CN201226496Y - 实现输出端电压恒定的功率变换器 - Google Patents

实现输出端电压恒定的功率变换器 Download PDF

Info

Publication number
CN201226496Y
CN201226496Y CNU200820105286XU CN200820105286U CN201226496Y CN 201226496 Y CN201226496 Y CN 201226496Y CN U200820105286X U CNU200820105286X U CN U200820105286XU CN 200820105286 U CN200820105286 U CN 200820105286U CN 201226496 Y CN201226496 Y CN 201226496Y
Authority
CN
China
Prior art keywords
voltage
signal
current
circuit
power inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNU200820105286XU
Other languages
English (en)
Inventor
黄树良
迈特·格镶
龚大伟
陶志波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Active-Semi Co., Ltd.
Active Semi Shanghai Co Ltd
Original Assignee
Active Semi Shanghai Co Ltd
Active Semi International Inc USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Active Semi Shanghai Co Ltd, Active Semi International Inc USA filed Critical Active Semi Shanghai Co Ltd
Application granted granted Critical
Publication of CN201226496Y publication Critical patent/CN201226496Y/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本实用新型公开了一种实现输出端电压恒定的功率变换器,它可以通过补偿线电阻维持功率变换器的输出端电压恒定。初级控制的反激式变换器中的线修正电路补偿由于充电线电阻引起的输出电压的降低。在一种实现电路中,修正电压从初级辅助绕组得到的反馈电压中减去。然后,前置放大器将参考电压和修正的反馈电压相比较。在另一种实现电路中,矫正电压与参考电压相加,前置放大器将反馈电压与修正的参考电压相比较。前置放大器两个输入端电压的差值用于增加输出电压来补偿充电线的电压降。反激式变换器还具有比较电路和控制电路从而维持流过变换器初级电感的电流的峰值维持恒定。调整开关控制信号的频率和脉冲宽度从而控制变换器的输出电流。

