CN1973197A - 用于进行核酸序列的扩增和检测过程的诊断系统 - Google Patents

用于进行核酸序列的扩增和检测过程的诊断系统 Download PDF

Info

Publication number
CN1973197A
CN1973197A CN200580006519.XA CN200580006519A CN1973197A CN 1973197 A CN1973197 A CN 1973197A CN 200580006519 A CN200580006519 A CN 200580006519A CN 1973197 A CN1973197 A CN 1973197A
Authority
CN
China
Prior art keywords
fluid
nucleic acid
reservoir
unit
eluant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200580006519.XA
Other languages
English (en)
Other versions
CN1973197B (zh
Inventor
弗里德黑尔姆·舍恩菲尔德
弗里肖夫·冯格玛
弗兰克·卡尔森
让·利希滕贝格
萨贝什·韦普特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norchip AS
Original Assignee
Norchip AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norchip AS filed Critical Norchip AS
Publication of CN1973197A publication Critical patent/CN1973197A/zh
Application granted granted Critical
Publication of CN1973197B publication Critical patent/CN1973197B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44782Apparatus specially adapted therefor of a plurality of samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/048Function or devices integrated in the closure enabling gas exchange, e.g. vents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/049Valves integrated in closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4005Concentrating samples by transferring a selected component through a membrane
    • G01N2001/4016Concentrating samples by transferring a selected component through a membrane being a selective membrane, e.g. dialysis or osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明提供用于进行核酸序列的扩增和检测过程的诊断系统,其可以是用于对含有细胞和/或粒子的流体样品进行样品制备过程的集成的芯片实验室诊断系统,该芯片实验室诊断系统包括:(a)流体样品入口;(b)裂解单元,所述裂解单元用于裂解所述流体样品所包含的细胞和/或粒子;(c)核酸提取单元,所述核酸提取单元用于从所述流体样品所包含的细胞和/或粒子提取核酸;(d)盛装裂解流体的贮存部;(e)盛装洗脱剂的贮存部,所述洗脱剂用于移去在核酸提取单元中收集的核酸;其中,所述样品入口与所述裂解单元是流体连接的,为控制二者之间流体的流动而选择性地存在阀门;其中所述裂解单元与所述核酸提取单元是流体连接的,为控制二者之间流体的流动而选择性地存在阀门;其中所述盛装裂解流体的贮存部与所述裂解单元是流体连接的,为控制二者之间流体的流动而选择性地存在阀门;和其中所述盛装洗脱剂的贮存部与所述核酸提取单元是流体连接的,为控制二者之间流体的流动而选择性地存在阀门。

