CN110073584B - 混合次级侧调节 - Google Patents

混合次级侧调节 Download PDF

Info

Publication number
CN110073584B
CN110073584B CN201880004926.4A CN201880004926A CN110073584B CN 110073584 B CN110073584 B CN 110073584B CN 201880004926 A CN201880004926 A CN 201880004926A CN 110073584 B CN110073584 B CN 110073584B
Authority
CN
China
Prior art keywords
power switch
controller
primary
voltage
side controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880004926.4A
Other languages
English (en)
Other versions
CN110073584A (zh
Inventor
李勇
郑聪
王晓艳
刘文铎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialog Semiconductor Inc
Original Assignee
Dialog Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialog Semiconductor Inc filed Critical Dialog Semiconductor Inc
Publication of CN110073584A publication Critical patent/CN110073584A/zh
Application granted granted Critical
Publication of CN110073584B publication Critical patent/CN110073584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供了一种反激转换器控制架构,其中使用仅初级反馈技术来确保平滑启动和对故障状况的检测。在稳态操作期间,采用次级侧调节。此外,在稳态操作期间使用仅初级反馈技术来监视电流限制,以消除对次级侧电流感测电阻器的需要。

Description

混合次级侧调节
相关申请的交叉引用
本申请要求2017年1月12日提交的美国临时申请第62/445,660号的权益。
技术领域
本申请涉及开关电源转换器,并且更具体地涉及用于反激转换器的混合次级侧调节方案。
背景技术
与线性调节器相比,开关电源转换器提供了更高的效率。虽然线性调节器相对便宜,但是它们通过简单地将差异作为热量燃烧来从较高输入电压调节较低输出电压。结果,线性调节器通常消耗比实际提供给负载的更多的功率。相比之下,开关电源转换器通过电源开关的循环提供相对小的能量增量来调节其输出电压。开关电源转换器中的电源开关不是关闭就是开启,因此与线性调节器相比,效率得到显著提高。因此,诸如反激转换器之类的开关电源转换器通常用于为移动设备的电池充电。
反激转换器不仅高效,而且它们的变压器提供正被充电的设备与AC电源的安全隔离。但是该隔离导致调节问题,因为输出电压(或输出电流)是从变压器的次级绕组传递的,而电源开关连接到变压器的初级绕组。因此,控制器的自然位置在初级侧,以通过调节电源开关的循环来调节输出功率输送。但是初级侧控制器不能简单地诸如通过导线或引线直接读取输出电压,因为那样的话,变压器的初级侧和次级侧之间的隔离将被破坏。因此,初级侧控制器通常通过诸如光隔离器之类的隔离通信信道来接收关于输出电压的反馈信息。虽然初级侧控制器然后可以接收反馈信息,但是光隔离器引起稳定性问题并给反激转换器设计增加费用。
为了避免这样的稳定性和费用问题,反激转换器设计演变为使用仅初级反馈(primary-only feedback)。在仅初级反馈中,初级侧在次级电流在电源开关的循环之后斜坡下降到零时的时刻感测辅助绕组(或初级绕组)上的电压。该时刻被称为变压器复位时间,并且表示通过辅助绕组电压间接地对输出电压进行采样的理想时间,因为在变压器复位时间在输出电压和辅助绕组电压之间存在线性关系。但是在变压器复位时间之后,辅助绕组电压将开始共振振荡。因此难以在变压器复位时间的精确时刻对辅助绕组电压进行采样。另外,噪声和其他非理想性限制了仅初级反馈的准确性。例如,通过仅初级反馈来调节输出电压的准确性受限于以下各项:变压器的非完美耦合,次级侧整流二极管正向压降变化,以及同步整流MOSFET Rds变化,组件变化,以及转换器负载范围和工作条件。