Description

实现输出端电压恒定的功率变换器
技术领域
本实用新型涉及电源变换领域,尤其涉及一种实现输出端电压恒定的功率变换器。
背景技术
多年来,各种用于恒流恒压反激式电源的控制IC(集成电路)已经得到发展和应用,其应用包括离线式AC/DC(交流/直流)电源适配器、充电器和移动设备的备用电源。
图1为一种现有的典型的通过变压器11次级来控制的恒流输出反激式变换器10的电路图。变压器11包含三个绕组:初级绕组Lp,次级绕组Ls和辅助绕组La。反激式变换器10包含一个作为初级开关的外接MOSFET(金属氧化物半导体场效应晶体管)12,一个表示变压器11铜线绕组其阻抗损耗的次级电阻13,第一个电流感应电阻14,次级整流管15,输出电容16,光耦17,第二个电流感应电阻18,偏置电阻19,电流限制三极管20以及采用传统的峰值电流模式脉冲宽度调制(PWM)的控制IC 21。控制IC 21起动的初始能量由电阻22和电容23提供。当反激式变换器10稳定后,变压器11的辅助绕组La通过整流器24为控制IC 21提供能量。第二个电流感应电阻18和三极管20控制输出电流。三极管20调节第二个电流感应电阻18其两端电压为预设的基极发射极电压(VBE)。因此反激式变换器10的输出电流等于VBE除以第二个电流感应电阻18其电阻值。反激式变换器10的缺点之一是基极发射极电压VBE和输出电流都随温度而变化。而且,VBE会导致重大的功率损耗。另外,为了安全所要用到的光耦17会增加总的材料成本,从而导致反激式变换器10的成本昂贵。
图2A为现有的第二种典型的通过变压器11初级来控制的恒流输出反激式变换器25的电路图。它与图1中的现有技术相比,反激式变换器25不包含反激式变换器10中的光耦和变压器次级电流感应元件。但是反激式变换器25具有输出电流不准确性,其原因为:(a)变压器初级电感的变化,和(b)流过初级电感Lp实际的峰值电流与通过电流感应电阻14感应到的峰值电流有微小的差别。变压器11其初级电感值的变化会导致反激式变换器25的输出电流随之变化。初级电感Lp的峰值电流与感应电阻14上的压降Vcs感应到的峰值电流有微小的差别,其原因为控制IC 21其电流感应比较器的信号传输具有延迟,并且关闭外接MOSFET 12也具有延迟。
图2B为图2A中的反激式变换器25峰值电流的检测误差的示意图。图2B中栅极(GATE)波形为图2A中作为主开关的MOSFET 12的栅极开/关驱动电压的波形图。在T1时间,GATE变为高,MOSFET 12导通。初级电感电流ILP以dI/dt=Vp/Lp的斜率线性的斜坡上升,其中Vp为初级电感两端的电压,Lp为初级电感的电感值。因此感应电阻上的压降Vcs也会按比例的斜坡上升。当感应电压信号Vcs在T2时间达到Vref(参考电压)时,初级峰值电流Ip即Vref/Rcs,其中Rcs为电流感应电阻14的阻值。但由于控制IC 21的电流限制比较器的信号传输延迟和PWM控制逻辑和驱动的延迟,GATE直到T3时间才变为低从而关断。(T3-T2)就是GATE关断的延迟时间。MOSFET 12的漏极电压在开关关断的T3时间会突然变高,但初级电感电流ILP会继续升高直到T4时间,此时MSOFET 12的漏极电压升高到VIN,初级电感Lp上的电压极性反转。结果,初级电感的最终峰值电流是Ipf而不是Ip。不幸的是,初级电感最终的峰值电流Ipf会变化,因为(T3-T2)和(T4-T3)会随温度的变化、输入电压的不同、IC工艺变化、外部器件的偏差和PCB板布局的差异而变化。所有的这些变化将产生误差,从而导致反激式变换器25其输出电流不精确。
综上所述,要寻求一种通过初级来控制并且成本低的用于校准反激式变换器输出电流的方法。这种方法通过减少使用IC和外部元件的数目来消除如上所述现有技术的缺陷。这种方法不需要次级电路和光耦。此外,反激式变换器的输出电流尽可能最大的不受温度的变化、输入电压的不同、IC工艺的变化、外部元件的偏差和PCB布局的差异等的影响。
实用新型内容
本实用新型所要解决的技术问题是提供一种实现输出端电压恒定的功率变换器,它可以通过补偿线电阻维持功率变换器的输出端电压恒定,它进而可以提高反激式变换器的输出电流的精确度。
为了解决以上技术问题,本实用新型提供了如下技术方案:
一种功率变换器,它包括:一个次级绕组,该次级绕组位于功率变换器的次级;一个辅助绕组,该辅助绕组与次级绕组磁耦合,其中的辅助绕组位于功率变化器的初级,在所述辅助绕组两端的电压产生反馈信号;一个充电线,该充电线具有插头,该充电线具有一定的电阻,充电线插头的电压称为插头电压;和一个线修正电路,所述线修正电路接收反馈信号并产生线修正信号,通过使用线修正信号来补偿由于充电线具有电阻而引起的插头电压的下降,从而进行调整功率变换器的输出电压。
最后还有提供了一种功率变换器,它包括:一个次级绕组,该次级绕组位于功率变换器的次级;一个辅助绕组,该辅助绕组与次级绕组磁耦合,所述辅助绕组位于功率变化器的初级,所述辅助绕组两端的电压产生反馈信号;一个充电线,该充电线具有插头,所述充电线具有一定的电阻,电线插头的电压称为插头电压;和一个电路,该电路通过补偿由于充电线具有电阻而引起的插头端电压的下降,从而调整输出电压。
由于本实用新型通过线补偿电路补偿由于充电线具有电阻而引起的充电线末端插头处的输出电压的下降,维持了功率变换器的输出端电压恒定。当流过初级绕组的电流斜坡上升时,磁场产生,将能量传递给辅助绕组,并在辅助绕组两端产生反馈电压。在一种实现电路中,从辅助绕组得到的反馈信号与线修正信号的电压相减。然后前置放大器将参考电压与修正的反馈电压相比较。在另一种实现电路中,线修正信号的电压与参考电压相加,然后前置放大器将反馈电压与修正的参考电压相比较。前置放大器正反输入端的电压差用于增加反激式变换器在插头处的输出电压,从而补偿充电线引起的电压降。
附图说明
下面结合附图和具体实施方式对本实用新型作进一步详细说明。
图1为现有的一个通过次级来控制的传统的恒流输出的反激式变换器的简单电路图。
图示2A为现有的另一个通过初级来控制的恒流输出的反激式变换器的简单电路图。
图2B为图2A中恒流输出反激式变换器峰值电流检测误差的波形图。
图3为含有本实用新型中的比较电路和控制环路的反激式变换器的简单电路图。
图4为本实用新型控制反激式变换器电感峰值电流方法的流程图。
图5为本实用新型通过初级来控制的恒定电流和电压输出的反激式变换器的简单电路图,其包含一个脉宽调制控制集成电路。
图6为图5中脉宽调制控制集成电路的更详细的电路图,其包含一个振荡器和一个自适应电流限制器。
图7为图6中振荡器更详细的电路图。
图8为不连续工作模式下(DCM)的辅助绕组电压、初级开关电流和次级整流器电流的理想波形图。
图9为图6中振荡器的理想时序波形图。
图10为图6中自适应电流限制器的工作和时序波形图。
图11为图6中自适应电流限制器更详细的电路图。
图12为可替代图6中控制集成电路的另一种更详细的电路图。
图13为图12中控制集成电路与一个外接MOSFET和电流感应电阻连接使用的电路图。
图14为图3中反激式变换器其控制集成电路用封装图来表示的电路图。
图15为图5中脉宽调制集成电路的电路图,其中包括另一种线修正电路。
具体实施方式
如没有特别声明,在以下本实施例中,电感开关是指主功率开关管44,开关管脚是指SW端或SW管脚(也就是附图中的99)。本实用新型为了表述和行文方便,对同一技术特征采用了不同技术术语,但其实质含义或代表的或指向的对象一样,比如所称的初级电感(是指初级绕组或初级线圈上的电感)、初级绕组、初级线圈均为附图中的39;又比如次级电感(是指次级绕组或次级线圈上的电感)、次级绕组、次级线圈也是一样,均为附图中40;还有辅助级电感(是指辅助绕组、辅助级绕组或辅助级线圈上的电感)、辅助绕组、辅助级绕组、辅助级线圈也是一样,均为附图中的41;还有有些概念上有所不同,但为上下位概念或等同概念或实质相同概念,比如反激转换器、电源转换器就是下文中的反激式变换器;调制器、调整器、变压器均是指附图中的72。
图3为本实用新型用一个比较电路和一个控制环路来调节电感电流的反激式变换器30。图4为图3中反激式变换器30工作方法的流程图,其包括步骤31到35。此方法通过调节反激式变换器30电感的峰值电流来控制输出的电流。反激式变换器包含一个变压器36,一个外接NPN三极管37和一个控制器集成电路(简称“控制IC”)38。变压器36包括一个初级绕组(又称为“初级电感”)39,一个次级绕组40和一个辅助绕组41。控制IC 38包括一个振荡器42,一个自适应电流限制器43,一个内部的主功率开关管44,脉宽调制逻辑控制电路(简称“PWM逻辑电路”)45和一个栅极驱动电路46。自适应电流限制器43包括一个比较电路47,一个控制环路48和一个脉冲宽度发生器(简称“脉宽发生器”)49。
当主功率开关管44导通时,电感电流50开始流过初级电感39。由于流过初级电感39的电感电流50斜坡上升,产生了一个电磁场,并在主功率开关管44关断时把能量传输到次级绕组40。传输到次级绕组40的能量就以输出电流(IOUT)的形式输出。在某些应用中,希望反激式变换器30能提供恒定的输出电流(IOUT)。输出电流(IOUT)至少与三个因素有关:(i)电感电流50的峰值,(ii)初级电感39的电感值(LP)和(iii)主功率开关管44导通从而流过初级电感39的电流斜坡上升的频率(fOSC)。就初级电感39的电感值(LP)而言,由于变压器36制作工艺的变化导致它的电感值偏离其标称的额定值,因此个别的反激式变换器的输出电流(IOUT)会产生变化。例如,电感绕组导线的直径不相同,或者缠绕的方式不一致都会导致个别初级电感的实际电感值变化。另外,信号传输的延迟以及应用主功率开关管44来控制电感电流从而产生的寄生效应会导致流过初级电感39的峰值电流(IP)变化。并且传输延迟与工艺,温度和电压有关。
图4描述了调节流过初级电感39的峰值电流(IP)的一种方法,尽管信号传输延迟和寄生效应与工艺,温度和电压的变化有关,但是此办法仍可维持反激式变换器30的输出电流恒定。此外,还可以通过调节峰值电流(IP)来补偿由于工艺变化而引起的初级电感39电感值(LP)的不一致性。而且,描述了通过调节振荡频率(fOSC)来补偿电感值(LP)不一致性的一种方法,主功率开关管44以此振荡频率(fOSC)导通,使流过初级电感39的电感电流50斜坡上升。因此,通过调整电感峰值电流(IP)和开关频率(fOSC)或只调整其一都可以维持输出的电流(IOUT)为恒定的值。
第一步(步骤31),自适应电流限制器43接收反馈信号51,此信号反映流过初级电感39的电流停止增长的时间。自适应电流限制器43中的比较电路47和控制环路48都接收振荡器42输出的反馈信号51。流过初级电感39的电感电流50在第一次停止上升的时间停止斜坡上升。振荡器42使用辅助反馈信号52产生反馈信号51和开关频率信号53。辅助反馈信号52通过辅助绕组41端电压产生。当流过初级电感39的电流斜坡上升时,磁场产生,将能量传递给辅助绕组41并在辅助绕组41端产生电压。
第二步(步骤32),比较电路47接收开关信号54,此信号反映流过初级电感39的电感电流50斜坡上升的速率。开关信号54通过控制IC 38的开关端(SW)从外接的NPN三极管发射极得到。初级电感39中斜坡上升的电感电流50流过NPN三极管37和控制IC38的开关端(SW)。虽然在图3中,开关信号54由流过主功率开关管44的NPN三极管发射极电流得到,但是可以使用其它的实现方法来产生开关信号54,例如通过在主功率开关管44的源端连接感应电阻或在与主功率开关管44并联的感应MOSFET的源端连接电阻来产生。
第三步(步骤33),比较电路47产生计时信号55,此信号反映目标时间,此时间为电感电流50以某速率斜坡上升达到预先设定的限制电流的时间。
第四步(步骤34),控制IC 38产生电感开关控制信号56,此信号具有一定的脉宽。电感开关控制信号56控制电感电流50流过的主功率开关管44的栅极。栅极驱动电路46使用“N-channel on”信号(“N沟道导通”信号,以下简称为“Nchon信号”)57产生电感开关控制信号56。PWM逻辑电路45使用振荡器42输出的开关频率信号53和脉宽发生器49输出的脉冲宽度信号(以下简称“脉宽信号”)58产生Nchon信号57。开关频率信号53为电感开关控制信号56其产生的脉冲提供频率,而脉宽信号58提供电感开关控制信号56的脉冲持续时间。脉宽发生器49使用控制环路48产生的时间误差信号59产生脉宽信号58。
第五步(步骤35),自适应电流限制器43控制电感开关控制信号56的脉宽,使得第一次停止上升的时间(流过初级电感39的电感电流50停止增长的时间)和目标时间(电感电流50达到预先设定的限制电流的时间)同时发生。在具体实现电路中,自适应电流限制器43控制电感开关控制信号56的脉冲宽度,但是在另一种实现电路中,自适应电流限制器43控制脉宽信号58的脉宽或Nchon信号57。通过控制脉宽信号58,Nchon信号57和电感开关控制信号56三者中任意一个信号的脉冲宽度,第一次停止上升的时间和目标时间可被调整到同时发生。通过自适应的控制脉冲宽度,电感的峰值电流(IP)将被调整,从而维持反激式变换器30的输出电流(IOUT)恒定。
图5为图3中反激式变换器30高一级的框图。反激式变换器30是精确的但是低成本的功率电源变换器,其通过初级控制,并且输出电流经过调整。如图5所示,反激式变换器30不包含现有技术中所包含的次级控制电路和光耦。反激式变换器30使用唯一的来自次级的反馈来控制输出电流和电压,此反馈来自辅助绕组41和次级绕组40的磁场耦合。除了节省成本,由于不包含次级控制电路和光耦,外围的元件数得以减少,从而增加反激式变换器30的稳定性。
有两个影响反激式变换器30输出电流精度的因素:(a)变压器36其初级电感39的电感值的变化,和(b)初级电感39其峰值电流(IP)检测的不精确性。初级电感39其实际的电感值(LP)一般会变化±20%。初级电感39的峰值电流(IP)一般并不能精确检测,因为控制IC38中的电流感应比较器,PWM逻辑电路和栅极驱动电路具有传输信号延迟,初级功率开关关断具有延迟和作为初级功率开关的MOSFET的漏极的寄生效应或作为初级功率开关的NPN三极管集电极的寄生效应。此外,峰值电流其检测精度随着温度,电压,IC工艺,PCB布线和与外围元件值相关的寄生源的变化而降低。反激式变换器30通过使主功率开关管44的工作频率(fOSC)的变化与电感值(LP)的变化成反比来补偿初级电感的实际值与其标称的额定值的偏差。反激式变换器30使用自适应电流限制器43和控制环路48探测和控制初级电感39的峰值电流来补偿信号传输延迟和寄生效应,使峰值电流探测变得简单。此外,反激式变换器30为降低成本,使用初级控制的发射极开关结构。
图5中的反激式变换器30通过两种工作模式输出恒定的电流和电压,分别为恒定(峰值)电流模式和恒定电压模式。变压器36其初级绕组39具有Np匝数,次级绕组40具有Ns匝数,辅助绕组41具有Na匝数。在图5中的次级电阻60代表变压器36其铜线绕组的阻性损耗。反激式变换器30具有次级整流器61,输出电容62和控制IC38。控制IC38为峰值电流模式脉宽调制控制器。控制IC 38启动的初始能量由电阻63和电容64提供。当反激式变换器30稳定后,变压器36其辅助绕组41通过整流器65为控制IC38提供能量。
变压器36初级的控制IC 38的反馈端FB其打线焊盘66接收反映次级绕组40输出电压(VOUT)的信号。辅助绕组41的端电压(VAUX)67经过电阻分压网络得到反馈端FB其打线焊盘66端的辅助反馈信号52,此电阻分压网络包括第一个反馈电阻(RFB1)68和第二个反馈电阻(RFB2)69。辅助反馈信号52也用于计算初级电感的导通时间和实际的斜坡上升时间。
图5中的反激式变换器的具体实现电路中包含外接的功率控制元件例如NPN三极管37,其应用在需要较高的输出功率或较高的开关频率的情况。NPN三极管37的基极耦合到一个二极管70和一个电阻71。在低功率应用中反激式变换器30的具体实现电路中并不包含外接的三极管,MOSFET功率开关管或电流感应电路,这些都集成在控制IC 38中。
图5中,NPN三极管37与采用发射极开关结构的控制IC 38协同工作。外接的NPN三极管37作为初级绕组39的开关。在这种结构中,控制IC 38中集成的电路驱动外接NPN三极管37的发射极。在其它的实现电路中,为了进一步增加功率控制能力和开关频率,使用外接的MOSFET替代NPN三极管37作为主开关。通常,三极管的频率特性受到基极充电/放电时间的限制,其高功率特性受到基极驱动电阻的限制。因此,NPN三极管37对于不需要非常高的功率和开关频率的应用非常适合。
现有的技术中,采用感应电阻来检测初级电感峰值电流,此方法不切合实际,因为流过感应电阻的电流等于NPN发射结的电流,此电流由流过集电极的实际的电感电流和NPN三极管37的基极电流组成。尽管使用三极管增加了复杂程度,并且三极管由于其自身特点具有电流增益(Beta)和饱和等效应,此效应会产生额外的误差项,但在应用中仍想使用NPN三极管替代MOSFET,这是因为三极管的成本远远低于高压MOSFET。电流增益和饱和等效应难于控制,并随着工艺,温度,电压和外围元件值的变化而有相当大的变化。
图6为控制IC 38详细的电路图。控制IC 38包含自适应电流限制器43,其用于补偿探测初级电感39峰值电流(IP)时产生的控制误差。在不影响性能的基础上,自适应电流限制器43为纠正峰值电流探测具有的误差提供低成本解决方案。
