung ein Potentialgefälle von ca. 1 Volt, wodurch weitere im Abscheide-Elektrolyten enthaltene Fremdmetallionen, wie beispielsweise Nickel, Cobalt, Mangan oder Eisenionen, im Wesentlichen an einem Durchtritt durch die Kationenaustauschmembran 3 in den Zellraum 5 gehindert werden. Da ein Durchtritt dieser Fremdmetallionen durch die Kationenaustauschmembran 3 jedoch nicht ganz vermieden werden kann und insbesondere bei Abschaltung der Abscheidespannung auch kein Potentialgefälle mehr an der Kationenaustauschmembran 3 anliegt, welches einen Durchtritt der Fremdmetallionen erschwert, sind gewisse Fremdmetallkonzentrationen im Zellraum 5 zu erwarten. Um die durch diese Fremdmetallionen hervorgerufenen Zementationseffekte an der Anode 4 zu vermeiden, wird der im Zellraum 5 enthaltende Anolyt mittels geeigneter Fördereinrichtungen wie beispielsweise einer Pumpe 11 aus dem Zellraum 5 zumindest teilweise abgezogen und über eine Kationenaustauschereinrichtung 9 geleitet, bevor er in den Zellraum 5 zurückgeführt wird. Die Kationenaustauschereinrichtung 9 ist mit einem Kationenaustauscherharz 10 gefüllt, welches in einem vorgelagerten Konditionierungsschritt mit Zinkionen beladen wurde. Die in dem Anolyten enthaltenden Fremdionen werden nun in der Kationenaustauschereinrichtung 9 am Kationenaustauscherharz 10 resorbiert und gegen Zinkionen ausgetauscht.
  • 2 zeigt eine Ausgestaltung des erfindungsgemäßen galvanischen Bades 1, bei welcher neben dem Zellraum 6 ein zweiter Zellraum 12 durch eine Kationenaustauschmembran 13 vom Zellraum 5 abgetrennt ist. Zellraum 12 nimmt hierbei einen weiteren Anolyten, wie beispielsweise einen Mangan-haltigen Anolyten sowie eine Fremdmetallanode 7 auf, welche beispielsweise aus in einem Titankorb aufgenommenen Elektrolytmangan gebildet sein kann. Der Anolyt in Zellraum 12 weist eine Manganionenquelle wie beispielsweise Mangan(II)-sulfat auf und ist mittels geeigneter Säuren, wie z. B. Schwefelsäure, auf einen pH-Wert < 2 eingestellt. Durch Anlegen einer Spannung zwischen den Anoden 4 und 7 und dem Substrat 2 werden unter Stromfluss Manganionen durch die Kationenaustauschmembran 13 an den Abscheide-Elektrolyten abgegeben.
  • Die Erfindung wird nachfolgend an Ausführungsbeispielen erläutert, ohne dass die Erfindung jedoch auf diese Ausführungsbeispiele beschränkt ist.
  • Beispiel 1: Abscheidung einer Zinknickelschicht
  • In einem erfindungsgemäßen galvanischen Bad, wie es in 1 wiedergegeben ist, wird in dem Zellraum 6 ein Abscheide-Elektrolyt vorgelegt, welcher 40–100 g/l Zinkchlorid, 60–130 g/l Nickelchlorid-Hexahydrat, 140–220 g/l Kaliumchlorid, 10–30 g/l Borsäure, 25 g/l Natriumacetat-Trihydrat, 30 g/l Aminoessigsäure, 2–12 g/l Natriumsaccharin, 0,025–0,20 g/l Benzalaceton, 0,006–0,01 g/l Orthochlorbenzaldehyd, 0,8–1,2 g/l Oktanolethoxylat und 2,5–3,2 g/l Kaliumsalz des sulfopropylierten polyalkoxylierten Naphtols enthält. Der pH-Wert der hier beschriebenen Elektrolytzusammensetzung liegt zwischen 5 und 6.