鉴于仅初级反馈的限制,它不适用于要求极高准确性的应用,诸如误差不超过百分之一的电压调节。为了提供额外的准确性,已经实现了各种次级侧调节方案。如名称所暗示的,次级侧调节涉及感测输出电压并将所感测的输出电压与参考电压进行比较以产生误差电压。对误差电压进行滤波以形成控制电压,该控制电压由电源开关控制器进一步处理以控制电源开关循环。在一种形式的传统次级侧调节中,次级侧控制器对控制电压进行处理以生成迫使电源开关循环接通(cycle on)的活动信号。在这样的实施例中,初级侧可包括基本控制器,该基本控制器然后在达到固定峰值电流或接通时间之后关闭电源开关。或者,次级侧控制器还可以控制电源开关的关闭时间以及接通时间。
代替发送活动信号来刺激电源开关周期,传统的次级侧调节的其他实施例将控制电压本身发送到初级侧控制器。然后,初级侧控制器可以处理控制电压以相应地控制电源开关循环。但是无论是活动信号还是控制信号被从次级侧发送到初级侧,都会因从初级侧反馈到次级侧调节的转变而妨碍某些操作模式。例如,锂电池的充电必须遵循恒定电压操作模式和恒定电流操作模式之间的某一转变。具体而言,现代智能电话通常相当昂贵,但其一个或多个锂电池永久或半永久地集成在智能电话的外壳中。如果反激转换器通过不正确的充电顺序破坏电池,那么整个智能电话都被破坏。因此,在电池充电过程期间适当调节适当的恒定电压操作模式和恒定电流操作模式是至关重要的。但是,次级侧控制器需要在次级侧插入电流感测电阻器(或感测输出电流的某一其他手段),以调节向负载的恒定电流功率输送。在具有传统次级侧调节的反激转换器的次级侧的输出电流路径中添加电流感测电阻器降低了效率并增加了制造复杂性和成本。
因此,本领域中存在对改进形式的次级侧调节的需要。
发明内容
为了避免传统次级侧调节的缺陷,提供了一种反激转换器,其中初级侧控制器保留仅初级反馈能力。例如,初级侧控制器可包括波形分析器,其通过Vsense引脚或端子来感测辅助绕组电压。如在仅初级反馈领域中已知的,波形分析器在变压器复位时间对Vsense引脚电压进行采样。但与传统的仅初级反馈不同,输出电压调节不是基于采样的Vsense引脚电压。相反,输出电压调节基于次级侧调节(SSR)。
具体而言,初级侧控制器可以基于来自SSR的输出电压反馈在当前功率开关周期中计算功率开关晶体管的期望峰值电流。例如,次级侧控制器可以将输出电压与参考电压进行比较以生成误差电压,然后在环路滤波器中对该误差电压进行滤波以产生控制电压。次级侧控制器然后将该控制电压发送到初级侧控制器。该控制电压用于实现恒定电压操作模式。例如,初级侧控制器可以将控制电压转换为脉冲频率调制的开关频率,这将产生期望的恒定输出电压。或者,初级侧控制器可以将控制电压转换为当前功率开关周期的峰值电流,这将产生期望的恒定输出电压。但请注意通过保留根据辅助绕组的感测确定变压器复位时间、波形形状和定时信息(诸如电压电平、环形谐振周期以及谷值和峰值检测)(在替代实施例中,可以感测初级绕组电压本身以确定这些因素)的能力来实现的智能调制。由于初级侧控制器知道功率开关晶体管循环关断(cycle off)时的峰值电流,因此鉴于变压器的匝数比,初级侧控制器也知道次级绕组电流的峰值电流。初级侧控制器因此可以基于峰值次级电流和变压器复位时间来确定平均输出电流,因为次级绕组电流仅在变压器复位时间的持续时间内流动。初级侧控制器然后可以调节后一功率循环的峰值电流,使得不违反期望的输出电流。
例如,假设正在充电的电池被相当耗尽,使得其电压相当低。可以由移动设备将该电压传送到次级侧控制器,因为通过诸如USB电缆或闪电(Lightning)电缆之类的数据电缆发生充电。鉴于该电池充电状态,存在相应的输出电流限制(例如,1A或2A等)。如果输出电流超过该限制,则电池可能被损坏。次级侧控制器可以将该输出电流限制传送到初级侧控制器,初级侧控制器然后相应地监视变压器复位时间以控制是否应该建立恒定电流操作模式。作为结果的调节因此是相当有利的,因为如果输出电流超过恒定电流限制,则可以享有次级侧调节的输出电压准确性,而没有次级侧感测电阻器为了强制执行恒定电流操作模式的电力抢夺需求。此外,对Vsense波形形状和定时信息的智能检测和处理(如本文所使用的,“Vsense”指的是使用仅初级反馈技术感测的电压信号,而不管这样的电压信号是从辅助绕组得到还是从初级绕组得到)可以实现附加特征,诸如实现平滑的功率转换器启动、谷值(valley)模式切换以及针对各种异常和故障状况的保护。
通过考虑下面的具体实施方式,可以更好地理解这些有利特征和另外的发明特征。
附图说明
图1是根据本公开的一方面的具有混合次级侧调节的改进的反激转换器的电路图。
图2示出了在检测变压器复位时间期间的辅助绕组电压波形。
通过参考接下来的具体实施方式,本公开的实施例及其优点得到最好的理解。应当认识到,相似的附图标记用于标识一个或多个附图中所示的相似元素。
具体实施方式
