WO2022061521A1 - 核酸提取微流控芯片、核酸提取装置及提取方法 - Google Patents

核酸提取微流控芯片、核酸提取装置及提取方法 Download PDF

Info

Publication number
WO2022061521A1
WO2022061521A1 PCT/CN2020/116853 CN2020116853W WO2022061521A1 WO 2022061521 A1 WO2022061521 A1 WO 2022061521A1 CN 2020116853 W CN2020116853 W CN 2020116853W WO 2022061521 A1 WO2022061521 A1 WO 2022061521A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
groove
channel
acid extraction
control valve
Prior art date
Application number
PCT/CN2020/116853
Other languages
English (en)
French (fr)
Inventor
王嘉鹏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080002055.XA priority Critical patent/CN115151630A/zh
Priority to US17/417,850 priority patent/US20220333048A1/en
Priority to PCT/CN2020/116853 priority patent/WO2022061521A1/zh
Publication of WO2022061521A1 publication Critical patent/WO2022061521A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/1013Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by using magnetic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0631Purification arrangements, e.g. solid phase extraction [SPE]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0605Valves, specific forms thereof check valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0655Valves, specific forms thereof with moving parts pinch valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0666Solenoid valves

Definitions

  • the present disclosure relates to the technical field of microfluidics, and in particular, to a nucleic acid extraction microfluidic chip, a nucleic acid extraction device and an extraction method.
  • the traditional nucleic acid extraction method mainly adopts the extraction method in a centrifuge tube, which wastes space and reagents, and increases the manufacturing cost.
  • the general microfluidic nucleic acid extraction method only fixes the nucleic acid-adsorbing substances such as silica and diatom on the inner wall of the channel, and then manually enters the reagents and removes the waste liquid.
  • the method steps are cumbersome, time-consuming and labor-intensive, and the results are extracted The rate and repeatability are poor. In view of this, it is necessary to design and provide an efficient and easy-to-use microfluidic chip integrated nucleic acid extraction chip.
  • Embodiments of the present disclosure provide a nucleic acid extraction microfluidic chip, which includes:
  • the channel plate includes: a mixed cracking zone, an extraction zone located on one side of the mixed cracking zone, a pneumatic drive port communicating with the outside world, a first-type channel connecting the mixed cracking zone and the extraction zone, and a channel connecting the the second type of channel between the extraction area and the pneumatic drive port;
  • a cover plate arranged opposite to the channel plate, and the cover plate has a sample inlet and a liquid inlet through hole at a position corresponding to the mixed cracking zone;
  • the solution accommodating cavity is located on the side of the cover plate away from the channel plate, and the solution accommodating cavity is communicated with the mixed cracking area of the channel plate through the liquid inlet type through hole.
  • the extraction zone includes: an extraction groove having a liquid inlet end and a liquid outlet end;
  • the cracking zone comprises: a mixed cracking groove, a first liquid feeding groove, a second liquid feeding groove and a third liquid feeding groove arranged in sequence on one side of the mixed cracking groove;
  • the first type of channel includes: a first channel connecting the first liquid inlet groove and the liquid inlet end, a second channel connecting the second liquid inlet groove and the liquid inlet end, and a second channel connecting the first liquid inlet groove and the liquid inlet end.
  • Three liquid inlet grooves and the third channel of the liquid inlet end, and the mixed cracking groove is located in the second channel;
  • the second type of channel includes: a fourth channel that communicates the liquid outlet end and the pneumatic drive port;
  • the liquid inlet through holes include: a first through hole corresponding to the first liquid inlet groove, a second through hole corresponding to the second liquid inlet groove, and a third liquid inlet groove. the corresponding third through hole;
  • the solution accommodating cavity includes:
  • the flushing liquid accommodating cavity is communicated with the second liquid inlet groove of the channel plate through the first through hole;
  • the eluent accommodating cavity is communicated with the third liquid inlet groove of the channel plate through the third through hole.
  • the pneumatic drive port includes a first pneumatic drive port and a second pneumatic drive port
  • the fourth channel includes: a first pneumatic drive port that communicates with the liquid outlet end a sub-channel, and a second sub-channel communicating with the second pneumatic driving port and the liquid outlet end.
  • the channel plate further includes: a sample storage groove located in the first sub-channel.
  • the channel plate further comprises: a waste liquid storage groove located in the second sub-channel.
  • the first channel, the second channel, and the third channel converge in a liquid inlet channel and communicate with the liquid inlet end;
  • the waste liquid storage groove is also communicated with the liquid inlet channel through a fifth channel.
  • the nucleic acid extraction microfluidic chip further includes magnetic beads located in the extraction groove.
  • the nucleic acid extraction microfluidic chip further comprises: a magnetic bead accommodating cavity located on the side of the cover plate away from the channel plate;
  • the cracking zone also includes: a fourth liquid inlet groove, and a sixth channel connecting the fourth liquid inlet groove and the liquid inlet end;
  • the cover plate further includes: a fourth through hole corresponding to the fourth liquid inlet groove;
  • the magnetic bead accommodating cavity communicates with the fourth liquid inlet groove of the channel plate through the fourth through hole.
  • the first type of channel and the second type of channel are further provided with control valves.
  • control valve includes:
  • a first control valve located in the first passage
  • the fourth control valve is located in the second sub-channel and between the waste liquid storage groove and the liquid outlet end.
  • control valve is an electromagnetic control valve structure
  • the electromagnetic control valve structure includes: an iron block accommodating groove located on the side of the cover plate facing the channel plate, located on the iron block accommodating groove.
  • the iron block of the block accommodating groove is located on the side of the iron block facing the channel plate to seal the elastic protective film of the iron block accommodating groove.
  • control valve is a camshaft pressure lever valve structure
  • camshaft pressure lever valve includes: an accommodating rod through groove on the side of the cover plate facing away from the channel plate, and An elastic protective film located on the side of the accommodating rod through groove facing the channel plate.
  • control valve is an air pressure driven squeeze valve structure
  • the air pressure driven squeeze valve structure includes: a squeeze block accommodating groove located on the side of the cover plate facing away from the channel plate , the extrusion block located in the extrusion accommodating groove, the bottom film located on the side of the extrusion block facing away from the channel plate, and the side of the extrusion block facing the channel plate
  • the elastic protective film wherein, the bottom film has an air passage access port that communicates with the accommodating groove of the extrusion block.
  • the cover plate is further provided with a protective film accommodating groove for accommodating the elastic protective film on the side facing the channel plate, and the protective film accommodating groove is located in the cover
  • the orthographic projection of the plate covers the orthographic projection of the elastic protective film on the cover plate.
  • the material of the elastic protective film is polydimethylsiloxane.
  • the main body of the channel plate is rectangular in shape, and has a first side and a second side extending along the first direction, and a third side and a second side extending along the second direction.
  • the shape of the cover plate is the same as that of the channel plate;
  • the channel plate has a first subsection, a second subsection and a third subsection arranged in sequence along the first direction, the first subsection, the second subsection, the third subsection The lengths of the three subsections in the second direction are successively decreased;
  • the first pneumatic drive port is located at the position where the first sub-section protrudes from the first side edge compared with the second sub-portion, and the second pneumatic drive port is located at the second side edge of the first The position of the subsection protruding from the second subsection.
  • the extraction groove is located in the first subsection; the mixed lysis groove is located in the second subsection; The accommodating cavity and the eluent accommodating cavity are located in the area where the third subsection is located.
  • the extraction groove is in the shape of a snake.
  • An embodiment of the present disclosure further provides a nucleic acid extraction device, which includes the nucleic acid extraction microfluidic chip provided in the embodiment of the present disclosure, and the nucleic acid extraction device further includes a magnetic supply component that provides a magnetic field for the magnetic beads.
  • the nucleic acid extraction device when the control valve is an electromagnetic control valve structure, the nucleic acid extraction device further includes an electromagnet, and the electromagnet is located on the side of the channel plate away from the cover plate .
  • the nucleic acid extraction device when the control valve has a camshaft pressure rod valve structure, the nucleic acid extraction device further includes a camshaft and a plurality of pressure rods connected to the camshaft.
  • the embodiments of the present disclosure further provide a nucleic acid extraction method of the nucleic acid extraction device provided by the embodiments of the present disclosure, wherein the method includes:
  • the sample solution is injected into the mixed lysis zone through the injection port, and the lysis solution is controlled to release the lysis solution from the solution holding chamber, so as to lyse the sample solution through the lysis solution to form a mixed solution;
  • Negative pressure is applied through the pneumatic drive port to move the mixed solution into the extraction area, and the nucleic acid in the mixed solution is separated and extracted.
  • the injection of the sample solution into the mixed lysis zone through the injection port, and the release of the lysis solution from the control solution accommodating cavity includes:
  • the sample solution is injected into the mixed lysis groove through the injection port, the lysis solution is controlled to release the lysis solution from the lysis solution accommodation chamber, and the lysis solution is moved into the mixed lysis groove to lyse the sample solution through the lysis solution, form a mixture.
  • the nucleic acid extraction microfluidic chip includes magnetic beads located in the extraction groove; the negative pressure is applied through the pneumatic drive port to move the mixed solution into the extraction area, and the The nucleic acid in the mixture is separated and extracted, including:
  • the magnetic field is turned off by the magnetic supply part, and the eluent containing chamber is controlled to pass the eluent into the extraction groove, so as to separate the nucleic acid from the magnetic beads.
  • the channel plate further includes a sample storage groove
  • the nucleic acid extraction method further includes: moving the nucleic acid into the extraction groove Sample storage groove.
  • the nucleic acid extraction microfluidic chip further includes a waste liquid storage groove
  • the discharging the liquid after flushing the magnetic beads through the pneumatic drive port includes: discharging the liquid after washing the magnetic beads through the pneumatic drive port to the storage groove.
  • the pneumatic drive port includes a first pneumatic drive port and a second pneumatic drive port;
  • the moving of the lysate into the mixed lysis groove includes: by applying negative pressure to the first pneumatic drive port, the lysate is sucked into the mixed lysis groove;
  • the applying negative pressure through the pneumatic drive port to move the mixed solution into the extraction groove to mix with the magnetic beads includes: applying negative pressure to the first pneumatic drive port to move the mixed solution into the extraction groove the groove is mixed with the magnetic beads;
  • the discharging of the liquid after flushing the magnetic beads through the pneumatic drive port includes: by applying negative pressure to the second pneumatic drive port, the washed liquid is sucked into the waste liquid storage groove;
  • the passing of the nucleic acid into the sample storage chamber includes: applying negative pressure to the first pneumatic drive port to suck the nucleic acid into the sample storage groove.
  • the nucleic acid extraction microfluidic chip further includes: a first control valve, a second control valve, a third control valve and a fourth control valve;
  • the nucleic acid extraction method further includes: opening the first control valve, the second control valve, the third control valve and the fourth control valve valve;
  • the nucleic acid extraction method further includes: closing the second control valve;
  • the nucleic acid extraction method further includes: closing the first control valve;
  • the nucleic acid extraction method further includes: closing the fourth control valve.
  • the Nucleic acid extraction methods also include:
  • a magnetic field is provided by the magnetic supply component, so that the magnetic beads are adsorbed on the inner wall of the serpentine tube, and the liquid that has reacted with the lysing solution and is not bound to the magnetic beads is discharged through the second pneumatic drive port;
  • the magnetic field is turned off by the magnetic supply part.
  • FIG. 1 is a schematic structural diagram of a channel plate according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a cover plate according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the overall structure of a nucleic acid extraction microfluidic chip according to an embodiment of the present disclosure
  • 4a is a schematic structural diagram of a specific channel plate provided by an embodiment of the present disclosure.
  • FIG. 4b is a schematic diagram of the overall structure of a specific nucleic acid extraction microfluidic chip provided in an embodiment of the present disclosure
  • FIG. 5a is a schematic diagram of an electromagnetic control valve structure provided in an embodiment of the present disclosure when it is turned on;
  • Fig. 5b is a schematic diagram of an electromagnetic control valve structure provided in an embodiment of the present disclosure when it is closed;
  • Fig. 5c is a schematic diagram of an electromagnetic control valve structure provided in an embodiment of the present disclosure when a part of the conduction is partially closed;
  • FIG. 6 is a schematic structural diagram of a cover plate at the position of the electromagnetic control valve structure according to an embodiment of the present disclosure
  • Fig. 7a is a schematic diagram of a camshaft pressure lever valve when conducting according to an embodiment of the present disclosure
  • Fig. 7b is a schematic diagram of a camshaft pressure lever valve provided by an embodiment of the present disclosure when the partial conduction and partial closure are performed;
  • FIG. 7c is a schematic structural diagram of a camshaft corresponding to a camshaft pressure lever valve structure provided in an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a cover plate at the position of the camshaft pressure lever valve according to an embodiment of the present disclosure
  • FIG. 9a is a schematic diagram of a pneumatically driven squeeze valve structure provided in an embodiment of the present disclosure when it is turned on;
  • Fig. 9b is a schematic diagram of a pneumatically driven squeeze valve structure provided by an embodiment of the present disclosure when a part of the conduction is partially closed;
  • FIG. 10 is a schematic structural diagram of a cover plate at the position of a pneumatically driven squeeze valve structure according to an embodiment of the present disclosure
  • FIG. 11a is a schematic flowchart of a nucleic acid extraction method provided in an embodiment of the present disclosure.
  • FIG. 11b is a schematic flowchart of a specific nucleic acid extraction method provided by the embodiments of the present disclosure.
  • FIG. 12 is a schematic flowchart of a specific nucleic acid extraction method provided in an embodiment of the present disclosure.
  • Fig. 1 is a schematic structural diagram of the opposite side of the channel plate and the cover plate
  • Fig. 2 is a schematic diagram of the opposite side of the cover plate and the channel plate
  • Fig. 3 is a nucleic acid extraction microfluidic
  • a schematic diagram of the overall structure of the control chip, an embodiment of the present disclosure provides a nucleic acid extraction microfluidic chip, including:
  • the channel plate 1 includes: a mixed pyrolysis zone 100, an extraction zone 200 located on one side of the mixed pyrolysis zone 100, a gas pressure drive port 13 communicating with the outside world, a first-type channel 14 connecting the mixed pyrolysis zone 100 and the extraction zone 200, and the second type of channel 15 connecting the extraction zone 200 and the pneumatic drive port 13;
  • the cover plate 2 is arranged opposite to the channel plate 1, and the cover plate 2 has a sample inlet 160 and a liquid inlet through hole 22 at a position corresponding to the mixed pyrolysis zone 100;
  • the solution accommodating cavity 3 is located on the side of the cover plate 2 away from the channel plate 1 , and the solution accommodating cavity 3 communicates with the mixed cracking area 100 of the channel plate 1 through the liquid inlet through holes 22 .