  • In dem Zellraum 5 ist ein Anolyt, welcher 120 g/l Zinkchlorid, 215 g/l Kaliumchlorid und 20 g/l Borsäure aufweist, eingefüllt. Die Konzentration der im Anolyten enthaltenden Komponenten kann dabei in einem Bereich zwischen 80 g/l und 500 g/l für Zinkchlorid, 150 g/l bis 300 g/l für Kaliumchlorid und 15 g/l bis 25 g/l für Borsäure variiert werden, wodurch das Abscheideverhältnis zwischen Zink und Nickel auf der Substratoberfläche beeinflusst werden kann.
  • In dem Zellraum 5 ist eine sich auflösende Zink-Anode angeordnet, wohingegen im Zellraum 6 eine sich auflösende Nickelanode angeordnet ist. Als zu beschichtendes Substrat sind Schrauben in einer Galvanisiertrommel eingefüllt, wobei die kathodische Kontaktierung über zentral angeordnete Kontaktbolzen erfolgt. Bei einer Temperatur des Abscheide-Elektrolyten von 25°C bis 50°C und einem pH von pH 5 bis pH 6 für den Abscheide-Elektrolyten wird bei einer kathodischen Stromdichte von 0,1 bis 1,5 A/dm2 eine Zinknickelschicht mit einer Abscheidegeschwindigkeit bis ca. 0,4 μm pro Minute auf den als Substrat dienenden Schrauben abgeschieden.
  • Beispiel 2: Abscheidung einer Zinknickelschicht
  • In einem erfindungsgemäßen galvanischen Bad, wie es in 1 wiedergegeben ist, wird in dem Zellraum 6 ein Abscheide-Elektrolyt vorgelegt, welcher 40–100 g/l Zinkchlorid, 60–130 g/l Nickelchlorid-Hexahydrat, 140–220 g/l Kaliumchlorid, 10–30 g/l Borsäure, 25 g/l Natriumacetat-Trihydrat, 30 g/l Aminoessigsäure, 2 – 12 g/l Natriumsaccharin, 0,025–0,20 g/l Benzalaceton, 0,006–0,01 g/l Orthochlorbenzaldehyd, 0,8–1,2 g/l Oktanolethoxylat und 2,5–3,2 g/l Kaliumsalz des sulfopropylierten polyalkoxylierten Naphtols enthält. Der pH-Wert der hier beschriebenen Elektrolytzusammensetzung liegt zwischen 5 und 6.
  • In dem Zellraum 5 ist ein Anolyt, welcher 120 g/l Zinkchlorid, 215 g/l Kaliumchlorid und 20 g/l Borsäure aufweist, eingefüllt. Die Konzentration der im Anolyten enthaltenden Komponenten kann dabei in einem Bereich zwischen 80 g/l und 500 g/l für Zinkchlorid, 150 g/l bis 300 g/l für Kaliumchlorid und 15 g/l bis 25 g/l für Borsäure variiert werden, wodurch das Abscheideverhältnis zwischen Zink und Nickel auf der Substratoberfläche beeinflusst werden kann.
  • In dem Zellraum 5 sind sich auflösende Zink-Pellets in einem Anodenkorb aus Titan angeordnet, wohingegen im Zellraum 6 eine sich auflösende Nickelanode angeordnet ist. Als zu beschichtendes Substrat sind Gussteile auf weitgehend isolierte Gestelle aufgesteckt, wobei die kathodische Kontaktierung über die metallischen Spitzen des Gestelles erfolgt. Bei einer Temperatur des Abscheide-Elektrolyten von 25°C bis 50°C und einem pH von pH 5 bis pH 6 für den Abscheide-Elektrolyten wird bei einer kathodischen Stromdichte von 0,1 bis 4 A/dm2 eine Zinknickelschicht mit einer Abscheidegeschwindigkeit bis zu 1 μm pro Minute auf den als Substrat dienenden Gussteilen abgeschieden.