现在转到附图,图1中示出了示例反激转换器100。初级侧控制器105包括用于控制NMOS功率开关晶体管M1的循环的开关控制器111。在替代实施例中,可以使用其他类型的功率开关晶体管,诸如GaN功率开关晶体管或双极结型功率开关晶体管。当功率开关晶体管M1被循环接通时,取决于输入电压轨(rail)上的输入电压Vin和初级绕组T1的磁化电感,磁化电流开始流过变压器101的初级绕组T1。如在反激转换器领域中已知的,开关控制器111可以在低到中等负载水平期间使用谷值模式开关来循环功率开关晶体管M1。然而,在高功率操作模式期间,使用零电压开关来循环功率开关晶体管M1是更有利的。
为了实现零电压开关,功率开关晶体管M1的漏极连接到NMOS高边(HS)开关晶体管的源极,HS开关晶体管具有通过电容器C连接到输入电压轨的漏极。为了实现零电压开关,在功率开关晶体管M1已被循环关断之后,开关控制器111可以使HS开关晶体管循环接通。然后将绕组T1的漏电感(leakage inductance)能量存储在电容器C1上。当HS开关晶体管被循环关断时,功率开关晶体管M1的漏极将被拉至地(ground)。为了检测该漏极电压的过零点,开关控制器111可包括过零检测器,诸如比较器155,其将漏极电压与地进行比较。当比较器155指示漏极电压被放电时,开关控制器111然后可以在随后的开关循环中使功率开关晶体管M1循环接通,其中功率开关晶体管M1的漏极到源极电压为零,如在零电压开关领域中已知的。
当功率开关晶体管M1导通时,变压器101的次级绕组S1不传导。例如,次级侧控制器111可包括同步整流(SR)控制器135,其监视NMOS SR开关晶体管的漏极到源极电压。当SR开关晶体管的漏极到源极电压指示电源开关M1被关闭时,SR控制器135使SR开关晶体管循环接通。如本文将进一步解释的,SR开关晶体管的导通控制还可以响应于来自初级侧控制器105的通信——即功率开关晶体管M1已被循环关断。以这种方式,避免了穿通的危险,其中在功率开关晶体管M1仍然导通时SR开关晶体管被循环接通。SR控制器135还可以监视SR开关晶体管的源极到漏极电压,以确定何时使SR开关晶体管循环关断。
有利地,仅在稳态操作期间实施输出电压的次级侧调节。如本文将进一步解释的,仅初级反馈信息由初级侧控制器105用于在转变到稳态操作之前控制平滑启动模式。为了在稳态操作期间执行输出电压的次级侧调节,次级侧控制器110包括误差放大器140,其响应于反激转换器的输出电压VBUS与参考电压(诸如来自带隙(bandgap,BG)源145的带隙电压)之间的差异而生成误差电压Verr。注意,在替代实施例中,这两个电压的缩放版本可以应用于误差放大器140。环路滤波器145对误差电压进行滤波以产生控制电压Vc。然后该控制电压可被传送到初级侧控制器105,如本文进一步讨论的。
在SR开关晶体管导通时流动的次级绕组电流利用输出电压VBUS对输出电容器Cout充电。该输出电压通过如在数据电缆接口领域中已知的诸如USB电缆接口130之类的数据电缆接口对负载(未示出)充电,USB电缆接口130还包括D+端子、D-端子和接地端子。通信接口150监视数据端子D+和D-以检测移动设备是否已被连接到数据电缆接口。如果检测到移动设备,则次级侧控制器110可以通过隔离通信信道(诸如具有次级绕组S2和初级绕组T3的信号变压器170)警告初级侧控制器105。替代的隔离通信信道包括诸如通过光电二极管160和接收双极结型晶体管165形成的光隔离器。或者,电容器(未示出)也可用于形成合适的隔离通信信道。有利地,信号变压器170是双向的,使得它支持从次级侧控制器110到初级侧控制器105以及从初级侧控制器105到次级侧控制器110的通信。
通信接口150通过次级绕组S2使用数字或模拟的信令来发送控制电压,以在初级绕组T3上引起由通信接口125接收的对应的数字或模拟的信号。在替代实施例中,可以发送误差电压,使得初级侧控制器105将执行环路滤波。通信接口125然后可以将控制电压(或误差电压)恢复为数字或模拟的信号,使得其可以由开关控制器111处理。开关控制器111然后可以将控制电压处理成如在脉冲频率调制中使用的脉冲开关频率,或将控制电压处理成脉冲宽度调制的峰值开关电流,如在反激领域中已知的。无论根据脉冲频率调制还是根据脉冲宽度调制来循环功率开关晶体管M1,开关控制器111都将相应地使功率开关晶体管M1循环接通和循环关断。例如,在脉冲宽度调制操作模式中,开关控制器响应于对控制电压的处理而确定功率开关晶体管M1的电流开关周期的峰值电流。该处理可以包括使用如在反激领域中已知的比例—积分(PI)或比例—积分—微分(PID)控制。在功率开关晶体管M1的导通时间期间,开关控制器111通过感测电阻器Rs来监视由功率开关晶体管M1传导的漏极电流ID,感测电阻器Rs耦合在功率开关晶体管M1的源极和地之间。感测电阻器两端产生的电流感测(CS)电压表示漏极电流。当开关控制器111检测到漏极电流(如通过CS电压所感测的)等于期望的峰值电流时,它使功率开关晶体管M1循环关断。