Description

用于进行核酸序列的扩增和检测过程的诊断系统
技术领域
本发明涉及核酸(NA)的提取,具体地,本发明涉及用于合并进行NA的提取和浓缩的集成的芯片实验室(lab-on-a-chip)诊断系统。所述系统可以用来对含有细胞的流体样品进行NA序列的扩增和检测过程。
背景技术
开发以下用于检测生物分子的简化的分析系统是相当令人感兴趣的,即,所述系统使不熟练的使用者可以进行复杂的分析程序而不会出现不当的错误。而且,开发完备的(contained)以下分析系统是非常令人感兴趣的,即,该系统需要最少的液体试剂操作以及使分析程序自动进行而使用者的干预最少,并且还优选进行了微型化从而提供用于护理地点检测的便捷系统。这与保健领域特别是诊断学尤其相关,在这些领域中,越来越需要可以在医生的诊所、诊疗所、兽医诊所或者甚至在患者的家中或野外有效而安全地进行操作的生物分析系统。
微制造的“芯片实验室”装置是用于进行对使用者所要求的试剂操作最少的完备的生物反应的诱人选择,并允许使用较小的样品体积,这对需要昂贵试剂的生物反应是非常有利的。
为了同时实现纯化和预浓缩,分析化学家们通常求助于某种提取程序。这些方法包括从样品基质中分离感兴趣的分析物,或者作为选择,从样品基质中除去所有其它物质而留下感兴趣的分析物。提取过程可以包括将各物质从一个液相中转移到另一个液相中,或者将各物质从液相中捕获到固体表面上。在前者情况下,物质的预浓缩通常是难以实现的,除非将溶剂从含有该物质的相中有效除去。但是,在后者的情况下,如果(a)可获得的结合面积大到在任何时候都足以结合多于与该表面接触的溶液中所存在的分子,和(b)只用少量的洗脱剂就可以将该物质从固相上有效移去,那么就可以进行预浓缩。由于预浓缩是核酸样品预处理程序的重要方面,因此固相提取已经得到应用。一种涉及在离液剂存在下将DNA结合到二氧化硅粒子上的核酸提取方法已经得到充分确立(见Boom等,J.Clin.Microbiol.1990,28,495-503)。本发明涉及将DNA固相提取法集成到微流体装置中。
在本发明中,NA提取和浓缩可以合并进行。
本文使用的术语“微制造装置或系统”是指以常用于而非专用于批量生产半导体微电子装置和在近年用于生产半导体微机械装置的方法而制造的任何装置。所述微制造技术包括例如外延生长(例如汽相、液相、分子束、金属有机化学汽相沉积)、平版印刷(例如光平版印刷、电子束平版印刷、x射线平版印刷、离子束平版印刷)、蚀刻(例如化学蚀刻、气相蚀刻、等离子体蚀刻)、电沉积、溅射、扩散掺杂和离子注入。尽管可以使用诸如玻璃等非晶体材料,但是微制造装置通常形成在诸如硅或砷化镓等晶体半导体基材上,其优点是通过使用常规的集成电路制造技术,可以将电子电路集成到所述系统中。将微制造组件与诸如玻璃板或辅助微制造元件等一个或多个其它元件进行组合是经常采用的,并意欲落在本文使用的术语“微制造(的)”的范围中。落在术语“微制造(的)”的范围中的还有由例如晶体半导体基材制得的聚合复制物。
从细菌细胞和病毒粒子中分离和纯化DNA和/或RNA是诸如诊断学、环境监测、法医学和分子生物学研究等很多技术领域中的关键步骤。
微制造是制造用于进行期望使用极少量的样品的生物过程(例如DNA序列的分析和检测)的装置的有吸引力的构造方法。
US 5,674,742公开了一种这样的装置,以进行聚合酶链式反应(PCR)然后进行检测步骤。因为需要进行PCR过程并且在需要进行PCR过程时,兰姆波泵被用来将DNA引物、聚合酶试剂和核苷酸试剂从3个分开的贮存室中运输到单一的反应室中,反应室的温度根据需要而循环。
Analytical Chemistry(1994,66,4127-4132)公开了另一种用于进行化学反应步骤然后进行电泳分离步骤的微制造装置。在用玻璃板覆盖的硅基材中的经蚀刻的结构提供反应室和与缓冲液、分析物、试剂和分析物废料贮存部的连接,以及与废料贮存部连接的电泳柱。
基于核酸序列的扩增(NASBA)是一种引物依赖性的技术,该技术可以用于在一个温度对单一混合物中的核酸进行连续扩增(等温核酸扩增法),并且是所述基于第一RNA转录的扩增法之一。NASBA通常提供用于核酸扩增的PCR的一种简单快速的替代方案,并且能够在90分钟内获得十亿倍的RNA扩增。对于诸如PCR技术等其它扩增系统,NASBA均一而等温地扩增RNA分析物的能力使其应用范围从病毒诊断延伸到诸如基因表达和细胞活力等生物活性的指示。在例如Nature(第350卷,第91和92页)中有NASBA技术的讨论。NASBA中的核酸扩增通过AMV反转录酶、Rnase H和T7 RNA聚合酶的协同的酶活性以及引物对来实现,从而使容易用来通过杂交方法进行检测的主要单链RNA得到积累。NASBA的内标RNA的使用导致动力学范围为4个对数(log)的定量核酸检测法的产生,但是该方法在每次定量时需要6次扩增反应。通过应用以不同量加入的多倍的、可区别的内标RNA和通过电化学发光法(ECL)检测技术可以使所述方法得到明显改进。这种单管定量(Q)NASBA每次定量只需要单步骤的扩增过程,并能够在核酸实际分离之前将内标加入到裂解缓冲液中的临床样品中。这一方法的优点在于,核酸的分离效率对定量结果没有影响,这与在野生型核酸与临床样品分离后将内标与所述野生型核酸混合的方法相反。在Nucleic Acid Research(1998,第26卷,第2150-2155)中有定量NASBA的讨论。但是,NASBA后的产物检测可能仍然是一个劳动密集型的过程,其通常涉及基于酶珠的检测和电化学发光(ECL)检测或与荧光有关的光谱测定。但是,由于这些方法技术具有非均质性或者它们需要对样品进行一些处理或者需要目前没有成本效率的自动机械装置,因此相对来说它们几乎不用于高通量应用中。通过产生靶特异信号而使产物检测与靶扩增同时进行的均质程序将有利于大批量筛查和完全自动化。最近,介绍了一种基于只有与其靶杂交才产生荧光的探针(分子信标)的新的核酸检测技术。
流体学是液体在例如管中流动的科学。对于微制造装置,使用该装置外面的诸如注射器、旋转泵或者预加料(precharged)的真空或者压力源等泵,通常可以使流体流过一组或多组微米级或纳米级的反应室。或者,可以将微型泵或者真空室或者兰姆波泵送元件作为装置本身的一部分提供。可以使用包括泵、阀和预加料的真空和压力室在内的流动控制元件的其它组合来控制流体穿过反应室的流动。其它用于在该系统中运输流体的机制包括电渗透流。
公开号为WO 02/22265的国际专利申请涉及一种微制造反应室系统,该系统可以用在进行NASBA的方法中。国际专利申请PCT/GB02/005945涉及微制造反应室系统和流体运输的方法。该系统也可以用在进行NASBA的方法中。国际专利申请PCT/GB03/004768涉及用于使核酸片段化的微流体装置。该装置可以在用于进行NASBA的微制造反应室系统中使用,或者用来与该微制造反应室系统进行组合。
发明内容
本发明提供用于对含有细胞和/或粒子的流体样品进行样品制备过程的系统,该系统包括:
(a)流体样品入口;
(b)裂解单元,所述裂解单元用于裂解包含在所述流体样品中的细胞和/或粒子;
(c)核酸提取单元,所述核酸提取单元用于从所述流体样品所包含的细胞和/或粒子中提取核酸;
(d)盛装裂解流体的贮存部;
(e)盛装洗脱剂的贮存部,所述洗脱剂用于移去在核酸提取单元中收集的核酸;
其中,样品入口与裂解单元流体连接,为控制样品入口与裂解单元之间的流体的流动而选择性地存在阀门;
其中裂解单元与核酸提取单元流体连接,为控制裂解单元与核酸提取单元之间的流体的流动而选择性地存在阀门;
其中盛装裂解流体的贮存部与裂解单元流体连接,为控制盛装裂解流体的贮存部与裂解单元之间的流体的流动而选择性地存在阀门;和
其中盛装洗脱剂的贮存部与核酸提取单元流体连接,为控制盛装洗脱剂的贮存部与核酸提取单元之间的流体的流动而选择性地存在阀门。
所述系统可以用于常规诊断所用的毫升级体积的样品。该系统依赖于预装载的某些试剂。
在本发明中,可以对核酸的提取和浓缩进行组合。因此,本发明提供集成的芯片实验室诊断系统以进行样品制备过程。该系统可以用于进行NASBA的微制造反应室系统,或者与该系统相结合。
优选所述系统的至少一些组件是微制造的。优选地,裂解单元、核酸提取单元、裂解流体贮存部和洗脱剂贮存部是微制造和集成例如形成在普通基材上的。
优选盛装裂解流体的贮存部与所述入口是流体连接的,为控制盛装裂解流体的贮存部与所述入口之间的流体的流动而选择性地存在阀门。
优选盛装洗脱剂的贮存部与所述入口是流体连接的,为控制盛装洗脱剂的贮存部与所述入口之间的流体的流动而选择性地存在阀门。
本发明所述的系统通常进一步包括(g)核酸反应单元,其中核酸提取单元与核酸反应单元是流体连接的,为控制核酸提取单元与核酸反应单元之间的流体的流动,可选择性地存在阀门。优选地,核酸反应单元是微制造的,并且优选与其它组件集成。在所述反应单元中可以进行任何常规反应。优选地,所述反应可以对特异性靶序列进行检测和/或定量分析。核酸反应单元通常包括核酸序列扩增和检测单元,该单元通过核酸扩增反应而能够检测特异性序列。其例子包括PCR和诸如NASBA等等温扩增技术。最优选的是使用分子信标的实时NASBA。因此,在一个优选方面,本发明提供集成的芯片实验室诊断系统,该系统用于对包含细胞和/或粒子的流体样品进行样品的制备、核酸序列的扩增和检测过程,更优选的是用于实时NASBA。公开号为WO 02/22265的国际专利申请描述了用于进行NASBA的微制造反应室系统。
本发明所述的系统优选包括例如受感染的上皮细胞的浓缩、mRNA的裂解和提取以及实时扩增和检测。
该系统可以用于例如宫颈癌的筛查。
本发明所述的系统通常还进一步包括(h)废料单元,其中所述废料单元与裂解单元是流体连接的,为控制废料单元与裂解单元之间的流体的流动而选择性地存在阀门。优选地,所述废料单元是微制造的,并且优选与其它组件集成。
所述系统通常还进一步包括(i)盛装洗涤溶剂的贮存部,该贮存部与核酸提取单元是流体连接的,为控制盛装洗涤溶剂的贮存部与核酸提取单元之间的流体的流动而选择性地存在阀门。优选地,所述盛装洗涤溶剂的贮存部是微制造的,并且优选与其它组件集成。洗涤溶剂可以选自任意适当的溶剂,但是优选的是诸如乙醇等易于蒸发的溶剂。
所述系统通常还进一步包括(j)盛装洗涤溶剂的贮存部,该贮存部与核酸提取单元是流体连接的,为控制盛装洗涤溶剂的贮存部与核酸提取单元之间的流体的流动而选择性地存在阀门。优选地,所述盛装洗涤溶剂的贮存部是微制造的,并且优选与其它组件集成。洗涤溶剂可以选自任意适当的溶剂,但是优选的是诸如异丙醇等易于蒸发的溶剂。
所述盛装洗脱剂的贮存部与盛装第一洗涤溶剂(例如乙醇)的贮存部和/或盛装第二洗涤溶剂(例如异丙醇)的贮存部流体连接是有利的。
更有利的是,所述洗脱剂、第一洗涤溶剂(例如乙醇)和/或第二洗涤溶剂(例如异丙醇)盛装在共同的贮存部中。这可以通过使用诸如空气等流体使所述洗脱剂、第一洗涤溶剂和/或第二洗涤溶剂于所述共同的贮存部中相互分隔来实现。但是可以使用其它“分隔”流体(液体或气体),只要它们与所述洗脱剂、第一洗涤溶剂和/或第二洗涤溶剂不互溶或者至少基本上不互溶即可。
在一个优选的实施方式中,所述洗脱剂、乙醇和/或异丙醇盛装在导管或通道中,所述导管或通道与所述入口和裂解单元是流体连接的。所述洗脱剂、乙醇和/或异丙醇被例如流体间隔(例如空气间隔)所分隔。