  • Beispiel 3: Abscheidung einer Zink-Cobaltschicht
  • In einem erfindungsgemäßen galvanischen Bad, wie es in 1 wiedergegeben ist, wird in dem Zellraum 6 ein Abscheide-Elektrolyt vorgelegt, welcher 60–70 g/l Zinkchlorid, 100–130 g/l Cobaltchlorid-Hexahydrat, 190–220 g/l Kaliumchlorid, 15–20 g/l Borsäure, 25 g/l Natriumacetat-Trihydrat, 30 g/l Aminoessigsäure, 2–12 g/l Natriumsaccharin, 0,025–0,20 g/l Benzalaceton, 0,006–0,01 g/l Orthochlorbenzaldehyd und 2,5–3,2 g/l Kaliumsalz des sulfopropylierten polyalkoxylierten Naphtols enthält. Der pH-Wert der hier beschriebenen Elektrolytzusammensetzung liegt zwischen 5 und 6.
  • In dem Zellraum 5 ist ein Anolyt, welcher aus 250 g/l Zinkchlorid besteht, enthalten. Die Konzentration des im Anolyten enthaltenden Zinkchlorides kann dabei in einem Bereich zwischen 80 g/l bis 500 g/l Zinkchlorid variieren. In dem Zellraum 5 sind sich auflösende Zink-Pellets in einem Anodenkorb aus Titan angeordnet, wohingegen im Zellraum 6 eine sich auflösende Cobaltanode angeordnet ist. Als zu beschichtendes Substrat sind Schrauben in eine Galvanisiertrommel eingefüllt, wobei die kathodische Kontaktierung über Kontaktbolzen erfolgt. Bei einer Temperatur des Abscheide-Elektrolyten von 25°C bis 50°C und einem pH von pH 5,3 bis pH 5,6 für den Abscheide-Elektrolyten wird bei einer kathodischen Stromdichte von 0,2 bis 4 A/dm2 eine Zink-Cobalt-Schicht mit einer Abscheidegeschwindigkeit bis ca. 1 μm pro Minute auf den als Substrat dienenden Schrauben abgeschieden.
  • Beispiel 4: Abscheidung einer Glanzzinkschicht
  • In einem erfindungsgemäßen galvanischen Bad, wie es in 1 wiedergegeben ist, wird in dem Zellraum 6 ein Abscheide-Elektrolyt vorgelegt, welcher 40–90 g/l Zinkchlorid, 180–230 g/l Kaliumchlorid, 20–30 g/l Borsäure, 0,025–0,20 g/l Benzalaceton, 0,8–1,2 g/l Oktanolethoxylat und 2,5–3,2 g/l Kaliumsalz des sulfopropylierten polyalkoxylierten Naphtols enthält. Der pH-Wert der hier beschriebenen Elektrolytzusammensetzung liegt zwischen 5 und 6.
  • In dem Zellraum 5 ist ein Anolyt, welcher aus 250 g/l Zinkchlorid und 220 g/l Kaliumchlorid besteht, enthalten. Die Konzentration des im Anolyten enthaltenden Zinkchlorides kann dabei in einem Bereich zwischen 80 g/l bis 500 g/l Zinkchlorid variieren. Kaliumchlorid kann in einer Konzentration von 10 bis 300 g/l eingesetzt werden. In dem Zellraum 5 sind sich auflösende Zink-Pellets in einem Anodenkorb aus Titan angeordnet. Als zu beschichtendes Substrat sind Schrauben in eine Galvanisiertrommel eingefüllt, wobei die kathodische Kontaktierung über Kontaktbolzen erfolgt. Bei einer Temperatur des Abscheide-Elektrolyten von 25°C bis 50°C und einem pH von pH 5,3 bis pH 5,6 für den Abscheide-Elektrolyten wird bei einer kathodischen Stromdichte von 0,1 bis 2 A/dm2 eine Zinkschicht mit einer Abscheidegeschwindigkeit bis ca. 0,5 μm pro Minute auf den als Substrat dienenden Schrauben abgeschieden.