基于对控制电压的处理所产生的功率开关晶体管M1的循环导致输出电压VBUS的恒定电压操作模式。但是如先前讨论,存在多种操作模式,诸如对已放电电池充电的初始阶段,其中恒定电压操作将导致流入电池的过高水平的输出电流。为了防止发生这样潜在危险水平的输出电流,初级侧控制器105使用仅初级反馈技术来检测变压器复位时间。由于初级绕组电流的峰值是已知的,因此次级绕组电流的峰值也是已知的,因为它通过变压器101的匝数比而与峰值绕组电流成比例。因此,初级侧控制器105可以有利地使用变压器复位时间来基于开关周期、峰值次级绕组电流和变压器复位时间计算平均输出电流。如果该平均输出电流超过电流限制,则开关控制器111然后可以在下一个开关周期中“忽略”控制电压,并且改为控制功率开关晶体管M1的导通时间来产生如通过仅初级反馈技术所监视的期望峰值电流。
作为结果的混合控制是相当有利的,因为反激转换器100然后享有如通过次级侧调节实现的准确恒定电压操作,而没有变压器101的次级侧的感测电阻器的电力抢夺需求。为了检测变压器复位时间,初级侧控制器105可以通过分压器120感测辅助绕组T2上的辅助绕组电压。然后由波形分析器处理所产生的分压后的辅助绕组电压,以检测辅助绕组电压中的“拐点(knee)”。这可以参考图2得到更好地理解,图2示出了响应于在时间t0使电源开关循环关闭的辅助绕组电压VAUX。作为响应,辅助绕组电压将跳高。在某一吉布斯(Gibbs)振荡之后,辅助绕组电压然后将随着次级电流(未示出)斜坡变为零而缓慢斜坡下降。当次级电流耗尽时,辅助绕组电压在时间t1达到其拐点,于是它迅速下降并开始共振振荡。时间t0和t1之间的持续时间是变压器复位时间(TRST)。
在仅初级反馈中,通过图2所示的方程1的反演来检测输出电压Vo将是常规的。但是次级侧调节已经准确得多地提供了该输出电压。因此,初级侧控制器101所需要的是变压器复位时间本身,从而可以确定输出电流。如在仅初级反馈技术中已知的,存在多种检测拐点(以及因此变压器复位时间)以及其他波形形状和定时信息(诸如拐点电压,波形的持续时间,共振振铃周期,以及谷值和峰值检测)的方式,使得波形分析器115的细节将被本领域普通技术人员理解。无论初级侧控制器如何检测变压器复位时间,开关控制器111然后可以继续相应地计算输出电流。
但是请注意,Vsense波形本身还可以被初级侧控制器105用于除了仅检测变压器复位时间之外的目的。例如,初级侧控制器105可以使用拐点电压以及电流感测电压来确保在启动期间输出电压的平滑过渡。例如,当反激转换器100从零或非常低的输出电压启动时,输出电压调节远离其稳定状态,所以难以具有输出电压的平滑增加。通过智能地处理和利用初级侧中的Vsense和电流感测信息,反激转换器100可以实现平滑启动,而没有过冲(overshoot)、下冲(undershoot)、振荡或其他不期望的行为。一旦启动完成并且电压稳定到接近参考点,初级侧控制就可以决定切换到次级侧调节,这将在稳态下实现更精确的电压调节。此外,波形分析器115可被配置用于谷值检测,使得开关控制器111可以根据谷值模式切换来接通功率开关晶体管M1。还请注意,监视Vsense波形的能力使初级侧控制器105能够检测异常状况或故障状况,诸如辅助绕组开路、短路或软短路。特别是,如果辅助绕组T2由于例如电路板故障而接地,则Vsense波形将保持在零伏特。波形分析器115然后可以检测到Vsense波形的该不足,使得开关控制器111可以停止功率开关晶体管M1的循环。辅助绕组T3的开路也将引起异常Vsense波形,该异常Vsense波形可被波形分析器115检测到,使得开关控制器115可以停止功率开关晶体管M1的循环。其他故障示例可包括电流感测(CS)电阻器短路(或部分短路)、CS电阻器开路以及控制器引脚短路或开路。通过在初级侧智能地处理和利用这些指示,初级侧控制器可以检测异常和故障,并进行快速适当动作(诸如关闭电源开关),而无需等待次级侧进行检测和发送警报(这将太晚)。
本领域普通技术人员还将认识到,可以针对反激转换器100进行许多修改。例如,初级侧控制器105可以向次级侧控制器110警告HS和M1电源开关的接通/关闭状态。以这种方式,可以避免穿通的危险以及错误的零电压切换。此外,变压器复位时间的检测使开关控制器110能够检测辅助绕组T3处的短路或开路,从而可以相应地警告次级侧控制器110。此外,变压器复位时间以及其他波形形状和定时信息的检测使开关控制器111能够检测过压或欠压状况,从而可以相应地警告初级侧控制器105。总之,反激转换器将保留仅初级反馈技术、特性和能力,同时利用次级侧调节进行稳态电压调节,并且它还将具有初级侧和次级侧之间的双向通信。因此,本领域技术人员将认识到,在不脱离本公开的范围的情况下,可以在本公开的设备的材料、装置、配置和使用方法中进行许多修改、替换和变化并可以对本公开的设备的材料、装置、配置和使用方法进行许多修改、替换和变化。鉴于此,本公开的范围不应限于本文示出和描述的特定实施例的范围,因为它们仅仅当作其一些示例,而是应该与所附权利要求及其功能等同物的范围完全相称。