所述系统通常还进一步包括(k)用于将流体样品和/或空气导入所述入口中的部件。所述部件优选包括泵或注射器。或者,所述部件可以包括一个或多个与所述入口部连接的体积可变室,其中改变所述体积可变室的体积会影响和/或限制流体样品流入和/或流出所述入口的流动。体积可变室通常包括覆盖在下层基材中的空凹处上的柔性膜。国际专利申请PCT/GB02/005945描述了一种优选的流体运输系统。
所述系统由单泵送系统驱动是有利的。
所述裂解单元可以具有任意适当的形状和构造,但是该单元通常为通道或室的形式。该裂解单元优选用于裂解包含在流体样品中的真核的和原核的细胞和粒子。
如果需要,所述系统可以进一步包括过滤单元,该单元与所述裂解单元是流体连接的。该过滤单元可以包括例如交叉流过滤器或者中空过滤器。或者,裂解单元本身可以进一步包括过滤流体样品的部件。所述部件可以包括例如交叉流过滤器或者中空过滤器,这些过滤器可以与裂解单元集成。
如果需要,所述系统可以进一步包括片段化单元,该单元与所述裂解单元是流体连接的。或者,裂解单元本身进一步包括对流体样品进行片段化的部件。作为样品预处理步骤,对DNA或RNA进行随机片段化通常是必要的。片段化可以使用限制酶通过生化方法来实现,或者通过采用物理力来使分子断裂(例如见P.N.Hengen,Trends in Biochem.Sci.第22卷,第273-274页,1997和P.F.Davison,Proc.Nat.Acad.Sci.USA,第45卷,第1560-1568页,1959)。通过剪切对DNA进行片段化通常涉及使样品通过短压缩件(constriction)。在一个优选的实施方式中,DNA和/或RNA在泵过狭窄的孔口时由于对分子的快速牵拉而在机械力下断裂。压力驱动流可以产生剪切力,这导致核酸的片段化。国际专利申请PCT/GB03/004768描述了一种用于核酸片段化的微流体装置。
裂解单元本身可以进一步包括对流体样品进行过滤的部件和对流体样品进行片段化的部件。
所述系统可以进一步包括对裂解单元和/或核酸提取单元的内容物进行加热的部件。所述部件可以包括例如一个或多个位于裂解单元和/或核酸提取单元中或与裂解单元和/或核酸提取单元相邻的珀尔帖元件。
所述核酸提取单元可以具有任意适当的形状和构造,但是该单元通常为通道或室的形式。该核酸提取单元优选用于对包含在流体样品中的真核的和原核的细胞和粒子进行提取。
所述核酸提取单元可以至少部分地填充有二氧化硅珠子或粒子。可以在二氧化硅珠子或粒子附近提供用于收集和/或预浓缩经洗脱的核酸的一组或多组电极。所述一组或多组电极可以包括例如铂电极。因此,可以提供用于对所述电极施加电势差的部件。提取小室(extraction cell)优选由聚(二甲基硅氧烷)(PDMS)形成或者包含聚(二甲基硅氧烷)。该单元通常包括基材和上层覆盖物,提取单元由基材表面的凹陷处和所述覆盖物的相邻表面所限定。基材优选由硅聚(二甲基硅氧烷)(PDMS)形成。NA在离液剂存在下结合到二氧化硅表面上。
电极(例如铂电极)的集成可有利地用来可逆地收集和预浓缩经洗脱的芯片上的NA(NA on-chip)。因此,本发明可以使核酸的提取和富集实现组合。
在一个优选的实施方式中,所述核酸提取单元包括二氧化硅珠子填充的聚(二甲基硅氧烷)(PDMS)通道。
所述系统或者至少其主要变化形式通常由半导体材料形成,或者包括半导体材料,但是也可以使用绝缘体(例如玻璃、熔融二氧化硅、石英、聚合物材料和陶瓷材料)和/或金属材料。半导体材料的例子包括一种或多种:第IV族元素(即,硅和锗);第III~V族化合物(例如砷化镓、磷化镓、锑化镓、磷化铟、砷化铟、砷化铝和锑化铝);第II~VI族化合物(例如硫化镉、硒化镉、硫化锌、硒化锌);和第IV~VI族化合物(例如硫化铅、硒化铅、碲化铅、碲化锡)。硅和砷化镓是优选的半导体材料。所述系统使用传统上与半导体微电子装置的批量生产以及近年来的半导体微机械装置的生产有关的常规过程来制造。所述微制造技术包括例如外延生长(例如汽相、液相、分子束、金属有机化学汽相沉积)、平版印刷(例如光平版印刷、电子束平版印刷、x射线平版印刷、离子束平版印刷)、蚀刻(例如化学蚀刻、气相蚀刻、等离子体蚀刻)、电沉积、溅射、扩散掺杂、离子注入和微机械加工。也可以使用诸如玻璃等非晶体材料和聚合物材料。
聚合物材料的例子包括PMMA(聚甲基丙烯酸甲酯)、COC(环烯烃共聚物)、聚乙烯、聚丙烯、PL(聚交酯)、PBT(聚对苯二甲酸丁二醇酯)和PSU(聚砜),还包括两种或两种以上所述物质的混合物。优选的聚合物是PDMS或COC。
所述装置/系统通常通过集成形成。该装置/系统可以在诸如本文所述的半导体材料等普通的基材材料上进行微制造。但是,也可以使用诸如玻璃或陶瓷材料等绝缘体基材材料。然而,优选的普通基材材料是塑料或聚合物材料,并且适当的例子如上给出。所述系统优选通过例如硅母版的复制而形成。
以塑料代替硅玻璃用于微型结构的优点有很多,至少在生物学应用上是这样。一个最大的优点是减少了采用例如微注射模制、热压印和铸塑等方法进行大量生产的成本。系数为100或更多对于复合结构不是不可能的。复制用于多层模具嵌入物的结构的可能性使得在设计自由度上具有巨大灵活性。由于有了将常用的标准部分组合的选择余地,因此在很多情况下微观世界和宏观世界的相互连系更为容易。组装技术可以采用不同的手段,例如由微结构支持的US-焊接、激光焊接、胶粘和层压。其它有利的特征是表面改性。对于专用于生物分析的微型化结构,重要的是表面是生物相容的。通过利用等离子体处理和等离子体聚合,分配的灵活性和变化性可以应用于涂层中。塑料在抗酸和碱的化学耐性上要远远优于容易被腐蚀掉的硅基材。生物技术领域中的大部分检测方法都涉及光学检测。因此,相对于不透明的硅基材,塑料的透明性是一个重要的特征。聚合物微流体技术目前在芯片实验室市场中是已经确立但正在成长中的领域。
本文所述的微制造系统也意欲包括纳米制造装置。
对于硅母版或半导体母版,可以在具有精确微尺度尺寸的硅基材上由例如蚀刻或者微机械加工确定一个或多个体积可变室、微流体通道、反应室和流体互相连接。然后由硅母版制造塑料复制物。在这种方式中,可以通过任何适当的方法(例如,使用粘合剂或通过加热),将具有蚀刻微结构或机械加工微结构的塑料基材结合到覆盖物上。
在所述系统中所使用的选择性阀门可以采用任何方便的形式。例如,阀门可以简单地调节沿着连接两个单元的导管或通道的流动。可以提供通过栓装置的作用而在导管或通道的孔中升降的活塞样组件。
所述系统的使用包括以下示例性的可能步骤:
选择方案1
(i)样品收集和裂解
(ii)mRNA的提取(手动程序或自动程序)
(iii)实时扩增和检测(优选为多重)
选择方案2
(iv)片段化单元可以同时包括样品的裂解和样品的制备
(v)实时扩增(NASBA)和检测(优选为多重)
本发明还提供制造本文所述的集成的芯片实验室诊断系统的方法,该方法包括:
A.提供在其表面具有入口凹陷处、裂解单元凹陷处、核酸提取单元凹陷处、裂解流体贮存部凹陷处和洗脱剂贮存部凹陷处的基材;
B.提供覆盖物;和
C.将所述覆盖物结合到所述基材上,以形成各自由基材的所述表面的相应凹陷处和所述覆盖物的相邻表面所限定的(a)入口、(b)裂解单元、(c)核酸提取单元、(d)裂解流体贮存部和(e)洗脱剂贮存部。
本文使用的术语“凹陷处”还意欲涵盖各种特征,包括例如槽、缝、孔、沟和通道,包括它们的一部分。
所述方法可以进一步包括在将所述覆盖物结合到所述基材上之前或之后将裂解流体导入裂解流体贮存部中的步骤。
所述方法可以进一步包括在将所述覆盖物结合到所述基材上之前或之后将洗脱剂导入洗脱剂贮存部中的步骤。
所述方法可以进一步包括在将所述覆盖物结合到所述基材上之前或之后将乙醇导入洗脱剂贮存部中的步骤。
所述方法可以进一步包括在将所述覆盖物结合到所述基材上之前或之后将异丙醇导入洗脱剂贮存部中的步骤。
洗脱剂和/或乙醇和/或异丙醇优选通过流体而互相分隔,所述流体优选为空气,但可以使用任何不互溶的流体(液体或气体)。
在一个优选的实施方式中,所述方法包括:
在将所述覆盖物结合到所述基材上之后,将洗脱剂导入洗脱剂贮存部中;
将第一体积的空气导入洗脱剂贮存部中;
将乙醇导入洗脱剂贮存部中,借此使该乙醇与洗脱剂被所述第一体积的空气所分隔;
将第二体积的空气导入洗脱剂贮存部中;
将异丙醇导入洗脱剂贮存部中,借此使该异丙醇与乙醇被所述第二体积的空气所分隔。
基材可以由例如硅形成,而上层覆盖物可以由例如玻璃形成。在这种情况中,玻璃覆盖物优选阳极结合到硅基材上,所述阳极结合可以选择性地通过形成在基材表面上的中间二氧化硅层进行。硅中的凹陷处可以采用反应性离子蚀刻形成。诸如聚合物材料等其它材料也可以用作基材和/和覆盖物。所述材料可以使用例如硅复制物来制造。或者,所述装置可以采用研磨和放电加工(EDM)构造模具嵌入物,然后对芯片部分进行注射制模,然后采用例如钻孔、研磨、去毛刺(debarring)等对聚合物部分进行机械性后加工而制造。随后,可以接着进行过滤器的插入、溶剂结合和流体连接的安装。
聚合物材料的例子包括PMMA(聚甲基丙烯酸甲酯)、COC(环烯烃共聚物)、聚乙烯、聚丙烯、PL(聚交酯)、PBT(聚对苯二甲酸丁二醇酯)和PSU(聚砜),还包括两种或两种以上所述物质的混合物。优选的是COC。
优选地,尤其是如果需要对小室中的内容物进行光学观测,则上层覆盖物由诸如玻璃、Pyrex或COC等透光物质或材料制成。
微制造组件与一种或多种诸如玻璃板或辅助微制造元件等其它元件的组合是经常使用的,并且意欲落在本文所使用的术语“微制造(的)”的范围之内。
部分或全部的基材基底可以提供有涂层,该涂层的厚度通常至多为1μm,优选小于0.5μm。该涂层优选由包含以下物质的组中的一种或多种物质形成:聚乙二醇(PEG)、牛血清白蛋白(BSA)、吐温(tween)和葡聚糖。优选的葡聚糖是分子量为9,000~200,000的葡聚糖,特别优选的是分子量为20,000~100,000,尤其是25,000~75,000(例如35,000~65,000)的葡聚糖。吐温(或聚氧乙烯脱水山梨糖醇)可以是来自Sigma AldrichCompany的任意可获得的吐温。PEG优选单独地或组合地作为涂层部件。PEG包括纯的聚乙二醇,即,式HO-(CH2CH2O)n-H,其中n是使PEG通常具有200~10,000,尤其是PEG 1,000~5,000的分子量的整数;或者是化学改性的PEG,其中,一种或多种乙二醇低聚体通过同种双官能团(例如磷酸部分或芳香族间隔物)连接。特别优选是称为FK108的聚乙二醇(一个聚乙二醇链通过磷酸与另一个聚乙二醇链相连);和Sigma AldrichCompany作为产品P2263销售的PEG。施用于所述小室/室、入口、出口和/或通道的表面的上述涂层可以改善流体流过所述系统的流动。特别地,已发现样品不大容易附着或粘结到所述表面上。PEG涂层是优选的。
对于硅母版或半导体母版,可以在具有精确微尺度尺寸的硅基材上由例如蚀刻或者微机械加工限定一个或多个体积可变室、微流体通道、反应室和流体互相连接(深层反应性离子蚀刻(DRIE)是优选的技术)。然后由硅母版可制造塑料复制物。在这种方式中,可以通过任何适当的方法(例如,使用粘合剂或通过加热),将具有蚀刻微结构或机械加工微结构的塑料基材结合到覆盖物上,从而形成密闭的片段化小室、入口、出口和连接通道。