  • Beispiel 5: Abscheidung einer Zink-Mangan-Schicht
  • In einem erfindungsgemäßen galvanischen Bad, wie es in 2 wiedergegeben ist, wird in dem Zellraum 6 ein Abscheide-Elektrolyt vorgelegt, welcher 40–62 g/l zweiwertiges Zink, 80–110 g/l zweiwertiges Mangan, 190–220 g/l eines Leitsalzes, 30–100 g/l eines Puffers, 10–15 g/l eines Netzmittels, 0,1–0,6 g/l eines Entschäumers, 0–10 g/l eines Antioxidationsmittels und 0–1 g/l eines Glanzmittels enthält.
  • In dem Zellraum 5 ist ein Anolyt, welcher aus 250 g/l Zinkchlorid und 220 g/l Kaliumchlorid besteht, enthalten. Die Konzentration des im Anolyten enthaltenden Zinkchlorides kann dabei in einem Bereich zwischen 80 g/l bis 500 g/l Zinkchlorid variieren. Kaliumchlorid kann in einer Konzentration von 10 bis 300 g/l eingesetzt werden. In dem Zellraum 5 ist eine sich auflösende Zinkplatte angeordnet.
  • In dem dritten Zellraum 12, welcher keine Verbindung zu der Kationenaustauschereinrichtung 12 aufweist und welcher vom Zellraum 6 durch eine Kationenaustauschmembran 13 abgetrennt ist, ist ein Anolyt, welcher 150 g/l Mangan(II)-sulfat und 30 g/l Schwefelsäure aufweist, enthalten. Die Konzentration des in diesem Anolyten enthaltenden Mangan(II)-sulfates kann dabei in einem Bereich zwischen 50 g/l bis 250 g/l Mangan(II)-sulfat variieren. Die anfangs verwendete Schwefelsäuremenge von 30 g/l wird während des Betriebes so ergänzt, dass der pH-Wert unter pH 2 bleibt. Als elektrische Zuführung wird gebrochenes Elektrolytmangan in einem Titananodenkorb verwendet.
  • Als zu beschichtendes Substrat sind Schrauben in eine Galvanisiertrommel eingefüllt, wobei die kathodische Kontaktierung über Kontaktbolzen erfolgt. Bei einer Temperatur des Abscheide-Elektrolyten von 25°C bis 50°C und einem pH von pH 5 bis pH 6 für den Abscheide-Elektrolyten wird bei einer kathodischen Stromdichte von 0,2 bis 2 A/dm2 eine Zinkschicht mit einer Abscheidegeschwindigkeit bis ca. 0,5 μm pro Minute auf den als Substrat dienenden Schrauben abgeschieden.
  • 1
    galvanisches Bad
    2
    Substrat
    3
    Kationenaustauschmembran
    4
    Zink-Anode
    5
    Zellraum für Anolyt
    6
    Zellraum für Abscheide-Elektrolyt
    7
    Fremdmetallanode
    8
    Gleichrichter
    9
    Kationenaustauschereinrichtung
    10
    Kationenaustauscherharz
    11
    Pumpe
    12
    weiterer Zellraum
    13
    weitere Kationenaustauschmembran
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - DE 10306823 A1 [0003]
    • - DE 10146559 [0003]
    • - DE 19538419 A1 [0004]

Claims (13)

  1. Galvanisches Bad zur Abscheidung einer zinkhaltigen Schicht auf einer Substratoberfläche, aufweisend einen ersten Zellraum, welcher einen sauren Abscheide-Elektrolyten aufnimmt, sowie einen zweiten Zellraum, welcher einen neutralen oder sauren zinkionenhaltigen Anolyten aufnimmt, wobei der erste Zellraum von dem zweiten Zellraum durch eine für Kationen durchlässige Membran getrennt ist und in dem den Anolyten aufnehmenden Zellraum eine sich auflösende Zink-Anode angeordnet ist, dadurch gekennzeichnet, dass der den Anolyten aufnehmende Zellraum in hydraulischer Verbindung mit einer Einrichtung steht, welche etwaige, im Anolyten enthaltende Fremdmetallionen gegen Zinkionen und/oder Protonen austauscht.