Claims (9)

1.一种反激转换器的初级侧控制器,包括:
通信接口,用于从所述反激转换器的次级侧控制器接收控制电压信号,所述控制电压信号表示所述反激转换器的输出电压与参考电压之间的误差;
开关控制器,其被配置为在脉冲宽度调制操作模式期间处理所述控制电压信号以确定第一期望峰值电流,其中所述开关控制器还被配置为响应于通过电源开关的开关电流等于所述第一期望峰值电流而在第一电源开关周期期间使所述电源开关循环关闭;和
波形分析器,用于根据辅助绕组电压来检测变压器复位时间,其中所述开关控制器还被配置为根据所述开关电流和所述变压器复位时间来计算平均输出电流,并且所述开关控制器还被配置为对所述平均输出电流超过电流限制进行响应以确定第二峰值电流并且响应于通过所述电源开关的开关电流等于所述第二峰值电流而在后续的第二电源开关周期期间使所述电源开关循环关闭,从而在所述后续的第二电源开关周期期间独立于所述控制电压信号来控制所述电源开关的循环。
2.如权利要求1所述的初级侧控制器,还包括:
分压器,用于将所述辅助绕组电压划分为分压电压,其中所述波形分析器被配置为通过对所述分压电压的分析来根据所述辅助绕组电压检测所述变压器复位时间。
3.如权利要求1所述的初级侧控制器,其中,所述通信接口被配置为从信号变压器接收所述控制电压信号,并且其中所述通信接口还被配置为通过所述信号变压器将所述电源开关的接通和关闭状态发送到所述次级侧控制器。
4.如权利要求1所述的初级侧控制器,其中,所述开关控制器还被配置为在脉冲频率操作模式下将所述控制电压信号处理为脉冲频率并根据所述脉冲频率使所述电源开关循环。
5.如权利要求3所述的初级侧控制器,其中,所述通信接口还被配置为通过所述信号变压器将高边开关的接通和关闭状态发送到所述次级侧控制器。
6.如权利要求1所述的初级侧控制器,还包括:
过零检测器,其被配置为检测所述电源开关两端的电压何时为零,其中所述开关控制器还被配置为响应于检测到所述电源开关两端的电压为零而使所述电源开关循环接通。
7.如权利要求1所述的初级侧控制器,其中所述电源开关包括功率开关晶体管,并且其中所述开关控制器还被配置为通过对所述功率开关晶体管的栅极充电来接通所述功率开关晶体管。
8.如权利要求1所述的初级侧控制器,其中,所述控制电压信号是模拟信号。
9.如权利要求1所述的初级侧控制器,其中,所述控制电压信号是数字信号。
CN201880004926.4A 2017-01-12 2018-01-12 混合次级侧调节 Active CN110073584B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762445660P 2017-01-12 2017-01-12
US62/445,660 2017-01-12
PCT/US2018/013655 WO2018132761A1 (en) 2017-01-12 2018-01-12 Hybrid secondary-side regulation