所述装置包括在其上表面形成有所期望的微结构的基材。该基材可以例如是硅,或者是通过硅母版复制而形成的塑料基材。该基材的上表面与覆盖物结合,从而限定了一系列的单元/小室、入口、出口和/或通道。所述覆盖物可以由例如塑料或玻璃形成。该覆盖物优选是透明的,这允许对流体进行观测。通常,所述装置优选通过硅的深层反应性离子蚀刻(DRIE)制造以进行高深宽比压缩,然后进行玻璃覆盖物的阳极结合。或者,所述装置可以采用研磨和放电加工(EDM)通过构造模具嵌入物,然后对芯片部分进行注入模制、接着采用例如钻孔、研磨、去毛刺等对聚合物部分进行机械性后加工而制造。随后,可以接着进行过滤器的插入、溶剂的结合和流体连接的安装。
核酸样品可以是或者来自例如生物流体、乳制品、环境流体和/或饮用水。其例子包括血液、血清、唾液、尿、奶、饮用水、海水和池水。对于许多复杂的生物样品,例如,血液和奶,应该理解,在可将样品中的DNA和/或RNA与细菌细胞和病毒粒子分离和纯化之前,首先需要将样品中的病毒粒子和细菌细胞与其它粒子分开。而且也应该理解,为了浓缩细菌细胞和病毒粒子,即减少原料的体积,在进一步对细菌细胞壁或者病毒蛋白被膜进行破坏和对核酸进行分离过程之前,需要进行另外的样品制备步骤。这在原料由大体积的例如含有相对较少的细菌细胞或病毒粒子的水溶液组成时是非常重要的。这种类型的原料通常是在诸如饮用水中细菌污染的例行监测等环境检测应用中碰到。
所述系统优选针对适合体积为10ml~100ml的样品而设计。
本发明还提供用于分析生物样品和/或环境样品的设备,该设备包括本文所述的系统。该设备可以是一次性设备。
本发明还提供用于分析生物样品和/或环境样品的分析试剂盒,该试剂盒包括本文所述的系统和用于将样品与所述系统接触的部件。该分析试剂盒可以是一次性试剂盒。
现在通过举例的方式并参照附图对本发明进行描述。
附图说明
图1是用于将平面膜集成到本发明所用的一次性聚合物芯片装置中的夹层布局的示意图。
图2是用于本发明所述系统的阀门设计的示意图。
图3a~3d是用于本发明所述系统的阀门设计的示意图。
图4是本发明所述的珠子室的可能布局的示意图。
图5是显示填充有裂解缓冲液(图5a)和提取流体(图5b)的本发明所述系统设计的示意图。
图6是根据本发明的一个优选实施方式的芯片布局的示意图。
图7是根据本发明的另一个优选实施方式的系统设计的示意图。
图8涉及实施例。
图9涉及实施例。
具体实施方式
根据本发明的一个塑料芯片设计优选合并有供应通道、反应室和微流体驱动系统,并优选通过环烯烃共聚物(COC)的注射模制进行加工。例如用于具有12个通道的芯片的模具嵌入物可以使用高度精确研磨来制造。检测体积通常为约80nL(400μm×2000μm×100μm)。塑料芯片优选首先进行氧等离子体激活,然后用5%的聚乙二醇(PEG)溶液(SigmaChemical Co,St.Louis,MO)涂布。涂布后,可以用约75μmCOC膜通过使用例如双环己烷(bicyclohexcyl)的溶剂焊接对芯片进行密封。优选在芯片的背面沉积薄的金层(约25nm),以阻挡来自珀耳帖元件顶部上的热垫的背景荧光。
如果需要,珀耳帖元件可以集成到对塑料芯片提供热控制的样品支架中。可以将铝块置于珀耳帖元件的顶部,以确保用于芯片的热均匀分布。优选将热垫装在铝块上,以使芯片和热源实现热接触。通常将热电偶置于样品支架上,来测定空气温度并对珀耳帖元件具有反馈电路。可以在便捷式电脑上对温度调节进行外部控制。
如上所述,NASBA是专门设计用于扩增任何单链RNA序列的等温(约41℃)扩增方法。NASBA反应的应用范围很大,例如检测特异性病毒RNA、其它感染性媒介或病原性媒介的RNA或者某些细胞RNA的存在。三种酶,即AMV反转录酶、RNase H和T7 RNA聚合酶的同时活性构成了扩增反应的核心技术。两个寡聚核苷酸引物确定了反应的特异性和对靶RNA特异的荧光分子信标探针的特异性。在约90分钟内,可以将感兴趣的核酸序列扩增到大于109拷贝。光学检测单元优选设计成在约494nm在反应室中激发荧光并在约525nm处检测发射的荧光。可以在通过透镜对光进行校准之前,用带宽滤波器(465nm~500nm)对激发光进行过滤。可以用相同的菲涅耳透镜来聚焦荧光的照明和收集。可以用另外的透镜将荧光聚焦在检测器(例如光电倍增管)的表面上。检测信号的数据收集和准备可以用MATLAB 6.0.088 Release 12(The Math Works Inc.,Natick,MA)于便捷式电脑上进行处理。
在微技术分析系统的范围内,有效的样品预处理是重要因素。特别地,为了能够检测数目低的特异性粒子(例如生物样品中存在的细胞细菌或病毒),浓缩装置是需要的。在本领域中已知的各种浓缩方法包括例如过滤技术(例如使用不同过滤介质(微结构通道、多孔性中空纤维或膜)的死端式过滤和交叉流过滤)、重力沉降器、离心机、声池(acoustic cell)过滤器、光阱、介电电泳(DEP)、电泳、流式细胞计数和基于吸附的方法。
一种优选的浓缩方法涉及死端式过滤。这是相对简单而经济的方法,该方法可以容易地被集成到一次性聚合物芯片中。而且,使用平面膜可以确保在应用领域方面的高度灵活性,这是因为可以获得各种膜,并且可以例如容易地进行诸如PEG或Tween20涂布等表面处理。
可以使用如在图1中所示意性显示的夹层结构来将平面膜集成到一次性的聚合物芯片中。该芯片包括覆盖膜40、流体通道41和滤膜44。芯片的顶部和底部分别显示为42和43。
优选地,为了能够在芯片上对流动进行控制,可以将一个或多个阀门集成到该装置中。适当的阀门设计如图2和3所示。对于图2,可以使用预成型膜或平面膜。芯片45包括流体通道46和预成型膜47。垂直箭头表示开口位置。
对于图3a~3d,其显示了具有主体的芯片,该主体包括顶部主体部分50、主要主体部分52和插入到两者之间的膜51。在邻近膜51处提供微流体通道57。在主要主体部分52中的适当凹陷处提供活塞54和阀门55。流体/液体存在于活塞54上面的体积53中(见图3a)。在阀门55以干涉配合安装在上部位置(见图3a)。在这一位置,可以密封微流体通道57,使流体不能通过。锥形栓56b可以用于将阀门55降低到开口位置(见图3b、3c和3d)。特别地,当将栓56b向上推动时,栓56b通过摩擦配合紧闭在阀门55中相应的凹陷处。类似地,在涉及活塞54时,当将锥形栓56a向上推动时,锥形栓56a通过摩擦配合紧闭在活塞54中相应的凹陷处。为了运输体积53中的液体,将栓56a和56b分别推入活塞54和阀门55的相应凹陷处,从而使液体被推出体积53(见图3c和3d)。在使用完芯片时,锥形栓56a和56b分别从活塞54和阀门55中退出。
本发明人已经发现,二氧化硅珠子非常适合于RNA的提取和纯化。对于提取,通常可以使用0.3mg~0.4mg的直径为15μm~35μm的珠子,不过也可以使用更大的二氧化硅珠子(直径至多为约200μm)。珠子室的可能布局如图4所示。在芯片到芯片结合前,用预湿的二氧化硅珠子61装载珠子室60。结合后,用100μm的瓶颈保持珠子包装。即使珠子室60没有完全填充,但是珠子室的形状和流体连接62(入口)和63(出口)的布置也可以确保所施加的液体通过二氧化硅珠子61。珠子室60的体积为约6.5μL,适合于对通常为10μL~50μL的样品进行提取。
在整个预处理过程中,优选使用4种液体:裂解缓冲液(通常为约100μL)、异丙醇(通常为约40μL)、乙醇(通常为约40μL)和洗脱缓冲液(通常为约5μL~20μL)。后三种液体是提取所需要的。本发明人已经发现,在顶部芯片70a(见图5a)上的通道(通常为弯曲通道)中储存裂解缓冲液,而在底部部分70b(见图5b)上的两个W形和一个U形贮存部中储存提取液是有利的。
所有的储存性贮存部可以简单地通过小的(0.5mm×0.5mm)侧通道方式来填充,该侧通道在图5中显示为注射器75a~75d略图的针位置。填充以后,侧通道可以用诸如胶水或胶带等适当的手段进行密封。
有利的是,为了获得操作相对简单的系统,优选使用单个(注射器)泵来驱动所有的液体。
根据本发明的一个优选的实施方式的芯片布局如图6所示。
使用常规的注射器(针直径为0.4mm)依次填充4个液体贮存部(裂解缓冲液、异丙醇、乙醇和洗脱缓冲液),并将填充通道密封。
首先,通过注射器泵的方式将细胞悬浮液施加到过滤单元。除了粒子物悬浮液,注射器还装有约200μL~300μL用于驱动芯片上的液体的空气(应该理解,根据应用,可以使用其它不互溶的液体)。
其次,将空气泵入裂解缓冲液贮存部中,并将所置换的缓冲液施加到保存在过滤器中的细胞。推动细胞裂解物通过过滤器并导入珠子室。由于所述额外的过滤步骤,珠子室中发生堵塞的可能性得以降低。
第三,在关闭与过滤室和裂解缓冲液贮存部连接的同时,驱动泵(注射器)与提取液贮存部连接。提取液储存在由空气塞分隔的单个贮存部中。在对贮存部的一侧施加压力时,液体得到平行置换并依次导过珠子室。
以下参照图6对包括阀门操作在内的操作程序进行总结。阀门没有以关闭状态列出,而是将所列出的阀门打开以用于相应的操作。
过滤
阀门5、7:细胞悬浮液进入,滤出物→左出口
裂解
阀门2、3、7:空气进入,所置换的流体→左出口
阀门2、3、6:空气进入,裂解物→珠子包装,右出口
纯化
阀门1、4、6:空气进入,异丙醇→珠子包装
空气进入,乙醇→珠子包装
空气进入,洗脱缓冲液→珠子包装
现在转到图7,该图显示本发明的另一个优选的实施方式。以上描述也适用于本实施方式。系统1包括流体样品用入口5、裂解/过滤单元10、核酸提取单元15、盛装裂解流体的通道20、盛装洗脱剂、乙醇和异丙醇的通道25、核酸序列扩增和检测单元30和废料单元35。
通道11将样品入口5连接至裂解/过滤单元10。提供阀门12来控制样品入口5和裂解/过滤单元10之间流体的流动。
通道16将裂解/过滤单元10连接至核酸提取单元15。提供阀门17来控制裂解/过滤单元10和核酸提取单元15之间流体的流动。
盛装裂解流体的通道20连接到裂解/过滤单元10和样品入口5。提供阀门22和23来控制流体的流动。
盛装洗脱剂、乙醇和异丙醇的通道25连接到核酸提取单元15和样品入口5。提供阀门27和28来控制流体的流动。
通道31将核酸提取单元15连接至核酸序列扩增和检测单元30。提供阀门32来控制核酸提取单元15和核酸序列扩增和检测单元30之间流体的流动。
通道36将裂解/过滤单元10连接至废料单元35。提供阀门37来控制裂解/过滤单元10和废料单元35之间流体的流动。
通道25盛装洗脱剂和诸如乙醇和异丙醇等洗涤溶剂。所述洗脱剂和洗涤溶剂被预装载到利用空气间隔的通道中以使液体相互分隔。
适当的裂解缓冲液流体的例子为100mM的Tris/HCl、8M GuSCN(pH6.4)。
适当的洗脱溶液的例子为10mM Tris/HCl、1mM EDTA Na2(pH8)+1mM YOYO-1。
核酸的定量可以使用荧光显微镜和像素-密度分析程序(Lispix)来实现。
核酸提取单元包含二氧化硅珠子,例如0.3mg的尺寸为15μm~30μm的二氧化硅珠子。还可以在填充床紧下面提供用于电动收集带负电的洗脱核酸的铂电极(未示出)。
操作程序总结如下。
过滤
关闭除了阀门12和37之外的所有阀门。将装有流体样品(该样品含有待分析的细胞)的注射器连接到样品入口5,并在压力下将样品注入到过滤/裂解单元10中。采用这种方式使细胞保持在单元10中,然后将该流体的残留部分传递到废料单元35中。
裂解