尽管系统中具有各方面的变化,但是自适应电流限制器43使得初级电感39的峰值电流(IP)恒定。控制环路48调节内部功率MOSFET 44的关断时间,使初级电感39其电流总的斜坡上升时间(TRAMP)精确的对应于初级电感电流斜坡上升到预先设定的峰值限制电流(ILIM)的时间。总的斜坡上升时间(TRAMP)包括:(a)内部集成的主功率开关管44的导通时间,(b)NPN三极管37的基极放电时间,和(c)NPN三极管37集电极电压上升时间。总的斜坡上升时间被调整为流过初级绕组39的电流斜坡上升到所限制的峰值电流的一半所需时间的两倍。在此例中使用2:1的比例,但是在其它的实现电路中可以使用其它的比例。在许多实际的应用中,考虑到精度性和具体的实现方法(例如器件布局的匹配),2:1的比例其效果很好。其它合适的比例,例如3:1可以在需要特殊应用的场合中使用。控制环路48自动地促使初级电感39其实际的电流斜坡上升时间等于参考时间。
虽然系统的不一致性会使电感的峰值电流不同,但是有很多其他的应用并不需要维持非常恒定的电感峰值电流。AC/DC电源转换器和适配器中,不需要维持非常恒定的电感峰值电流的一种应用是通过限制输出电流或输出功率来保护其不进入误状态。这种应用并不需要像AC/DC离线充电器一样将输出电流调整的非常精确。
内部集成的调制器72为控制IC 38提供电源电压和参考电压VREF。在具体实现电路中,当电路启动时会通过电阻63和电容64产生15伏的电压VDD,电路启动后辅助绕组41和整流器65会维持电压VDD,此电压输入调制器72,然后输出5伏电源电压为自适应电流限制器43供电。欠压锁定电路73监控为控制IC 38供电的电压VDD,当电压VDD超过欠压锁定电路73开启阈值电压时,控制IC 38正常工作。此例中,欠压锁定电路73开启阈值电压为19伏,欠压锁定电路73关断阈值电压为8伏。如果电压VDD降低到欠压锁定电路73关断阈值电压,控制IC 38将停止工作。变压器36其次级绕组40的输出电压的反映信号,通过辅助绕组41和反馈端FB其打线焊盘66,反馈到控制IC 38。辅助反馈信号52与调制器72产生的参考电压VREF相比较,输出误差信号,此误差信号通过前置放大器74放大,经取样器75取样,反馈到PWM误差放大器76,此放大器对误差信号进一步放大,输出经过两次放大的输出信号77。电阻78,电容79和80组成PWM误差放大器76的内部补偿网络。PWM误差放大器76的输出信号77输入到误差比较器81,此误差比较器81作为反激式变换器30恒压模式的脉宽调制比较器。
除了前置放大器74,辅助反馈信号52通过反馈端FB其打线焊盘66输入到振荡器42和频率调制器(简称“FMOD”)82。FMOD 82感应辅助反馈信号52的电压值,输出振荡器42所需的偏置电流。FMOD 82输出的偏置电流随辅助反馈信号52电压值的变化而变化,因此当反激式变换器30其输出电压变化时,振荡器的频率会随着调整,从而维持输出电流恒定。振荡器42包含一个用于检测实际的初级绕组39中电流斜坡上升时间(TRAMP)的TRAMP探测电路。TRAMP探测电路通过辅助绕组41的端电压(VAUX)67经过分压电阻68和69得到的电压来决定总的斜坡上升时间。振荡器42输出脉宽调制电路所需的频率,用于驱动主功率开关管44。
辅助反馈信号52的电压由辅助绕组41其电感值与初级电感39和次级电感40的电感值的比例决定,用于作为振荡器42的参考电压。因此,除了峰值电流(IP),振荡频率(fOSC)还补偿初级电感39其电感值的变化。除了图6的具体电路外,还可以使用其它可替换的结构优化振荡器42的特性,来补偿变压器36其初级电感值的变化。
PWM逻辑电路45利用两种模式产生所需的脉冲宽度调制波形:(a)当调整输出电压时,采用电流模式PWM控制,和(b)当调整输出电流时,采用每周期自适应电流限制模式。Nchon信号57由PWM逻辑电路45输出,输入到栅极驱动电路46。栅极驱动电路46为相对高速的MOSFET栅驱动电路。栅极驱动电路46输出电感开关控制信号56,此信号输入到主功率开关管44和更小比例的内部MOSFET 83。更小比例的内部MOSFET 83和电阻84组成电流感应电路。被感应的电流信号经过电流感应放大器85放大,然后转换成电压信号。此电压信号通过误差比较器81与PWM误差放大器76的输出信号77相比较。误差比较器81输出调整信号86,其用于设定主功率开关管44的导通时间。在恒压工作模式下,当反激式变换器30的输出电流低于最大的输出限制电流,调整信号86用于恒压输出调整。在恒流工作模式下,输出电流的调整功能由自适应电流限制器43实现,当输出电流(IOUT)达到预先设定的峰值限制电流(ILIM)时,自适应电流限制器43限制初级电感39的峰值电流(IP)。自适应电流限制器43使峰值电流值与温度,输入线电压,IC和外围元件值的变化和PCB布局的不一致性无关。
PWM误差放大器76的输出信号77输入到线修正电路87,产生线修正信号88,其值与输出信号77成比例。线修正信号88用于调整辅助反馈信号52的电压,来补偿反激式变换器30充电器线串联电阻引起的输出电压的损失。线电阻补偿技术在线的末端提供合理精确的固定电压,线末端为反激式变换器30与被充电和被供电的设备例如手机或便携式多媒体播放器相连端。输出电压的损失是由于负载端的电压会有一个I·R电压降,此电压降为线上有限的串联电阻与电源的输出电流的乘积。初级控制反激式功率变换器30通过由次级绕组40的电压反映到辅助绕组41而得到的反馈电压来调整输出电压(VOUT),但是这个反映电压并不包括由于有限的线电阻而引起的I·R电压误差。在恒压工作模式,PWM误差放大器76的输出与反激式变换器30的输出电流成比例。因此输出信号77可以用于产生线修正信号88,此线修正信号88可以被应用到反馈输入端或前置放大器74的参考电压输入端来补偿线电阻。在图6的具体实现电路中,修正信号被应用到前置放大器74的反馈输入端,但是在其它可替换的实现电路中,修正信号还可以简单的应用到参考电压输入端。
图7更详细的描述控制IC 38中的振荡器42。振荡器42包含电压比较器89,延迟元件90,TRAMP探测电路91,三个电流源92,93和94,和振荡器计时电容(COSC)95。TRAMP探测电路91通过辅助反馈信号52决定总的斜坡上升时间,此反馈信号为辅助绕组41其端电压(VAUX)67经过分压电阻68和69得到的电压信号。TRAMP探测电路91输出反馈信号(TRAMP)51。反馈信号51输入到延迟元件90,产生延迟信号TRAMPD。延迟信号TRAMPD在反馈信号51产生后,经过TD2延迟时间后产生。TRAMP探测电路91包含一个由P沟道FET 97和98组成的电流镜96。当主功率开关管44导通并且初级电感39的电感电流50斜坡上升时,振荡器42通过电流镜96产生压控振荡电流IVCO。压控振荡电流IVCO的值可表示为:
I VCO = M · V AUX R FB 1 = M · V IN · Na Np R FB 1 , - - - ( 1 )
其中M为电流镜96的增益。在一种实现电路中,增益M为1,IVCO等于从反馈端FB其打线焊盘66流回的反馈电流IFB
振荡器计时电容95由电流源92产生的充电电流IOSC充电。在此具体实现电路中,振荡器计时电容95由电流源93放电,其放电电流的值为充电电流值的四倍。因为充电电流源92在放电电流电流源93打开时并没有关闭,所以放电电流就变为充电电流的三倍,如图9。当主功率开关管关断时,FMOD使用与辅助反馈信号52的电压成比例的电压信号产生偏置电流。此偏置电流偏置电流源92。振荡器42由调制器72输出的5伏电源信号供电。
振荡器42为一个内部集成的RC振荡器,输出开关频率信号53,其频率fOSC由振荡器计时电容95的电容值和振荡器电阻ROSC的电阻值确定。振荡器的电阻可以表示为ROSC=VFB/IOSC,其中VFB=VOUT·Na/Ns。振荡器42输出的开关频率信号53输入到PWM逻辑电路45。PWM逻辑电路45通过输入的开关频率信号53和脉宽发生器49输出的脉宽信号58输出Nchon信号57。开关频率信号53的频率fOSC决定Nchon信号57脉冲出现的频率。
图8为辅助绕组41端电压(VAUX)67,流过初级绕组39的电流(ILP)和流过次级绕组的电流(IS)的理想波形图,其中流过次级绕组的电流(IS)为流过工作在不连续导通模式的次级整流器61的电流。主功率开关管44在T1时间导通,在T2时间关断,在T4时间再次导通。因此,T1和T4之间的时间为一个开关周期。T1和T2之间的时间为主功率开关管44导通时的斜坡上升时间(TRAMP)。T2和T4之间的时间为主功率开关管44关断的时间。电流波形(IS)所示,在T3时间,流过变压器36其次级绕组40的电流降低为零。
反馈信号51(即电压波形TRAMP)反映初级电感39实际的斜坡上升时间,此时间通过辅助绕组41的端电压(VAUX)67由振荡器42检测出。反馈端FB其打线焊盘66的辅助反馈信号52为振荡器42提供辅助绕组41的端电压(VAUX)67的反映信号。如图8所示,当端电压(VAUX)67变为负值并且反馈信号51(TRAMP电压)升高时,初级电感电流(ILP)开始上升。当初级电感电流(ILP)到达其峰值(IP)时,振荡器42检测到斜坡上升时间TRAMP结束,辅助绕组两端的电压(VAUX)会迅速的升高。
反激式变换器30的输出功率只由在不连续导通模式时初级电感39中储存的能量确定,由公式(2)所示,此式忽略效率带来的损耗:
POUT=(VOUT+VD)·IOUT=1/2·IP 2·LP·fOSC        (2)
其中VD为次级整流器61两端的电压降,LP为初级绕组39的电感值,IP为初级绕组39的峰值电流,fOSC为控制IC 38中振荡器42设定的振荡频率。忽略效率的损耗,反激式变换器30的输出电流可表示为:
I OUT = 1 2 · I P 2 · L P · f OSC V OUT + V D . - - - ( 3 )
当IOUT小于初级绕组39所限制的峰值电流(IP)时,反激式变换器30的输出电压VOUT为正常调整电压。峰值电流的限定值在反激式变换器30进入工作模式之前预先设定。在恒定输出电流的工作模式,当输出电流要超过想要的恒定输出电流时,反激式变换器30的输出电压VOUT将从正常工作时的调整电压降低为零。为了保持IOUT恒定,振荡器42的开关频率(fOSC)最好与电压(VOUT+VD)成比例减小,同时维持初级绕组39的峰值电流(IP)恒定。但是由于峰值电流(IP)的不一致性,开关频率(fOSC)最好与峰值电流(IP)成反比例变化,从而维持输出电流(IOUT)恒定。
图9显示初级绕组39的电感值(LP)如何被动态的测量使得尽管初级电感(LP)发生变化,开关频率(fOSC)也随着变化从而维持输出电流(IOUT)恒定。图9中所描述的与下面各种公式相关。此外,下面将介绍一种产生与初级绕组39电感值(LP)变化成反比变化的开关频率(fOSC)的方法。其中,TCHARGE表示“充电时间”,TDISCH表示“放电时间”。
产生开关频率(fOSC)的最终方法由公式11表述。图9中的部分波形图为控制IC 38中振荡器42的理想时序图。斜坡电压通过电流源对计时电容充放电得到。振荡器42中为振荡器计时电容COSC充电的电流为:
I OSC = V FB R OSC = V OUT + V D R OSC · Na Ns · R FB 2 R FB 1 + R FB 2 - - - ( 4 )
如图5,其中的Na为辅助绕组41的匝数,Ns为次级绕组40的匝数,RFB1和RFB2分别为反馈电阻68和69的电阻值,ROSC为振荡器42中集成的电阻,此电阻用于产生偏置电流IOSC,VFB为反馈端FB其打线焊盘66的辅助反馈信号52的电压值。电压VFB由两种工作情况得到:(a)当主功率开关管44关断并且次级绕组40中的电流大于零时,由端电压(VAUX)67得到,其值等于(VOUT·Na/Ns)·[RFB2/(RFB1+RFB2)],(b)当主功率开关管44导通时,控制IC 38控制电压VFB,使其值近似为零。在此实现电路中,如图9所示,所选取的振荡器计时电容的放电电流为充电电流的三倍。在其它的实现电路中可以采用其它的比例。注意在图7中放电电流源93为充电电流源92的四倍,因此得到3:1的比例。振荡器频率(fOSC)由以下公式表述:
f OSC = 1 T = 1 Tch + Tdisch = 3 4 · I OSC C OSC · V CO . - - - ( 5 )
其中VCO(VCO表示计时电容CVCO的电压)是由另一个计时电容CVCO和充电电流IFB得到。当主功率开关管44导通,反馈端FB其打线焊盘66的辅助反馈信号52的电压被控制IC 38拉低到近似为零。此外,如图8所示,当主功率开关管44导通时,辅助绕组41两端的电压为负值,其值为:
V AUX = - V IN · Na Np . - - - ( 6 )
因此, I FB = V FB - V AUX R FB 1 = V IN R FB 1 · Na Np , - - - ( 7 )
V CO = V IN R FB 1 · Na Np · T RAMP C VCO . - - - ( 8 )
因此,振荡器42的输出频率可由公式(4),(5)和(8)得出,其公式如(9):
f OSC = 3 4 · V OUT + V D V IN · T RAMP · Np Ns · C VCO C OSC · R FB 1 R OSC · R FB 2 R FB 1 + R FB 2 . - - - ( 9 )
初级电感的伏秒可表示为:
VIN·TRAMP=LP·IP,                (10)
得到振荡器42产生的开关频率的最终表达式为:
f OSC = 3 4 · V OUT + V D L P · I P · Np Ns · C VCO C OSC · R FB 1 R OSC · R FB 2 R FB 1 + R FB 2 , - - - ( 11 )
f OSC = K · V OUT + V D Lp · I P , - - - ( 12 )
其中K为设计中的常数。
公式(12)说明振荡器42产生的开关频率(fOSC)与电压(VOUT+VD)成正比,与初级绕组39的电感值(LP)成反比。将公式(12)带入公式(3)得到:
IOUT=1/2·K·IP                    (13)
公式(13)说明反激式变换器的输出电流与初级绕组39的电感值(LP)无关。因此,所介绍的自适应控制开关频率fOSC的方法使fOSC与LP成反比,有效的产生恒定的输出电流,其电流值不随初级电感值的变化而改变。
公式(13)还说明反激式变换器30精确的输出电流(IOUT)可以通过精确的设定初级电感的峰值电流实现。一般情况,变换器的峰值电流(IP)并没有精确的设定。例如,现有技术中的转换器25的峰值电流(IP)使用固定的参考电压设定。如图2A所示(现有技术),固定的参考电压由带隙基准电压经外接的电阻分压得到。电流感应电阻(RCS)14感应流过初级电感的电流,将其转变成电压信号。当此电压达到参考电压,将触发电流限制比较器,此比较器将PWM逻辑复位,并关闭主开关12。这种设定最大初级电感电流的传统方法本身具有缺点。
图10为控制IC 38中自适应电流限制器43的控制环路48的工作和时序波形,其中IBASE表示“NPN三极管37的基极电流”,TSTART表示“电感电流开始斜坡上升的时间”,TILIM/2表示“电感电流达到设定的峰值电流即ILIM/2的时间”。Nchon信号57为导通或关断内部MOSFET的栅驱动信号,此内部MOSFET与主功率开关管44功能相同。开关信号54(波形ISW)为从外接的NPN三极管37的发射结流过控制IC 38其SW端打线焊盘99到达内部集成的主MOSFET开关44漏端的电流。电压波形VSW为SW端打线焊盘99此点的电压。TD1为Nchon信号57产生后到流过SW端打线焊盘99的电流ISW实际上开始斜坡上升之间的延迟时间。此延迟时间(TD1)为打开外接NPN三极管37(也就是图10中NPN 37)的开关延迟时间。流过SW端打线焊盘99的电流(ISW)由两部分电流组成:(a)流过初级电感39的实际电流(ILP),此电流流过外接NPN三极管37的集电极和(b)NPN三极管37的基极电流。基极电流为失调电流,其使得开关信号54的电流(ISW)从非零的值开始,如图10所示,在延迟时间(TD1)结束时,电流(ISW)有一个阶越的上升。除了NPN三极管37的基极电流外,还有其它的因素也会使流过初级电感39的电流(ILP)与流过SW端打线焊盘99的电流不同,例如与主开关44漏端相关的寄生效应和传输延迟。
当振荡器42通过辅助反馈信号52探测到电感电流(ILP)50开始斜坡上升时,振荡器42产生反馈信号(TRAMP)51。而流过初级电感39的电感电流(ILP)50停止上升的时间,在图10中用“FIRST TIME”注释。当反馈信号51产生,P沟道FET将导通,使得第一个固定的电流源(I1)在第一个计时电容C1上积累电荷。第一个计时电容C1上电荷的斜坡积累速度为dVC1/dt=I/C1。振荡器42还输出TRAMPD信号,其为反馈信号51的延迟信号。在第一个延迟(TD1)结束后产生的第二个延迟时间(TD2)结束时,振荡器42产生TRAMPD信号。当TRAMPD信号产生时,第二个P沟道FET将导通,使得第二个固定的电流源(I2)在第二个计时电容C2上积累电荷。在图6中自适应电流限制器43的具体实现电路中,第二个计时电容C2的值为第一个计时电容C1的一半。在另一个可替代的实现方法中,第二个计时电容C2的值和第一个计时电容C1的值相同,第二个固定电流源(I2)产生的电流为第一个电流源(I1)产生的电流的两倍。这两种实现办法中,第二个计时电容C2上的电荷积累的速度精确为第一个计时电容C1上的电荷积累的速度的两倍。
如图10所示,当延迟信号TRAMPD产生后,电荷开始在第二个计时电容C2上积累,经过基极电流补偿的斜坡信号(ISWCOMP)开始上升,此斜坡信号跟踪流过SW端打线焊盘99的开关信号54。开关信号54电流中的基极电流引起的误差部分已经从补偿的斜坡信号(ISWCOMP)中被去处。因此,补偿的斜坡信号(ISWCOMP)反映实际流过初级电感39和NPN三极管37集电极的电流(ILP)。