Publications (2)

Publication Number Publication Date
CN110073584A CN110073584A (zh) 2019-07-30
CN110073584B true CN110073584B (zh) 2022-06-14

Family

ID=62840402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880004926.4A Active CN110073584B (zh) 2017-01-12 2018-01-12 混合次级侧调节

Country Status (3)

Country Link
US (4) US10461646B2 (zh)
CN (1) CN110073584B (zh)
WO (1) WO2018132761A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10320301B2 (en) 2017-09-15 2019-06-11 Semiconductor Components Industries, Llc Power converter responsive to device connection status
DE102017126696A1 (de) * 2017-11-14 2019-05-16 Infineon Technologies Austria Ag Spannungswandlersteuerung, Spannungswandler und Verfahren zum Betreiben eines Spannungswandlers
CN109995254B (zh) * 2017-12-29 2020-12-29 东南大学 一种提高同步整流原边反馈反激式电源动态性能的方法
DE102018116883A1 (de) * 2018-07-12 2020-01-16 Infineon Technologies Austria Ag Sperrwandlersteuerung, Sperrwandler und Verfahren zum Betreiben des Sperrwandlers
US10367422B1 (en) * 2018-10-26 2019-07-30 Infineon Technologies Austria Ag Valley mode switching with fixed frequency for switching mode power supply
TWI681615B (zh) 2018-10-31 2020-01-01 通嘉科技股份有限公司 應用於電源轉換器的二次側的次級控制器及其操作方法
JP7168422B2 (ja) * 2018-11-22 2022-11-09 ローム株式会社 絶縁型dc/dcコンバータ、ac/dcコンバータ、電源アダプタ及び電気機器
US10763756B2 (en) 2018-12-13 2020-09-01 Power Integrations, Inc. Apparatus and methods for sensing resonant circuit signals to enhance control in a resonant converter
US10693384B1 (en) * 2019-06-26 2020-06-23 Cypress Semiconductor Corporation Accurate feed-forward sensing in flyback-transformer based secondary controller
US10554140B1 (en) 2019-06-26 2020-02-04 Cypress Semiconductor Corporation AC-DC converter with secondary side-control and synchronous rectifier sense architecture
US10651754B1 (en) 2019-06-26 2020-05-12 Cypress Semiconductor Corporation Accurate peak detection architecture for secondary controlled AC-DC converter
US10651753B1 (en) 2019-06-26 2020-05-12 Cypress Semiconductor Corporation Accurate valley detection for secondary controlled flyback converter
US11758631B2 (en) 2019-06-27 2023-09-12 Tridonic Gmbh & Co Kg Synchronous flyback converter for driving LED loads
US10951107B2 (en) * 2019-06-27 2021-03-16 Cypress Semiconductor Corporation Communicating fault indications between primary and secondary controllers in a secondary-controlled flyback converter
US10756644B1 (en) * 2019-08-22 2020-08-25 Cypress Semiconductor Corporation Controlled gate-source voltage N-channel field effect transistor (NFET) gate driver
CN110611431B (zh) * 2019-09-30 2020-06-23 东南大学 有源钳位反激变换器的原边调节控制系统及控制方法
TWI736275B (zh) * 2020-05-21 2021-08-11 宏碁股份有限公司 具有過電流保護功能之電源供應器
US11394303B2 (en) * 2020-05-29 2022-07-19 Dialog Semiconductor, Inc. Flyback converter with synchronous rectifier switch fault detection
US11736026B2 (en) * 2020-05-29 2023-08-22 Dialog Semiconductor Inc. Flyback converter with fast load transient detection
CN112467992A (zh) * 2020-11-30 2021-03-09 北京精密机电控制设备研究所 一种磁隔离反馈电源变换电路
CN113711483B (zh) 2021-02-10 2022-10-21 英诺赛科(苏州)科技有限公司 高效高密度的基于GaN的功率转换器及其制造方法
US11916005B2 (en) 2021-02-10 2024-02-27 Innoscience (Suzhou) Technology Co., Ltd. Multi-functional PCB for assembling GaN-based power converter and method for manufacturing the same
US20220256700A1 (en) * 2021-02-10 2022-08-11 Innoscience (Suzhou) Technology Co., Ltd. MULTI-FUNCTIONAL PCB FOR ASSEMBLING GaN-BASED POWER CONVERTER
US11916490B2 (en) 2021-02-10 2024-02-27 Innoscience (Suzhou) Technology Co., Ltd. Multi-functional PCB for assembling GaN-based power converter
US11916488B2 (en) * 2021-02-10 2024-02-27 Innoscience (Suzhou) Technology Co., Ltd. High efficiency and high density GaN-based power converter
US11916489B2 (en) 2021-02-10 2024-02-27 Innoscience (Suzhou) Technology Co., Ltd. High efficiency and high density GaN-based power converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227568A (zh) * 2012-01-26 2013-07-31 凌力尔特公司 反激转换器及用于操作所述反激转换器的方法
CN103296904A (zh) * 2012-02-29 2013-09-11 黄煜梅 功率因数校正恒流控制器及控制方法
CN103840673A (zh) * 2012-11-20 2014-06-04 德克萨斯仪器股份有限公司 反激式电源调节设备和方法
CN104052290A (zh) * 2013-03-13 2014-09-17 戴乐格半导体公司 具有次级到初级消息传送的开关功率变换器