  • the sample solution is injected into the mixed lysis zone 100 through the sample inlet 160 of the cover plate 2, and the sample solution can be lysed by injecting the sample solution into the mixed lysis zone 100 through the solution holding chamber 3
  • the sample solution is lysed by the lysis solution, and the nucleic acid is lysed.
  • the mixed solution after the lysis of the mixed lysis zone 100 is moved into the extraction zone 200, and the magnetic beads 110 can pass through the extraction zone 200.
  • the nucleic acid formed after the cleavage is adsorbed, and then the rinsing liquid is injected into the solution holding chamber 3 for rinsing and purification.
  • the magnetic beads 110 are attracted to the area where the extraction area 200 is located by applying a magnetic field from the outside. Absorb the nucleic acid, and then discharge other liquids; and then inject the eluent through the solution holding chamber 3, and the eluent can separate the magnetic beads 110 from the nucleic acid, so as to obtain pure nucleic acid, which is compared with the acquisition of nucleic acid in the prior art.
  • the nucleic acid extraction microfluidic chip provided in the embodiment of the present disclosure can reduce the risk that the operator may contact with the exposed sample, simplify the operation process, and avoid the user from providing an operation container by himself. In the microfluidic chip, you can The entire extraction reaction is completed, the error that may be caused by human operation is reduced, and the portability is also improved.
  • the extraction area 200 includes: an extraction groove 11 having a liquid inlet end A and a liquid outlet end B;
  • the cracking zone 100 includes: a mixed cracking groove 16, a first liquid feeding groove 121, a second liquid feeding groove 122 and a third liquid feeding groove 123 arranged in sequence on one side of the mixed cracking groove 16;
  • the first type of channel 14 includes: a first channel 141 connecting the first liquid inlet groove 121 and the liquid inlet end A, a second channel 142 connecting the second liquid inlet groove 122 and the liquid inlet end A, and a third inlet channel 142.
  • the liquid groove 123 and the third channel 143 of the liquid inlet end A, and the mixed cracking groove 16 is located in the second channel 142;
  • the second type of channel 15 includes: a fourth channel 15 communicating with the liquid outlet B and the pneumatic drive port 13;
  • the liquid inlet through holes 22 include: a first through hole 221 corresponding to the first liquid inlet groove 121 , a second through hole 222 corresponding to the second liquid inlet groove 122 , and a third liquid inlet groove 123 corresponding to the second through hole 222 .
  • the third through hole 223 includes: a first through hole 221 corresponding to the first liquid inlet groove 121 , a second through hole 222 corresponding to the second liquid inlet groove 122 , and a third liquid inlet groove 123 corresponding to the second through hole 222 .
  • the third through hole 223 includes: a first through hole 221 corresponding to the first liquid inlet groove 121 , a second through hole 222 corresponding to the second liquid inlet groove 122 , and a third liquid inlet groove 123 corresponding to the second through hole 222 .
  • the solution accommodating chamber 3 includes:
  • the flushing liquid accommodating cavity 31, the flushing liquid accommodating cavity 31 communicates with the second liquid inlet groove 121 of the channel plate 1 through the first through hole 221;
  • the lysate accommodating cavity 32, the lysate accommodating cavity 32 communicates with the second liquid inlet groove 122 of the channel plate 1 through the second through hole 222;
  • the eluent accommodating cavity 33 communicates with the third liquid inlet groove 123 of the channel plate 1 through the third through hole 223 .
  • the lysing solution accommodating chamber 32 , the flushing solution accommodating chamber 31 , and the eluent accommodating chamber 33 in the embodiment of the present disclosure may be separate chambers as shown in FIG. 1 , or may include The composite structure of multiple sub-chambers, for example, when the lysing solution is specifically composed of multiple reagents, mixing and placing multiple reagents together may affect the chemical properties of each reagent.
  • the lysing solution accommodating cavity 32 It can include a plurality of independent sub-lysate accommodating chambers, and the plurality of sub-lysate accommodating chambers can be arranged in a row, or can also be arranged in a circle, and each sub-lysing solution accommodating chamber can hold at least one kind of lysing reagent, for example, the lysing liquid accommodating cavity 32 may include a first sub lysing liquid accommodating cavity, a second sub lysing liquid accommodating cavity, and a third sub lysing liquid accommodating cavity, wherein the first sub lysing liquid accommodating cavity
  • the cavity can hold two cleavage reagents whose chemical properties do not affect each other (or have mutual promotion effect), and the second sub-lysate containing cavity can hold other three chemical properties that do not affect each other (or have mutual promotion effect)
  • the lysing reagent of the third sub-lysing solution can contain two other lysing reagents whose chemical properties do not affect each other (or have a
  • the lysing solution accommodating chamber 32, the rinsing solution accommodating chamber 31, and the eluent accommodating chamber 33 may be energized control structures, and the bottom may be provided with indium tin oxide (ITO) that can be energized and heated. ) electrode, and the bottom wax microvalve that can be heated and melted when energized, so that the internal reagents are released into the corresponding flow channels.
  • ITO indium tin oxide
  • the top surface of the lysing liquid accommodating cavity 32, the rinsing liquid accommodating cavity 31, and the eluting liquid accommodating cavity 33 (as shown in FIG.
  • the upper end face of the accommodating cavity 33) can be provided with openings (not shown in FIG.
  • the lysing solution accommodating chamber 32 , the rinsing solution accommodating chamber 31 , and the eluent accommodating chamber 33 may also be flexible bags, and the liquid can be released by pressing.
  • the extraction groove 11 may be in the shape of a snake. In this way, the volume of the extraction groove 11 can be increased and the liquid can be fully mixed.
  • the pneumatic drive port 13 includes a first pneumatic drive port 131 and a second pneumatic drive port 132
  • the fourth passage 15 includes: the first pneumatic drive port 131 and the liquid outlet port are communicated with each other.
  • the first pneumatic drive port 131 can be used as the first negative pressure inlet port for The lysing solution in the lysing solution accommodating cavity 32 is sucked into the mixed lysing solution groove 16, and in the subsequent operation, the liquid in the mixed lysing solution groove 16 is adsorbed into the extraction groove 11;
  • the second pneumatic drive port 132 can be used as a second negative pressure inlet for sucking out the flushed liquid in the extraction groove 11;
  • the first air pressure driving port 131 and the second air pressure driving port 132 of the channel plate 1 can specifically be semi-cylindrical concave holes.
  • the cover plate 2 may also be provided with a semi-cylindrical groove 23 at the positions corresponding to the first air pressure drive port 131 and the second air pressure drive port 132 of the channel plate 1 (the groove 23 includes the first air pressure drive port The first corresponding air pressure driving port groove 231 corresponding to 131, and the second corresponding air pressure driving port groove 232 corresponding to the second air pressure driving port 132), after the cover plate 2 is matched with the channel plate 1, a tubular shape is formed.
  • the cavity is pulled by an external piston to form a structure similar to a syringe, which can achieve the purpose of applying positive or negative pressure to the interior of the nucleic acid extraction microfluidic chip.
  • the nucleic acid extraction microfluidic chip further includes: a sample storage groove 17 located in the first sub-channel 151 and a waste liquid storage groove 18 located in the second sub-channel 152 .
  • the nucleic acid extraction microfluidic chip further includes a sample storage groove 17 and a waste liquid storage groove 18, which can realize the suction of purified nucleic acid into the sample storage groove 17, and the extraction groove 11 during operation. The waste liquid in the process is sucked into the waste liquid storage groove 18 .
  • the first channel 141, the second channel 142, and the third channel 143 converge in a liquid inlet channel 144 to communicate with the liquid inlet end A; the waste liquid storage groove 18 also passes through The fifth channel 145 communicates with the liquid inlet channel 144 .
  • the waste liquid storage groove 18 is also communicated with the liquid inlet channel 144 through the fifth channel 145.
  • the magnetic beads 110 are not pre-coated in the extraction groove 11, but the magnetic bead solution is stored in the magnetic bead solution.
  • the specific setting method can be similar to that of the lysing solution storage chamber 32, and can be communicated with the mixed lysis groove 16 through the sixth channel, not shown in the figure
  • the mixed lysis groove 16 For the waste liquid after cell lysis, after the magnetic beads are adsorbed by the magnetic supply part, the waste liquid can be directly discharged into the waste liquid storage groove 18 without passing through the extraction groove 11 (serpentine tube), reducing the possibility of waste liquid entering the extraction groove 11 and causing contamination in subsequent operations.
  • the magnetic beads 110 can be pre-coated in the extraction groove 11, that is, the nucleic acid extraction microfluidic chip also includes the magnetic beads 110 located in the extraction groove 11; or, it can also be provided separately for the magnetic beads
  • a magnetic bead accommodating cavity for storing the magnetic beads 110, that is, the nucleic acid extraction microfluidic chip further includes: a magnetic bead accommodating cavity (not shown in the figure, on the side of the cover plate 2 away from the channel plate 1)
  • the setting mode of the specific structure and the communication mode with the extraction groove 11 and the mixed cracking groove 16 may be similar to those of the lysing liquid accommodating cavity 32, the flushing liquid accommodating cavity 31, and the eluent accommodating cavity 33); correspondingly , the cracking zone 100 also includes: a fourth liquid inlet groove, and a sixth channel connecting the fourth liquid inlet groove and the liquid inlet end A; the cover plate also includes: a fourth through hole corresponding to the fourth liquid inlet groove
  • the magnetic bead accommodating cavity is communicated with the fourth liquid in
  • the first-type channel 14 and the second-type channel 15 are also provided with control valves.
  • the control valves include: a first control valve 191, located in the first channel 141;
  • the second control valve 192 is located in the second channel 142;
  • the third control valve 193 is located in the third channel 143;
  • the fourth control valve 194 is located in the second sub-channel 152, and is located in the waste liquid storage groove 18 and the liquid outlet end B between.
  • the initial state of the first control valve 191 , the second control valve 192 , the third control valve 193 , and the fourth control valve 194 is in the open state, and the flushing fluid in the flushing fluid accommodating chamber 31 is passed through the first control valve 191 .
  • the second control valve 192 can be controlled to close, so as to prevent the second channel 142 (ie, the second control valve) when the first channel 141 needs to introduce negative pressure to drive the liquid.
  • the first control valve 191 can be controlled to close , so as to avoid insufficient negative pressure caused by air leakage in the first channel 141 (that is, the channel where the first control valve 191 is located) when the third channel 143 needs to introduce negative pressure to drive the liquid; the flushing liquid accommodating chamber 33 is released After the flushing solution, the third control valve 193 can still be kept open, so that positive and negative pressure can be applied to the channel subsequently; before the purified nucleic acid is sucked into the sample storage chamber 17, the fourth control valve 194 can be controlled to close to Avoid sucking the waste liquid in the waste liquid storage chamber 18 into the sample storage chamber 17 .
  • the nucleic acid extraction microfluidic chip further includes: a fifth control valve 195 located in the liquid inlet channel 144 .
  • the control valve is an electromagnetic control valve structure Z1, that is, the first control valve 191, the second control valve 192, the third control valve 193, the first control valve 191, the second control valve 192, the third control valve 193, the At least one of the four control valves 194 is an electromagnetic control valve structure Z1, and the electromagnetic control valve structure Z1 includes: an iron block accommodating groove 41 located on the side of the cover plate 2 facing the channel plate 1, an iron block accommodating groove 41 located in the iron block accommodating groove 41 The block 42 is located on the side of the iron block 42 facing the channel plate 1 to seal the elastic protective film 43 of the iron block accommodating groove 41.
  • the side of the channel plate 1 away from the cover plate 2 can also be provided with The electromagnet 44, the electromagnet 44 may specifically be a structure independent of the nucleic acid extraction microfluidic chip.
  • the electromagnet 44 can be controlled to be powered off, the iron block 42 is completely located in the iron block accommodating groove 41, and the liquid can pass through unhindered, as shown in Figure 5a;
  • the electromagnet 44 can be controlled to be energized in the forward direction, and the iron block 42 in the iron block accommodating groove 41 is adsorbed by the electromagnet 44 to block the flow of liquid, as shown in Figure 5b; It can flow through a part of the position of the electromagnetic control valve structure Z1 (the left position in Figure 5c needs liquid to flow through), while the electromagnetic control valve structure Z1 at other positions is blocked when the liquid is blocked (the right position in Figure 5c).
  • the electromagnet 44 at the position where the liquid needs to flow can be controlled to be de-energized or reversely energized to allow the liquid to flow through, and for the electromagnetic control valve structure Z1 at the position where the liquid needs to be blocked, the control electromagnet 44 is energized in the forward direction, and the iron block 42 in the iron block accommodating groove 41 is adsorbed by the electromagnet 44, which blocks the flow of liquid, as shown in FIG. 5c.
  • At least one of the first control valve 191, the second control valve 192, the third control valve 193, and the fourth control valve 194 is an electromagnetic control valve structure Z1, which can make the nucleic acid extraction microfluidic chip small in size and portability. better advantage.
  • the control valve is an electromagnetic control valve structure Z2, that is, the first control valve 191, the second control valve 192, the third control valve 193, the first control valve 191, the second control valve 192, and the third control valve 193.
  • At least one of the four control valves 194 is a camshaft pressure lever valve structure Z2.
  • the camshaft pressure lever valve structure Z2 includes: an accommodating rod through groove 51 located on the side of the cover plate 2 facing away from the channel plate 1, and a accommodating rod through groove 51 located on the side of the cover plate 2 facing away from the channel plate 1.
  • the elastic protective film 43 on the side of the through groove 51 facing the channel plate 1 .
  • the camshaft pressure lever valve structure 2 can cooperate with the external camshaft 56, the pressure rod 55, and the connecting rod 57 connecting the pressure rod 55 and the camshaft 56 to be pulled up or down, so as to realize the camshaft pressure rod.
  • the blocking or circulation of the liquid at the position of the valve structure Z2, as shown in Figure 7a, can realize the circulation of the liquid when it is pulled up; as shown in the camshaft pressure lever valve structure Z2 on the left side of Figure 7b, when it is lowered, it can realize the flow of the liquid. liquid barrier.
  • the camshaft 56 can be rotated specifically, and the different pressure rods 55 can have different fixed angles from the camshaft, so that the pressure rods 55 at different positions can be pulled up or down.
  • the end of the connecting rod 57 connected to the pressing rod 55 may be provided with a suction cup, so as to realize the adsorption of the pressing rod 55 .
  • At least one of the first control valve 191, the second control valve 192, the third control valve 193, and the fourth control valve 194 is an electric camshaft pressure lever valve structure Z2, which can make the nucleic acid extraction microfluidic chip have higher performance. reliability.
  • the control valve is an electromagnetic control valve structure Z3 , that is, a first control valve 191 , a second control valve 192 , a third control valve 193 , and a fourth control valve
  • At least one of 194 is a pneumatically driven squeeze valve structure Z3
  • the pneumatically driven squeeze valve structure Z3 includes: a squeeze block accommodating groove 61 located on the side of the cover plate 2 away from the channel plate 1, located in the squeeze accommodating groove 61
  • gas can be introduced through the gas path access port 630, so that the extrusion block 62 can squeeze the elastic protective film 43, thereby realizing the circulation or blocking of the liquid at the positions of the different air pressure-driven extrusion valve structures Z3,
  • positive pressure is applied to the air pressure-driven squeeze valve structure Z3 on the left in Figure 9b, so that the squeeze block 62 squeezes the elastic protective film 43, thereby blocking the flow of liquid, and the air pressure-driven squeeze valve on the right in Figure 9b drives the squeeze valve