关闭除了阀门22、23和37之外的所有阀门。在第一步骤(可选)中,将包含在注射器中的空气注入样品入口5中。这使装在通道20的裂解流体向过滤/裂解单元10移动。但是,在裂解流体进入到过滤/裂解单元10之前,裂解流体之前的空气,即,阀门23和单元10之间的通道20的区域中的空气,使单元10中的任何残留流体得到置换并流到废料单元35中。接着,在第二步骤中,关闭阀门37并打开阀门17。随着装在注射器中的空气继续注入到样品入口5中,装在通道20中的裂解流体在压力下流入过滤/裂解单元10中。结果,其中保留的细胞被裂解,并且裂解物流到核酸提取单元15中。
纯化/提取
关闭除了阀门27、28和32之外的所有阀门。在第一步骤中,将装在注射器中的空气注入样品入口5中。这使装在通道25中的流体(异丙醇、空气间隔、乙醇、空气间隔、洗脱缓冲液)作为液体柱向核酸提取单元15移动。一旦所有的异丙醇(即,流体柱的第一部分)已经传递到核酸提取单元15中,即停止这一过程。经过短暂的时期(和选择性地对单元15的内容物进行加热),继续该过程,并且异丙醇被异丙醇和乙醇之间的空气间隔所置换。使异丙醇蒸发和/或将其废弃。然后使乙醇在压力下流入核酸提取单元15中。一旦所有乙醇全部进入单元15,再一次停止这一过程。经过短暂的时期(和选择性地对单元15的内容物进行加热),继续这一过程,并且乙醇被乙醇和洗脱缓冲液之间的空气间隔所置换。使乙醇蒸发和/或将其废弃。然后使洗脱缓冲液在压力下流入核酸提取单元15中,并洗脱从二氧化硅珠子表面上释放的核酸。然后将经洗脱的核酸传递到核酸序列扩增和检测单元30。
本发明提供用于核酸(NA)提取和分析的设备和方法。已经成功地从诸如人细胞裂解物等生物样品中进行提取,其中在前15mL的洗脱物中收集NA。
已经在集成有供应通道和平行反应室的环烯烃共聚物(COC)塑料微芯片中对实时的基于核酸序列的扩增(NASBA)进行过测定。已经成功地对人工人乳头瘤病毒(HPV)16的序列、整合有HPV 16的SiHa细胞系以及检测为HPV 16阳性的患者样品进行了检测。施加到芯片的样品材料被分入11个平行反应室中,在这些反应室中以80nL的检测体积同时进行检测。
现在将参照以下非限定性实施例对本发明进行进一步的描述。
实施例
样品材料
从American Type Culture Collection(USA)(美国典型培养物保藏中心)获得宫颈癌细胞系SiHa(鳞状细胞癌)。将SiHa细胞系保存在Dulbecco改进的Eagles培养基(DMEM)上,该培养基添加有10%的胎牛血清(FBS)、2mM L-谷氨酰胺和25μg/ml的庆大霉素。将该细胞培养在37℃和5%CO2的气氛中。用胰蛋白酶对细胞进行处理、在Bürkers室中计数并在NASBA裂解缓冲液(bioMérieux,荷兰,含有5M硫氰酸胍)中裂解。在NucliSense Extractor上使用Boom氏法(Boom,R.,Sol.J.A.,Salimans,M.M.M.,Jansen,C.L.,Wertheimvandillen P.M.E.,Vandernoordaa,J.J.of Clinical Microbiol.,1990,28,(3),495-503)对核酸进行分离和提取。SiHa细胞中每一个细胞含有1~2拷贝的所整合的HPV 16 DNA(Syrjanen,S.,Partanen,P.,Mantyjarvi,R.和Syrjanen,K.,J Virol Methods,1988,19,225-238)。检测SiHa细胞系提取物的10倍系列稀释物。此外,使用来自HPV Proofer试剂盒(NorChip AS,挪威)的人工HPV 16型序列作为靶序列。对系列稀释物进行检测,以确定系统的检测极限。
NASBA
根据制造商的说明书,混合PreTectHPV-Proofer试剂盒中的试剂(NorChip AS,挪威)。在该试剂盒中可以得到所有的引物和探针。另外,以0.05%的终浓度将BSA加到该混合物中作为动态包被。来自试剂盒的试剂溶液(26μL)和13μL的样品材料(SiHa细胞系样品和来自该试剂盒的HPV 16型序列样品),混合并加热到65℃,在该温度加热2分钟。然后将该混合物冷却到41℃,在该温度冷却2分钟,然后添加酶(13μL)。切开各反应室通道的一个驱动室后,将该混合物加到聚合物微芯片中。该芯片中的各反应通道因毛细管力而填充有所述混合物。将残留的混合物抽到供应通道末端的废料室中。然后在光学系统下移动芯片支架,在此挨个对通道进行检测。每30秒测定一次。用LED(发光二极管)只照射2×2mm2的区域,这一区域对应于80nL的检测面积。为了与微芯片检测进行比较,另外还用常规仪器对HPV 16序列和SiHa细胞系的10倍系列稀释物进行检测。所有的试验均进行2.5小时。
计算
使用PreTect Data Analyzer(PDA)(NorChip AS)对所有结果进行计算。微芯片设计有12个反应室,但是由于测定的系统误差,在计算中去掉了每一侧的两个反应通道。根据多项式回归法进行计算。比例被定义为反应结束时的荧光水平与反应起始时的荧光水平的差异。比例等于或大于1.7的所有样品都被确定为阳性。出现阳性的时间(time-to-positivity)或起点设定在曲线开始呈指数上升处。使用自起点起荧光水平上升10%的值和荧光水平上升80%的值来计算平均斜率(average slop)。该聚合物微芯片的检测极限设定为所有10个反应通道经检测均呈阳性时的所检测的最低浓度。
结果
在检测体积为80nL的聚合物微芯片中成功地采用实时NASBA对HPV 16病毒进行了鉴定。图8和图9显示了分别对SiHa细胞系和HPV 16寡聚序列进行的一个试验的结果。图中显示了明显为阳性的曲线图,该曲线图具有与使用常规20μL体积和常规读数器进行检测的样品相同的曲率(未显示)。表1显示了使用聚合物微芯片获得的人工HPV 16序列和SiHa细胞系的系列稀释物的结果。为了表征扩增反应,评价了数个不同参数:荧光比例、出现阳性的时间、曲线线性部分的平均斜率、阳性扩增的数目和所检测的聚合物微芯片的数目。表中的值表示经检测呈阳性的样品的平均值和标准差。对于在微芯片上检测的HPV 16序列和SiHa细胞系,所述比例或多或少是恒定的。在与相同样品材料的常规检测(表2)的比较中,表明比例随浓度的下降而下降。另一方面,对于微芯片和常规方法,其它参数对应得非常好。出现阳性的时间随浓度下降而上升。而平均斜率值随浓度的下降而下降。对于人工HPV 16序列,对100aM~100nM的10倍系列稀释物进行了检测,而对于SiHa细胞系,检测的是0.02个细胞/μL~2000个细胞/μL。为用户定制的光学检测系统对人工HPV 16序列和SiHa细胞系材料分别具有1pM和20个细胞/μL的检测极限。这些检测极限与由常规Biotek读数器获得的检测极限相同。在这两种系统上都可以对更低的浓度进行检测,但是结果不一致。该结果还表明,当输入靶的样品浓度下降时,标准差上升。比较HPV 16寡聚序列和SiHa细胞系的NASBA结果表明,除了扩增反应的起点处与终点处之间的荧光水平的比例以外,所有参数对于微系统和常规方法都具有相同的趋势。在小反应室时的背景噪音比目视荧光(macroscopic fluorescence)法的明显。通过在聚合物微芯片的背面施加薄的金层,可以从分析中除掉部分的背景荧光。COC本身就具有自动荧光性,总会产生一些背景荧光。产生噪音检测的另一个因素是由于聚合物表面不完美而产生的光散射。对于较低的浓度,由于基材使用更长的时间去寻找基材并与基材相互作用,因此如所预期的那样,出现阳性的时间下降。对于试验中的最大浓度,尤其是对于试验中的人工HPV 16的最大浓度,出现阳性的时间增长。非常高的样品浓度还可能会抑制反应,因此会使用比理想的反应混合物更长的时间。平均斜率以相同的方式下降。当在反应混合物中以较少量的靶开始时,将产生较少的扩增子,其斜率将低于较高浓度的斜率。NASBA反应的检测极限取决于感兴趣的靶、引物和探针的设计。在这些试验中,我们在两种检测系统中均可以检测低至1pM和20个细胞/μL的浓度。因此,本实施例表明,采用实时NASBA,在聚合物微芯片中可以检测低至1pM浓度的人工HPV 16序列。对于细胞系样品,检测极限为20个细胞/μL。这些检测极限与在常规Biotek读数器中进行的试验所得到的检测极限相同。
表1:在微芯片上进行NASBA来检测HPV 16寡聚序列和SiHa细胞系的系列稀释物。结果为试验中得到的所有值的平均值和标准差。
浓度 比例 起点 平均斜率     阳性扩增/反应数目     检测的芯片数目
HPV 16寡聚序列[μM]
0.10.010.0010.00010.000010.0000010.00000010.000000010.0000000010.0000000001  2.90±0.333.06±0.372.65±0.422.75±0.322.56±0.382.54±0.462.10±0.321.85±0.282.27±0.863.93  12.31±5.3614.73±4.039.00±2.0522.19±4.4522.55±7.3625.30±3.6037.09±12.7443.75±7.1381.00±38.184.50  45.09±9.8943.48±9.4845.99±17.6635.08±17.9429.87±13.7419.62±9.2117.27±11.789.94±3.5515.02±6.2621.83     50/5040/4030/3030/3030/3030/3033/706/602/601/60     5433337666
SiHa细胞系[细胞/μl]
20002002020.20.02  2.86±0.302.80±0.432.88±0.272.75±0.502.73±0.540  16.91±2.6718.89±3.3930.65±9.2838.02±26.1270.13±39.120  42.57±6.2440.56±14.5037.49±11.0935.09±15.4739.29±14.970     40/4040/4039/4060/704/500/30     444753
表2:对HPV 16寡聚序列和SiHa细胞系进行的常规NASBA检测。结果为试验中得到的所有值的平均值和标准差。
浓度  比例  起点  平均斜率   阳性扩增/总反应    5
HPV 16寡聚序列[μM]
0.10.010.0010.00010.000010.0000010.00000010.000000010.0000000010.0000000001  6.51±0.186.74±0.276.47±0.285.18±1.074.80±1.173.84±0.811.79±0.09---  14.00±0.7711.75±1.4715.25±1.7523.83±4.6525.13±3.6826.25±5.5233.75±7.42---  111.21±19.2996.26±28.28113.05±33.6294.42±58.8584.10±38.2742.68±11.4015.71±1.53---   6/66/66/66/612/1212/122/120/120/120/12 101520
SiHa细胞系[细胞/μl]
20002002020.20.02  4.85±0.583.84±1.223.66±1.152.96±0.42--  29.25±1.2529.25±4.0033.30±7.8239.75±1.06--  80.09±6.8052.47±24.8244.04±16.8227.95±7.15--   6/66/65/62/60/60/6 2530