  2. Galvanisches Bad gemäß Anspruch 1, wobei der Anolyt neben Zinkionen, eine Säure und/oder Alkaliionen enthält.
  3. Galvanisches Bad gemäß Anspruch 2, wobei der Anolyt zwischen 80 und 500 g/l Zinkchlorid aufweist.
  4. Galvanisches Bad gemäß Anspruch 2, wobei der Anolyt zwischen 150 g/l bis 300 g/l eines Alkalihalogenids aufweist.
  5. Galvanisches Bad gemäß einem der Ansprüche 2 bis 3, wobei der Anolyt zwischen 10 g/l und 30 g/l einer Säure aufweist.
  6. Galvanisches Bad gemäß einem der vorhergehenden Ansprüche, wobei der Abscheide-Elektrolyt neben Zinkionen wenigstens ein Metall der Gruppe bestehend aus Nickel, Cobalt, Mangan und Eisen aufweist.
  7. Galvanisches Bad gemäß einem der vorhergehenden Ansprüche, wobei die für Kationen durchlässige Membran eine Kationenaustauschmembran oder eine mikroporöse Membran ist.
  8. Galvanisches Bad gemäß einem der vorhergehenden Ansprüche, wobei die Einrichtung zum Austausch etwaiger im Anolyten enthaltener Fremdmetallionen gegen Zinkionen und/oder Protonen ein Fällungsabteil oder eine Ionenaustauschereinrichtung ist.
  9. Galvanisches Bad gemäß einem der vorhergehenden Ansprüche, wobei das galvanische Bad mehrere den zinkionenhaltigen Anolyten aufnehmende Zellräume aufweist, welche jeweils von dem den Abscheide-Elektrolyten aufnehmenden Zellraum durch eine für Kationen durchlässige Membran getrennt sind, wobei die den Anolyten aufnehmenden einzelnen Zellräume miteinander in hydraulischer Verbindung stehen.
  10. Galvanisches Bad gemäß einem der vorhergehenden Ansprüche, wobei das galvanische Bad wenigstens einen weiteren Zellraum aufweist, welcher von dem den Abscheide-Elektrolyten aufnehmenden Bad ebenfalls durch eine Kationenaustauschmembran getrennt ist und Ionen eines mit dem Zink auf der Substratoberfläche mitabzuscheidenden Metalls aufweisenden Anolyten sowie eine sich auflösende Anode aus dem mitabzuscheidenden Metall aufnimmt.
  11. Verfahren zur galvanischen Abscheidung einer zinkhaltigen Schicht auf einer Substratoberfläche, wobei das zu beschichtende Substrat in einem galvanischen Bad mit einem sauren, zumindest Zinkionen enthaltenden Abscheide-Elektrolyten in Kontakt gebracht wird und zwischen dem Substrat und wenigstens einer Anode ein Strom angelegt wird, welcher geeignet ist, die Abscheidung einer zinkhaltigen Schicht auf der Substratoberfläche zu induzieren, wobei das galvanische Bad in wenigstens zwei Zellen unterteilt wird und die Zellen voneinander durch eine für Kationen durchlässige Membran getrennt werden, wobei eine Zelle den sauren bis neutralen Abscheide-Elektrolyten und die zweite Zelle einen neutralen oder sauren Anolyten aufnimmt und wobei in der den Anolyten aufnehmenden Zeile eine sich auflösende Zink-Anode angeordnet wird, dadurch gekennzeichnet, dass der neutrale oder saure Anolyt zumindest teilweise aus dem ihn aufnehmenden Zellraum abgeführt und über eine Einrichtung geleitet wird, in welcher etwaige Fremdmetallionen gegen Zinkionen und/oder Protonen ausgetauscht werden.