  • the structure Z3 applies negative pressure or zero pressure to realize the circulation of the liquid.
  • the cover plate 2 is further provided with a protective film accommodating groove 45 for accommodating the elastic protective film 43 on the side facing the channel plate 1 .
  • the protective film accommodating groove The orthographic projection of 45 on the cover plate 2 covers the orthographic projection of the elastic protective film 43 on the cover plate 2 .
  • the orthographic projection of the protective film accommodating groove 45 on the cover plate 2 is a rectangle, and the orthographic projection of the protective film accommodating groove 45 on the cover plate 2 coincides with the orthographic projection of the elastic protective film 43 on the cover plate 2.
  • the material of the elastic protective film 43 is polydimethylsiloxane (PDMS, polydimethylsiloxane).
  • PDMS polydimethylsiloxane
  • the thickness of the elastic protective film 43 is 90 microns to 110 microns, so that the elastic protective film 43 has better resilience and better use time and response speed.
  • the main body of the channel plate 1 is rectangular in shape, and has a first side K1 and a second side K2 extending along the first direction EF, and a first side extending along the second direction GH.
  • the lengths of the first subsection S1, the second subsection S2, and the third subsection S3 in the second direction GH decrease in turn;
  • the first pneumatic drive port 131 is located on the first side K1 A position where the subsection S1 protrudes from the second subsection S2, and the second air pressure driving port 132 is located at the position where the first subsection S1 protrudes from the second subsection S2 on the second side K2, so that the air driving port 13 and the second subsection S2 are protruded.
  • Each channel is substantially located on the same level, so
  • the sample storage groove 17, the extraction groove 11, and the waste liquid storage groove 18 are located in the first subsection S1; the mixed lysis groove 16 is located in the second subsection S2; The accommodating cavity 31 and the eluent accommodating cavity 33 are located in the area where the third subsection S3 is located.
  • the internal channels of the nucleic acid extraction microfluidic chip (including the first channel 141, the second channel 142, the third channel 143, the first sub-channel 151, the second sub-channel 152, and the liquid inlet channel 144) are perpendicular to the
  • the width in the extension direction of itself can be 0.4mm-0.6mm, specifically, it can be 0.5mm; the depth in the direction perpendicular to the channel plate 1 is 0.4mm-0.6mm, specifically, it can be 0.5mm; the cover plate
  • the protective film accommodating groove 45 on the cover plate 2 has a depth of 100 microns in the direction perpendicular to the cover plate 2, which is used to place the PDMS elastic protective film 43 of equal thickness.
  • the PDMS elastic film used in the examples of the present disclosure The thickness is approximately 100um, and correspondingly, the depth of the protective film accommodating groove is also 100um.
  • the bonding of the cover plate 2 and the channel plate 1 may be realized by ultrasonic welding or double-sided adhesive bonding.
  • the thickness and elasticity of the PDMS film layer in the four control valves 194 have certain requirements.
  • the embodiments of the present disclosure have the following exploration schemes and solutions:
  • a Mix the curing agent for making PDMS film and the stock solution for making PDMS film at a ratio of 1:10. After mixing evenly, drop the glue on a spin coater at 1000 rpm, and heat it in an oven at 100 degrees Celsius to form the film. After stabilization, the thickness of the test film is about 150um;
  • the PDMS film layers under the above four conditions of a, b, c, and d are respectively used to make the elastic protective films in the first control valve 191, the second control valve 192, the third control valve 193, and the fourth control valve 194,
  • the pull-down properties when the first control valve 191, the second control valve 192, the third control valve 193, and the fourth control valve 194 are closed and the resilience properties and service life when they are opened are investigated. The results are:
  • the pull-down and closing time of the film layer is about 2.7S; when the electromagnet is powered off, the film layer recovery deformation time is about 0.8S; after 50 cycles of power-on and power-off, the film layer is not broken and the properties have not changed;
  • the pull-down and closing time of the film layer is 3.2S; when the electromagnet is turned off, the film layer recovery deformation time is 0.4S; after 50 cycles of power-on and power-off, the film layer is not broken and the properties have not changed;
  • the electromagnet When the electromagnet is energized, the pull-down and closing time of the film layer is 1S; the electromagnet is turned off, and the film layer recovers and deforms for 1S; after 50 cycles of power-on and power-off, the film layer is not broken and the properties have not changed;
  • the pull-down and closing time of the film layer is 1.6S; when the electromagnet is turned off, the film layer recovers and deforms for 0.7S; after 50 cycles of power-on and power-off, the film layer is not broken, and its properties change (permanent deformation);
  • the pull-down and closing time of the film layer is 0.4S; when the electromagnet is turned off, the film layer recovery deformation time is 1.2S; after 50 cycles of energization and power-off, the film is broken due to the thickness of the film, and the properties remain unchanged;
  • the pull-down and closing time of the film layer is 1.1S; when the electromagnet is turned off, the film layer recovery deformation time is 0.9S; 50 times of power-on and power-off cycles, due to the high hardness/rigidity of the film layer, the film layer thickness is thin, and the film layer Although the layer is not broken, the deformation is difficult to recover, and the properties change;
  • the PDMS film layer obtained by different components and spin coating conditions basically finds that c is the best embodiment, which can take into account the requirements of elastic rigidity and service life, and has a fast response speed.
  • the second control valve 192, the third control valve 193, and the fourth control valve 194 are the elastic layer material fabrication scheme.
  • the embodiments of the present disclosure also provide a nucleic acid extraction device, which includes the nucleic acid extraction microfluidic chip provided in the embodiments of the present disclosure, and the nucleic acid extraction device further includes a magnetic supply component that provides a magnetic field for the magnetic beads, so as to The realization is to adsorb the magnetic beads 110 to the pipe wall of the extraction groove 11 or to separate the magnetic beads 110 from the pipe wall of the extraction groove 11 as required.
  • the nucleic acid extraction device when the control valve is an electromagnetic control valve structure Z1 , the nucleic acid extraction device further includes an electromagnet 44 .
  • the nucleic acid extraction device when the control valve is the camshaft pressure lever valve structure Z2 , the nucleic acid extraction device further includes a camshaft 56 and a plurality of pressure levers 55 connected to the camshaft 56 .
  • the embodiment of the present disclosure further provides a nucleic acid extraction method of the nucleic acid extraction device provided by the embodiment of the present disclosure, wherein the method includes:
  • Step S100 injecting the sample solution into the mixed lysis zone through the injection port, and controlling the solution holding cavity to release the lysis solution, so as to lyse the sample solution through the lysis solution to form a mixed solution;
  • Step S200 applying negative pressure through the pneumatic drive port to move the mixed solution into the extraction area, and separate and extract the nucleic acid in the mixed solution.
  • injecting the sample solution into the mixed lysis zone through the injection port, and controlling the release of lysate from the solution accommodating chamber may include: step S110, injecting the sample solution into the mixed lysis chamber through the injection port.
  • the sample solution is injected into the tank, the lysis solution is controlled to release the lysis solution from the lysis solution holding chamber, and the lysis solution is moved into the mixed lysis groove to lyse the sample solution through the lysis solution to form a mixed solution.
  • step S200 negative pressure is applied through the air pressure drive port to move the mixed solution into the extraction area, and the nucleic acid in the mixed solution is separated and extracted, which may specifically include:
  • Step S210 applying negative pressure through the pneumatic drive port to move the mixed solution into the extraction groove to mix with the magnetic beads, so that the magnetic beads are combined with the nucleic acid formed by the cracking of the sample solution;
  • Step S220 Control the flushing liquid accommodating cavity to pass flushing liquid into the extraction groove for a first period of time, provide a magnetic field through the magnetic supply component, so that the magnetic beads are adsorbed on the inner wall of the extraction groove, and discharge the opposite magnetic beads through the air pressure drive port.
  • the rinsed liquid specifically, the nucleic acid extraction microfluidic chip further includes a waste liquid storage groove; for the liquid after washing the magnetic beads discharged through the air pressure drive port in step S220, it includes: passing the air pressure drive port to the magnetic beads The flushed liquid is drained to the storage groove;
  • step S230 the magnetic field is turned off by the magnetic supply component, and the eluent containing chamber is controlled to pass the eluent into the extraction groove, so as to separate the nucleic acid from the magnetic beads.
  • the channel plate further includes a sample storage groove; after step S230, that is, the eluate is controlled to flow into the extraction groove from the eluate accommodating cavity, so that the nucleic acid After separation from the magnetic beads, as shown in FIG. 12 , the nucleic acid extraction method further includes: step S300 , moving the nucleic acid into the sample storage groove.
  • the pneumatic drive port includes a first pneumatic drive port and a second pneumatic drive port;
  • Moving the lysate into the mixed lysis groove in step S110 includes: by applying negative pressure to the first pneumatic drive port, to suck the lysate into the mixed lysis groove;
  • the step S210 for applying negative pressure through the pneumatic drive port to move the mixed solution into the extraction groove to mix with the magnetic beads includes: applying negative pressure to the first pneumatic drive port to move the mixed solution into the extraction groove to mix with the magnetic beads ;
  • step S220 For discharging the liquid after flushing the magnetic beads through the pneumatic drive port in step S220, including: by applying negative pressure to the second pneumatic drive port, to suck the washed liquid into the waste liquid storage groove;
  • Passing nucleic acid into the sample storage chamber in step S300 includes: applying negative pressure to the first pneumatic drive port to suck the nucleic acid into the sample storage groove.
  • the nucleic acid extraction microfluidic chip further includes: a first control valve, a second control valve, a third control valve and a fourth control valve;
  • the nucleic acid extraction method further includes: opening the first control valve, the second control valve, the third control valve and the fourth control valve;
  • the nucleic acid extraction method further includes: closing the second control valve;
  • the nucleic acid extraction method further includes: closing the first control valve;
  • the nucleic acid extraction method further includes: closing a fourth control valve.
  • the nucleic acid extraction method after step S200 and before step S300, that is, after moving the mixed solution into the extraction groove to mix with the magnetic beads, and before controlling the rinsing liquid accommodating chamber to pass the rinsing liquid into the extraction groove , the nucleic acid extraction method also includes:
  • a magnetic field is provided by the magnetic supply component, so that the magnetic beads are adsorbed on the inner wall of the serpentine tube, and the liquid that has reacted with the lysing solution and is not combined with the magnetic beads is discharged through the second pneumatic drive port;
  • the magnetic field is turned off by the magnetic supply part.
  • nucleic acid extraction method provided by the embodiments of the present disclosure, the following is further detailed description in combination with the nucleic acid extraction microfluidic chip shown in FIG. 4a and FIG. 4b as an example:
  • Step 1 Control the first control valve 191, the second control valve 192, the third control valve 193 and the fourth control valve 194 to be in an open state, that is, all control valves are initially in an open state by default;
  • Step 2 Inject the sample solution into the mixed cracking groove 16 through the injection port 160. After adding the sample, close the injection port 160, control the lysate container 32 to release the lysate, and apply a negative pressure to the first air pressure driving port 131. pressure to suck the lysis solution into the mixed lysis groove 16 to lyse the sample solution through the lysis solution to form a mixed solution. Specifically, circulating positive and negative pressure can be used to make it fully react for 10 minutes. Specifically, if heating is required, the nucleic acid extraction device may further include: a first heating component disposed at a position corresponding to the mixing and cracking groove 16 , specifically, the first heating component may be disposed on the channel plate 1 away from the cover plate 2 . one side;
  • Step 3 By applying negative pressure to the first pneumatic drive port 131, the mixed liquid is moved into the extraction groove 11 and mixed with the magnetic beads 110 pre-coated in the extraction groove 11, so that the magnetic beads 110 and the sample liquid are cracked and formed.
  • the nucleic acid binding specifically, can be fully contacted by positive and negative pressure cycles and let stand for 1 minute;
  • Step 4 Provide a magnetic field through the magnetic supply component, so that the magnetic beads 110 are adsorbed on the inner wall of the extraction groove 11 (serpentine tube), apply a negative pressure through the second air pressure driving port 132, and suck out the reaction with the lysate without interacting with the magnetic beads. 110 the combined liquid to the waste liquid storage groove 18;
  • Step 5 Turn off the magnetic field through the magnetic supply part
  • Step 6 closing the second control valve 192;
  • Step 7 Control the lysing liquid accommodating chamber 31 to release the flushing liquid, and by applying negative pressure to the first air pressure drive port 131 to suck the flushing liquid into the extraction groove 11, flush the first time period, and provide a magnetic field through the magnetic supply component , so that the magnetic beads 110 are adsorbed on the inner wall of the extraction groove 11, and the liquid after flushing the magnetic beads 110 is discharged to the storage groove 18 through the second pneumatic drive port 132; repeat this step at least once;
  • Step 8 close the first control valve 191;
  • Step 9 Turn off the magnetic field by the magnetic supply part, control the eluent accommodating chamber 33 to release the eluent, and apply negative pressure to the first air pressure drive port 131 to suck the eluent into the extraction groove 11, so that the eluent is sucked into the extraction groove 11.
  • the nucleic acid extraction device may further include: a second heating part arranged at the position corresponding to the extraction groove 11, which can The heating component is arranged on the side of the channel plate 1 away from the cover plate 2; specifically, the first heating component and the second heating component can be structures independent of the nucleic acid extraction microfluidic chip, and can be specifically arranged on the nucleic acid extraction microfluidic chip.
  • Step ten closing the fourth control valve 194;
  • Step 11 Provide a magnetic field through the magnetic supply component, so that the magnetic beads 110 are adsorbed on the inner wall of the extraction groove 11 (serpentine tube), and the eluted nucleic acid solution is sucked by applying a negative pressure to the first pneumatic drive port 131 to the sample storage groove 17.
  • the magnetic beads 110 for extraction can be pre-coated in the extraction groove 11 (serpentine tube), and after the magnetic beads 110 are adsorbed on the tube wall by a magnetic component (for example, a magnet), the supernatant mixed with the magnetic beads 110 is pumped. go.
  • a magnetic component for example, a magnet
  • the sample solution is injected into the mixed lysis zone through the injection port of the cover plate, and the lysis solution capable of lysing the sample solution is injected into the mixed lysis zone through the solution accommodating cavity.
  • the sample solution is lysed by the lysis solution to lyse the nucleic acid.
  • the mixed solution after lysis in the mixed lysis area is moved into the extraction area, and the nucleic acid formed after the lysis can be adsorbed by magnetic beads in the extraction area, and then passed through the solution.
  • the rinsing liquid is injected into the holding chamber for rinsing and purification.
  • the nucleic acid extraction microfluidic chip provided in the embodiment of the present disclosure provides , which can reduce the risk that the operator may contact the exposed sample, simplify the operation process, and avoid the user to provide the operation container by himself. Sex has also been enhanced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Fluid Mechanics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种核酸提取微流控芯片、核酸提取装置及提取方法。核酸提取微流控芯片,沟道板(1)包括:混合裂解区(100),位于混合裂解区(100)一侧的提取区(200),与外界连通的气压驱动口(13),连通混合裂解区(100)与提取区(200)的第一类通道(14),以及连通提取区(200)与气压驱动口(13)的第二类通道(15);盖板(2),与沟道板(1)相对设置,盖板(2)在与混合裂解区(100)对应的位置具有进样口(160)和进液类通孔(22);溶液容置腔(3),位于盖板(2)的背离沟道板(1)的一侧,溶液容置腔(3)通过进液类通孔(22)与沟道板(1)的混合裂解区(100)连通。