在图6的自适应电流限制器43的具体电路中,补偿的斜坡信号通过使用耦合电容耦合SW端打线焊盘99的开关信号54来消除直流失调部分。在延迟信号TRAMPD产生之前,耦合电容上的电荷通过一个开关保持为零。当补偿的斜坡信号(ISWCOMP)达到预先设定的初级绕组39其峰值电流的一半时,对第二个计时电容C2的充电暂停,电容C2的电压保持。在具体的实现电路中,ISWCOMP达到1/2ILIM的时间是通过比较相应端的电压(VSWCOMP和1/2VLIM)来确定。电容C2上保持的电压作为参考电压,用于确定补偿的斜坡信号(ISWCOMP)达到流过初级绕组39所限制的峰值电流的精确时间。
第一个计时电容C1一直充电直到第一个电容C1上的电压达到第二个计时电容C2上所保持的参考电压。计时信号55(也叫做电荷交叉信号Tcx)在当第一个计时电容C1上的电荷(VC1)达到第二个计时电容C2上的电荷(VC2)时产生。当计时信号55产生时,初级电感电流(ILP)达到限制的峰值限制电流(ILIM),这是因为第一个计时电容C1的充电速度为第二个计时电容C2的一半。因此,产生计时信号55的时间就是达到所限制的峰值限制电流(ILIM)的目标时间。
然后,反馈信号51的下降沿与计时信号55的上升沿相比较,反馈信号51的下降沿出现的时间为初级电感39的电流停止上升的时间,在此时间初级电感电流(ILP)到达其峰值,并且辅助绕组两端电压(VAUX)迅速升高。
如图6所示,PWM逻辑电路45使用自适应电流限制器43产生的脉宽信号58产生Nchon信号57。因此,Nchon信号57的脉冲宽度由自适应电流限制器43中的脉宽发生器49控制。脉宽信号58通过使用延迟锁定环结构的控制环路48将反馈信号51的下降沿与计时信号55的上升沿相比较。DLL类型的控制环路48包含一个鉴相器,其在反馈信号51的下降沿提前于计时信号55所要求的上升沿到来时,产生down脉冲,扩展反馈信号下降沿,从而增加信号Nchon信号57的占空比。通过延迟Nchon信号57的下降沿来增加其占空比,从而在下个开关周期增加流过初级电感39的峰值电流(IP)。同理,当反馈信号51的下降沿滞后于计时信号55所要求的上升沿到来时,控制环路48中的鉴相器输出up脉冲,up脉冲通过提前反馈信号的下降沿,从而减小信号Nchon信号57的占空比。通过提前信号Nchon信号57的下降沿来降低占空比,从而在下个开关周期减小流过初级电感39的峰值电流(IP)。因此控制环路48维持初级电感39的峰值电流(IP)为预先设定的峰值限制电流ILIM
如图10所示,第二个延迟时间(TD2)即反馈信号51和延迟信号TRAMPD之间的延迟,只要第二个延迟时间小于补偿的斜坡信号(ISWCOMP)达到1/2ILIM所需要的时间,其长短并不影响补偿的斜坡信号(ISWCOMP)达到预先设定的初级绕组39的峰值限制电流(ILIM)的一半的时间。这是事实,因为第二个计时电容C2上的电压(VC2)决定第一个计时电容C1上的电荷达到第二个计时电容C2上的参考电压(VC2)的时间,此时间与补偿的斜坡信号到达1/2ILIM的精确时间相对应。
自适应电流限制器43中的控制环路48调整计时信号55,使得计时信号55的上升沿和反馈信号51的下降沿同时到来时,初级电感39的峰值电流等于预先设定的峰值限制电流。控制环路48使峰值电流(IP)与预先设定的峰值限制电流相一致,并且很大程度上不受输入线电压、温度、工艺的变化,元件的容差变化和PCB布板的不一致的影响。
可用另一种方法进一步阐述,内部集成的主MOSFET开关44在T1时间内导通,其时间为补偿的斜坡信号(ISWCOMP)到达1/2ILIM的时间加上一段宽度可变化的时间(TWIDTH)。此宽度可变化的时间为Nchon信号57的脉宽变化的时间。主功率开关管44在振荡器42产生的振荡频率(fOSC)的每个周期到来时导通,在(T1+TWIDTH)结束时关断,其中TWIDTH由控制环路48调整,结果总的斜坡上升时间等于希望的斜坡上升时间,从而维持输出电流
恒定。
图11为控制IC 38中的自适应电流限制器43更详细的说明图。自适应电流限制器43包括比较电路47,控制环路48和脉宽发生器49。脉宽发生器49包含单触发脉冲产生器100,其在Nchon信号57产生适当的脉冲宽度时产生一个脉冲。控制环路48包含一个鉴相器101,一个电荷泵102和环路滤波器103。控制环路48与延迟锁相环(DLL)相似,并使反馈信号51与计时信号55同步。鉴相器101包括两个D-flip-flops(D触发器)104和105和NAND(与非门)106。电荷泵102包括两个开关107、108,以及两个电流源109、110。环路滤波器103包括一个电阻111和一个电容112,时间误差信号59经过其滤波产生电压信号VFILTER。脉宽发生器49中的单触发脉冲产生器100在当补偿的斜坡信号(ISWCOMP)达到参考电流1/2ILIM时重置,当单触发计时器113计时结束时,被清零。单触发脉冲在一个时间段结束后产生,此时间段与时间误差信号59经过滤波产生的电压信号VFILTER成反比,与反馈信号51下降沿到计时信号55上升沿之间的时间差成正比。
自适应电流限制器43还包含第一个计时电容(C1)114,第二个计时电容(C2)115,三个计时偏置电流源116-118,第一个比较器119,第二个比较器120,两个P沟道FET(场效应晶体管)121-122,一个N沟道FET 123,一个电容124和一个感应电阻(RSENSE)125。第一个计时电容(C1)114的值为第二个计时电容(C2)115值的两倍。
当初级绕组39的电流(ILP)开始上升并且反馈信号51已产生时,P沟道FET 121关断,计时偏置电流源117开始对第一个计时电容(C1)114充电。因此,如图10,第一个计时电容C1上的电荷(VC1)开始斜坡上升。在第二个延迟时间(TD2)结束后,延迟信号TRAMPD产生,P沟道FET 122关断,从而计时偏置电流源118开始对第二个计时电容115充电。第二个计时电容115上电压的上升斜率为第一个计时电容114的两倍,因为第二个计时电容115的电容值为第一个计时电容114的一半。
当延迟信号TRAMPD产生时,N沟道FET 123关断,基极电流补偿的斜坡信号(ISWCOMP)输入到第一个比较器119的正向输入端,此补偿的斜坡信号通过电容124去除开关信号54电流(ISW)中的由外接NPN三极管37基极电流引起的直流失调电流而产生。然后,第一个比较器119将电压信号(VSWCOMP)和1/2VLIM信号进行比较,其中VSWCOMP相对应补偿的斜坡信号(ISWCOMP),1/2VLIM信号由计时偏置电流源116和电阻126产生,其值与参考电流1/2ILIM相对应。在其它的实现电路中,采用具有可感应电流的FET的电流比较器代替第一个电压比较器119,可直接将补偿的斜坡信号(ISWCOMP)和参考电流1/2ILIM进行比较。当补偿的斜坡信号(ISWCOMP)达到参考电流1/2ILIM,第一个比较器119产生翻转信号,此信号关断P沟道FET 127,因此关断计时偏置电流源118。当计时偏置电流源118关断时,第二个计时电容115上的电荷(VC2)保持不变。而第一个计时电容114上的电荷(VC1)以第二个计时电容115一半的充电速率上升。第二个比较器120将第一个计时电容114上持续增加的电荷和第二个计时电容115上保持的电荷(VC2)进行比较。当持续上升的电荷(VC1)达到第二个计时电容115上保持的电荷(VC2),目标时间达到,第二个比较器120产生计时信号55。鉴相器101将计时信号55的上升沿作为初级电感39的电流(ILP)等于预先设定的流过初级电感39的峰值限制电流的时间。
图11的具体实现电路中,第一个和第二个计时电容114-115的相对值用于产生计时信号55其正确的时序。其它的电路结构也可以使用从而得到正确时序。例如,可以使用同样大小的电容,同时第一个计时偏置电流源117产生的电流为第二个计时偏置电流源118产生的电流的一半。或者在计时电容和电流源都相同时,第二个比较器120在持续上升的电压(VC1)为保持的电压(VC2)的两倍时,才产生计时信号55。
在图11的具体实现电路中,由控制环路48产生的经过滤波的电压信号VFILTER,作为时间误差信号59,用来反映反馈信号51的下降沿与计时信号55的上升沿之间的时差。当被补偿的斜坡信号ISWCOMP上升到预先设定的固定的参考电流值1/2ILIM的时候,电路产生计时信号55的上升沿。在另一种具体实现电路中,经过滤波后的电压信号VFILTER用于调整由计时偏置电流源116和电阻126产生的基准电流1/2ILIM。这样,第二个计时电容115上的电压将会和第一个计时电容114上的电压同时达到基准电压。在这样一种具体实现电路中,当反馈信号51的下降沿提前于计时信号55的上升沿到来时,参考电流值1/2ILIM将会增大,从而表示需要增大初级电感的峰值电流(IP);相应地,当反馈信号51的下降沿滞后于计时信号55的上升沿到来时,参考电流值将会减小,从而表示需要减小初级电感的峰值电流(IP)。
在另一种具体实现电路中,振荡器42的开关频率(fOSC)将根据时间误差信号59来调整,从而使反激式变换器30产生恒定的输出电流IOUT。如公式(5)所示,对于给定的振荡器计时电容COSC,可通过调整振荡器的充电电流Iosc来调整其开关频率。而Iosc的值可以通过改变芯片内部振荡器中的电阻ROSC来进行调整。上述公式(3)表明:IOUT与振荡器42的开关频率(fOSC)成比例。因此,根据时间误差信号59来调整开关频率(fOSC),从而在初级电感的峰值电流(IP)变化的情况下,维持输出电流IOUT的恒定,其中时间误差信号59是根据目标时间与反馈信号51的下降沿之间的延迟来产生。在公式(3)中,可注意到,输出电流IOUT与初级电感39的峰值电流(IP)的平方成比例,因此,为了维持输出电流(IOUT)的恒定,开关频率(fOSC)必须与峰值电流(Ip)的平方成反比地进行调整。
在更具体的实现电路中,为了维持输出电流(IOUT)的恒定,PWM误差放大器76根据时间误差信号59自适应性地调整其输出范围,而时间误差信号59是根据目标时间与反馈信号51下降沿之间的延迟来产生。当反激式变换器30工作于正常的恒压模式时,PWM误差放大器76的输出信号77的电压值与输出电流(IOUT)成比例。此外,在恒压模式下,主功率开关管44的导通时间,其由图8中的时间信号TRAMP表示,是由电流感应放大器85的输出电压和PWM误差放大器76的输出信号77共同来控制。当输出电流增加时,PWM误差放大器76的输出信号77的电压值也相应增加,从而维持输出电压的恒定。
通常,主功率开关管44在每个时钟周期到来时导通,并且电流感应放大器85的输出电压信号将随着初级电感电流(ILP)成比例的斜坡上升,而初级电感电流(ILP)的斜坡上升速率为dl/dt=VP/LP,其中Vp为初级电感两端的电压。当电流感应放大器85的输出电压信号达到PWM误差放大器76的输出信号77时,主功率开关管44关断。因此通过钳位误差比较器81输出的调整信号86,从而将初级电感的峰值电流(IP)限制在某个最大值;通过调整调整信号86的钳位电压,从而对所限制的峰值电流(IP)进行控制。由控制环路48产生的时间误差信号59将自适应地调整钳位电压,从而维持输出电流(IOUT)恒定。在这种实现电路中,无论反激式变换器30调节输出得到恒定的电压还是恒定的电流,主功率开关管关断的时间,始终都是由电流感应放大器85输出的电压信号达到PWM误差放大器76的输出信号77的时间来决定的。当反激式变换器30工作于恒压模式的稳态条件下时,输出信号77的电压将会在低于钳位电压的正常范围内,而在恒流模式下,输出信号77的电压被钳位在最大值来限制峰值电流(IP).在恒流模式下,控制环路48将自适应地调整钳位电压值从而控制TRAMP的时间,来维持输出电流(IOUT)恒定。
为了更好的阐述,本实用新型使用一些具体的实现电路来进行描述,但是本实用新型并不仅限于所提到的实现方法。例如,其他的具体实现电路可以使用自适应的初级电感补偿,而不是采用自适应初级电感峰值电流限制。而且,对于图5中外接的高压NPN三级管37采用射级开关的结构,其他的具体实现电路可以通过控制IC内部集成的高压功率开关,直接对初级绕组39进行驱动。另外,为了进一步提高功率处理能力以及反激式变换器30的开关频率,可以使用一个MOSFET代替三级管作为外部开关。
图12为PWM控制器IC 128的另一个可替代的实现电路。此控制器IC 128不包含内部主MOSFET开关、用于电流感应的小比例的MOSFET以及耦合到电流感应MOSFET上的电流感应电阻,也就是不包括图6中的主功率开关管44、内部MOSFET83和电阻84。在这种实现电路中,其栅极驱动电路46的电流驱动能力对于大尺寸的MOSFET能更好的控制。
图13为使用图12中的控制器IC 128的反激式变换器30的另一个可替代的实现电路。此反激式变换器30的实现电路包含一个外部MOSFET 129和一个电流感应电阻130。
图14为采用控制器IC 38其集成电路封装131的反激式变换器30。此控制器IC 38仅使用辅助反馈信号52作为反馈信号来控制反激式变换器的输出电流以及输出电压,因此其集成电路封装只具有四个端口。封装的端口数的增加会使芯片成本相应提高。因此,与封装端口多于四个的控制器IC相比,采用以集成电路封装131来封装的控制器IC 38成本更低。集成电路封装131只有四个端口:一个开关端口132,一个反馈端口133,一个电源端口134和一个地端口135。在图14的具体实现电路中,开关端口132通过结合线136与SW端打线焊盘99相连。开关信号54由开关端口132接收并通过结合线136传输到SW端打线焊盘99。当封装的形式不同时,开关端口132的形式也不同。对于方形平面封装,开关端口132是一个引脚;对于基板栅格阵列(LGA),开关端口132是一个连接盘;对于针型栅格阵列(GPA),开关端口132是一个针型管脚;对于双列直插式封装(DIP)或单列直插式封装,开关端口132是一个管脚。当集成电路的封装131采用球形栅格阵列封装方式并且控制IC 38采用倒装焊的方式进行封装时,开关端口132并不是通过结合线连接到SW端打线焊盘99上。在采用球形栅格阵列作为封装方案时,在SW端打线焊盘99处有个缓冲垫,开关端口132由一个引线球连接到缓冲垫。在不同的封装实现方式中,反馈端口133,电源端口134和地端口135同样可以是球形栅格阵列的一个连接球,方形平面封装的一个引脚,或者是基板栅格阵列(LGA)的一个连接盘,或者是针型栅格阵列(GPA)的一个针型管脚,或者是双列直插式封装(DIP)或单列直插式封装的一个管脚。在反馈端FB其打线焊盘66通过结合线137连接到反馈端口133的实施方案中,控制IC 38通过反馈端口133接收到一个可以反映次级绕组40输出电压(VOUT)的信号。辅助反馈信号52由反馈端口133接收并通过结合线137传输到焊盘FB。
虽然上述的PWM逻辑电路45采用脉冲宽度调制产生Nchon信号57和电感开关控制信号56,但是可以使用变频脉冲调制代替恒定频率的PWM。在这种实现电路中,芯片使用频率变化的脉冲调制(PFM)的方式来产生Nchon信号57和电感开关控制信号56。
图15为图6中线修正电路的另一种实现电路。线修正电路87补偿由于反激式变换器30充电线具有电阻而引起充电线末端输出电压的降低。图6中的另一种实现电路,辅助反馈信号52的电压与线修正信号88的电压相减。相反,图15中的另一种实现电路,线修正信号88的电压与调制器(也就是稳压器)72产生的参考电压VREF相加。因此,在图6的实现电路中,前置放大器74将调制器72产生的参考电压VREF与修正的辅助反馈信号52相比较。在图15的另一种实现电路中,前置放大器74将辅助反馈信号52的反馈电压VFB与修正的参考信号VREF相比较。在图15中,前置放大器74正反输入端的差标识为差模输入电压VIN
在图15的实现电路中,PWM误差放大器76输出的输出信号77经过电阻78和低通滤波器138产生经过滤波的补偿信号(VCOMPF)139,此信号输入到线修正电路87。线修正电路87包括电流镜140、电流源141、P沟道FET142、N沟道FET143和第一个电阻R1144。选取P沟道FET142和N沟道FET143使其具有相似的栅源电压(VGS).
从N沟道FET143流出的补偿电流(ICOMP)145流过第一个电阻R1144。补偿电流(ICOMP)145的值近似等于经过滤波的补偿信号(VCOMPF)139除以第一个电阻R1144的电阻值。电流镜140由P沟道FET146和147组成。P沟道FET146为P沟道FET147的K倍。因此,线修正电路87输出的线修正信号88的电流近似等于补偿电流(ICOMP)145的K倍。在图15的实现电路中,通过使用第二个电阻R2148,线修正信号88的电压与调制器72产生的参考电压VREF相加。
当反激式变换器30工作在恒压模式,PWM误差放大器76输出的输出信号77的电压与输出电流(IOUT)近似成比例。因此,经过滤波的补偿信号(VCOMPF)139的电压与反激式变换器30的输出电流(IOUT)近似成比例。结果,前置放大器74其输入差模电压VIN近似等于:
V IN = V REF + K · R 2 R 1 · V COMPF - V FB .
当线电阻为0.25欧姆,标准输出5伏1安的充电器输出电压具有大约其标称的5伏输出电压5%的误差。(1安 x 0.25欧姆=0.25伏)在此例中,反激式变换器30的输出电压为5伏,但是充电线末端插头处的电压只有4.75伏。结果,线修正电路87提供5%的修正信号。对于调制器72产生的2.5伏的内部参考电压,线修正信号88产生0.125伏的电压。通过选取K,R1和R2的值得到0.125伏的电压。在此例中,通过提供5%的修正信号,在充电线末端插头处将得到精确而恒定的5伏电压,此插头将反激式变换器30与被充电设备例如手机连接在一起。
因而,各种改善,调整以及上述实现方法其特点的综合都归属于此实用新型的范围之内。