  12. Verfahren gemäß Anspruch 11, wobei neben der Zink-Anode eine weitere sich auflösende Anode vorgesehen wird, welche als Quelle für die mit dem Zink zusammen auf der Substratoberfläche abzuscheidenden Metalle dient und welche in dem den Abscheide-Elektrolyten aufnehmenden Zellraum angeordnet wird.
  13. Verfahren gemäß Anspruch 12, wobei die beiden Anoden über einen gemeinsamen Gleichrichter mit dem Substrat elektrisch kontaktiert werden und das Abscheideverhältnis der abzuscheidenden Metalle über die Zusammensetzung des Anolyten, insbesondere dessen Konzentration an Alkalimetallionen, beeinflusst wird.
DE102008056776A 2008-11-11 2008-11-11 Galvanisches Bad und Verfahren zur Abscheidung von zinkhaltigen Schichten Withdrawn DE102008056776A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102008056776A DE102008056776A1 (de) 2008-11-11 2008-11-11 Galvanisches Bad und Verfahren zur Abscheidung von zinkhaltigen Schichten
EP09014111A EP2184384B1 (de) 2008-11-11 2009-11-11 Galvanisches Bad und Verfahren zur Abscheidung von zinkhaltigen Schichten
PL09014111T PL2184384T3 (pl) 2008-11-11 2009-11-11 Wanna galwaniczna i sposób osadzania warstw zawierających cynk
US12/617,202 US8282806B2 (en) 2008-11-11 2009-11-12 Galvanic bath and process for depositing zinc-based layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008056776A DE102008056776A1 (de) 2008-11-11 2008-11-11 Galvanisches Bad und Verfahren zur Abscheidung von zinkhaltigen Schichten

Publications (1)

Publication Number Publication Date
DE102008056776A1 true DE102008056776A1 (de) 2010-05-12

Family

ID=41651434

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102008056776A Withdrawn DE102008056776A1 (de) 2008-11-11 2008-11-11 Galvanisches Bad und Verfahren zur Abscheidung von zinkhaltigen Schichten

Country Status (4)

Country Link
US (1) US8282806B2 (de)
EP (1) EP2184384B1 (de)
DE (1) DE102008056776A1 (de)
PL (1) PL2184384T3 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899695B2 (en) 2015-05-22 2018-02-20 General Electric Company Zinc-based electrolyte compositions, and related electrochemical processes and articles
EP3358045A1 (de) * 2017-02-07 2018-08-08 Dr.Ing. Max Schlötter GmbH & Co. KG Verfahren zur galvanischen abscheidung von zink- und zinklegierungsüberzügen aus einem alkalischen beschichtungsbad mit reduziertem abbau von organischen badzusätzen
ES2757530T3 (es) 2017-09-28 2020-04-29 Atotech Deutschland Gmbh Método para depositar electrolíticamente una capa de aleación de zinc-níquel sobre al menos un sustrato a tratar
CN110684997B (zh) * 2019-10-10 2021-02-19 广州三孚新材料科技股份有限公司 镀锌电镀液及其制备方法
JP6750186B1 (ja) * 2019-11-28 2020-09-02 ユケン工業株式会社 めっき液の亜鉛濃度の上昇を抑制する方法および亜鉛系めっき部材の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2714749A1 (de) * 1976-04-02 1977-10-06 Elf Aquitaine Verfahren zum wiedergewinnen von zink aus rueckstandsloesungen
DE4218915A1 (de) * 1992-06-10 1993-12-16 Heraeus Elektrochemie Verfahren und Vorrichtung zur Regenerierung einer Metallionen und Schwefelsäure enthaltenden wäßrigen Lösung sowie Verwendung
DE19538419A1 (de) 1994-10-25 1996-05-02 Enthone Omi Inc Alkalische Zink- und Zinklegierungs-Galvanisierbäder und Verfahren
DE19509575A1 (de) * 1995-03-16 1996-09-19 Rimmel Gmbh Verfahren zum Aufbereiten von Zink und Chrom enthaltenden Stoffgemischen wie Abwässer, Prozeßbäder, Galvanikschlämme o. dgl.