Description

核酸提取微流控芯片、核酸提取装置及提取方法 技术领域
本公开涉及微流控技术领域,尤其涉及一种核酸提取微流控芯片、核酸提取装置及提取方法。
背景技术
在分子检测的样品制备过程中,生物大分子与核酸的分离与纯化技术是其最为核心的基础,也是生命科学研究和应用中的关键技术。传统的核酸提取方式主要采用离心管内提取方式,浪费空间和试剂,制造成本升高。随着微流控技术的发展应用,基于微流控的核酸提取方法得到了发展。一般的微流控核酸提取方法都只是把二氧化硅、硅藻等吸附核酸的物质固定在通道内壁,然后手动通入试剂和移除废液,方法步骤繁琐,耗时耗力,而且结果提取率和重复性都较差。鉴于此,有必要设计、提供一种高效、方便使用的微流控芯片集成式核酸提取芯片。
发明内容
本公开实施例提供一种核酸提取微流控芯片,其中,包括:
沟道板,包括:混合裂解区,位于所述混合裂解区一侧的提取区,与外界连通的气压驱动口,连通所述混合裂解区与所述提取区的第一类通道,以及连通所述提取区与所述气压驱动口的第二类通道;
盖板,与所述沟道板相对设置,所述盖板在与所述混合裂解区对应的位置具有进样口和进液类通孔;
溶液容置腔,位于所述盖板的背离所述沟道板的一侧,所述溶液容置腔通过所述进液类通孔与所述沟道板的所述混合裂解区连通。
在一种可能的实施方式中,所述提取区包括:具有进液端和出液端的提取沟槽;
所述裂解区包括:混合裂解凹槽,位于所述混合裂解凹槽一侧依次排布的第一进液凹槽、第二进液凹槽和第三进液凹槽;
所述第一类通道包括:连通所述第一进液凹槽和所述进液端的第一通道,连通所述第二进液凹槽和所述进液端的第二通道,连通所述第三进液凹槽和所述进液端的第三通道,所述混合裂解凹槽位于所述第二通道;
所述第二类通道包括:连通所述出液端和所述气压驱动口的第四通道;
所述进液类通孔包括:与所述第一进液凹槽对应的第一通孔,与所述第二进液凹槽对应的第二通孔,与所述第三进液凹槽对应的第三通孔;
在一种可能的实施方式中,溶液容置腔包括:
冲洗液容置腔,通过所述第一通孔与所述沟道板的第二进液凹槽连通;
裂解液容置腔,通过所述第二通孔与所述沟道板的所述第二进液凹槽连通;
洗脱液容置腔,通过所述第三通孔与所述沟道板的第三进液凹槽连通。
在一种可能的实施方式中,所述气压驱动口包括第一气压驱动口和第二气压驱动口,所述第四通道包括:连通所述第一气压驱动口和所述出液端的第一子通道,以及连通所述第二气压驱动口和所述出液端的第二子通道。
在一种可能的实施方式中,所述沟道板还包括:位于所述第一子通道的样本存储凹槽。
在一种可能的实施方式中,所述沟道板还包括:位于所述第二子通道的废液存储凹槽。
在一种可能的实施方式中,所述第一通道、所述第二通道、所述第三通道汇聚于一进液通道与所述进液端连通;
所述废液存储凹槽还通过第五通道与所述进液通道连通。
在一种可能的实施方式中,所述核酸提取微流控芯片还包括位于所述提取沟槽内的磁珠。
在一种可能的实施方式中,所述核酸提取微流控芯片还包括:位于所述盖板的背离所述沟道板一侧的磁珠容置腔;
所述裂解区还包括:第四进液凹槽,以及连通所述第四进液凹槽和所述进液端的第六通道;
所述盖板还包括:与所述第四进液凹槽对应的第四通孔;
所述磁珠容置腔通过所述第四通孔与所述沟道板的所述第四进液凹槽连通。
在一种可能的实施方式中,所述第一类通道、所述第二类通道还设置有控制阀。
在一种可能的实施方式中,所述控制阀包括:
第一控制阀,位于所述第一通道;
第二控制阀,位于所述第二通道;
第三控制阀,位于所述第三通道;
第四控制阀,位于所述第二子通道,且位于所述废液存储凹槽与所述出液端之间。
在一种可能的实施方式中,所述控制阀为电磁控制阀结构,所述电磁控制阀结构包括:位于所述盖板面向所述沟道板一面的铁块容置槽,位于所述铁块容置槽的铁块,位于所述铁块的面向所述沟道板一侧密封所述铁块容置槽的弹性保护膜。
在一种可能的实施方式中,所述控制阀为凸轮轴压杆阀结构,所述凸轮轴压杆阀包括:位于所述盖板背离所述沟道板一面的容置杆通槽,以及位于所述容置杆通槽的面向所述沟道板一侧的弹性保护膜。
在一种可能的实施方式中,所述控制阀为气压驱动挤压阀结构,所述气压驱动挤压阀结构包括:位于所述盖板背离所述沟道板一面的挤压块容置槽,位于所述挤压容置槽内的挤压块,位于所述挤压块的背离所述沟道板一侧的底膜,以及位于所述挤压块的面向所述沟道板一侧的弹性保护膜;其中,所述底膜具有连通所述挤压块容置槽的气路接入口。
在一种可能的实施方式中,所述盖板在面向所述沟道板的一面还设置有容置所述弹性保护膜的保护膜容置槽,所述保护膜容置槽在所述盖板的正投 影覆盖所述弹性保护膜在所述盖板的正投影。
在一种可能的实施方式中,所述弹性保护膜的材料为聚二甲基硅氧烷。
在一种可能的实施方式中,所述沟道板的主体形状为矩形,具有沿第一方向延伸的第一侧边和第二侧边,以及沿第二方向延伸的第三侧边和第四侧边;所述盖板的形状与所述沟道板的形状相同;
其中,所述沟道板具有沿所述第一方向依次排布的第一分部、第二分部和第三分部,所述第一分部、所述第二分部、所述第三分部在所述第二方向上的长度依次降低;
所述第一气压驱动口位于所述第一侧边所述第一分部较所述第二分部凸出的位置,所述第二气压驱动口位于所述第二侧边所述第一分部较所述第二分部凸出的位置。
在一种可能的实施方式中,所述提取沟槽、位于所述第一分部;所述混合裂解凹槽位于所述第二分部;所述裂解液容置腔、所述冲洗液容置腔、所述洗脱液容置腔位于所述第三分部所在区域。
在一种可能的实施方式中,所述提取沟槽为蛇形状。
本公开实施例还提供一种核酸提取装置,其中,包括如本公开实施例提供的所述核酸提取微流控芯片,所述核酸提取装置还包括为所述磁珠提供磁场的供磁部件。
在一种可能的实施方式中,所述控制阀中为电磁控制阀结构时,所述核酸提取装置还包括电磁铁,所述电磁铁位于所述沟道板的背离所述盖板的一侧。
在一种可能的实施方式中,所述控制阀中为凸轮轴压杆阀结构时,所述核酸提取装置还包括凸轮轴,以及连接于所述凸轮轴的多个压杆。
本公开实施例还提供一种如本公开实施例提供的所述核酸提取装置的核酸提取方法,其中,包括:
通过进样口向混合裂解区注入样品液,控制溶液容置腔释放裂解液,以通过所述裂解液裂解所述样品液,形成混合液;
通过气压驱动口施加负压以将所述混合液移入提取区,对所述混合液中的核酸进行分离提取。
在一种可能的实施方式中,所述通过进样口向混合裂解区注入样品液,控制溶液容置腔释放裂解液,包括:
通过进样口向混合裂解凹槽注入样品液,控制裂解液容置腔释放裂解液,并将所述裂解液移入所述混合裂解凹槽内,以通过所述裂解液裂解所述样品液,形成混合液。
在一种可能的实施方式中,所述核酸提取微流控芯片包括位于所述提取沟槽内的磁珠;所述通过气压驱动口施加负压以将所述混合液移入提取区,对所述混合液中的核酸进行分离提取,包括:
通过气压驱动口施加负压以将所述混合液移入提取沟槽与磁珠混合,以使所述磁珠与所述样品液裂解形成的所述核酸结合;
控制冲洗液容置腔向所述提取沟槽内通入冲洗液,冲洗第一时长,通过所述供磁部件提供磁场,以使所述磁珠吸附在所述提取沟槽内壁,通过气压驱动口排出对所述磁珠冲洗后的液体;
通过所述供磁部件关闭磁场,控制洗脱液容置腔向所述提取沟槽内通入洗脱液,以使所述核酸与所述磁珠分离。
在一种可能的实施方式中,所述沟道板还包括样本存储凹槽;
在控制洗脱液容置腔向所述提取沟槽内通入洗脱液,以使所述核酸与所述磁珠分离之后,所述核酸提取方法还包括:将所述核酸移入到所述样本存储凹槽。
在一种可能的实施方式中,所述核酸提取微流控芯片还包括废液存储凹槽;
所述通过气压驱动口排出对所述磁珠冲洗后的液体,包括:通过气压驱动口将对所述磁珠冲洗后的液体排到所述存储凹槽。
在一种可能的实施方式中,所述气压驱动口包括第一气压驱动口和第二气压驱动口;
所述将裂解液移入所述混合裂解凹槽内,包括:通过向所述第一气压驱动口施加负压,以将所述裂解液吸入到所述混合裂解凹槽内;
所述通过气压驱动口施加负压以将所述混合液移入提取沟槽与磁珠混合,包括:通过向所述第一气压驱动口施加负压,以将所述混合液移入所述提取沟槽与所述磁珠混合;
所述通过气压驱动口排出对所述磁珠冲洗后的液体,包括:通过向所述第二气压驱动口施加负压,以将冲洗后的液体吸入到所述废液存储凹槽;
所述将所述核酸通入到所述样本存储腔,包括:通过向所述第一气压驱动口施加负压,以将所述核酸吸入到所述样本存储凹槽。
在一种可能的实施方式中,所述核酸提取微流控芯片还包括:第一控制阀、第二控制阀、第三控制阀和第四控制阀;
在通过进样口向混合裂解凹槽注入样品液之前,所述核酸提取方法还包括:打开所述第一控制阀、所述第二控制阀、所述第三控制阀和所述第四控制阀;
在控制冲洗液容置腔向所述提取沟槽内通入冲洗液之前,所述核酸提取方法还包括:关闭所述第二控制阀;
在控制洗脱液容置腔向所述混合裂解凹槽内通入洗脱液之前,所述核酸提取方法还包括:关闭所述第一控制阀;
在将所述核酸移入到所述样本存储凹槽之前,所述核酸提取方法还包括:关闭所述第四控制阀。
在一种可能的实施方式中,在将所述混合液移入所述提取沟槽与磁珠混合之后,以及在控制冲洗液容置腔向所述提取沟槽内通入冲洗液之前,所述核酸提取方法还包括:
通过所述供磁部件提供磁场,以使所述磁珠吸附在所述蛇形管内壁,通过第二气压驱动口排出与所述裂解液反应后且未与所述磁珠结合的液体;
通过所述供磁部件关闭磁场。
附图说明
图1为本公开实施例提供的一种沟道板的结构示意图;
图2为本公开实施例提供的一种盖板的结构示意图;
图3为本公开实施例提供的一种核酸提取微流控芯片的整体结构示意图;
图4a为本公开实施例提供的一种具体的沟道板的结构示意图;
图4b为本公开实施例提供的一种具体的核酸提取微流控芯片的整体结构示意图;
图5a为本公开实施例提供的一种电磁控制阀结构在导通时的示意图;
图5b为本公开实施例提供的一种电磁控制阀结构在关闭时的示意图;
图5c为本公开实施例提供的一种电磁控制阀结构在部分导通部分关闭时的示意图;
图6为本公开实施例提供的一种盖板在电磁控制阀结构所在位置处的结构示意图;
图7a为本公开实施例提供的一种凸轮轴压杆阀在导通时的示意图;
图7b为本公开实施例提供的一种凸轮轴压杆阀在部分导通部分关闭时的示意图;
图7c为本公开实施例提供的一种凸轮轴压杆阀结构对应的凸轮轴的结构示意图;
图8为本公开实施例提供的一种盖板在凸轮轴压杆阀所在位置处的结构示意图;
图9a为本公开实施例提供的一种气压驱动挤压阀结构在导通时的示意图;
图9b为本公开实施例提供的一种气压驱动挤压阀结构在部分导通部分关闭时的示意图;
图10为本公开实施例提供的一种盖板在气压驱动挤压阀结构所在位置处的结构示意图;
图11a为本公开实施例提供的一种核酸提取方法的流程示意图;
图11b为本公开实施例提供的一种具体的核酸提取方法的流程示意图;
图12为本公开实施例提供的一种具体的核酸提取方法的流程示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
参见图1、图2和图3所示,其中,图1为沟道板与盖板相对一面的结构示意图,图2为盖板与沟道板相对一面的示意图,图3为核酸提取微流控芯片的整体结构示意图,本公开实施例提供核酸提取微流控芯片,包括:
沟道板1,包括:混合裂解区100,位于混合裂解区100一侧的提取区200,与外界连通的气压驱动口13,连通混合裂解区100与提取区200的第一类通道14,以及连通所述提取区200与气压驱动口13的第二类通道15;
盖板2,与沟道板1相对设置,盖板2在与混合裂解区100对应的位置具有进样口160和进液类通孔22;
溶液容置腔3,位于盖板2的背离沟道板1的一侧,溶液容置腔3通过进液类通孔22与沟道板1的混合裂解区100连通。
本公开实施例提供的核酸提取微流控芯片,通过盖板2的进样口160向混合裂解区100注入样品液,并通过溶液容置腔3向混合裂解区100注入可以对样品液进行裂解的裂解液,在混合裂解区100中,通过裂解液裂解样品液,裂解出核酸,之后,将混合裂解区100裂解后的混合液移入到提取区200,而提取区200内可以通过磁珠110吸附裂解后形成的核酸,再通过溶液容置腔3注入冲洗液,进行冲洗提纯,排出冲洗后的废液时,通过外界施加磁场,将磁珠110吸在提取区200的所在区域,进而也将核酸吸住,进而排出其它液体;再通过溶液容置腔3注入洗脱液,该洗脱液可以将磁珠110与核酸分离,实现获取到纯净的核酸,相比于现有技术获取核酸的装置,本公开实施例提供的核酸提取微流控芯片,可以降低操作人员接触暴露在外样本可能产生的危险,简化了操作流程,同时避免使用者自己提供操作容器,在微流控芯片中可以完成整个提取反应,减小人为操作可能产生的误差,便携性也得到了提升。