Claims (12)

1、一种功率变换器,其特征在于,它包括:
一个次级绕组,该次级绕组位于功率变换器的次级;
一个辅助绕组,该辅助绕组与次级绕组磁耦合,其中的辅助绕组位于功率变化器的初级,在所述辅助绕组两端的电压产生反馈信号;
一个充电线,该充电线具有插头,该充电线具有一定的电阻,充电线插头的电压称为插头电压;和
一个线修正电路,所述线修正电路接收反馈信号并产生线修正信号,通过使用线修正信号来补偿由于充电线具有电阻而引起的插头电压的下降,从而进行调整功率变换器的输出电压。
2、根据权利要求1所述的功率变换器,其特征在于,其中的功率变换器为反激式变换器。
3、根据权利要求1所述的功率变换器,其特征在于,所述反馈信号为电压信号,所述线修正信号也为电压信号,修正的反馈信号通过从反馈信号电压中减去线修正信号而产生,修正的反馈信号为电压信号,所述功率变换器进一步包括:
一个前置放大器,所述前置放大器将参考电压与修正的反馈信号电压相比较,其中的功率变换器的输出电压通过将参考电压与修正的反馈信号相比较来调整。
4、根据权利要求1所述的功率变换器,其特征在于,其中的参考电压通过辅助绕组两端的电压产生。
5、根据权利要求1所述的功率变换器,其特征在于,其中的反馈信号为电压信号,线修正信号也为电压信号,修正的参考电压通过将参考电压与线修正信号相加而产生,该功率变换器进一步包括:
一个前置放大器,该前置放大器将修正的参考电压与反馈信号的电压相比较,其中通过将修正的参考电压与反馈信号的电压相比较来调整功率变换器的输出电压。
6、根据权利要求1所述的功率变换器,其特征在于,其中的线修正电路是封装只有四个端口的集成电路的一部分。
7、一种功率变换器,其特征在于,它包括:
一个次级绕组,该次级绕组位于功率变换器的次级;
一个辅助绕组,该辅助绕组与次级绕组磁耦合,所述辅助绕组位于功率变化器的初级,所述辅助绕组两端的电压产生反馈信号;
一个充电线,该充电线具有插头,所述充电线具有一定的电阻,电线插头的电压称为插头电压;和
一个电路,该电路通过补偿由于充电线具有电阻而引起的插头端电压的下降,从而调整输出电压。
8、根据权利要求7所述的功率变换器,其特征在于,所述电路通过接收反馈信号,产生线修正信号。
9、根据权利要求8所述的功率变换器,其特征在于,所述反馈信号为电压信号,所述线修正信号也为电压信号,所述电路由集成电路实现,集成电路通过将参考电压与线修正信号的电压相加从而产生修正的参考电压,集成电路将修正的参考电压与反馈信号的电压相比较,和功率变换器的输出电压通过将修正的参考电压与反馈信号的电压相比较来调整。
10、根据权利要求8所述的功率变换器,其特征在于,其中的反馈信号为电压信号,线修正信号为电压信号,所述电路由集成电路实现,集成电路通过从反馈信号电压中减去线修正信号的电压从而产生修正的反馈信号,修正的反馈信号为电压信号,集成电路将修正的反馈信号与参考电压相比较,和功率变换器的输出电压通过将修正的反馈信号的电压与参考电压相比较来调整。
11、根据权利要求7所述的功率变换器,其特征在于,所述电路由集成电路实现,此集成电路的封装只有四个端口。
12、根据权利要求7所述的功率变换器,其特征进一步包括:
一个初级绕组,该初级绕组位于功率变换器的初级;
一个电感开关,由电感开关控制信号控制该电感开关导通,其中初级绕组实际的电感值与标称的电感值有偏差,当电感开关以开关频率导通时,电感电流流过初级绕组并斜坡上升到峰值电流;和
一个电路,所述电路调整开关频率来补偿实际的电感值与标称的电感值的偏差从而维持峰值电流为固定的值。
CNU200820105286XU 2007-04-23 2008-04-18 实现输出端电压恒定的功率变换器 Expired - Lifetime CN201226496Y (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/789,160 2007-04-23
US11/789,160 US7911808B2 (en) 2007-02-10 2007-04-23 Primary side constant output current controller with highly improved accuracy
CN200710040122.3 2007-04-27
US11/897,131 2007-08-28

Publications (1)

Publication Number Publication Date
CN201226496Y true CN201226496Y (zh) 2009-04-22

Family

ID=39967220

Family Applications (12)

Application Number Title Priority Date Filing Date
CNU2008201052874U Expired - Lifetime CN201226493Y (zh) 2007-04-23 2008-04-18 实现高精度恒流输出的初级反馈控制器
CNU200820105286XU Expired - Lifetime CN201226496Y (zh) 2007-04-23 2008-04-18 实现输出端电压恒定的功率变换器
CN2008201052840U Expired - Fee Related CN201409089Y (zh) 2007-04-23 2008-04-18 实现管脚复用的电源转换器及集成电路封装
CN2008100933535A Expired - Fee Related CN101350558B (zh) 2007-04-23 2008-04-18 实现管脚复用的四管脚封装恒流恒压控制器及方法
CN2008100933569A Expired - Fee Related CN101350561B (zh) 2007-04-23 2008-04-18 实现高精度恒流输出的初级反馈控制器及方法
CN200810093354.XA Expired - Fee Related CN101350559B (zh) 2007-04-23 2008-04-18 实现恒定输出电流的初级控制的功率变换器及方法
CN2008100933573A Expired - Fee Related CN101350562B (zh) 2007-04-23 2008-04-18 补偿电感偏差的方法、系统和实现电路元件
CNU2008201052893U Expired - Lifetime CN201270478Y (zh) 2007-04-23 2008-04-18 实现三极管基极电流补偿的电路装置
CNU2008201052889U Expired - Lifetime CN201352770Y (zh) 2007-04-23 2008-04-18 补偿电感偏差的系统及电路元件
CN2008100933554A Expired - Fee Related CN101350560B (zh) 2007-04-23 2008-04-18 实现输出端电压恒定的功率变换器及方法
CNU2008201052855U Expired - Lifetime CN201352769Y (zh) 2007-04-23 2008-04-18 实现恒定输出电流的初级控制的功率变换器
CN2008100933588A Expired - Fee Related CN101350565B (zh) 2007-04-23 2008-04-18 实现三极管基极电流补偿的电路装置及控制方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNU2008201052874U Expired - Lifetime CN201226493Y (zh) 2007-04-23 2008-04-18 实现高精度恒流输出的初级反馈控制器

Family Applications After (10)

Application Number Title Priority Date Filing Date
CN2008201052840U Expired - Fee Related CN201409089Y (zh) 2007-04-23 2008-04-18 实现管脚复用的电源转换器及集成电路封装
CN2008100933535A Expired - Fee Related CN101350558B (zh) 2007-04-23 2008-04-18 实现管脚复用的四管脚封装恒流恒压控制器及方法
CN2008100933569A Expired - Fee Related CN101350561B (zh) 2007-04-23 2008-04-18 实现高精度恒流输出的初级反馈控制器及方法
CN200810093354.XA Expired - Fee Related CN101350559B (zh) 2007-04-23 2008-04-18 实现恒定输出电流的初级控制的功率变换器及方法
CN2008100933573A Expired - Fee Related CN101350562B (zh) 2007-04-23 2008-04-18 补偿电感偏差的方法、系统和实现电路元件
CNU2008201052893U Expired - Lifetime CN201270478Y (zh) 2007-04-23 2008-04-18 实现三极管基极电流补偿的电路装置
CNU2008201052889U Expired - Lifetime CN201352770Y (zh) 2007-04-23 2008-04-18 补偿电感偏差的系统及电路元件
CN2008100933554A Expired - Fee Related CN101350560B (zh) 2007-04-23 2008-04-18 实现输出端电压恒定的功率变换器及方法
CNU2008201052855U Expired - Lifetime CN201352769Y (zh) 2007-04-23 2008-04-18 实现恒定输出电流的初级控制的功率变换器
CN2008100933588A Expired - Fee Related CN101350565B (zh) 2007-04-23 2008-04-18 实现三极管基极电流补偿的电路装置及控制方法

Country Status (2)

Country Link
US (6) US7911808B2 (zh)
CN (12) CN201226493Y (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350560B (zh) * 2007-04-23 2013-03-20 技领半导体(上海)有限公司 实现输出端电压恒定的功率变换器及方法
CN103580487A (zh) * 2012-08-10 2014-02-12 通嘉科技股份有限公司 产生变压器的可变采样延迟时间的采样维持电路及其方法
US8937819B2 (en) 2011-04-13 2015-01-20 NeoEnergy Microelectronics, Inc. Integrated control circuit of setting brown-in voltage and compensating output power and method for operating the same
CN105375765A (zh) * 2014-08-15 2016-03-02 电力集成公司 用于具有过渡区域调节的电源的控制器
US10224806B1 (en) 2017-11-16 2019-03-05 Infineon Technologies Austria Ag Power converter with selective transformer winding input
US10432097B2 (en) 2017-11-30 2019-10-01 Infineon Technologies Austria Ag Selection control for transformer winding input in a power converter
CN114204821A (zh) * 2021-12-10 2022-03-18 杭州茂力半导体技术有限公司 开关变换器及其控制器和控制方法