DE10146559A1 (de) 2001-09-21 2003-04-10 Enthone Omi Deutschland Gmbh Verfahren zur Abscheidung einer Zink-Nickel-Legierung aus einem Elektrolyten
DE10306823A1 (de) 2003-02-19 2004-09-02 Enthone Inc., West Haven Verfahren zur Hochgeschwindigkeitsabscheidung von Zink-Mangan-Legierungen
DE10322120A1 (de) * 2003-05-12 2004-12-09 Blasberg Werra Chemie Gmbh Verfahren und Vorrichtungen zur Verlängerung der Nutzungsdauer einer Prozesslösung für die chemisch-reduktive Metallbeschichtung
DE102004038693A1 (de) * 2004-08-10 2006-02-23 Blasberg Werra Chemie Gmbh Vorrichtung und Verfahren zur Entfernung von Fremdstoffen aus Prozesslösungen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272338A (en) * 1979-06-06 1981-06-09 Olin Corporation Process for the treatment of anolyte brine
US6869519B2 (en) * 2001-09-27 2005-03-22 National Institute Of Advanced Industrial Science And Technology Electrolytic process for the production of metallic copper and apparatus therefor
US7442286B2 (en) 2004-02-26 2008-10-28 Atotech Deutschland Gmbh Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys
ES2324169T3 (es) 2005-04-26 2009-07-31 Atotech Deutschland Gmbh Baño galvanico alcalino con una membrana de filtracion.
EP1726683B1 (de) 2005-05-25 2008-04-09 Enthone Inc. Verfahren und Vorrichtung zur Einstellung der Ionenkonzentration in Elektrolyten

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2714749A1 (de) * 1976-04-02 1977-10-06 Elf Aquitaine Verfahren zum wiedergewinnen von zink aus rueckstandsloesungen
DE4218915A1 (de) * 1992-06-10 1993-12-16 Heraeus Elektrochemie Verfahren und Vorrichtung zur Regenerierung einer Metallionen und Schwefelsäure enthaltenden wäßrigen Lösung sowie Verwendung
DE19538419A1 (de) 1994-10-25 1996-05-02 Enthone Omi Inc Alkalische Zink- und Zinklegierungs-Galvanisierbäder und Verfahren
DE19509575A1 (de) * 1995-03-16 1996-09-19 Rimmel Gmbh Verfahren zum Aufbereiten von Zink und Chrom enthaltenden Stoffgemischen wie Abwässer, Prozeßbäder, Galvanikschlämme o. dgl.