在具体实施时,参见图1所示,提取区200包括:具有进液端A和出液端B的提取沟槽11;
裂解区100包括:混合裂解凹槽16,位于混合裂解凹槽16一侧依次排布的第一进液凹槽121、第二进液凹槽122和第三进液凹槽123;
第一类通道14包括:连通第一进液凹槽121和进液端A的第一通道141,连通第二进液凹槽122的和进液端A的第二通道142,连通第三进液凹槽123和进液端A的第三通道143,混合裂解凹槽16位于第二通道142;
第二类通道15包括:连通出液端B和气压驱动口13的第四通道15;
进液类通孔22包括:与第一进液凹槽121对应的第一通孔221,与第二进液凹槽122对应的第二通孔222,与第三进液凹槽123对应的第三通孔223。
溶液容置腔3包括:
冲洗液容置腔31,冲洗液容置腔31通过第一通孔221与沟道板1的第二 进液凹槽121连通;
裂解液容置腔32,裂解液容置腔32通过第二通孔222与沟道板1的第二进液凹槽122连通;
洗脱液容置腔33,洗脱液容置腔33通过第三通孔223与沟道板1的第三进液凹槽123连通。
位于提取沟槽11内的磁珠110;具体的,磁珠110为可以吸附待提取核酸的磁珠,具体可以带有与核酸相匹配的物质,以实现与核酸的结合;
在具体实施时,本公开实施例中的裂解液容置腔32、冲洗液容置腔31、洗脱液容置腔33,可以为如图1所示的单独的腔室,也可以是包括多个子腔的复合结构,例如,裂解液具体由多种试剂组成时,将多种试剂混合放置在一起,可能存在影响每一种试剂的化学性能,该种情形下,裂解液容置腔32可以包括多个相互独立的子裂解液容置腔,多个子裂解液容置腔可以呈一列排布,或者,也可以呈一圈排布,每一子裂解液容置腔可以盛放至少一种裂解试剂,例如,裂解液容置腔32可以包括第一子裂解液容置腔、第二子裂解液容置腔、第三子裂解液容置腔,其中,第一子裂解液容置腔可以盛放两种化学性能互不影响(或者,有相互促进作用)的裂解试剂,第二子裂解液容置腔可以盛放另外三种化学性能互不影响(或者,有相互促进作用)的裂解试剂,第三子裂解液容置腔可以盛放另外两种化学性能互不影响(或者,有相互促进作用)的裂解试剂。
在具体实施时,裂解液容置腔32、冲洗液容置腔31、洗脱液容置腔33可以为通电控制的结构,底部可以设置有可通电加热的氧化铟锡(Indium tin oxide,ITO)电极,以及通电可进行加热融化的底部蜡微阀,使内部试剂释放入相应流道。裂解液容置腔32、冲洗液容置腔31、洗脱液容置腔33的顶端面(如图3中的圆柱形的裂解液容置腔32、冲洗液容置腔31、洗脱液容置腔33的上端面)可以均设置有开口(图3中未示出),并封上防水透气膜,以使负压驱动时液体时有空气进入,得以实现通过施加负压使液体在通道内流动。裂解液容置腔32、冲洗液容置腔31、洗脱液容置腔33还可以为柔性袋, 通过挤压实现液体的释放。
在具体实施时,提取沟槽11可以为蛇形状,如此,可以增加提取沟槽11的容积,实现液体的充分混合。
在具体实施时,结合图1或图4a所示,气压驱动口13包括第一气压驱动口131和第二气压驱动口132,第四通道15包括:连通第一气压驱动口131和出液端B的第一子通道151,以及连通第二气压驱动口132和出液端B的第二子通道152,在具体实施时,第一气压驱动口131可以作为第一负压接入口,用于将裂解液容置腔32内的裂解液吸入到混合裂解液凹槽16内,以及在后续操作中用于将混合裂解凹槽16内的液体吸附到提取沟槽11内;第二气压驱动口132可以作为第二负压接入口,用于将提取沟槽11内冲洗后的液体吸出;沟道板1的第一气压驱动口131和第二气压驱动口132具体可以为半圆柱形的凹槽,盖板2具体可以在与沟道板1的第一气压驱动口131和第二气压驱动口132对应位置处也设置半圆柱形的凹槽23(凹槽23包括与第一气压驱动口131对应的第一对应气压驱动口凹槽231,以及与第二气压驱动口132对应的第二对应气压驱动口凹槽232),盖板2与沟道板1对合后,形成一管状的腔体,通过外界的活塞进行拉动,形成一类似注射器的结构,可以实现对核酸提取微流控芯片内部施加正压或负压的目的。
在具体实施时,结合图4a和图4b所示,核酸提取微流控芯片还包括:位于第一子通道151的样本存储凹槽17,以及位于第二子通道152的废液存储凹槽18。本公开实施例中,核酸提取微流控芯片还包括样本存储凹槽17,以及废液存储凹槽18,可以实现将提纯后的核酸吸取到样本存储凹槽17,将提取沟槽11在操作过程中的废液吸取到废液存储凹槽18。
在具体实施时,结合图4a和图4b所示,第一通道141、第二通道142、第三通道143汇聚于一进液通道144与进液端A连通;废液存储凹槽18还通过第五通道145与进液通道144连通。本公开实施例中,废液存储凹槽18还通过第五通道145与进液通道144连通,在某些不将磁珠110预先涂覆在提取沟槽11而是采取磁珠溶液存储在磁珠容置腔(具体设置方式可以与裂解液 存储腔32的设置方式类似,可以通过第六通道与混合裂解凹槽16连通,图中未示出)的情形中,可以在混合裂解凹槽16中进行磁珠与裂解混合液的混合,对于细胞裂解后的废液,用供磁部件将磁珠吸附后,可以将废液直接排入废液存储凹槽18,而不通过提取沟槽11(蛇形管),减少废液进入提取沟槽11引起后续操作污染可能性。
在具体实施时,磁珠110可以预先涂覆在提取沟槽11内,即,核酸提取微流控芯片还包括位于提取沟槽11内的磁珠110;或者,也可以是单独为磁珠设置一用于存储磁珠110的磁珠容置腔,即,核酸提取微流控芯片还包括:位于盖板2的背离沟道板1一侧的磁珠容置腔(图中未示出,具体结构的设置方式以及与提取沟槽11,混合裂解凹槽16的连通方式,可以与裂解液容置腔32、冲洗液容置腔31、洗脱液容置腔33的类似);相应的,裂解区100还包括:第四进液凹槽,以及连通第四进液凹槽和进液端A的第六通道;盖板还包括:与第四进液凹槽对应的第四通孔;磁珠容置腔通过第四通孔与沟道板的第四进液凹槽连通;或者,磁珠110也可以混合在裂解液容置腔32中,作为裂解液容置腔32中的一种裂解液。
在具体实施时,结合图4a和图4b所示,第一类通道14、第二类通道15还设置有控制阀,具体的,控制阀包括:第一控制阀191,位于第一通道141;第二控制阀192,位于第二通道142;第三控制阀193,位于第三通道143;第四控制阀194,位于第二子通道152,且位于废液存储凹槽18与出液端B之间。本公开实施例中,第一控制阀191、第二控制阀192、第三控制阀193、第四控制阀194初始状态为处于打开状态,在将冲洗液容置腔31中的冲洗液通过第一气压驱动口131吸入到提取沟槽11之前,可以控制第二控制阀192关闭,以避免在第一通道141需要引入负压以驱动液体时,在第二通道142(也即第二控制阀192所在通道)产生漏气而导致的负压不足;在将洗脱液容置腔33中的冲洗液通过第一气压驱动口131吸入到提取沟槽11之前,可以控制第一控制阀191关闭,以避免在第三通道143需要引入负压以驱动液体时,在第一通道141(也即第一控制阀191所在通道)产生漏气而导致的负 压不足;冲洗液容置腔33释放冲洗液后,第三控制阀193可以仍保持打开状态,以便后续可以向通道内施加正负压;在将提纯后的核酸吸到样本存储腔17之前,可以控制第四控制阀194关闭,以避免将废液存储腔18中的废液吸到样本存储腔17中。
在具体实施时,核酸提取微流控芯片还包括:第五控制阀195,位于进液通道144。
在具体实施时,参见图5a、图5b、图5c、图6所示,控制阀为电磁控制阀结构Z1,即,第一控制阀191、第二控制阀192、第三控制阀193、第四控制阀194中的至少一者为电磁控制阀结构Z1,电磁控制阀结构Z1包括:位于盖板2面向沟道板1一面的铁块容置槽41,位于铁块容置槽41的铁块42,位于铁块42的面向沟道板1一侧密封铁块容置槽41的弹性保护膜43,在具体实施时,在沟道板1的背离盖板2的一侧还可以设置有电磁铁44,电磁铁44具体可以为独立于核酸提取微流控芯片以外的结构。需要液体流过电磁控制阀结构Z所在位置时,可以控制电磁铁44断电,铁块42完全位于铁块容置槽41内,液体可以无阻碍通过,如图5a所示;需要液体不能流过电磁控制阀结构Z1所在位置时,可以控制电磁铁44正向通电,铁块容置槽41内的铁块42被电磁铁44吸附下来,阻挡液体流过,如图5b所示;需要液体能流过一部分电磁控制阀结构Z1所在位置(如图5c中左侧位置处需要液体流过),而在其它位置处的电磁控制阀结构Z1液体被阻挡时(如图5c中右侧位置处液体需要被阻挡),可以控制需要液体流过位置处电磁铁44断电或反向通电,以使液体流过,而对于需要阻挡液体流过位置处的电磁控制阀结构Z1时,控制电磁铁44正向通电,铁块容置槽41内的铁块42被电磁铁44吸附下来,阻挡液体流过,如图5c所示。第一控制阀191、第二控制阀192、第三控制阀193、第四控制阀194中的至少一者为电磁控制阀结构Z1,可以使核酸提取微流控芯片具有设备体积小,便携性较佳的优势。
在具体实施时,结合图7a、图7b、图7c、图8所示,控制阀为电磁控制阀结构Z2,即,第一控制阀191、第二控制阀192、第三控制阀193、第四控 制阀194中的至少一者为凸轮轴压杆阀结构Z2,凸轮轴压杆阀结构Z2包括:位于盖板2背离沟道板1一面的容置杆通槽51,以及位于容置杆通槽51的面向沟道板1一侧的弹性保护膜43。在具体实施时,凸轮轴压杆阀结构2可以配合外部的凸轮轴56,压杆55,以及连接压杆55和凸轮轴56的连接杆57,进行上拉或下降,实现对凸轮轴压杆阀结构Z2所在位置处液体的阻挡或流通,如图7a所示,上拉时,可以实现液体的流通;如图7b左侧的凸轮轴压杆阀结构Z2所示,下降时,可以实现对液体的阻挡。凸轮轴56具体可以进行转动,不同压杆55具体可以与凸轮轴的固定角度不同,实现对不同位置的压杆55的上拉或下降。连接杆57的与压杆55连接的一端可以设置吸盘,以实现对压杆55的吸附。第一控制阀191、第二控制阀192、第三控制阀193、第四控制阀194中的至少一者为电凸轮轴压杆阀结构Z2,可以使核酸提取微流控芯片具有更高的可靠性。
在具体实施时,结合图9a、图9b、图10所示,控制阀为电磁控制阀结构Z3,即,第一控制阀191、第二控制阀192、第三控制阀193、第四控制阀194中的至少一者为气压驱动挤压阀结构Z3,气压驱动挤压阀结构Z3包括:位于盖板2背离沟道板1一面的挤压块容置槽61,位于挤压容置槽61内的挤压块62,位于挤压块62的背离沟道板1一侧的底膜63,以及位于挤压块62的面向沟道板1一侧的弹性保护膜43;其中,底膜63具有连通挤压块容置槽61的气路接入口630。在具体实施时,可以通过气路接入口630通入气体,实现使挤压块62挤压弹性保护膜43,进而实现对不同气压驱动挤压阀结构Z3所在位置处的液体的流通或阻挡,例如,向图9b中左侧的气压驱动挤压阀结构Z3施加正压,实现使挤压块62挤压弹性保护膜43,进而阻挡液体流通,向图9b中右侧的气压驱动挤压阀结构Z3施加负压或零压,实现使液体流通。
在具体实施时,结合图6、图8、图10所示,盖板2在面向沟道板1的一面还设置有容置弹性保护膜43的保护膜容置槽45,保护膜容置槽45在盖板2的正投影覆盖弹性保护膜43在盖板2的正投影。具体的,保护膜容置槽45在盖板2的正投影为矩形,保护膜容置槽45在盖板2的正投影与弹性保护 膜43在盖板2的正投影重合。
在具体实施时,弹性保护膜43、的材料为聚二甲基硅氧烷(PDMS,polydimethylsiloxane)。具体的,弹性保护膜43的厚度为90微米-110微米,以使弹性保护膜43具有较好的回弹性以及较佳的使用时长和响应速度。