Families Citing this family (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7515444B2 (en) * 2005-11-01 2009-04-07 Schumacher Electric Corporation Converter with selective current mode and voltage mode controlled switching
US7418878B2 (en) * 2006-09-19 2008-09-02 Los Robles Advertising, Inc. Universal sensor controller for a thermal anemometer
KR100894565B1 (ko) * 2006-11-01 2009-04-24 박찬웅 에스엠피에스의 권선 전압으로부터 출력 전압의 오차를 피드백하는 회로 및 방법과, 오차 정보를 검출하는 회로
CN101790708B (zh) * 2007-08-28 2012-10-10 艾沃特有限公司 混合pwm和pfm的电流限制控制
US7859864B2 (en) * 2007-11-28 2010-12-28 Fuji Electric Systems Co., Ltd. Switching power supply device
CN101515756B (zh) * 2008-02-18 2011-11-23 昂宝电子(上海)有限公司 具有多种模式的用于高效功率控制的方法和系统
TWI358622B (en) * 2008-04-23 2012-02-21 Nanya Technology Corp Temperature detector and the method using the same
TW200945718A (en) * 2008-04-23 2009-11-01 Niko Semiconductor Co Ltd Switching power supply apparatus with current output limit
US7746673B2 (en) * 2008-05-10 2010-06-29 Active-Semi, Inc. Flyback constant voltage converter having both a PWFM mode and a PWM mode
TWI382636B (zh) * 2008-06-06 2013-01-11 Richtek Technology Corp And a control method and a device for controlling the maximum output power of the power supply
TW200951665A (en) * 2008-06-06 2009-12-16 Richtek Technology Corp Sensing circuit and method for a flyback converter
US8125798B2 (en) * 2008-07-01 2012-02-28 Active-Semi, Inc. Constant current and voltage controller in a three-pin package operating in critical conduction mode
US8305776B2 (en) 2008-07-30 2012-11-06 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for primary-side regulation in off-line switching-mode flyback power conversion system
US20110199796A1 (en) * 2008-08-28 2011-08-18 Xin Wu Structure of a power supply
US7817447B2 (en) * 2008-08-30 2010-10-19 Active-Semi, Inc. Accurate voltage regulation of a primary-side regulation power supply in continuous conduction mode operation
US20100060257A1 (en) * 2008-09-05 2010-03-11 Firas Azrai Current sensor for power conversion
JP2010081687A (ja) * 2008-09-24 2010-04-08 Panasonic Corp スイッチング制御回路及びスイッチング電源装置
US8854019B1 (en) 2008-09-25 2014-10-07 Rf Micro Devices, Inc. Hybrid DC/DC power converter with charge-pump and buck converter
US8526203B2 (en) 2008-10-21 2013-09-03 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for constant voltage mode and constant current mode in flyback power converter with primary-side sensing and regulation
US8488342B2 (en) 2008-10-21 2013-07-16 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for constant voltage mode and constant current mode in flyback power converters with primary-side sensing and regulation
US9350252B2 (en) 2008-10-21 2016-05-24 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for protecting power conversion systems based on at least feedback signals
US7911815B2 (en) * 2008-12-31 2011-03-22 Grenergy Opto, Inc. Primary-side feedback control device and related method for a power converter
US8179699B2 (en) * 2008-12-31 2012-05-15 Stmicroelectronics S.R.L. Method for controlling a switching regulator and related switching regulator
US8331114B2 (en) * 2009-02-10 2012-12-11 System General Corporation Flyback power converters having a high side driving circuit
US9166471B1 (en) 2009-03-13 2015-10-20 Rf Micro Devices, Inc. 3D frequency dithering for DC-to-DC converters used in multi-mode cellular transmitters
US8315576B2 (en) 2009-05-05 2012-11-20 Rf Micro Devices, Inc. Capacitive compensation of cascaded directional couplers
CN101562397B (zh) * 2009-05-27 2014-02-12 成都芯源系统有限公司 基于第三绕组检测的双模式恒电流控制方法及其电路
TWI431918B (zh) * 2009-06-19 2014-03-21 Leadtrend Tech Corp 控制方法、定電流控制方法、產生一實際電流源以代表一繞組之平均電流之方法、定電流定電壓電源轉換器、開關控制器、以及平均電壓偵測器
US8358518B2 (en) * 2009-08-14 2013-01-22 System General Corporation Switching regulator having terminal for feedback signal inputting and peak switching current programming
US9088217B2 (en) * 2009-08-20 2015-07-21 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for load compensation with primary-side sensing and regulation for flyback power converters
CN101645656B (zh) * 2009-09-01 2011-09-14 成都芯源系统有限公司 电流峰值压缩方法及采用该方法的控制电路
JP2011062026A (ja) * 2009-09-11 2011-03-24 Panasonic Corp スイッチング電源装置及び半導体装置
JP2011091925A (ja) * 2009-10-21 2011-05-06 Panasonic Corp スイッチング電源装置
CN102055357B (zh) * 2009-10-27 2013-01-09 聚辰半导体(上海)有限公司 开关电源控制器电路及开关电源系统
JP5280332B2 (ja) * 2009-10-30 2013-09-04 日立オートモティブシステムズ株式会社 電流制御用半導体素子およびそれを用いた制御装置
GB2475261B (en) * 2009-11-11 2014-10-22 E2V Tech Uk Ltd High frequency cathode heater supply for a microwave source
CN102497107B (zh) * 2011-12-09 2015-04-01 上海新进半导体制造有限公司 开关电源控制器及开关电源
TWI416855B (zh) * 2009-12-18 2013-11-21 Realtek Semiconductor Corp 切換式電源供應器
TW201123701A (en) * 2009-12-23 2011-07-01 Leadtrend Tech Corp Control method and controller
US8811045B2 (en) 2009-12-25 2014-08-19 02Micro, Inc. Circuits and methods for controlling power converters including transformers
CN101789689B (zh) * 2009-12-25 2011-07-06 凹凸电子(武汉)有限公司 电源转换器、控制电源转换器中变压器的控制器及方法
TWI418124B (zh) * 2009-12-25 2013-12-01 Leadtrend Tech Corp 控制方法以及控制器
US8059429B2 (en) * 2009-12-31 2011-11-15 Active-Semi, Inc. Using output drop detection pulses to achieve fast transient response from a low-power mode
US8548398B2 (en) 2010-02-01 2013-10-01 Rf Micro Devices, Inc. Envelope power supply calibration of a multi-mode radio frequency power amplifier
US8233292B2 (en) * 2010-02-25 2012-07-31 O2Micro, Inc. Controllers, systems and methods for controlling power of light sources
US8538355B2 (en) 2010-04-19 2013-09-17 Rf Micro Devices, Inc. Quadrature power amplifier architecture
US8947157B2 (en) 2010-04-20 2015-02-03 Rf Micro Devices, Inc. Voltage multiplier charge pump buck
US8831544B2 (en) 2010-04-20 2014-09-09 Rf Micro Devices, Inc. Dynamic device switching (DDS) of an in-phase RF PA stage and a quadrature-phase RF PA stage
US9553550B2 (en) 2010-04-20 2017-01-24 Qorvo Us, Inc. Multiband RF switch ground isolation
US8811920B2 (en) 2010-04-20 2014-08-19 Rf Micro Devices, Inc. DC-DC converter semiconductor die structure
US8983407B2 (en) 2010-04-20 2015-03-17 Rf Micro Devices, Inc. Selectable PA bias temperature compensation circuitry
US9008597B2 (en) 2010-04-20 2015-04-14 Rf Micro Devices, Inc. Direct current (DC)-DC converter having a multi-stage output filter
US8942650B2 (en) 2010-04-20 2015-01-27 Rf Micro Devices, Inc. RF PA linearity requirements based converter operating mode selection
US9362825B2 (en) 2010-04-20 2016-06-07 Rf Micro Devices, Inc. Look-up table based configuration of a DC-DC converter
US9214865B2 (en) 2010-04-20 2015-12-15 Rf Micro Devices, Inc. Voltage compatible charge pump buck and buck power supplies
US9030256B2 (en) 2010-04-20 2015-05-12 Rf Micro Devices, Inc. Overlay class F choke
US8913967B2 (en) 2010-04-20 2014-12-16 Rf Micro Devices, Inc. Feedback based buck timing of a direct current (DC)-DC converter
US9077405B2 (en) 2010-04-20 2015-07-07 Rf Micro Devices, Inc. High efficiency path based power amplifier circuitry
US8559898B2 (en) 2010-04-20 2013-10-15 Rf Micro Devices, Inc. Embedded RF PA temperature compensating bias transistor
US8983410B2 (en) 2010-04-20 2015-03-17 Rf Micro Devices, Inc. Configurable 2-wire/3-wire serial communications interface
US8958763B2 (en) 2010-04-20 2015-02-17 Rf Micro Devices, Inc. PA bias power supply undershoot compensation
US9900204B2 (en) 2010-04-20 2018-02-20 Qorvo Us, Inc. Multiple functional equivalence digital communications interface
US8706063B2 (en) 2010-04-20 2014-04-22 Rf Micro Devices, Inc. PA envelope power supply undershoot compensation
US8565694B2 (en) 2010-04-20 2013-10-22 Rf Micro Devices, Inc. Split current current digital-to-analog converter (IDAC) for dynamic device switching (DDS) of an RF PA stage
US8571492B2 (en) 2010-04-20 2013-10-29 Rf Micro Devices, Inc. DC-DC converter current sensing
US9577590B2 (en) 2010-04-20 2017-02-21 Qorvo Us, Inc. Dual inductive element charge pump buck and buck power supplies
US8913971B2 (en) 2010-04-20 2014-12-16 Rf Micro Devices, Inc. Selecting PA bias levels of RF PA circuitry during a multislot burst
US8542061B2 (en) 2010-04-20 2013-09-24 Rf Micro Devices, Inc. Charge pump based power amplifier envelope power supply and bias power supply
US9214900B2 (en) 2010-04-20 2015-12-15 Rf Micro Devices, Inc. Interference reduction between RF communications bands
US8892063B2 (en) 2010-04-20 2014-11-18 Rf Micro Devices, Inc. Linear mode and non-linear mode quadrature PA circuitry
US9184701B2 (en) 2010-04-20 2015-11-10 Rf Micro Devices, Inc. Snubber for a direct current (DC)-DC converter
US8842399B2 (en) 2010-04-20 2014-09-23 Rf Micro Devices, Inc. ESD protection of an RF PA semiconductor die using a PA controller semiconductor die
US8515361B2 (en) * 2010-04-20 2013-08-20 Rf Micro Devices, Inc. Frequency correction of a programmable frequency oscillator by propagation delay compensation
US9048787B2 (en) 2010-04-20 2015-06-02 Rf Micro Devices, Inc. Combined RF detector and RF attenuator with concurrent outputs
US8989685B2 (en) 2010-04-20 2015-03-24 Rf Micro Devices, Inc. Look-up table based configuration of multi-mode multi-band radio frequency power amplifier circuitry
US8731498B2 (en) 2010-04-20 2014-05-20 Rf Micro Devices, Inc. Temperature correcting an envelope power supply signal for RF PA circuitry
US8699973B2 (en) 2010-04-20 2014-04-15 Rf Micro Devices, Inc. PA bias power supply efficiency optimization
US8811921B2 (en) 2010-04-20 2014-08-19 Rf Micro Devices, Inc. Independent PA biasing of a driver stage and a final stage
US8712349B2 (en) 2010-04-20 2014-04-29 Rf Micro Devices, Inc. Selecting a converter operating mode of a PA envelope power supply
US8942651B2 (en) 2010-04-20 2015-01-27 Rf Micro Devices, Inc. Cascaded converged power amplifier
CN102237810B (zh) * 2010-04-22 2016-08-24 通嘉科技股份有限公司 开关模式电源供应器的控制方法以及补偿电路
US9570985B2 (en) * 2010-07-02 2017-02-14 Renesas Electronics America Inc. Intelligent gate drive voltage generator
CN102332826B (zh) * 2010-07-13 2013-11-13 昂宝电子(上海)有限公司 用于反激式电源变换器的初级侧感测和调整的系统和方法
CN101917120B (zh) * 2010-07-22 2012-10-03 魏其萃 用于开关电源的高精度峰值电感电流的控制装置
US8164391B2 (en) * 2010-07-28 2012-04-24 Active-Semi, Inc. Synchronization of multiple high frequency switching power converters in an integrated circuit
US9124171B2 (en) * 2010-07-28 2015-09-01 James Roy Young Adaptive current limiter and dimmer system including the same
JP5406145B2 (ja) * 2010-08-31 2014-02-05 日立オートモティブシステムズ株式会社 電流制御用半導体素子、およびそれを用いた制御装置
CN101976962B (zh) * 2010-09-20 2015-11-25 北京中星微电子有限公司 一种交流-直流电源转换电路及其修调方法
TWI411202B (zh) * 2010-12-20 2013-10-01 Richtek Technology Corp 電源轉換器的控制器以及電源轉換器的控制方法
KR20130132546A (ko) 2010-12-23 2013-12-04 마벨 월드 트레이드 리미티드 플라이백 컨버터 설계에서 전압 스트레스 감소
US8779731B2 (en) * 2011-01-10 2014-07-15 Eta Semiconductor Inc. Synthetic ripple hysteretic powder converter
CN102612199A (zh) * 2011-01-24 2012-07-25 吕伟文 恒定导通时间电流模式控制的led驱动器的开关方法
CN102624237B (zh) 2011-02-01 2015-09-16 昂宝电子(上海)有限公司 用于反激式电源变换器的动态阈值调节的系统和方法
KR101241470B1 (ko) * 2011-02-24 2013-03-11 엘지이노텍 주식회사 전류 조절 장치
CN102158091B (zh) * 2011-03-11 2013-09-25 上海南麟电子有限公司 初级控制恒流恒压变换器
EP2512021B1 (en) * 2011-04-14 2017-07-19 Nxp B.V. A controller for a switched mode power converter
US8477516B2 (en) * 2011-04-18 2013-07-02 Noveltek Semiconductor Corp. Low cost high power factor LED driver
EP2515426B1 (en) * 2011-04-20 2019-06-12 Nxp B.V. A switching circuit
CN102769383B (zh) 2011-05-05 2015-02-04 广州昂宝电子有限公司 用于利用初级侧感测和调整进行恒流控制的系统和方法
CN102801325B (zh) 2011-05-23 2015-02-04 广州昂宝电子有限公司 用于电源变换器的开关频率和峰值电流调节的系统和方法
US8630103B2 (en) * 2011-06-15 2014-01-14 Power Integrations, Inc. Method and apparatus for programming a power converter controller with an external programming terminal having multiple functions
CN102843040B (zh) * 2011-06-20 2015-09-30 深圳市蓝海华腾技术股份有限公司 一种开关电源
CN104579273B (zh) * 2011-06-20 2021-09-28 昂宝电子(上海)有限公司 通过调节基极电流来驱动双极结型晶体管的系统和方法
EP2538533B1 (en) * 2011-06-22 2016-08-10 Nxp B.V. Switched mode power supply
CN102255502B (zh) * 2011-07-16 2014-04-16 西安电子科技大学 应用于反激式开关电源的初级电感校正电路
CN102916586B (zh) 2011-08-04 2014-04-02 昂宝电子(上海)有限公司 用于开关电源变换器的系统和方法
US8811037B2 (en) * 2011-09-05 2014-08-19 Texas Instruments Incorporated Adaptive driver delay compensation
US20130070483A1 (en) 2011-09-20 2013-03-21 Yu-Yun Huang Controlling Method, Power Supply, Power Controller, and Power Controlling Method
CN102355134B (zh) * 2011-09-23 2013-09-18 成都芯源系统有限公司 开关变换电路及变换方法
TWI445291B (zh) * 2011-10-12 2014-07-11 Leadtrend Tech Corp 一次側控制方法以及電源控制器
CN103078489B (zh) * 2011-10-25 2015-12-16 昂宝电子(上海)有限公司 用于利用开关频率抖动减少电磁干扰的系统和方法
CN105246194B (zh) 2011-11-15 2018-07-03 昂宝电子(上海)有限公司 用于各种操作模式中的恒流控制的led照明系统和方法
KR101822068B1 (ko) 2011-11-23 2018-01-26 페어차일드코리아반도체 주식회사 스위치 제어 방법, 스위치 제어기 및 이를 포함하는 컨버터
KR20130080293A (ko) * 2012-01-04 2013-07-12 삼성전기주식회사 Pwm 제어 회로, 플라이백 컨버터 및 pwm 제어 방법
US9065505B2 (en) 2012-01-31 2015-06-23 Rf Micro Devices, Inc. Optimal switching frequency for envelope tracking power supply
US8653881B2 (en) * 2012-01-31 2014-02-18 Infineon Technologies Austria Ag Half bridge flyback and forward
CN102624240B (zh) * 2012-03-26 2014-09-17 深圳市华芯邦科技有限公司 一种原边反馈开关电源控制芯片
CN103368400B (zh) 2012-03-31 2015-02-18 昂宝电子(上海)有限公司 用于恒压控制和恒流控制的系统和方法
DE102012209133A1 (de) * 2012-05-31 2013-12-05 Osram Gmbh Schaltungsanordnung zum betreiben einer lampe, lampe undentsprechendes verfahren
CN102751879B (zh) * 2012-07-19 2015-09-16 魏其萃 恒定开关频率断续电流模式平均输出电流控制的方法
CN102790531B (zh) 2012-07-24 2015-05-27 昂宝电子(上海)有限公司 用于电源变换系统的电流控制的系统
US9392654B2 (en) * 2012-08-31 2016-07-12 Marvell World Trade Ltd. Method and apparatus for controlling a power adjustment to a lighting device
CN102946197B (zh) 2012-09-14 2014-06-25 昂宝电子(上海)有限公司 用于电源变换系统的电压和电流控制的系统和方法
CN102868439B (zh) * 2012-09-26 2015-07-01 索尔思光电(成都)有限公司 实现olt光模块管脚复用的控制系统
CN103795254B (zh) * 2012-10-29 2016-01-06 华润矽威科技(上海)有限公司 反激式开关电源装置及其恒压控制器
TWI488414B (zh) * 2012-10-30 2015-06-11 Lite On Technology Corp 具初級側回授控制之返馳式電壓轉換器及其電壓控制方法
US9350249B2 (en) * 2012-11-20 2016-05-24 Texas Instruments Incorporated Flyback power supply regulation apparatus and methods
TWI473398B (zh) * 2012-11-22 2015-02-11 Leadtrend Tech Corp 在電源轉換器的定電流模式中產生抖動的控制器及其方法
CN103036438B (zh) 2012-12-10 2014-09-10 昂宝电子(上海)有限公司 用于电源变换系统中的峰值电流调节的系统和方法
CN103066852B (zh) 2012-12-21 2016-02-24 昂宝电子(上海)有限公司 用于源极切换和电压生成的系统和方法
JP6107132B2 (ja) * 2012-12-28 2017-04-05 富士電機株式会社 スイッチング電源装置
CN103066872B (zh) * 2013-01-17 2015-06-17 矽力杰半导体技术(杭州)有限公司 一种集成开关电源控制器以及应用其的开关电源
CN103116062B (zh) * 2013-03-11 2015-07-08 矽力杰半导体技术(杭州)有限公司 一种电压峰值检测电路及检测方法
US9318963B2 (en) 2013-03-13 2016-04-19 Dialog Semiconductor Inc. Switching power converter with secondary to primary messaging
US9184668B2 (en) * 2013-03-15 2015-11-10 Flextronics Ap, Llc Power management integrated circuit partitioning with dedicated primary side control winding
CN104080226B (zh) * 2013-03-26 2016-04-27 无锡华润华晶微电子有限公司 一种根据采样电流来控制三极管开关的电路
JP2015011505A (ja) * 2013-06-28 2015-01-19 ソニー株式会社 電圧検出器、電子機器、および、電圧検出器の制御方法
US9584009B2 (en) * 2013-07-10 2017-02-28 Microchip Technology Inc. Line current reference generator
CN103401442B (zh) * 2013-07-30 2015-09-02 浙江大学 一种基于输出恒流的ac-dc隔离型变换器的数字控制器
CN104349540B (zh) * 2013-08-09 2017-11-10 意法半导体研发(深圳)有限公司 用于发光设备的驱动装置及其方法
CN103414350B (zh) 2013-08-29 2016-08-17 昂宝电子(上海)有限公司 基于负载条件调节频率和电流的系统和方法
CN103532102B (zh) * 2013-09-26 2017-10-17 昂宝电子(上海)有限公司 用于电源变换系统的过温保护和过压保护的系统和方法
US9407152B2 (en) 2013-11-11 2016-08-02 Lg Innotek Co., Ltd. Current regulation apparatus
CN103618292B (zh) 2013-12-06 2017-01-11 昂宝电子(上海)有限公司 用于保护电源变换系统免受热失控的系统和方法
US9379625B2 (en) * 2013-12-26 2016-06-28 Dialog Semiconductor Inc. Current meter for load modulation communication receiver architecture
CN105896975B (zh) 2014-04-23 2019-04-26 广州昂宝电子有限公司 用于电源变换系统中的输出电流调节的系统和方法
TWI568160B (zh) * 2014-05-09 2017-01-21 立錡科技股份有限公司 返馳式電源供應器及其控制電路
CN104319983B (zh) * 2014-09-29 2017-09-29 矽力杰半导体技术(杭州)有限公司 一种用于开关电源中的源极驱动方法、驱动电路及开关电源
CN104660022B (zh) 2015-02-02 2017-06-13 昂宝电子(上海)有限公司 为电源变换器提供过流保护的系统和方法
US9559597B2 (en) * 2015-02-27 2017-01-31 Dialog Semiconductor Inc. Detecting open connection of auxiliary winding in a switching mode power supply
CN106797192A (zh) * 2015-05-29 2017-05-31 株式会社小松制作所 电压控制装置以及电压控制方法
CN104902653B (zh) * 2015-06-24 2018-04-10 赛尔富电子有限公司 一种led恒压调光电源及led灯具调光系统
US10250144B2 (en) * 2015-07-08 2019-04-02 Infineon Technologies Austria Ag Input voltage detection for a power converter including a transformer having a primary side and a secondary side
US9692301B2 (en) * 2015-07-16 2017-06-27 Texas Instruments Incorporated DC-DC voltage converter with adaptive charge transferring capability
US10008947B2 (en) * 2015-07-31 2018-06-26 Texas Instruments Incorporated Flyback converter with secondary side regulation
DE102015215801A1 (de) * 2015-08-19 2017-02-23 Siemens Aktiengesellschaft Eigenversorgte Messvorrichtung und Messverfahren
WO2017082888A1 (en) 2015-11-11 2017-05-18 Halliburton Energy Services, Inc. Reusing electromagnetic energy from a voltage converter downhole
US9735687B2 (en) * 2015-11-23 2017-08-15 Sync Power Corp. Regulating power converter by sensing transformer discharge timing
US9887626B2 (en) * 2016-01-11 2018-02-06 Semiconductor Components Industries, Llc Adaptive feedback control system and method for voltage regulators
CN105656136A (zh) * 2016-02-22 2016-06-08 联想(北京)有限公司 信号处理方法、供电设备及充电设备
US10033269B2 (en) 2016-04-29 2018-07-24 Infineon Technologies Austria Ag Voltage doubler with capacitor module for increasing capacitance
US10033264B2 (en) 2016-04-29 2018-07-24 Infineon Technologies Austria Ag Bulk capacitor switching for power converters
US10541550B2 (en) * 2016-05-25 2020-01-21 Dialog Semiconductor Inc. Switching power converter for direct battery charging
US20170346405A1 (en) * 2016-05-26 2017-11-30 Inno-Tech Co., Ltd. Dual-mode operation controller for flyback converter with primary-side regulation
EP3465867B1 (en) * 2016-06-06 2023-05-24 Webasto Charging Systems, Inc. Transformer for measuring a common mode current and method of determining a common mode current
CN105932748A (zh) * 2016-06-24 2016-09-07 北京奇虎科技有限公司 可变充电电压的充电方法、充电器及充电系统
CN106655422A (zh) * 2016-12-02 2017-05-10 徐州工业职业技术学院 一种电容降压可调式智能蓄电池充电器
CN108270357B (zh) * 2016-12-30 2020-03-31 比亚迪股份有限公司 开关电源及其的前馈补偿电路
CN110073584B (zh) * 2017-01-12 2022-06-14 戴泺格半导体股份有限公司 混合次级侧调节
CN107196511B (zh) 2017-03-30 2019-07-05 昂宝电子(上海)有限公司 用于功率变换器的控制器和方法
TWI657250B (zh) * 2018-05-24 2019-04-21 產晶積體電路股份有限公司 電流檢測方法
TWI664786B (zh) * 2018-06-05 2019-07-01 瑞昱半導體股份有限公司 媒體串流裝置及其保護方法
CN110602541B (zh) * 2018-06-12 2021-08-20 瑞昱半导体股份有限公司 媒体串流装置及其保护方法
CN110690823B (zh) * 2018-07-04 2021-03-23 立锜科技股份有限公司 切换式电源供应器及其功率开关控制电路
CN108696105B (zh) * 2018-07-09 2024-03-19 杰华特微电子(张家港)有限公司 开关电源控制电路及开关电源
CN109327146B (zh) * 2018-12-07 2024-03-22 中国电子科技集团公司第四十三研究所 一种电压控制隔离型dc/dc变换器的环路补偿电路及补偿方法
KR102609558B1 (ko) 2018-12-07 2023-12-04 삼성전자주식회사 전압 발생기 및 이의 동작 방법
CN109768709B (zh) 2018-12-29 2021-03-19 昂宝电子(上海)有限公司 基于功率变换器中的负载条件的电压补偿系统和方法
US10715045B1 (en) 2019-01-25 2020-07-14 Semiconductor Components Industries, Llc Methods and systems of operating power converters
TWI697185B (zh) * 2019-02-25 2020-06-21 新唐科技股份有限公司 電壓轉換裝置
CN109980947B (zh) * 2019-04-21 2024-09-17 广州金升阳科技有限公司 Dcdc原边反馈电压检测设定电路及其方法
CN112105119B (zh) * 2019-06-18 2024-05-28 半导体组件工业公司 用于功率转换器的控制器
US10746118B1 (en) * 2019-07-02 2020-08-18 Delphi Technologies Ip Limited Compensator circuitry and method for an oxygen sensor
CN112467810B (zh) * 2019-09-06 2022-11-29 河南森源电气股份有限公司 一种脉冲式车载充电器
CN111147049B (zh) * 2019-12-19 2023-10-27 深圳市显控科技股份有限公司 一种避免尖峰脉冲的脉冲停止方法
CN111030680B (zh) * 2019-12-25 2023-07-21 重庆邮电大学 一种用于延迟锁相环的电荷泵电路
US11588408B2 (en) * 2020-05-06 2023-02-21 Stmicroelectronics S.R.L. Power supply circuit, corresponding device and method
CN111917300B (zh) * 2020-09-17 2024-10-01 中国电子科技集团公司第四十三研究所 一种次级控制隔离型dc/dc变换器电路拓扑结构
CN114400899B (zh) * 2020-11-16 2023-07-18 上海百功半导体有限公司 一种新型零电压切换控制电路、方法及电压变换器
CN112821772B (zh) * 2021-01-22 2023-04-07 成都启臣微电子股份有限公司 自适应环路控制系统、控制方法及开关电源
CN112953242B (zh) * 2021-03-25 2023-02-17 深圳南云微电子有限公司 一种瞬时过功率控制方法及电路
CN114123769B (zh) * 2021-12-02 2024-08-06 屹世半导体(上海)有限公司 双模式开关频率控制电路
US11994886B2 (en) * 2021-12-17 2024-05-28 ONiO AS Power saving in an embedded system