Claims (32)

1.一种用于对含有细胞和/或粒子的流体样品进行样品制备过程的集成的芯片实验室诊断系统,该系统包括:
(a)流体样品入口;
(b)裂解单元,所述裂解单元用于裂解所述流体样品中所包含的细胞和/或粒子;
(c)核酸提取单元,所述核酸提取单元用于从所述流体样品中所包含的细胞和/或粒子中提取核酸;
(d)盛装裂解流体的贮存部;
(e)盛装洗脱剂的贮存部,所述洗脱剂用于移去在所述核酸提取单元中收集的核酸;
其中所述样品入口与所述裂解单元是流体连接的,为控制所述样品入口与所述裂解单元之间流体的流动而选择性地存在阀门;
其中所述裂解单元与所述核酸提取单元是流体连接的,为控制所述裂解单元与所述核酸提取单元之间流体的流动而选择性地存在阀门;
其中所述盛装裂解流体的贮存部与所述裂解单元是流体连接的,为控制所述盛装裂解流体的贮存部与所述裂解单元之间的流体的流动而选择性地存在阀门;和
其中所述盛装洗脱剂的贮存部与所述核酸提取单元是流体连接的,为控制所述盛装洗脱剂的贮存部与所述核酸提取单元之间流体的流动而选择性地存在阀门。
2.如权利要求1所述的系统,其中所述盛装裂解流体的贮存部与所述入口是流体连接的,为控制所述盛装裂解流体的贮存部与所述入口之间流体的流动而选择性地存在阀门。
3.如权利要求1或2所述的系统,其中所述盛装洗脱剂的贮存部与所述入口是流体连接的,为控制所述盛装洗脱剂的贮存部与所述入口之间流体的流动而选择性地存在阀门。
4.如权利要求1~3任一项所述的系统,该系统进一步包括(g)核酸反应单元,该单元优选为核酸序列扩增和检测单元,其中所述核酸提取单元与所述核酸反应单元是流体连接的,为控制所述核酸提取单元与所述核酸反应单元之间流体的流动而选择性地存在阀门。
5.如权利要求1~4任一项所述的系统,该系统进一步包括(h)废料单元,其中所述废料单元与所述裂解单元是流体连接的,为控制所述废料单元与所述裂解单元之间流体的流动而选择性地存在阀门。
6.如权利要求1~5任一项所述的系统,该系统进一步包括(i)盛装洗涤溶剂的贮存部,所述洗涤溶剂优选为乙醇,所述盛装洗涤溶剂的贮存部与所述核酸提取单元是流体连接的,为控制所述盛装洗涤溶剂的贮存部与所述核酸提取单元之间流体的流动而选择性地存在阀门。
7.如权利要求1~6任一项所述的系统,该系统进一步包括(j)盛装另外的洗涤溶剂的贮存部,所述另外的洗涤溶剂优选为异丙醇,所述盛装另外的洗涤溶剂的贮存部与所述核酸提取单元是流体连接的,为控制所述盛装另外的洗涤溶剂的贮存部与所述核酸提取单元之间流体的流动而选择性地存在阀门。
8.如权利要求6或7所述的系统,其中所述盛装洗脱剂的贮存部与盛装第一洗涤溶剂的贮存部和/或盛装第二洗涤溶剂的贮存部是流体连接的。
9.如权利要求8所述的系统,其中所述洗脱剂、第一洗涤溶剂和/或第二洗涤溶剂盛装在共同的贮存部中。
10.如权利要求9所述的系统,其中所述洗脱剂、第一洗涤溶剂和/或第二洗涤溶剂在所述共同的贮存部中通过流体而相互分隔,所述流体优选为空气。
11.如权利要求9或10所述的系统,其中所述共同的贮存部包括与所述入口和所述裂解单元流体连接的导管。
12.如权利要求1~11任一项所述的系统,该系统进一步包括(k)用于将流体样品和/或空气导入所述入口的部件,所述部件优选包括泵或注射器。
13.如权利要求1~11任一项所述的系统,该系统进一步包括过滤单元,该单元与所述裂解单元是流体连接的。
14.如权利要求13所述的系统,其中所述过滤单元包括死端过滤器、交叉流过滤器(例如微结构通道、多孔性中空纤维或膜)、重力沉降器、离心机、声池过滤器、光阱、介电电泳(DEP)、电泳、流式细胞计数和基于吸附的方法中的一种或多种。
15.如权利要求1~11任一项所述的系统,其中所述裂解单元进一步包括对所述流体样品进行过滤的部件。
16.如权利要求15所述的系统,其中所述部件包括死端过滤器、交叉流过滤器(例如微结构通道、多孔性中空纤维或膜)、重力沉降器、离心机、声池过滤器、光阱、介电电泳(DEP)、电泳、流式细胞计数和基于吸附的方法中的一种或多种。
17.如前述任一项权利要求所述的系统,其中所述系统进一步包括用于对所述裂解单元和/或所述核酸提取单元的内容物进行加热的部件。
18.如权利要求17所述的系统,其中所述部件包括一个或多个位于所述裂解单元和/或所述核酸提取单元中或与所述裂解单元和/或所述核酸提取单元相邻的珀尔帖元件。
19.如前述任一项权利要求所述的系统,其中所述核酸提取单元至少部分地填充有二氧化硅珠子或粒子。
20.如权利要求19所述的系统,其中所述核酸提取单元进一步包括邻近所述二氧化硅珠子或粒子的一组或多组电极来收集和/或预浓缩经洗脱的核酸。
21.如权利要求20所述的系统,其中所述一组或多组电极包括铂电极。
22.如前述任一项权利要求所述的系统,该系统用于提取生物流体中、乳制品中、环境流体中或饮用水中存在的核酸。
23.一种用于分析生物样品和/或环境样品的设备,该设备包括在前述任一项权利要求中所定义的系统。
24.一种用于分析生物样品和/或环境样品的分析试剂盒,该试剂盒包括在权利要求1~22任一项中所定义的系统和用于使样品与所述系统接触的部件。
25.如权利要求23所述的设备或者如权利要求24所述的分析试剂盒,所述设备和所述分析试剂盒是一次性的。
26.一种制造前述任一项权利要求所定义的集成的芯片实验室诊断系统的方法,该方法包括:
A.提供在其表面具有入口凹陷处、裂解单元凹陷处、核酸提取单元凹陷处、裂解流体贮存部凹陷处和洗脱剂贮存部凹陷处的基材;
B.提供覆盖物;和
C.将所述覆盖物结合到所述基材上,以形成各自由基材的所述表面中的相应凹陷处和所述覆盖物的相邻表面所限定的(a)入口、(b)裂解单元、(c)核酸提取单元、(d)裂解流体贮存部和(e)洗脱剂贮存部。
27.如权利要求26所述的方法,该方法进一步包括在将所述覆盖物结合到所述基材上之前或之后将裂解流体导入所述裂解流体贮存部中的步骤。
28.如权利要求26或27所述的方法,该方法进一步包括在将所述覆盖物结合到所述基材之前或之后将洗脱剂导入所述洗脱剂贮存部中的步骤。
29.如权利要求26~28任一项所述的方法,该方法进一步包括在将所述覆盖物结合到所述基材之前或之后将第一洗涤溶剂导入所述洗脱剂贮存部中的步骤,所述第一洗涤溶剂优选为乙醇。
30.如权利要求26~29任一项所述的方法,该方法进一步包括在将所述覆盖物结合到所述基材之前或之后将第二洗涤溶剂导入所述洗脱剂贮存部中的步骤,所述第二洗涤溶剂优选为异丙醇。
31.如权利要求26~30任一项所述的方法,其中所述洗脱剂和/或第一洗涤溶剂和/或第二洗涤溶剂是通过流体而相互分隔的,所述流体优选为空气。
32.如权利要求26或27所述的方法,该方法进一步包括:
在将所述覆盖物结合到所述基材之后,将洗脱剂导入所述洗脱剂贮存部中;
将第一体积的不互溶的流体导入所述洗脱剂贮存部中,所述不互溶的流体优选为空气;
将第一洗涤溶剂导入所述洗脱剂贮存部中,借此所述第一洗涤溶剂与所述洗脱剂被所述第一体积的不互溶的流体所分隔,所述第一洗涤溶剂优选为乙醇;
将第二体积的不互溶的流体导入所述洗脱剂贮存部中,所述不互溶的流体优选为空气;和
将第二洗涤溶剂导入所述洗脱剂贮存部中,借此所述第二洗涤溶剂与所述第一洗涤溶剂被所述第二体积的不互溶的流体所分隔,所述第二洗涤溶剂优选为异丙醇。
CN200580006519.XA 2004-01-28 2005-01-28 用于进行核酸序列的扩增和检测过程的诊断系统 Expired - Fee Related CN1973197B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0401868.5 2004-01-28
GB0401868A GB2416030B (en) 2004-01-28 2004-01-28 A diagnostic system for carrying out a nucleic acid sequence amplification and detection process
PCT/GB2005/000308 WO2005073691A1 (en) 2004-01-28 2005-01-28 A diagnostic system for carrying out a nucleic acid sequence amplification and detection process