在具体实施时,结合图4a所示,沟道板1的主体形状为矩形,具有沿第一方向EF延伸的第一侧边K1和第二侧边K2,以及沿第二方向GH延伸的第三侧边K3和第四侧边K4;盖板2的形状与沟道板1的形状相同;其中,沟道板2具有沿第一方向EF依次排布的第一分部S1、第二分部S2和第三分部S3,第一分部S1、第二分部S2、第三分部S3在第二方向GH上的长度依次降低;第一气压驱动口131位于第一侧边K1第一分部S1较第二分部S2凸出的位置,第二气压驱动口132位于第二侧边K2第一分部S1较第二分部S2凸出的位置,以使气压驱动口13与各个通道基本位于同一水平面上,以实现通过气压驱动口13快速向各个通道内通气或抽气。
在具体实施时,样本存储凹槽17、提取沟槽11、废液存储凹槽18位于第一分部S1;混合裂解凹槽16位于第二分部S2;裂解液容置腔32、冲洗液容置腔31、洗脱液容置腔33位于第三分部S3所在区域。
在具体实施时,核酸提取微流控芯片内部通道(包括第一通道141、第二通道142、第三通道143、第一子通道151、第二子通道152、进液通道144)在垂直于自身延伸方向上的宽度可以为0.4mm-0.6mm,具体的,可以为0.5mm;在垂直于沟道板1方向上的深度为0.4mm-0.6mm,具体的,可以为0.5mm;盖板2上的保护膜容置槽45在垂直于盖板2方向上的深度为百微米级别的凹陷,用于放置等厚的PDMS弹性保护膜43,具体的,本公开实例中采用的PDMS弹性膜厚度大致为100um,相应的,保护膜容置槽深度也为100um。
在具体实施时,可以通过超声波焊接或双面胶粘贴方式实现盖板2与沟道板1的键合。
由于第一控制阀191、第二控制阀192、第三控制阀193、第四控制阀194为消耗性器件,故对第一控制阀191、第二控制阀192、第三控制阀193、第 四控制阀194内的PDMS膜层厚度和弹性有一定要求,本公开实施例有如下探索方案和解决方案:
a、使用制作PDMS膜层的固化剂和制作PDMS膜层的原液比例1:10混合,混合均匀后在旋涂机以1000rpm转速条件下滴胶,并于100摄氏度烘箱内加热成型,待膜层稳定后取出测试膜层厚度大致为150um;
b、使用固化剂和原液比例1:5混合,混合均匀后在旋涂机以1000rpm转速条件下滴胶,并于100摄氏度烘箱内加热成型,待膜层稳定后取出测试膜层厚度大致为200um;
c、使用固化剂和原液比例1:10混合,混合均匀后在旋涂机以1500rpm转速条件下滴胶,并于100摄氏度烘箱内加热成型,待膜层稳定后取出测试膜层厚度大致为100um;
d、使用固化剂和原液比例1:5混合,混合均匀后在旋涂机以1500rpm转速条件下滴胶,并于100摄氏度烘箱内加热成型,待膜层稳定后取出测试膜层厚度大致为170um;
e、使用固化剂和原液比例1:10混合,混合均匀后在旋涂机以1800rpm转速条件下滴胶,并于100摄氏度烘箱内加热成型,待膜层稳定后取出测试膜层厚度大致为60um;
f、使用固化剂和原液比例1:5混合,混合均匀后在旋涂机以1800rpm转速条件下滴胶,并于100摄氏度烘箱内加热成型,待膜层稳定后取出测试膜层厚度大致为90um;
分别使用以上a、b、c、d四种不同条件的PDMS膜层用于制作第一控制阀191、第二控制阀192、第三控制阀193、第四控制阀194内的弹性保护膜,考察第一控制阀191、第二控制阀192、第三控制阀193、第四控制阀194闭合时下拉性质和开启时的回弹性质和使用寿命,结果为:
a、电磁铁通电,膜层下拉闭合时间大致为2.7S;电磁铁断电,膜层恢复形变时间大致为0.8S;通电断电循环50次,膜层未破裂,性质并未改变;
b、电磁铁通电,膜层下拉闭合时间3.2S;电磁铁断电,膜层恢复形变时 间0.4S;通电断电循环50次,膜层未破裂,性质并未改变;
c、电磁铁通电,膜层下拉闭合时间1S;电磁铁断电,膜层恢复形变时间1S;通电断电循环50次,膜层未破裂,性质并未改变;
d、电磁铁通电,膜层下拉闭合时间1.6S;电磁铁断电,膜层恢复形变时间0.7S;通电断电循环50次,膜层未破裂,性质改变(永久性形变);
e、电磁铁通电,膜层下拉闭合时间0.4S;电磁铁断电,膜层恢复形变时间1.2S;通电断电循环50次,由于膜层厚度较膜导致破裂,性质未改变;
f、电磁铁通电,膜层下拉闭合时间1.1S;电磁铁断电,膜层恢复形变时间0.9S;通电断电循环50次,由于膜层硬度/刚性过高,膜层厚度较薄,膜层虽未破裂但是形变难以恢复,性质改变;
通过不同组分和旋涂条件的得到的PDMS膜层基本得出c为最佳实施方案,能够兼顾弹性刚性和使用寿命的需求,响应速度快,为本公开实施例所采用的第一控制阀191、第二控制阀192、第三控制阀193、第四控制阀194弹性层材料制作方案。
基于同一公开构思,本公开实施例还提供一种核酸提取装置,其中,包括如本公开实施例提供的核酸提取微流控芯片,核酸提取装置还包括为磁珠提供磁场的供磁部件,以实现根据需要为将磁珠110吸附于提取沟槽11的管壁或将磁珠110从提取沟槽11的管壁分离。
在具体实施时,结合图5a、图5b和图6所示,控制阀为电磁控制阀结构Z1时,核酸提取装置还包括电磁铁44。
在具体实施时,结合图7c所示,控制阀为凸轮轴压杆阀结构Z2时,核酸提取装置还包括凸轮轴56,以及连接于凸轮轴56的多个压杆55。
参见图11a所示,本公开实施例还提供一种如本公开实施例提供的核酸提取装置的核酸提取方法,其中,包括:
步骤S100、通过进样口向混合裂解区注入样品液,控制溶液容置腔释放裂解液,以通过裂解液裂解所述样品液,形成混合液;
步骤S200、通过气压驱动口施加负压以将混合液移入提取区,对混合液 中的核酸进行分离提取。
在具体实施时,参见图11b所示,对于步骤S100、通过进样口向混合裂解区注入样品液,控制溶液容置腔释放裂解液,可以包括:步骤S110、通过进样口向混合裂解凹槽注入样品液,控制裂解液容置腔释放裂解液,并将裂解液移入混合裂解凹槽内,以通过裂解液裂解样品液,形成混合液。
对于步骤S200、通过气压驱动口施加负压以将混合液移入提取区,对混合液中的核酸进行分离提取,具体可以包括:
步骤S210、通过气压驱动口施加负压以将混合液移入提取沟槽与磁珠混合,以使磁珠与样品液裂解形成的核酸结合;
步骤S220、控制冲洗液容置腔向提取沟槽内通入冲洗液,冲洗第一时长,通过供磁部件提供磁场,以使磁珠吸附在提取沟槽内壁,通过气压驱动口排出对磁珠冲洗后的液体;具体的,核酸提取微流控芯片还包括废液存储凹槽;对于步骤S220中的通过气压驱动口排出对磁珠冲洗后的液体,包括:通过气压驱动口将对磁珠冲洗后的液体排到存储凹槽;
步骤S230、通过供磁部件关闭磁场,控制洗脱液容置腔向提取沟槽内通入洗脱液,以使核酸与磁珠分离。
在具体实施时,参见图12所示,沟道板还包括样本存储凹槽;在步骤S230之后,即,在控制洗脱液容置腔向提取沟槽内通入洗脱液,以使核酸与磁珠分离之后,结合图12所示,核酸提取方法还包括:步骤S300、将核酸移入到样本存储凹槽。
在具体实施时,气压驱动口包括第一气压驱动口和第二气压驱动口;
对于步骤S110中的将裂解液移入混合裂解凹槽内,包括:通过向第一气压驱动口施加负压,以将裂解液吸入到混合裂解凹槽内;
对于步骤S210中的通过气压驱动口施加负压以将混合液移入提取沟槽与磁珠混合,包括:通过向第一气压驱动口施加负压,以将混合液移入提取沟槽与磁珠混合;
对于步骤S220中的通过气压驱动口排出对磁珠冲洗后的液体,包括:通 过向第二气压驱动口施加负压,以将冲洗后的液体吸入到废液存储凹槽;
对于步骤S300中的将核酸通入到样本存储腔,包括:通过向第一气压驱动口施加负压,以将核酸吸入到样本存储凹槽。
在具体实施时,核酸提取微流控芯片还包括:第一控制阀、第二控制阀、第三控制阀和第四控制阀;
在步骤S100之前,即在通过进样口向混合裂解凹槽注入样品液之前,核酸提取方法还包括:打开第一控制阀、第二控制阀、第三控制阀和第四控制阀;
在控制冲洗液容置腔向提取沟槽内通入冲洗液之前,核酸提取方法还包括:关闭第二控制阀;
在控制洗脱液容置腔向混合裂解凹槽内通入洗脱液之前,核酸提取方法还包括:关闭第一控制阀;
在将核酸移入到样本存储凹槽之前,核酸提取方法还包括:关闭第四控制阀。
在具体实施时,在步骤S200之后,以及在步骤S300之前,即,在将混合液移入提取沟槽与磁珠混合之后,以及在控制冲洗液容置腔向提取沟槽内通入冲洗液之前,核酸提取方法还包括:
通过供磁部件提供磁场,以使磁珠吸附在蛇形管内壁,通过第二气压驱动口排出与裂解液反应后且未与磁珠结合的液体;
通过供磁部件关闭磁场。
为了更清新地理解本公开实施例提供的核酸提取方法,以下结合图4a和图4b所示的核酸提取微流控芯片为例,进行进一步详细说明如下:
步骤一、控制第一控制阀191、第二控制阀192、第三控制阀193和第四控制阀194处于打开状态,即所有控制阀起始默认都是打开状态;
步骤二、通过进样口160向混合裂解凹槽16注入样品液,加样后,关闭进样口160,控制裂解液容置腔32释放裂解液,并通过向第一气压驱动口131施加负压,以将裂解液吸入到混合裂解凹槽16内,以通过裂解液裂解样品液, 形成混合液,具体可以采用循环正负压使其充分反应10分钟。具体的,如需加热,核酸提取装置还可以包括:在对应混合裂解凹槽16位置设置的第一加热部件,具体的,可以将第一加热部件设置在沟道板1的背离盖板2的一侧;
步骤三、通过向第一气压驱动口131施加负压,以将混合液移入提取沟槽11与预涂覆在提取沟槽11中的磁珠110混合,以使磁珠110与样品液裂解形成的核酸结合,具体的,可以通过正负压循环使其充分接触并静置1分钟;
步骤四、通过供磁部件提供磁场,以使磁珠110吸附在提取沟槽11(蛇形管)内壁,通过第二气压驱动口132施加负压,吸出与裂解液反应后且未与磁珠110结合的液体至废液存储凹槽18;
步骤五、通过供磁部件关闭磁场;
步骤六、关闭第二控制阀192;
步骤七、控制裂解液容置腔31释放冲洗液,并通过向第一气压驱动口131施加负压,以将冲洗液吸入到提取沟槽11内,冲洗第一时长,通过供磁部件提供磁场,以使磁珠110吸附在提取沟槽11内壁,通过第二气压驱动口132将对磁珠110冲洗后的液体排到存储凹槽18;重复该步骤至少一次;
步骤八、关闭第一控制阀191;
步骤九、通过供磁部件关闭磁场,控制洗脱液容置腔33释放洗脱液,并通过向第一气压驱动口131施加负压,将洗脱液吸入提取沟槽11,使洗脱液与结合有核酸的磁珠反应,以使核酸与磁珠11分离;具体的,如需加热,核酸提取装置还可以包括:在对应提取沟槽11位置设置的第二加热部件,可以将第二加热部件设置在沟道板1的背离盖板2的一侧;具体的,第一加热部件、第二加热部件可以为独立于核酸提取微流控芯片以外的结构,具体可以设置在进行核酸提取时的操作台上,在进行核酸提取时,设置在与核酸提取微流控芯片相应的位置;
步骤十、关闭第四控制阀194;
步骤十一、通过供磁部件提供磁场,以使磁珠110吸附在提取沟槽11(蛇形管)内壁,通过向第一气压驱动口131施加负压,以将洗脱下的核酸溶液 吸入到样本存储凹槽17。
具体的,可以在裂解液容置腔31内存储裂解液50uL,冲洗液容置腔存储32冲洗液600uL,在洗脱液容置腔33储存洗脱悬浮液150ul。提取用磁珠110可以预先涂覆在提取沟槽11(蛇形管)中,用供磁部件(例如,磁铁)吸附磁珠110在管壁后,将与磁珠110混合的上清液抽去。
本公开实施例提供的核酸提取微流控芯片,通过盖板的进样口向混合裂解区注入样品液,并通过溶液容置腔向混合裂解区注入可以对样品液进行裂解的裂解液,在混合裂解区中,通过裂解液裂解样品液,裂解出核酸,之后,将混合裂解区裂解后的混合液移入到提取区,而提取区内可以通过磁珠吸附裂解后形成的核酸,再通过溶液容置腔注入冲洗液,进行冲洗提纯,排出冲洗后的废液时,通过外界施加磁场,将磁珠吸在提取区的所在区域,进而也将核酸吸住,进而排出其它液体;再通过溶液容置腔注入洗脱液,该洗脱液可以将磁珠与核酸分离,实现获取到纯净的核酸,相比于现有技术获取核酸的装置,本公开实施例提供的核酸提取微流控芯片,可以降低操作人员接触暴露在外样本可能产生的危险,简化了操作流程,同时避免使用者自己提供操作容器,在微流控芯片中可以完成整个提取反应,减小人为操作可能产生的误差,便携性也得到了提升。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (30)