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193063A (en) * 1978-05-15 1980-03-11 Leeds & Northrup Company Differential capacitance measuring circuit
IT8020996A0 (it) * 1980-03-28 1980-03-28 Sits Soc It Telecom Siemens Dispositivo circuitale per rendere simmetrico il ciclo di isteresi in un alimentatore di tipo "pushpull".
GB2166017A (en) * 1984-10-19 1986-04-23 Philips Electronic Associated Line output circuit for generating a line frequency sawtooth current
US4873471A (en) * 1986-03-28 1989-10-10 Thomas Industries Inc. High frequency ballast for gaseous discharge lamps
US4704670A (en) * 1986-12-31 1987-11-03 American Telephone & Telegraph Company, At&T Bell Laboratories Power supply with regulated output voltage
US4755922A (en) * 1987-03-26 1988-07-05 Xerox Corporation DC to DC converter for ethernet transceiver
US5168435A (en) * 1990-06-08 1992-12-01 Nec Corporation Converter
US5089947A (en) * 1990-06-29 1992-02-18 International Business Machines Corporation Power supply circuit featuring minimum parts count
GB9116616D0 (en) * 1991-08-01 1991-09-18 Thomson Consumer Electronics Switched mode power supply with startup precharge
US5675478A (en) * 1996-07-15 1997-10-07 Vari-L Company, Inc. Oscillator voltage regulator
US6321531B1 (en) * 1996-12-18 2001-11-27 Litex, Inc. Method and apparatus for using free radicals to reduce pollutants in the exhaust gases from the combustion of a fuel
US5841643A (en) * 1997-10-01 1998-11-24 Linear Technology Corporation Method and apparatus for isolated flyback regulator control and load compensation
US6114814A (en) * 1998-12-11 2000-09-05 Monolithic Power Systems, Inc. Apparatus for controlling a discharge lamp in a backlighted display
TW534999B (en) * 1998-12-15 2003-06-01 Tdk Corp Magnetic sensor apparatus and current sensor apparatus
JP2001053732A (ja) * 1999-08-13 2001-02-23 Oki Comtec Ltd 非線形抽出回路及びクロック抽出回路
US6134123A (en) * 1999-12-06 2000-10-17 Sanken Electric Co., Ltd. Switch-mode DC power supply, monolithic IC and hybrid IC for the same
US6304461B1 (en) * 2000-06-15 2001-10-16 Supertex, Inc. DC power converter having bipolar output and bi-directional reactive current transfer
US6707283B1 (en) * 2000-07-03 2004-03-16 Semiconductor Components Industries, L.L.C. Primary side sensing circuit for producing a secondary side constant current, constant voltage output
JP3371962B2 (ja) * 2000-12-04 2003-01-27 サンケン電気株式会社 Dc−dcコンバ−タ
KR100438695B1 (ko) * 2001-03-09 2004-07-05 삼성전자주식회사 전원 공급 제어 장치 및 방법
JP4830218B2 (ja) * 2001-06-19 2011-12-07 日本テキサス・インスツルメンツ株式会社 駆動信号供給回路
US20040130299A1 (en) * 2001-08-03 2004-07-08 Linear Technology Corporation Circuits and techniques for capacitor charging circuits
US6728117B2 (en) * 2001-10-23 2004-04-27 Koninklijke Philips Electronics N.V. Frequency modulated self-oscillating switching power supply
JP3494223B2 (ja) * 2001-12-03 2004-02-09 サンケン電気株式会社 Dc−dcコンバ−タ
JP3883857B2 (ja) * 2001-12-05 2007-02-21 ソニー株式会社 スイッチング電源装置および電源制御方法
JP3496673B2 (ja) * 2002-01-11 2004-02-16 サンケン電気株式会社 直流電源装置
KR100840246B1 (ko) * 2002-01-25 2008-06-20 페어차일드코리아반도체 주식회사 플라이백 컨버터
US7212021B2 (en) * 2002-03-12 2007-05-01 Intel Corporation Manufacturing integrated circuits and testing on-die power supplies using distributed programmable digital current sinks
JP4085335B2 (ja) * 2002-08-30 2008-05-14 サンケン電気株式会社 スイッチング電源装置
JP2004140952A (ja) * 2002-10-18 2004-05-13 Murata Mfg Co Ltd Dc−dcコンバータ
WO2004047278A1 (ja) * 2002-11-19 2004-06-03 Cosel Co., Ltd. 同期整流スイッチング電源装置
JP4200364B2 (ja) * 2003-04-10 2008-12-24 ミツミ電機株式会社 スイッチング式acアダプタ回路
US6944034B1 (en) * 2003-06-30 2005-09-13 Iwatt Inc. System and method for input current shaping in a power converter
JP2005045993A (ja) * 2003-07-10 2005-02-17 Seiko Instruments Inc Pwmスイッチングレギュレータ制御回路
DE102004033994B4 (de) * 2003-07-16 2017-07-27 Denso Corporation Gleichstrom-Gleichstrom-Wandler
US6853563B1 (en) * 2003-07-28 2005-02-08 System General Corp. Primary-side controlled flyback power converter
US6958920B2 (en) * 2003-10-02 2005-10-25 Supertex, Inc. Switching power converter and method of controlling output voltage thereof using predictive sensing of magnetic flux
US7054170B2 (en) * 2004-01-05 2006-05-30 System General Corp. Power-mode controlled power converter
JP4029853B2 (ja) * 2004-03-23 2008-01-09 サンケン電気株式会社 スイッチング電源装置
CN100466438C (zh) * 2004-05-24 2009-03-04 松下电器产业株式会社 开关电源装置
JP3973652B2 (ja) * 2004-05-24 2007-09-12 松下電器産業株式会社 スイッチング電源装置
US7016204B2 (en) * 2004-08-12 2006-03-21 System General Corp. Close-loop PWM controller for primary-side controlled power converters
US7362592B2 (en) * 2004-09-16 2008-04-22 System General Corp. Switching control circuit for primary-side controlled power converters
US7180274B2 (en) * 2004-12-10 2007-02-20 Aimtron Technology Corp. Switching voltage regulator operating without a discontinuous mode
CN100442620C (zh) * 2005-02-03 2008-12-10 昂宝电子(上海)有限公司 用于开关电源变换器的多阈值过流保护的系统和方法
JP4617931B2 (ja) * 2005-03-07 2011-01-26 富士電機システムズ株式会社 スイッチング電源回路の制御方式
US7388764B2 (en) * 2005-06-16 2008-06-17 Active-Semi International, Inc. Primary side constant output current controller
US7245510B2 (en) * 2005-07-07 2007-07-17 Power Integrations, Inc. Method and apparatus for conditional response to a fault condition in a switching power supply
US7359222B2 (en) * 2005-09-15 2008-04-15 Power Integrations, Inc. Method and apparatus to improve regulation of a power supply
JP4774904B2 (ja) * 2005-10-18 2011-09-21 サンケン電気株式会社 Dc−dcコンバータ
US7505287B1 (en) * 2005-11-10 2009-03-17 Iwatt Inc. On-time control for constant current mode in a flyback power supply
CN100576965C (zh) * 2005-11-11 2009-12-30 王际 Led驱动电路与控制方法
US7561452B2 (en) * 2005-11-28 2009-07-14 Supertex, Inc. Transformer-isolated flyback converters and methods for regulating output current thereof
US7595624B2 (en) * 2005-11-30 2009-09-29 Texas Instruments Incorporated Slope compensation for switching regulator
US7616459B2 (en) * 2005-12-07 2009-11-10 Active-Semi, Inc. System and method for a primary feedback switched mode power supply
US7995358B2 (en) * 2006-01-24 2011-08-09 System General Corp. Control circuit including adaptive bias for transformer voltage detection of a power converter
US7310244B2 (en) * 2006-01-25 2007-12-18 System General Corp. Primary side controlled switching regulator
CN101079576B (zh) * 2006-05-24 2010-04-07 昂宝电子(上海)有限公司 用于提供对电源调节器的开关的系统
US7579892B2 (en) * 2006-05-26 2009-08-25 Semiconductor Components Industries, L.L.C. Accurate timing generator and method therefor
US7483253B2 (en) * 2006-05-30 2009-01-27 Caterpillar Inc. Systems and methods for detecting solenoid armature movement
US7471531B2 (en) * 2006-08-22 2008-12-30 Agere Systems Inc. Programmable feedback voltage pulse sampling for switched power supplies
US7471072B2 (en) * 2006-10-16 2008-12-30 Semtech Corporation Switched mode power supply having variable minimum switching frequency
US8179700B2 (en) * 2006-11-29 2012-05-15 Systems General Corp. Control circuit with adaptive minimum on time for power converters
US7239532B1 (en) * 2006-12-27 2007-07-03 Niko Semiconductor Ltd. Primary-side feedback switching power supply
US7911808B2 (en) * 2007-02-10 2011-03-22 Active-Semi, Inc. Primary side constant output current controller with highly improved accuracy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350560B (zh) * 2007-04-23 2013-03-20 技领半导体(上海)有限公司 实现输出端电压恒定的功率变换器及方法
US8937819B2 (en) 2011-04-13 2015-01-20 NeoEnergy Microelectronics, Inc. Integrated control circuit of setting brown-in voltage and compensating output power and method for operating the same
CN103580487A (zh) * 2012-08-10 2014-02-12 通嘉科技股份有限公司 产生变压器的可变采样延迟时间的采样维持电路及其方法
CN105375765A (zh) * 2014-08-15 2016-03-02 电力集成公司 用于具有过渡区域调节的电源的控制器
CN105375765B (zh) * 2014-08-15 2019-08-23 电力集成公司 用于具有过渡区域调节的电源的控制器
US10224806B1 (en) 2017-11-16 2019-03-05 Infineon Technologies Austria Ag Power converter with selective transformer winding input
US10432097B2 (en) 2017-11-30 2019-10-01 Infineon Technologies Austria Ag Selection control for transformer winding input in a power converter
CN114204821A (zh) * 2021-12-10 2022-03-18 杭州茂力半导体技术有限公司 开关变换器及其控制器和控制方法