DE10146559A1 (de) 2001-09-21 2003-04-10 Enthone Omi Deutschland Gmbh Verfahren zur Abscheidung einer Zink-Nickel-Legierung aus einem Elektrolyten
DE10306823A1 (de) 2003-02-19 2004-09-02 Enthone Inc., West Haven Verfahren zur Hochgeschwindigkeitsabscheidung von Zink-Mangan-Legierungen
DE10322120A1 (de) * 2003-05-12 2004-12-09 Blasberg Werra Chemie Gmbh Verfahren und Vorrichtungen zur Verlängerung der Nutzungsdauer einer Prozesslösung für die chemisch-reduktive Metallbeschichtung
DE102004038693A1 (de) * 2004-08-10 2006-02-23 Blasberg Werra Chemie Gmbh Vorrichtung und Verfahren zur Entfernung von Fremdstoffen aus Prozesslösungen

Also Published As

Publication number Publication date
US8282806B2 (en) 2012-10-09
US20100116677A1 (en) 2010-05-13
PL2184384T3 (pl) 2012-11-30
EP2184384A1 (de) 2010-05-12
EP2184384B1 (de) 2012-06-06

Similar Documents

Publication Publication Date Title
DE102006035871B3 (de) Verfahren zur Abscheidung von Chromschichten als Hartverchromung, Galvanisierungsbad sowie hartverchromte Oberflächen und deren Verwendung
DE102014207778B3 (de) Verwendung einer Mischung zur Verwendung in einem galvanischen Bad oder eines galvanischen Bades zur Herstellung einer Glanznickelschicht sowie Verfahren zur Herstellung eines Artikels mit einer Glanznickelschicht
EP2116634B1 (de) Modifizierter Kupfer-Zinn-Elektrolyt und Verfahren zur Abscheidung von Bronzeschichten
EP2184384B1 (de) Galvanisches Bad und Verfahren zur Abscheidung von zinkhaltigen Schichten
DE102010055968A1 (de) Substrat mit korrosionsbeständigem Überzug und Verfahren zu dessen Herstellung
AT514818B1 (de) Abscheidung von Cu, Sn, Zn-Beschichtungen auf metallischen Substraten
DE102016205815A1 (de) Verfahren zur nickelfreien Phosphatierung von metallischen Oberflächen
DE4023444A1 (de) Cyanid-freies verfahren zur herstellung eines galvanischen kupferueberzuges
WO2012031753A1 (de) Anode sowie deren verwendung in einem alkalischen galvanikbad
DE102007060200A1 (de) Galvanisches Bad, Verfahren zur galvanischen Abscheidung und Verwendung einer bipolaren Membran zur Separation in einem galvanischen Bad
EP0037535A2 (de) Galvanisches Bad zur Abscheidung von Gold- und Goldlegierungsüberzügen
DE202008014947U1 (de) Galvanisches Bad zur Abscheidung von zinkhaltigen Schichten
EP3067444B1 (de) Abscheidung von dekorativen palladium-eisen-legierungsbeschichtungen auf metallischen substanzen
EP3250733B1 (de) Herstellung von chromschichten auf tiefdruckzylindern
EP1881090B1 (de) Elektrolytzusammensetzung und Verfahren zur Abscheidung einer Zink-Nickel-Legierungsschicht auf einem Gusseisen- oder Stahlsubstrat
EP2770088B1 (de) Hochkorrosionsfeste Stahlteile und Verfahren zu deren Herstellung
DE3029364A1 (de) Verfahren zur herstellung von kathoden mit niedriger wasserstoffueberspannung und ihre verwendung
EP2635724A1 (de) Verfahren zur abscheidung von hartchrom aus cr(vi)-freien elektrolyten
EP3415665B1 (de) Verfahren zur galvanischen abscheidung von zink-nickel-legierungsüberzügen aus einem alkalischen zink-nickel-legierungsbad mit reduziertem abbau von additiven
DE2352970A1 (de) Korrosionsbestaendige metallueberzuege, die galvanisch abgeschiedenes nickel und mikroporoeses chrom enthalten
CH647821A5 (de) Verfahren zur elektrolytischen abscheidung von schichten von nickellegierungen mit legierungselementen.
EP2384800B1 (de) Regeneration alkalischer Zinknickelelektrolyte durch Entfernen von Cyanidionen
EP2975162B1 (de) Verfahren zum schutzbeschichten eines werkstücks
DE19610361A1 (de) Bad und Verfahren für die galvanische Abscheidung von Halbglanznickel
DE2333096B2 (de) Galvanisch aufgebrachter mehrschichtiger Metallüberzug und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20130601