  1. 一种核酸提取微流控芯片,其中,包括:
    沟道板,包括:混合裂解区,位于所述混合裂解区一侧的提取区,与外界连通的气压驱动口,连通所述混合裂解区与所述提取区的第一类通道,以及连通所述提取区与所述气压驱动口的第二类通道;
    盖板,与所述沟道板相对设置,所述盖板在与所述混合裂解区对应的位置具有进样口和进液类通孔;
    溶液容置腔,位于所述盖板的背离所述沟道板的一侧,所述溶液容置腔通过所述进液类通孔与所述沟道板的所述混合裂解区连通。
  2. 如权利要求1所述的核酸提取微流控芯片,其中,
    所述提取区包括:具有进液端和出液端的提取沟槽;
    所述裂解区包括:混合裂解凹槽,位于所述混合裂解凹槽一侧依次排布的第一进液凹槽、第二进液凹槽和第三进液凹槽;
    所述第一类通道包括:连通所述第一进液凹槽和所述进液端的第一通道,连通所述第二进液凹槽和所述进液端的第二通道,连通所述第三进液凹槽和所述进液端的第三通道,所述混合裂解凹槽位于所述第二通道;
    所述第二类通道包括:连通所述出液端和所述气压驱动口的第四通道;
    所述进液类通孔包括:与所述第一进液凹槽对应的第一通孔,与所述第二进液凹槽对应的第二通孔,与所述第三进液凹槽对应的第三通孔。
  3. 如权利要求2所述的核酸提取微流控芯片,其中,溶液容置腔包括:
    冲洗液容置腔,通过所述第一通孔与所述沟道板的第二进液凹槽连通;
    裂解液容置腔,通过所述第二通孔与所述沟道板的所述第二进液凹槽连通;
    洗脱液容置腔,通过所述第三通孔与所述沟道板的第三进液凹槽连通。
  4. 如权利要求2所述的核酸提取微流控芯片,其中,所述气压驱动口包括第一气压驱动口和第二气压驱动口,所述第四通道包括:连通所述第一气 压驱动口和所述出液端的第一子通道,以及连通所述第二气压驱动口和所述出液端的第二子通道。
  5. 如权利要求4所述的核酸提取微流控芯片,其中,所述沟道板还包括:位于所述第一子通道的样本存储凹槽。
  6. 如权利要求5所述的核酸提取微流控芯片,其中,所述沟道板还包括:位于所述第二子通道的废液存储凹槽。
  7. 如权利要求2所述的核酸提取微流控芯片,其中,所述第一通道、所述第二通道、所述第三通道汇聚于一进液通道与所述进液端连通;
    所述废液存储凹槽还通过第五通道与所述进液通道连通。
  8. 如权利要求2所述的核酸提取微流控芯片,其中,所述核酸提取微流控芯片还包括位于所述提取沟槽内的磁珠。
  9. 如权利要求2所述的核酸提取微流控芯片,其中,所述核酸提取微流控芯片还包括:位于所述盖板的背离所述沟道板一侧的磁珠容置腔;
    所述裂解区还包括:第四进液凹槽,以及连通所述第四进液凹槽和所述进液端的第六通道;
    所述盖板还包括:与所述第四进液凹槽对应的第四通孔;
    所述磁珠容置腔通过所述第四通孔与所述沟道板的所述第四进液凹槽连通。
  10. 如权利要求4所述的核酸提取微流控芯片,其中,所述第一类通道、所述第二类通道还设置有控制阀。
  11. 如权利要求10所述的核酸提取微流控芯片,其中,所述控制阀包括:
    第一控制阀,位于所述第一通道;
    第二控制阀,位于所述第二通道;
    第三控制阀,位于所述第三通道;
    第四控制阀,位于所述第二子通道,且位于所述废液存储凹槽与所述出液端之间。
  12. 如权利要求10所述的核酸提取微流控芯片,其中,所述控制阀为电 磁控制阀结构,所述电磁控制阀结构包括:位于所述盖板面向所述沟道板一面的铁块容置槽,位于所述铁块容置槽的铁块,位于所述铁块的面向所述沟道板一侧密封所述铁块容置槽的弹性保护膜。
  13. 如权利要求10所述的核酸提取微流控芯片,其中,所述控制阀为凸轮轴压杆阀结构,所述凸轮轴压杆阀包括:位于所述盖板背离所述沟道板一面的容置杆通槽,以及位于所述容置杆通槽的面向所述沟道板一侧的弹性保护膜。
  14. 如权利要求10所述的核酸提取微流控芯片,其中,所述控制阀为气压驱动挤压阀结构,所述气压驱动挤压阀结构包括:位于所述盖板背离所述沟道板一面的挤压块容置槽,位于所述挤压容置槽内的挤压块,位于所述挤压块的背离所述沟道板一侧的底膜,以及位于所述挤压块的面向所述沟道板一侧的弹性保护膜;其中,所述底膜具有连通所述挤压块容置槽的气路接入口。
  15. 如权利要求12-14任一项所述的核酸提取微流控芯片,其中,所述盖板在面向所述沟道板的一面还设置有容置所述弹性保护膜的保护膜容置槽,所述保护膜容置槽在所述盖板的正投影覆盖所述弹性保护膜在所述盖板的正投影。
  16. 如权利要求12-14任一项所述的核酸提取微流控芯片,其中,所述弹性保护膜的材料为聚二甲基硅氧烷。
  17. 如权利要求2所述的核酸提取微流控芯片,其中,所述沟道板的主体形状为矩形,具有沿第一方向延伸的第一侧边和第二侧边,以及沿第二方向延伸的第三侧边和第四侧边;所述盖板的形状与所述沟道板的形状相同;
    其中,所述沟道板具有沿所述第一方向依次排布的第一分部、第二分部和第三分部,所述第一分部、所述第二分部、所述第三分部在所述第二方向上的长度依次降低;
    所述第一气压驱动口位于所述第一侧边所述第一分部较所述第二分部凸出的位置,所述第二气压驱动口位于所述第二侧边所述第一分部较所述第二 分部凸出的位置。
  18. 如权利要求17所述的核酸提取微流控芯片,其中,所述提取沟槽、位于所述第一分部;所述混合裂解凹槽位于所述第二分部;所述裂解液容置腔、所述冲洗液容置腔、所述洗脱液容置腔位于所述第三分部所在区域。
  19. 如权利要求1所述的核酸提取微流控芯片,其中,所述提取沟槽为蛇形状。
  20. 一种核酸提取装置,其中,包括如权利要求1-19任一项所述的核酸提取微流控芯片,所述核酸提取装置还包括为所述磁珠提供磁场的供磁部件。
  21. 如权利要求20所述的核酸提取装置,其中,所述控制阀中为电磁控制阀结构时,所述核酸提取装置还包括电磁铁,所述电磁铁位于所述沟道板的背离所述盖板的一侧。
  22. 如权利要求20所述的核酸提取装置,其中,所述控制阀中为凸轮轴压杆阀结构时,所述核酸提取装置还包括凸轮轴,以及连接于所述凸轮轴的多个压杆。
  23. 一种如权利要求20-22任一项所述的核酸提取装置的核酸提取方法,其中,包括:
    通过进样口向混合裂解区注入样品液,控制溶液容置腔释放裂解液,以通过所述裂解液裂解所述样品液,形成混合液;
    通过气压驱动口施加负压以将所述混合液移入提取区,对所述混合液中的核酸进行分离提取。
  24. 如权利要求23所述的核酸提取方法,其中,所述通过进样口向混合裂解区注入样品液,控制溶液容置腔释放裂解液,包括:
    通过进样口向混合裂解凹槽注入样品液,控制裂解液容置腔释放裂解液,并将所述裂解液移入所述混合裂解凹槽内,以通过所述裂解液裂解所述样品液,形成混合液。
  25. 如权利要求24所述的核酸提取方法,其中,所述核酸提取微流控芯片包括位于所述提取沟槽内的磁珠;所述通过气压驱动口施加负压以将所述 混合液移入提取区,对所述混合液中的核酸进行分离提取,包括:
    通过气压驱动口施加负压以将所述混合液移入提取沟槽与磁珠混合,以使所述磁珠与所述样品液裂解形成的所述核酸结合;
    控制冲洗液容置腔向所述提取沟槽内通入冲洗液,冲洗第一时长,通过所述供磁部件提供磁场,以使所述磁珠吸附在所述提取沟槽内壁,通过气压驱动口排出对所述磁珠冲洗后的液体;
    通过所述供磁部件关闭磁场,控制洗脱液容置腔向所述提取沟槽内通入洗脱液,以使所述核酸与所述磁珠分离。
  26. 如权利要求25所述的核酸提取方法,其中,所述沟道板还包括样本存储凹槽;
    在控制洗脱液容置腔向所述提取沟槽内通入洗脱液,以使所述核酸与所述磁珠分离之后,所述核酸提取方法还包括:将所述核酸移入到所述样本存储凹槽。
  27. 如权利要求26所述的核酸提取方法,其中,所述核酸提取微流控芯片还包括废液存储凹槽;
    所述通过气压驱动口排出对所述磁珠冲洗后的液体,包括:通过气压驱动口将对所述磁珠冲洗后的液体排到所述存储凹槽。
  28. 如权利要求27所述的核酸提取方法,其中,所述气压驱动口包括第一气压驱动口和第二气压驱动口;
    所述将裂解液移入所述混合裂解凹槽内,包括:通过向所述第一气压驱动口施加负压,以将所述裂解液吸入到所述混合裂解凹槽内;
    所述通过气压驱动口施加负压以将所述混合液移入提取沟槽与磁珠混合,包括:通过向所述第一气压驱动口施加负压,以将所述混合液移入所述提取沟槽与所述磁珠混合;
    所述通过气压驱动口排出对所述磁珠冲洗后的液体,包括:通过向所述第二气压驱动口施加负压,以将冲洗后的液体吸入到所述废液存储凹槽;
    所述将所述核酸通入到所述样本存储腔,包括:通过向所述第一气压驱 动口施加负压,以将所述核酸吸入到所述样本存储凹槽。
  29. 如权利要求28所述的核酸提取方法,其中,所述核酸提取微流控芯片还包括:第一控制阀、第二控制阀、第三控制阀和第四控制阀;
    在通过进样口向混合裂解凹槽注入样品液之前,所述核酸提取方法还包括:打开所述第一控制阀、所述第二控制阀、所述第三控制阀和所述第四控制阀;
    在控制冲洗液容置腔向所述提取沟槽内通入冲洗液之前,所述核酸提取方法还包括:关闭所述第二控制阀;
    在控制洗脱液容置腔向所述混合裂解凹槽内通入洗脱液之前,所述核酸提取方法还包括:关闭所述第一控制阀;
    在将所述核酸移入到所述样本存储凹槽之前,所述核酸提取方法还包括:关闭所述第四控制阀。
  30. 如权利要求29所述的核酸提取方法,其中,在将所述混合液移入所述提取沟槽与磁珠混合之后,以及在控制冲洗液容置腔向所述提取沟槽内通入冲洗液之前,所述核酸提取方法还包括:
    通过所述供磁部件提供磁场,以使所述磁珠吸附在所述蛇形管内壁,通过第二气压驱动口排出与所述裂解液反应后且未与所述磁珠结合的液体;
    通过所述供磁部件关闭磁场。
PCT/CN2020/116853 2020-09-22 2020-09-22 核酸提取微流控芯片、核酸提取装置及提取方法 WO2022061521A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080002055.XA CN115151630A (zh) 2020-09-22 2020-09-22 核酸提取微流控芯片、核酸提取装置及提取方法
US17/417,850 US20220333048A1 (en) 2020-09-22 2020-09-22 Nucleic acid extraction microfluidic chip, and nucleic acid extraction device and extraction method
PCT/CN2020/116853 WO2022061521A1 (zh) 2020-09-22 2020-09-22 核酸提取微流控芯片、核酸提取装置及提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116853 WO2022061521A1 (zh) 2020-09-22 2020-09-22 核酸提取微流控芯片、核酸提取装置及提取方法