Also Published As

Publication number Publication date
US7667987B2 (en) 2010-02-23
US20080259650A1 (en) 2008-10-23
CN101350560B (zh) 2013-03-20
US7911808B2 (en) 2011-03-22
US20080192515A1 (en) 2008-08-14
US7697308B2 (en) 2010-04-13
US7679936B2 (en) 2010-03-16
US20080259652A1 (en) 2008-10-23
CN201352770Y (zh) 2009-11-25
US20090091953A1 (en) 2009-04-09
CN101350560A (zh) 2009-01-21
CN201409089Y (zh) 2010-02-17
CN101350561A (zh) 2009-01-21
CN101350558A (zh) 2009-01-21
CN201270478Y (zh) 2009-07-08
CN201352769Y (zh) 2009-11-25
US20090207636A1 (en) 2009-08-20
CN101350559B (zh) 2016-03-02
US20080259651A1 (en) 2008-10-23
CN101350562B (zh) 2012-06-06
CN101350565B (zh) 2012-07-04
CN101350561B (zh) 2012-07-18
US7522431B2 (en) 2009-04-21
US7961483B2 (en) 2011-06-14
CN101350559A (zh) 2009-01-21
CN201226493Y (zh) 2009-04-22
CN101350562A (zh) 2009-01-21
CN101350565A (zh) 2009-01-21
CN101350558B (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
CN201226496Y (zh) 实现输出端电压恒定的功率变换器
CN202183733U (zh) 实现输出端电压恒定的功率变换器
CN101841242B (zh) 开关电源及其输出电流的调节方法
US7869229B2 (en) Compensating for cord resistance to maintain constant voltage at the end of a power converter cord
US8279631B2 (en) Limiting primary peak charge to control output current of a flyback converter
US9954455B2 (en) Constant on time COT control in isolated converter
CN101924471B (zh) 恒定输出电流的方法及装置
US9391523B2 (en) Controller with constant current limit
CN104283431A (zh) 实现恒定输出电流的初级控制的功率变换器及方法
CN101752893A (zh) 用于电池充电器的电缆电压降补偿
US20160079877A1 (en) Constant on-time (cot) control in isolated converter
US20160079876A1 (en) Constant on-time (cot) control in isolated converter
CN103762842A (zh) 一种自适应补偿斜坡发生器
CN103066847B (zh) 电源装置和图像形成设备

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ACTIVE SEMICONDUCTORS INTERNATIONAL CORP

Free format text: FORMER OWNER: ACTIVE SEMICONDUCTORS INTERNATIONAL CO., LTD.

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 201203 BUILDING 2-3, LANE 912, BIBO ROAD, ZHANGJIANG HIGH-TECH PARK, PUDONGXIN DISTRICT, SHANGHAI CITY TO: 201203 BUILDING 2-3, LANE 912, BIBO ROAD, ZHANGJIANG HIGH-TECH PARK, SHANGHAI CITY

TR01 Transfer of patent right

Effective date of registration: 20100406

Address after: 201203, building 912, Lane 2-3, blue wave road, Zhangjiang hi tech park, Shanghai

Patentee after: Active Semi (Shanghai) Co., Ltd.

Patentee after: Active-Semi Co., Ltd.

Address before: 201203, building 912, Lane 2-3, blue wave road, Zhangjiang hi tech park, Shanghai, Pudong New Area

Patentee before: Active Semi (Shanghai) Co., Ltd.

Patentee before: Active-semi International, Inc.

AV01 Patent right actively abandoned

Granted publication date: 20090422

Effective date of abandoning: 20080418

AV01 Patent right actively abandoned

Granted publication date: 20090422

Effective date of abandoning: 20080418

RGAV Abandon patent right to avoid regrant