Publications (2)

Publication Number Publication Date
CN1973197A true CN1973197A (zh) 2007-05-30
CN1973197B CN1973197B (zh) 2010-12-15

Family

ID=31971613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580006519.XA Expired - Fee Related CN1973197B (zh) 2004-01-28 2005-01-28 用于进行核酸序列的扩增和检测过程的诊断系统

Country Status (18)

Country Link
US (1) US20080227185A1 (zh)
EP (1) EP1714134B1 (zh)
JP (1) JP4921177B2 (zh)
KR (1) KR20070027507A (zh)
CN (1) CN1973197B (zh)
AT (1) ATE465401T1 (zh)
AU (1) AU2005208085B8 (zh)
BR (1) BRPI0507200A (zh)
CA (1) CA2554452A1 (zh)
DE (1) DE602005020742D1 (zh)
EA (1) EA011753B1 (zh)
GB (1) GB2416030B (zh)
IL (1) IL177122A (zh)
MX (1) MXPA06008469A (zh)
NO (1) NO20063782L (zh)
NZ (1) NZ548801A (zh)
WO (1) WO2005073691A1 (zh)
ZA (1) ZA200606197B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066948A (zh) * 2008-04-23 2011-05-18 柏奥斯柯勒股份有限公司 用于分析物处理的方法和装置
CN103602583A (zh) * 2013-11-07 2014-02-26 苏州汶颢芯片科技有限公司 一种集成式多功能微流控芯片
CN104122207A (zh) * 2013-04-29 2014-10-29 霍尼韦尔国际公司 用于细胞裂解的聚合物测试盒混合器
CN104312913A (zh) * 2014-10-17 2015-01-28 复旦大学附属华山医院 整合全血核酸提取、扩增即可视化检测肿瘤基因突变的微流控芯片及其应用
CN104560636A (zh) * 2014-12-30 2015-04-29 北京理工大学 一种细胞预处理装置和方法
CN105277725A (zh) * 2014-07-01 2016-01-27 清华大学 一种用于核酸分析检测的集成化微流控系统
CN105296349A (zh) * 2015-11-20 2016-02-03 青岛意诚融智生物仪器有限公司 一种用于dna快速检测的微流控芯片、检测系统和装置
CN105349401A (zh) * 2015-10-14 2016-02-24 安徽易康达光电科技有限公司 一种多功能的集成化微流控核酸分析芯片及制备和分析方法
CN109890505A (zh) * 2016-11-10 2019-06-14 罗伯特·博世有限公司 微流体装置和用于分析核酸的方法
CN110257245A (zh) * 2019-07-16 2019-09-20 东莞博识生物科技有限公司 核酸检测试剂卡
CN110741262A (zh) * 2017-05-16 2020-01-31 Sk电信有限公司 用于核酸提取的盒和核酸提取方法
WO2021000750A1 (zh) * 2019-07-01 2021-01-07 申翌生物科技(杭州)有限公司 利用pcr综合反应系统进行pcr反应的新方法
CN113329821A (zh) * 2018-11-12 2021-08-31 原子能和替代能源委员会 用于制备、检测和分析流体样品的自动化系统
CN113832257A (zh) * 2020-04-29 2021-12-24 泰利福医疗公司 严重急性呼吸综合征冠状病毒2的检测系统

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006002258B4 (de) * 2006-01-17 2008-08-21 Siemens Ag Modul zur Aufbereitung einer biologischen Probe, Biochip-Satz und Verwendung des Moduls
KR100785010B1 (ko) * 2006-04-06 2007-12-11 삼성전자주식회사 수소 결합을 이용하여 고체 지지체의 친수성 표면 상에서핵산 정제 방법 및 장치
JP4685691B2 (ja) * 2006-04-13 2011-05-18 株式会社日立ソリューションズ 検査チップ及び検査チップシステム
CA2646309C (en) 2006-04-21 2016-07-26 Nanobiosym, Inc. Single-molecule platform for drug discovery: methods and apparatuses for drug discovery, including discovery of anticancer and antiviral agents
JP4759451B2 (ja) * 2006-06-16 2011-08-31 株式会社日立ソリューションズ 生体物質の前処理チップ及び前処理チップシステム
WO2008002882A2 (en) 2006-06-26 2008-01-03 Blood Cell Storage, Inc. Device and method for extraction and analysis of nucleic acids from biological samples
US8163535B2 (en) 2006-06-26 2012-04-24 Blood Cell Storage, Inc. Devices and processes for nucleic acid extraction
JP2008051803A (ja) * 2006-07-28 2008-03-06 Sharp Corp 分析用マイクロ流路デバイス
JP5382347B2 (ja) * 2006-10-11 2014-01-08 フルイディウム コーポレーション 使い捨て可能なマイクロ精製カード、方法、およびそのシステム
EP1970121A1 (en) * 2006-12-15 2008-09-17 Universiteit Leiden A microfluidic chip design comprising capillaries
EP1942058A1 (en) 2007-01-08 2008-07-09 Nutricia N.V. Package for flowable goods, in particular comestibles, and use of such package during transportation, presentation and consumption
NZ580374A (en) 2007-04-04 2012-06-29 Netbio Inc Plastic microfluidic separation and detection platforms
GB0710957D0 (en) 2007-06-07 2007-07-18 Norchip As A device for carrying out cell lysis and nucleic acid extraction
DE102008050092A1 (de) * 2008-10-06 2010-04-08 Hach Lange Gmbh Mobile Wasser-Analyseanordnung
GB0820720D0 (en) * 2008-11-12 2008-12-17 Norchip As Method for worldwide screening of pre-cancer epithelial disease of the cervix
US9447461B2 (en) 2009-03-24 2016-09-20 California Institute Of Technology Analysis devices, kits, and related methods for digital quantification of nucleic acids and other analytes
US9464319B2 (en) 2009-03-24 2016-10-11 California Institute Of Technology Multivolume devices, kits and related methods for quantification of nucleic acids and other analytes
CN102439717B (zh) 2009-03-24 2015-01-21 芝加哥大学 滑动式芯片装置和方法
US10196700B2 (en) 2009-03-24 2019-02-05 University Of Chicago Multivolume devices, kits and related methods for quantification and detection of nucleic acids and other analytes
US9550985B2 (en) 2009-06-15 2017-01-24 Netbio, Inc. Methods for forensic DNA quantitation
GB0912509D0 (en) 2009-07-17 2009-08-26 Norchip As A microfabricated device for metering an analyte
KR101626846B1 (ko) * 2009-12-22 2016-06-02 삼성전자주식회사 핵산 분리 방법 및 장치
US20110091873A1 (en) * 2009-10-21 2011-04-21 Microfluidic Systems, Inc. Integrated sample preparation and amplification for nucleic acid detection from biological samples
US20110111386A1 (en) * 2009-11-11 2011-05-12 Norchip As Cervical cell collection method
US9144799B2 (en) * 2009-11-24 2015-09-29 Lawrence Livermore National Security, Llc Modular microfluidic system for biological sample preparation
ES2799422T3 (es) * 2011-03-10 2020-12-17 General Atomics Dispositivos y métodos de diagnóstico y preparación de muestras
JP2014515926A (ja) 2011-05-12 2014-07-07 ネットバイオ・インコーポレーテッド Str遺伝子座の迅速な多重増幅のための方法および組成物
WO2012159063A2 (en) 2011-05-19 2012-11-22 Blood Cell Strorage, Inc. Gravity flow fluidic device for nucleic acid extraction
ITMI20112080A1 (it) * 2011-11-16 2013-05-17 Eugenio Iannone Sistema di diagnosi preliminare.
KR20130065279A (ko) * 2011-12-09 2013-06-19 한국전자통신연구원 바이오칩 및 이를 이용한 검체 정량 주입 방법
KR101406347B1 (ko) * 2011-12-12 2014-06-12 나노바이오시스 주식회사 핵산 추출용 미세유동 칩, 이를 포함하는 핵산 추출 장치, 및 이를 이용하는 핵산 추출 방법
KR101915675B1 (ko) * 2012-02-07 2018-11-06 주식회사 미코바이오메드 초고속 핵산 추출 장치, 및 이를 이용하는 핵산 추출 방법
KR102041217B1 (ko) * 2012-05-30 2019-11-07 주식회사 미코바이오메드 다-채널 하향 액체 주입 장치, 이를 포함하는 핵산 추출 장치, 및 이를 이용한 핵산 추출 방법
US9399986B2 (en) * 2012-07-31 2016-07-26 General Electric Company Devices and systems for isolating biomolecules and associated methods thereof
US20150259671A1 (en) * 2012-07-31 2015-09-17 General Electric Company Devices and systems for isolating biomolecules and associated methods thereof
US20140322706A1 (en) 2012-10-24 2014-10-30 Jon Faiz Kayyem Integrated multipelx target analysis
JP6466336B2 (ja) 2012-10-24 2019-02-06 ジェンマーク ダイアグノスティクス, インコーポレイテッド 一体型多重標的分析
US9994839B2 (en) * 2013-01-16 2018-06-12 The Regents Of The University Of California Microfluidic devices to extract, concentrate and isolate molecules
WO2014112671A1 (ko) * 2013-01-21 2014-07-24 나노바이오시스(주) 핵산 추출용 미세유동 칩, 이를 포함하는 핵산 추출 장치, 및 이를 이용하는 핵산 추출 방법
US9453613B2 (en) 2013-03-15 2016-09-27 Genmark Diagnostics, Inc. Apparatus, devices, and methods for manipulating deformable fluid vessels
US10933417B2 (en) 2013-03-15 2021-03-02 Nanobiosym, Inc. Systems and methods for mobile device analysis of nucleic acids and proteins
EP2969218A2 (en) 2013-03-15 2016-01-20 Nanobiosym, Inc. Systems and methods for mobile device analysis of nucleic acids and proteins
GB2516669B (en) 2013-07-29 2015-09-09 Atlas Genetics Ltd A method for processing a liquid sample in a fluidic cartridge
USD881409S1 (en) 2013-10-24 2020-04-14 Genmark Diagnostics, Inc. Biochip cartridge
US9498778B2 (en) 2014-11-11 2016-11-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
CN103592209B (zh) * 2013-11-27 2016-05-04 武汉武大绿洲生物技术有限公司 一种黑胸大蠊浓核病毒定性定量的检测方法及应用
CN103743607A (zh) * 2014-01-20 2014-04-23 厦门大学 一种用于食品样品检测前处理的芯片卡盒
US9598722B2 (en) 2014-11-11 2017-03-21 Genmark Diagnostics, Inc. Cartridge for performing assays in a closed sample preparation and reaction system
US10005080B2 (en) 2014-11-11 2018-06-26 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation
US11491482B2 (en) 2015-07-17 2022-11-08 Delta Electronics, Inc. Method for extracting nucleic acid and extraction cassette thereof
TWI591182B (zh) 2015-07-17 2017-07-11 台達電子工業股份有限公司 核酸萃取裝置
US11207681B2 (en) 2015-07-17 2021-12-28 Delta Electronics, Inc. Method for extracting nucleic acid and extraction cassette thereof
US10376885B2 (en) 2015-11-04 2019-08-13 Lehigh University Microfluidic concentrator for label-free, continuous nanoparticle processing
CA3012680A1 (en) 2016-01-29 2017-08-03 Purigen Biosystems, Inc. Isotachophoresis for purification of nucleic acids
EP3661635A4 (en) 2017-08-02 2021-04-21 Purigen Biosystems, Inc. SYSTEMS, DEVICES AND METHODS FOR ISOTACHOPHORESIS
TWI685564B (zh) * 2017-12-26 2020-02-21 台達電子工業股份有限公司 核酸萃取方法及其萃取卡匣
CN109355283B (zh) * 2018-11-27 2023-05-05 中国科学院上海技术物理研究所 一种适用于空间的核酸自动提取装置
CN114364811A (zh) * 2019-09-20 2022-04-15 美国西门子医学诊断股份有限公司 具有pcr芯片的样品制备设备和多孔板
JP7164505B2 (ja) * 2019-10-02 2022-11-01 積水化学工業株式会社 マイクロ流路チップ
JP2021065112A (ja) * 2019-10-18 2021-04-30 国立大学法人東海国立大学機構 植物物質検出用流路チップおよび植物物質検出装置
CN111944682A (zh) * 2020-08-14 2020-11-17 上海前瞻创新研究院有限公司 一种核酸检测芯片、制备方法及核酸检测方法
WO2022061521A1 (zh) * 2020-09-22 2022-03-31 京东方科技集团股份有限公司 核酸提取微流控芯片、核酸提取装置及提取方法
TWD218529S (zh) * 2020-09-30 2022-05-01 富佳生技股份有限公司 核酸檢測儀之圖形化使用者介面
DE102021203409A1 (de) 2021-04-07 2022-10-13 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Nachweis aktiver Viren
GB2605956A (en) 2021-04-14 2022-10-26 Univ Of South Eastern Norway Systems, apparatus and methods for extracting and analysing cellular material
KR20230014169A (ko) * 2021-07-21 2023-01-30 주식회사 위즈바이오솔루션 시료 전처리 카트리지 장치 및 이를 이용한 시료 전처리 방법
WO2023181813A1 (ja) * 2022-03-22 2023-09-28 京セラ株式会社 核酸増幅方法、核酸増幅システム、ウイルス検出方法、及びウイルス検出システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229297A (en) * 1989-02-03 1993-07-20 Eastman Kodak Company Containment cuvette for PCR and method of use
CA1338505C (en) * 1989-02-03 1996-08-06 John Bruce Findlay Containment cuvette for pcr and method of use
US6403367B1 (en) * 1994-07-07 2002-06-11 Nanogen, Inc. Integrated portable biological detection system
JP3834357B2 (ja) * 1996-07-10 2006-10-18 オリンパス株式会社 小型分析装置及びその駆動方法
US6074827A (en) * 1996-07-30 2000-06-13 Aclara Biosciences, Inc. Microfluidic method for nucleic acid purification and processing
DE19700364A1 (de) * 1997-01-08 1998-07-09 Bayer Ag Elektrokinetische Probenvorbereitung
AU758407B2 (en) * 1997-12-24 2003-03-20 Cepheid Integrated fluid manipulation cartridge
EP0987327A1 (en) * 1998-09-14 2000-03-22 QIAGEN GmbH Novel method for purifying covalently closed circular DNA
US6572830B1 (en) * 1998-10-09 2003-06-03 Motorola, Inc. Integrated multilayered microfludic devices and methods for making the same
US6942771B1 (en) * 1999-04-21 2005-09-13 Clinical Micro Sensors, Inc. Microfluidic systems in the electrochemical detection of target analytes
JP4495866B2 (ja) * 1999-05-28 2010-07-07 セフィード 化学反応を制御するためのカートリッジ
US6664104B2 (en) * 1999-06-25 2003-12-16 Cepheid Device incorporating a microfluidic chip for separating analyte from a sample
CA2393690A1 (en) * 1999-12-09 2001-06-14 Huinan Yu Multilayered microfluidic devices for analyte reactions
FR2813207B1 (fr) * 2000-08-28 2002-10-11 Bio Merieux Carte reactionnelle et utilisation d'une telle carte
JP2002236131A (ja) * 2000-12-08 2002-08-23 Minolta Co Ltd マイクロチップ
WO2003011768A2 (en) * 2001-08-01 2003-02-13 Datascope Investment Corp. Microfluidic device for molecular analysis
US7338760B2 (en) * 2001-10-26 2008-03-04 Ntu Ventures Private Limited Sample preparation integrated chip
JP5695287B2 (ja) * 2002-10-02 2015-04-01 カリフォルニア インスティテュート オブ テクノロジー 微小流体の核酸解析
US20040086872A1 (en) * 2002-10-31 2004-05-06 Childers Winthrop D. Microfluidic system for analysis of nucleic acids
CN102620959B (zh) * 2002-12-26 2015-12-16 梅索磅秤技术有限公司 检定盒及其使用方法
DE10319045A1 (de) * 2003-04-25 2004-12-09 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Vorrichtung und Verfahren zur Aufbereitung Biopolymerhaltiger Flüssigkeiten
JP4455014B2 (ja) * 2003-11-07 2010-04-21 セイコーインスツル株式会社 検査用マイクロチップおよび検査装置と検査方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066948A (zh) * 2008-04-23 2011-05-18 柏奥斯柯勒股份有限公司 用于分析物处理的方法和装置
CN102066948B (zh) * 2008-04-23 2014-04-16 柏奥斯柯勒股份有限公司 用于分析物处理的方法和装置
CN104122207A (zh) * 2013-04-29 2014-10-29 霍尼韦尔国际公司 用于细胞裂解的聚合物测试盒混合器
CN104122207B (zh) * 2013-04-29 2019-02-05 霍尼韦尔国际公司 用于细胞裂解的聚合物测试盒混合器
CN103602583A (zh) * 2013-11-07 2014-02-26 苏州汶颢芯片科技有限公司 一种集成式多功能微流控芯片
CN105277725A (zh) * 2014-07-01 2016-01-27 清华大学 一种用于核酸分析检测的集成化微流控系统
CN105277725B (zh) * 2014-07-01 2017-03-29 清华大学 一种用于核酸分析检测的集成化微流控系统
CN104312913A (zh) * 2014-10-17 2015-01-28 复旦大学附属华山医院 整合全血核酸提取、扩增即可视化检测肿瘤基因突变的微流控芯片及其应用
CN104312913B (zh) * 2014-10-17 2016-05-11 复旦大学附属华山医院 整合全血核酸提取、扩增即可视化检测肿瘤基因突变的微流控芯片及其应用
CN104560636A (zh) * 2014-12-30 2015-04-29 北京理工大学 一种细胞预处理装置和方法
CN105349401A (zh) * 2015-10-14 2016-02-24 安徽易康达光电科技有限公司 一种多功能的集成化微流控核酸分析芯片及制备和分析方法
CN105296349A (zh) * 2015-11-20 2016-02-03 青岛意诚融智生物仪器有限公司 一种用于dna快速检测的微流控芯片、检测系统和装置
CN109890505A (zh) * 2016-11-10 2019-06-14 罗伯特·博世有限公司 微流体装置和用于分析核酸的方法
US11478795B2 (en) 2016-11-10 2022-10-25 Robert Bosch Gmbh Microfluidic device and method for analyzing nucleic acids
CN110741262A (zh) * 2017-05-16 2020-01-31 Sk电信有限公司 用于核酸提取的盒和核酸提取方法
CN110998333A (zh) * 2017-05-16 2020-04-10 Sk电信有限公司 使用盒的核酸分析设备
US11679387B2 (en) 2017-05-16 2023-06-20 Sk Telecom Co., Ltd. Cartridge for nucleic acid extraction and nucleic acid extraction method
CN110998333B (zh) * 2017-05-16 2023-08-25 Sk电信有限公司 使用盒的核酸分析设备
CN110741262B (zh) * 2017-05-16 2023-09-29 Sk电信有限公司 用于核酸提取的盒和核酸提取方法
CN113329821A (zh) * 2018-11-12 2021-08-31 原子能和替代能源委员会 用于制备、检测和分析流体样品的自动化系统
WO2021000750A1 (zh) * 2019-07-01 2021-01-07 申翌生物科技(杭州)有限公司 利用pcr综合反应系统进行pcr反应的新方法
CN110257245A (zh) * 2019-07-16 2019-09-20 东莞博识生物科技有限公司 核酸检测试剂卡
CN113832257A (zh) * 2020-04-29 2021-12-24 泰利福医疗公司 严重急性呼吸综合征冠状病毒2的检测系统
CN114854903A (zh) * 2020-04-29 2022-08-05 泰利福医疗公司 用于检测生物样品中严重急性呼吸综合征冠状病毒2的存在的方法