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088465A1 (en) * 2002-04-12 2003-10-23 Delta Energy Systems (Switzerland) Ag High efficiency flyback converter
US7443700B2 (en) * 2006-11-09 2008-10-28 Iwatt Inc. On-time control for constant current mode in a flyback power supply
US7911808B2 (en) * 2007-02-10 2011-03-22 Active-Semi, Inc. Primary side constant output current controller with highly improved accuracy
US7974109B2 (en) * 2007-05-07 2011-07-05 Iwatt Inc. Digital compensation for cable drop in a primary side control power supply controller
US8553431B2 (en) * 2009-02-03 2013-10-08 Iwatt Inc. Switching power converter with load impedance detection
US8199537B2 (en) * 2009-02-19 2012-06-12 Iwatt Inc. Detecting light load conditions and improving light load efficiency in a switching power converter
TWI431918B (zh) * 2009-06-19 2014-03-21 Leadtrend Tech Corp 控制方法、定電流控制方法、產生一實際電流源以代表一繞組之平均電流之方法、定電流定電壓電源轉換器、開關控制器、以及平均電壓偵測器
TW201123701A (en) * 2009-12-23 2011-07-01 Leadtrend Tech Corp Control method and controller
JP5223874B2 (ja) * 2010-03-09 2013-06-26 株式会社村田製作所 絶縁型スイッチング電源装置
JP5170165B2 (ja) * 2010-06-11 2013-03-27 株式会社村田製作所 絶縁型スイッチング電源装置
TWI477051B (zh) * 2011-03-28 2015-03-11 Neoenergy Microelectronics Inc 初次級雙回授控制之返馳式電源轉換器
KR101858059B1 (ko) * 2011-08-17 2018-06-29 페어차일드코리아반도체 주식회사 스위치 제어 회로, 및 이를 포함하는 역률 보상기 및 그 구동 방법
TWI496396B (zh) * 2012-02-18 2015-08-11 Richtek Technology Corp 隔離式電源轉換器電路及其中之控制電路與控制方法
US8780590B2 (en) * 2012-05-03 2014-07-15 Hong Kong Applied Science & Technology Research Institute Company, Ltd. Output current estimation for an isolated flyback converter with variable switching frequency control and duty cycle adjustment for both PWM and PFM modes
US9071152B2 (en) 2012-07-03 2015-06-30 Cognipower, Llc Power converter with demand pulse isolation
US9331589B2 (en) * 2012-09-24 2016-05-03 Dialog Semiconductor Inc. Primary feedback switching power converter controller with intelligent determination of and response to output voltage drops due to dynamic load conditions
EP2717450B1 (en) * 2012-10-05 2016-12-28 Nxp B.V. Isolated switched-mode power supply
JP2014166024A (ja) * 2013-02-25 2014-09-08 Rohm Co Ltd 電力供給装置およびその起動方法、acアダプタ、電子機器および電力供給システム
KR20150025935A (ko) * 2013-08-30 2015-03-11 삼성전기주식회사 컨버터 스위치 피크전류 제어용 기준신호 생성회로, 절연 컨버터 및 컨버터 스위치 피크전류 제어용 기준신호 생성 방법
TWI560537B (en) * 2013-10-04 2016-12-01 Leadtrend Tech Corp Controller for adjusting an output voltage of a power converter
US9379625B2 (en) * 2013-12-26 2016-06-28 Dialog Semiconductor Inc. Current meter for load modulation communication receiver architecture
US9825541B2 (en) * 2014-01-17 2017-11-21 Fairchild Korea Semiconductor Ltd. Output current estimating method and power supply device using the same
CN103944427B (zh) * 2014-05-09 2016-02-03 东南大学 一种ac-dc变换器输出电流的控制方法及其控制系统
CN105305825B (zh) * 2014-07-18 2018-02-09 绿达光电股份有限公司 电源控制器以及相关的控制方法
US9742288B2 (en) 2014-10-21 2017-08-22 Power Integrations, Inc. Output-side controller with switching request at relaxation ring extremum
US9819274B2 (en) * 2014-11-20 2017-11-14 Microchip Technology Incorporated Start-up controller for a power converter
CN104660022B (zh) * 2015-02-02 2017-06-13 昂宝电子(上海)有限公司 为电源变换器提供过流保护的系统和方法
CN104767372B (zh) * 2015-04-24 2017-12-19 矽力杰半导体技术(杭州)有限公司 控制电路、控制方法和应用其的反激式变换器
US9774270B2 (en) * 2015-06-15 2017-09-26 Apple Inc. Systems and methods of operation for power converters having series-parallel mode active clamps
US10868473B2 (en) * 2015-11-30 2020-12-15 Semiconductor Components Industries, Llc Secondary side controlled control circuit for power converter with synchronous rectifier
JP2017163779A (ja) * 2016-03-11 2017-09-14 ローム株式会社 給電装置、1次側コントローラ、acアダプタ、電子機器、短絡検出方法
US9973094B2 (en) * 2016-03-31 2018-05-15 Infineon Technologies Austria Ag Power converter and power conversion method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227568A (zh) * 2012-01-26 2013-07-31 凌力尔特公司 反激转换器及用于操作所述反激转换器的方法
CN103296904A (zh) * 2012-02-29 2013-09-11 黄煜梅 功率因数校正恒流控制器及控制方法
CN103840673A (zh) * 2012-11-20 2014-06-04 德克萨斯仪器股份有限公司 反激式电源调节设备和方法
CN104052290A (zh) * 2013-03-13 2014-09-17 戴乐格半导体公司 具有次级到初级消息传送的开关功率变换器