Publications (1)

Publication Number Publication Date
WO2022061521A1 true WO2022061521A1 (zh) 2022-03-31

Family

ID=80844708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116853 WO2022061521A1 (zh) 2020-09-22 2020-09-22 核酸提取微流控芯片、核酸提取装置及提取方法

Country Status (3)

Country Link
US (1) US20220333048A1 (zh)
CN (1) CN115151630A (zh)
WO (1) WO2022061521A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116103139B (zh) * 2023-04-14 2023-07-25 杭州霆科生物科技有限公司 一种全封闭式全集成核酸检测微流控芯片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112667A1 (en) * 2008-11-03 2010-05-06 Cfd Research Corporation Microfluidic Biological Extraction Chip
CN205687904U (zh) * 2016-06-17 2016-11-16 博奥生物集团有限公司 一种用于核酸提取的微流控装置及控制系统
CN108841818A (zh) * 2018-03-13 2018-11-20 融智生物科技(青岛)有限公司 一种核酸提取方法及装置
CN109536366A (zh) * 2018-11-29 2019-03-29 合肥中科易康达生物医学有限公司 一种基于改性毛细管的核酸检测微流控芯片及核酸检测系统
CN110257245A (zh) * 2019-07-16 2019-09-20 东莞博识生物科技有限公司 核酸检测试剂卡
CN111592971A (zh) * 2020-07-07 2020-08-28 江苏汇先医药技术有限公司 一种用于核酸检测的微流控芯片及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416030B (en) * 2004-01-28 2008-07-23 Norchip As A diagnostic system for carrying out a nucleic acid sequence amplification and detection process
KR101422572B1 (ko) * 2006-09-05 2014-07-30 삼성전자주식회사 핵산 검출을 위한 원심력 기반의 미세유동장치 및 이를포함하는 미세유동시스템
US20120138833A1 (en) * 2010-12-02 2012-06-07 Joseph Matteo Multi-Function Eccentrically Actuated Microvalves and Micropumps
CN102679039A (zh) * 2012-05-07 2012-09-19 博奥生物有限公司 一种集成于微流控芯片内的气动微阀
CN103335154B (zh) * 2013-07-15 2015-07-29 大连海事大学 一种集成于微流控芯片上的电磁微阀
WO2015172255A1 (en) * 2014-05-16 2015-11-19 Qvella Corporation Apparatus, system and method for performing automated centrifugal separation
CN203925955U (zh) * 2014-07-10 2014-11-05 大连海事大学 一种基于微流控芯片的电磁微泵
US9222935B1 (en) * 2015-05-28 2015-12-29 Pixcell Medical Technologies Ltd Fluid sample analysis system
CN105536898B (zh) * 2015-12-14 2017-07-07 清华大学 微流控芯片、血细胞分离方法与系统及该系统的制作方法
CN206637105U (zh) * 2017-04-06 2017-11-14 青岛意诚融智生物仪器有限公司 一种用于微流控芯片的电磁微阀
CN111057638B (zh) * 2018-10-17 2023-06-27 北京致雨生物科技有限公司 样本处理装置及方法,以及包括该处理装置的数字pcr系统
CN210656872U (zh) * 2019-05-06 2020-06-02 融智生物科技(青岛)有限公司 一种核酸提取微流控芯片
CN110343611B (zh) * 2019-08-14 2022-08-30 无锡研奥电子科技有限公司 一种微流控芯片
CN110656108B (zh) * 2019-10-31 2021-06-08 东莞市东阳光诊断产品有限公司 芯片、核酸提取纯化装置以及核酸提取纯化方法
CN115703993A (zh) * 2021-08-17 2023-02-17 北京京东方技术开发有限公司 微流控芯片、其核酸提取方法及核酸提取装置
CN115400806A (zh) * 2022-09-23 2022-11-29 广东和信健康科技有限公司 一体化核酸提取微流控芯片盒和核酸提取及检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112667A1 (en) * 2008-11-03 2010-05-06 Cfd Research Corporation Microfluidic Biological Extraction Chip
CN205687904U (zh) * 2016-06-17 2016-11-16 博奥生物集团有限公司 一种用于核酸提取的微流控装置及控制系统
CN108841818A (zh) * 2018-03-13 2018-11-20 融智生物科技(青岛)有限公司 一种核酸提取方法及装置
CN109536366A (zh) * 2018-11-29 2019-03-29 合肥中科易康达生物医学有限公司 一种基于改性毛细管的核酸检测微流控芯片及核酸检测系统
CN110257245A (zh) * 2019-07-16 2019-09-20 东莞博识生物科技有限公司 核酸检测试剂卡
CN111592971A (zh) * 2020-07-07 2020-08-28 江苏汇先医药技术有限公司 一种用于核酸检测的微流控芯片及方法

Also Published As

Publication number Publication date
US20220333048A1 (en) 2022-10-20
CN115151630A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN112226361B (zh) 一种基于磁珠转移和阀控移液的核酸检测卡盒及检测方法
US11446659B2 (en) Nucleic acid extraction apparatus
CN103289988B (zh) 一种用于制备样品的盒
WO2021164530A1 (zh) 检测芯片及其使用方法、检测装置
US20130273548A1 (en) Sample preparation and loading module
WO2019196850A1 (zh) 一种能控制流体流动的多功能微阀、微流控芯片和方法
CN216149780U (zh) 体外诊断分析装置及试剂卡盒
CN109536364A (zh) 微流控pcr芯片及其操作方法
WO2022061521A1 (zh) 核酸提取微流控芯片、核酸提取装置及提取方法
WO2023040477A1 (zh) 体外诊断分析装置及试剂卡盒
CN112812959A (zh) 一种核酸提取扩增检测一体化装置
TW201802445A (zh) 流體整合模組
CN113275046A (zh) 检测芯片及其使用方法、检测装置
WO2023040476A1 (zh) 微流控芯片与体外诊断分析设备
CN111621417A (zh) 一种用于生物样本处理的微流控芯片及其使用方法
CN112980650A (zh) 一种核酸提取用的立式微流控芯片及方法
CN112844505A (zh) 一种用于核酸提取扩增的立式微流控芯片及方法
WO2023020220A1 (zh) 微流控芯片、其核酸提取方法及核酸提取装置
CN108949498B (zh) 一种全封闭一体化试剂提取扩增装置
CN115400806A (zh) 一体化核酸提取微流控芯片盒和核酸提取及检测方法
CN218339833U (zh) 液体转移、多通道液体转移、液体自动提取转移及多通道液体自动提取转移的装置
CN212426057U (zh) 一种用于生物样本处理的微流控芯片
TW200932916A (en) Biochip
WO2021163958A1 (zh) 混合装置及其驱动方法、检测组件
CN112958173A (zh) 一种微流控试剂盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 20954375

Country of ref document: EP

Kind code of ref document: A1