Also Published As

Publication number Publication date
JP4921177B2 (ja) 2012-04-25
EP1714134B1 (en) 2010-04-21
ATE465401T1 (de) 2010-05-15
GB0401868D0 (en) 2004-03-03
NZ548801A (en) 2010-12-24
GB2416030A (en) 2006-01-11
AU2005208085A1 (en) 2005-08-11
EA011753B1 (ru) 2009-06-30
EA200601377A1 (ru) 2007-02-27
BRPI0507200A (pt) 2007-06-12
CN1973197B (zh) 2010-12-15
CA2554452A1 (en) 2005-08-11
AU2005208085B2 (en) 2010-12-16
IL177122A0 (en) 2006-12-10
ZA200606197B (en) 2008-02-27
IL177122A (en) 2011-07-31
EP1714134A1 (en) 2006-10-25
WO2005073691A1 (en) 2005-08-11
US20080227185A1 (en) 2008-09-18
KR20070027507A (ko) 2007-03-09
MXPA06008469A (es) 2009-03-11
NO20063782L (no) 2006-10-19
AU2005208085B8 (en) 2011-02-24
GB2416030B (en) 2008-07-23
JP2007519917A (ja) 2007-07-19
DE602005020742D1 (de) 2010-06-02

Similar Documents

Publication Publication Date Title
CN1973197B (zh) 用于进行核酸序列的扩增和检测过程的诊断系统
AU2020273294B2 (en) System and Method for Isolating and Analyzing Cells
US8404440B2 (en) Device for carrying out cell lysis and nucleic acid extraction
Gorkin et al. Centrifugal microfluidics for biomedical applications
KR101214780B1 (ko) 미세유동 장치
US8771955B2 (en) Device and method for extraction and analysis of nucleic acids from biological samples
CN101990516B (zh) 多用试样准备系统及其在集成分析系统中的使用
US20150217293A1 (en) Fluid Processing Device and Method
US20070125942A1 (en) Apparatuses, systems and methods for isolating and separating biological materials
WO2016065300A1 (en) Microfluidic cartridge
CN109735431A (zh) 离心微流控芯片及核酸分析系统
US20060057581A1 (en) Microfabricated fluidic device for fragmentation
CN209778828U (zh) 离心微流控芯片结构及核酸分析装置
WO2007122819A1 (ja) 液体を媒体とする反応のための装置
US20140349386A1 (en) Ultra-high-speed nucleic acid extracting apparatus and nucleic acid extracting method using same
WO2008110019A1 (en) Clinical sample preparation on a microfluidic platform

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101215

Termination date: 20120128