Also Published As

Publication number Publication date
US10855188B2 (en) 2020-12-01
US20210083586A1 (en) 2021-03-18
US11955895B2 (en) 2024-04-09
US10461646B2 (en) 2019-10-29
WO2018132761A1 (en) 2018-07-19
US20200036291A1 (en) 2020-01-30
US20220140735A1 (en) 2022-05-05
US20180351462A1 (en) 2018-12-06
CN110073584A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
CN110073584B (zh) 混合次级侧调节
US11201556B2 (en) Accurate peak detection architecture for secondary controlled AC-DC converter
US8976547B2 (en) Switching mode power supply with synchronous rectifying control circuit
US9407155B2 (en) Isolated switching converter with secondary side modulation and control method
CN108471239B (zh) 用于同步回扫开关模式功率转换器的控制器
US9543844B2 (en) System and method for a switched-mode power supply
US7633780B2 (en) Switching power supply apparatus with low loss synchronous rectification
EP2573922B1 (en) Power supply controller with minimum-sum multi-cycle modulation
US10554140B1 (en) AC-DC converter with secondary side-control and synchronous rectifier sense architecture
CN107342695B (zh) 同步整流器
US8553431B2 (en) Switching power converter with load impedance detection
US7375987B2 (en) Resonant switching power source apparatus
US9331589B2 (en) Primary feedback switching power converter controller with intelligent determination of and response to output voltage drops due to dynamic load conditions
US9231483B2 (en) DC/DC converter
TW201334377A (zh) 具有有效率輕負載操作之隔離返馳轉換器
CN108173434A (zh) 开关电源电路
CN110460230B (zh) 功率因数校正控制器、离线转换器及其方法
US11201555B2 (en) Switching power supply device having secondary side synchronous rectification element and control circuit therefor
US20170346329A1 (en) Switching power converter for direct battery charging
CN111756248A (zh) 开关电源装置
US20230223858A1 (en) Secondary Side Controlled QR Flyback Converter using a Programmable Valley Algorithm
CN113725819A (zh) 一种反激电路及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant