WO2023020220A1 - 微流控芯片、其核酸提取方法及核酸提取装置 - Google Patents

微流控芯片、其核酸提取方法及核酸提取装置 Download PDF

Info

Publication number
WO2023020220A1
WO2023020220A1 PCT/CN2022/108153 CN2022108153W WO2023020220A1 WO 2023020220 A1 WO2023020220 A1 WO 2023020220A1 CN 2022108153 W CN2022108153 W CN 2022108153W WO 2023020220 A1 WO2023020220 A1 WO 2023020220A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
groove
valve
hole
microfluidic chip
Prior art date
Application number
PCT/CN2022/108153
Other languages
English (en)
French (fr)
Inventor
范蓓媛
徐为峰
丁丁
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023020220A1 publication Critical patent/WO2023020220A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA

Definitions

  • the present disclosure relates to the field of microfluidic technology, in particular to a microfluidic chip, its nucleic acid extraction method and nucleic acid extraction device.
  • nucleic acid in a sample from other biomacromolecules is the basis of the sample preparation process required for molecular detection, and is a key technology in the field of life science research applications and in vitro diagnostics.
  • the traditional nucleic acid extraction method mainly adopts the extraction method in a centrifuge tube. Whether it is manual or automatic, it will inevitably cause waste of space and reagents, thereby increasing costs.
  • microfluidic technology can effectively reduce the sample size and cost, and has the advantages of portability. It has unique advantages in in vitro bedside diagnosis.
  • the nucleic acid extraction method based on microfluidics has gained development, but the general microfluidic nucleic acid extraction method only fixes nucleic acid-absorbing substances such as silica and diatoms on the inner wall of the channel, and then manually adds reagents and removes waste liquid.
  • the method is cumbersome, time-consuming and labor-intensive. The resulting extraction rate and repeatability of the results are poor. In view of this, it is necessary to provide an efficient, automatic and convenient integrated nucleic acid extraction chip based on microfluidic technology.
  • a microfluidic chip provided by an embodiment of the present disclosure includes:
  • the channel plate layer, the channel plate layer includes: a liquid inlet groove, a mixing and cracking channel, a nucleic acid extraction channel, a first air pressure driven port and a second air pressure driven port, wherein the liquid inlet groove, the The mixed lysis channel, the nucleic acid extraction channel and the first air pressure drive port are connected in sequence to form a liquid flow channel, and the liquid inlet groove, the mixed lysis channel and the second air pressure drive port are sequentially connected. connected to form another liquid flow channel;
  • the cover layer is arranged opposite to the channel plate layer, and the cover layer includes a liquid inlet through hole corresponding to the liquid inlet groove;
  • the solution storage chamber is located on the side of the cover layer away from the channel plate layer, and the solution storage chamber includes a liquid outlet through hole corresponding to the liquid inlet through hole.
  • the solution storage chamber includes a magnetic bead buffer storage chamber, a binding solution storage chamber, a cleaning solution storage chamber, and an eluent storage chamber;
  • the liquid inlet through hole includes a magnetic bead buffer liquid inlet through hole, a binding liquid inlet through hole, a cleaning liquid inlet through hole and an eluent liquid inlet through hole;
  • the liquid inlet grooves include: magnetic bead buffer liquid inlet grooves, binding liquid inlet grooves, cleaning liquid inlet grooves and eluent liquid inlet grooves;
  • the magnetic bead buffer storage cavity, the magnetic bead buffer inlet through hole and the magnetic bead buffer inlet groove are connected in sequence;
  • binding liquid storage cavity, the binding liquid inlet through hole and the binding liquid inlet groove are sequentially connected;
  • the cleaning liquid storage cavity, the cleaning liquid inlet through hole and the cleaning liquid inlet groove are sequentially connected;
  • the eluent storage cavity, the eluent inlet through hole and the eluent inlet groove are connected in sequence.
  • the mixed lysis channel includes a mixed lysis groove, which directly communicates with the mixed lysis groove and the magnetic bead buffer inlet groove.
  • the first channel directly communicates with the mixed cracking groove and the second channel of the binding liquid inlet groove, and directly communicates with the third channel of the mixed cracking groove and the cleaning liquid inlet groove , directly connecting the mixed cracking groove with the fourth channel of the eluent liquid inlet groove, indirectly connecting the mixed cracking groove with the fifth channel of the second air pressure drive port, and directly communicating with The mixed cleavage groove and the sixth channel of the nucleic acid extraction channel.
  • microfluidic chip provided by the embodiment of the present disclosure, it further includes: a first valve for controlling whether the liquid in the first channel circulates, and for controlling whether the liquid in the second channel
  • the second valve for controlling the flow of the liquid in the third channel
  • the third valve for controlling the flow of the liquid in the fourth channel
  • the fourth valve for controlling the flow of the fifth channel.
  • a sixth valve for controlling whether the liquid in the sixth channel flows through.
  • the fifth channel between the fifth valve and the second pneumatically driven port is in a zigzag shape.
  • the zigzag-shaped fifth channel includes a first part and a second part that are arranged to intersect and communicate with each other, wherein the first part and the The fifth valve is directly connected, the second part is indirectly connected to the second pneumatic drive port, and the length of the first part is greater than the length of the second part.
  • the included angle between the first part and the second part is 30°-150°.
  • the first valve, the second valve, the third valve, the fourth valve, the fifth valve, and the Any one of the sixth valves includes: a first limiting through hole on the channel plate layer, and a second limiting through hole corresponding to the first limiting through hole on the cover layer , the spool moving between the first limiting through hole and the second limiting through hole seals the first limiting through hole on the side of the channel plate layer away from the cover plate layer
  • the bottom film of the hole, and the elastic film carrying the valve core on the side of the cover plate layer facing the channel plate layer, and the elastic film covers the second limiting through hole.
  • the first valve, the second valve, the third valve, the fourth valve, the fifth valve, and the Any one of the sixth valves includes: a limiting groove on the channel plate layer, a second limiting through hole corresponding to the limiting groove on the cover layer, The valve core that moves between the limit groove and the second limit through hole, and the elastic film that carries the valve core on the side of the cover plate layer facing the channel plate layer, and the elastic film Cover the second limiting through hole.
  • the channel plate layer includes a first channel layer, a first adhesive layer and a second channel layer which are sequentially stacked, wherein the The first channel layer is close to the cover layer;
  • the first channel layer includes a first mixed cracking groove, which directly communicates with the first valve and the first sub-channel of the magnetic bead buffer liquid inlet groove, and directly communicates with the second valve and the Combining the second sub-channel of the liquid inlet groove, directly connecting the third valve with the third sub-channel of the cleaning liquid inlet groove, and directly connecting the fourth valve with the eluent inlet the fourth sub-channel of the groove;
  • the first glue layer includes a second mixed lysis groove and a first nucleic acid extraction channel that are independent of each other;
  • the second channel layer includes a third mixed cleavage groove, a second nucleic acid extraction channel, directly connected to the first valve and the fifth sub-channel of the third mixed cleavage groove, directly connected to the first
  • the second valve and the sixth sub-channel of the third mixed cracking groove are directly connected to the third valve and the seventh sub-channel of the third mixed cracking groove, and the fourth valve is directly connected to the seventh sub-channel of the third mixed cracking groove.
  • the eighth sub-channel of the third mixed cracking groove is directly connected to the ninth sub-channel of the third mixed cracking groove and the fifth valve, and indirectly connected to the fifth valve and the second air pressure
  • the tenth sub-channel of the drive port is directly connected to the eleventh sub-channel of the third mixing and cracking groove and the sixth valve, and the eleventh sub-channel directly connected to the six valves and the second nucleic acid extraction channel. the twelfth sub-channel;
  • the first sub-channel and the fifth sub-channel constitute the first channel
  • the second sub-channel and the sixth sub-channel constitute the second channel
  • the The third sub-channel and the seventh sub-channel constitute the third channel
  • the fourth sub-channel and the eighth sub-channel constitute the fourth channel
  • the ninth sub-channel The channel and the tenth sub-channel constitute the fifth channel
  • the eleventh sub-channel and the twelfth sub-channel constitute the sixth channel;
  • the first mixing and cracking groove, the second mixing and cracking groove, and the third mixing and cracking groove are directly connected in sequence to form the mixed cracking groove, and the first mixing and cracking groove is in the cover
  • the orthographic projection on the plane where the plate layer is located, the orthographic projection of the second mixed cracking groove on the plane where the cover plate layer is located, and the orthographic projection of the third mixed cracking groove on the plane where the cover plate layer is located The projections roughly coincide;
  • the first nucleic acid extraction channel directly connects with the second nucleic acid extraction channel to form the nucleic acid extraction channel, and the orthographic projection of the first nucleic acid extraction channel on the plane where the cover layer is located is the same as the The orthographic projections of the second nucleic acid extraction channel on the plane where the cover layer is located are roughly coincident.
  • the first valve, the second valve, the third valve, the fourth valve, the fifth valve, and the Any one of the sixth valves includes: a first limiting through hole on the first channel layer, a drainage hole directly connected to the first limiting through hole on the first adhesive layer, The second limiting through hole corresponding to the first limiting through hole is provided on the cover layer, the spool moving between the first limiting through hole and the second limiting through hole, and an elastic membrane bearing the valve core on the side of the cover layer facing the first channel layer, and the elastic membrane covers the second position-limiting through hole;
  • any one of the first valve, the second valve, the third valve and the fourth valve is provided with one drainage hole, and one of the fifth valve and the sixth valve Either one is provided with two drainage holes.
  • microfluidic chip provided by the embodiments of the present disclosure, it further includes: a first protective device for sealing the second limiting through hole on the side of the cover layer away from the channel plate layer. membrane.
  • the cover layer further includes an expansion groove surrounding the second limiting through hole, and the expansion groove is located on the cover layer.
  • the orthographic projection on the plane where the elastic film is located overlaps with the orthographic projection of the elastic film on the plane where the cover plate layer is located.
  • the expansion groove includes a first expansion groove and/or a second expansion groove, wherein the first expansion groove is located in the On the side of the cover layer away from the channel plate layer, the second expansion groove is located on the side of the cover plate layer facing the channel plate layer, and the first expansion groove is on the side of the cover plate layer
  • the orthographic projection on the plane where the layer is located is approximately the same as the orthographic projection of the elastic film on the plane where the cover plate layer is located, and the orthographic projection of the second expansion groove on the plane where the cover plate layer is located is located on the elastic film The film is in the orthographic projection on the plane of the cover layer.
  • the boundary of the orthographic projection of the second expansion groove on the plane where the cover layer is located is the same as that of the elastic film on the plane where the cover layer is located.
  • the distance between the orthographic projection boundaries on the plane is 0.5 mm to 1.0 mm.
  • the depth of the first expansion groove is 0.8 mm to 1.2 mm, and the depth of the first expansion groove is 0.8 mm to 1.2 mm.
  • the depth of the second expansion groove is 11 ⁇ m ⁇ 50 ⁇ m.
  • the second adhesive layer includes The binding liquid inlet through hole and the first through hole of the magnetic bead buffer liquid inlet groove are directly connected to the binding liquid inlet through hole and the second through hole of the binding liquid inlet groove, directly
  • the cleaning liquid inlet through hole is connected with the third through hole of the cleaning liquid inlet groove, and the eluent liquid inlet through hole is directly connected with the fourth through hole of the eluent liquid inlet groove.
  • the accommodating hole for accommodating the elastic membrane, and the fifth via hole directly communicating with the mixing and cracking groove.
  • the above-mentioned microfluidic chip provided in the embodiments of the present disclosure further includes magnetic beads located in the mixing and lysis groove.
  • the mixed lysis groove includes a reaction groove and a buffer groove connected to each other, wherein the reaction groove and the first channel , the second channel, the third channel, the fourth channel, and the sixth channel are directly connected to each other, and the buffer groove is directly connected to the fifth channel.
  • the mixed lysis groove includes a reaction groove and a buffer groove connected to each other, wherein the reaction groove and the first channel , the second channel, the third channel, and the fourth channel are directly connected to each other, and the buffer groove is directly connected to the fifth channel and the sixth channel.
  • the cover layer further includes expansion through holes completely covering the reaction groove, and One side of the layer seals the second protective film of the expansion through-hole.
  • the buffer groove is spindle-shaped.
  • the width is the largest at a position of 1/2 to 3/4 of the spindle-shaped extension direction.
  • the mixed lysis groove further includes a flow guide channel directly connecting the mixed lysis groove and the buffer groove, and the flow guide channel
  • the channel is "S" shaped.
  • the channel plate layer further includes a waste liquid groove, and the waste liquid groove is connected to the nucleic acid extraction channel, the fifth channel The channel and the second air pressure drive port are respectively directly connected;
  • the cover layer also includes a waste liquid through hole corresponding to the waste liquid groove
  • the microfluidic chip also includes a waste liquid cavity embedded in the waste liquid through hole.
  • the channel plate layer further includes support columns located in the waste liquid groove
  • the microfluidic chip also includes a liquid-absorbing core located on the support column.
  • the liquid inlet groove, the mixed lysis channel and the nucleic acid extraction channel are arranged side by side in sequence in the first direction, and the second A pneumatic drive port and the second pneumatic drive port are respectively arranged on both sides of the nucleic acid extraction channel in the second direction, and the waste liquid groove and the second pneumatic drive port are located in the nucleic acid extraction channel On the same side of the road, the second direction intersects with the first direction.
  • the length of the channel plate layer in the region where the liquid inlet groove is located, The length of the area where the channel is located and the length of the area where the nucleic acid extraction channel is located increase sequentially.
  • the channel plate layer also includes a side of the waste liquid groove away from the nucleic acid extraction channel, and an There are first positioning holes on both sides of the second direction; the cover layer has a second positioning hole at a position corresponding to the first positioning hole.
  • the nucleic acid extraction channel is serpentine.
  • the channel plate layer further includes a magnet accommodating groove on a side away from the cover layer, and the magnet accommodating groove is located on the The area where the nucleic acid extraction channel is located and the area where the mixed cleavage groove is located.
  • the channel plate layer further includes a first locking groove on a side away from the cover layer, and the first locking groove is on the side of the cover layer.
  • the orthographic projection on the plane where the cover layer is located does not overlap with the orthographic projections of the first air pressure drive port and the second air pressure drive port on the plane where the cover plate layer is located;
  • the cover layer also includes a second locking groove on the side away from the channel layer, wherein the orthographic projection of the second locking groove on the plane where the cover layer is located is at the same distance as the first locking groove.
  • the orthographic projections on the plane where the cover layer is located overlap each other;
  • the microfluidic chip also includes a claw-type connector, a part of the claw-type connector is embedded in the first groove and the second groove, and the claw-type connector includes a The pressure supply channel communicated with the driving port or the second air pressure driving port.
  • the channel plate layer further includes a third locking groove located below the first pneumatic drive port and the second pneumatic drive port;
  • the cover layer also includes a fourth locking groove on the side facing the channel layer, wherein the orthographic projection of the fourth locking groove on the plane where the cover layer is located is at the same distance as the third locking groove.
  • the orthographic projections on the plane where the cover layer is located overlap each other;
  • a part of the claw connector is inserted into the third slot and the fourth slot.
  • the solution storage chamber includes a liquid storage chamber with a liquid discharge port, an electrode release layer near the liquid discharge port, and a thermal melt A sealing structure, wherein the electrode release layer has an opening at a position corresponding to the liquid outlet, the hot-melt sealing structure seals the liquid outlet and the opening, and the liquid outlet and the opening The opening constitutes the liquid outlet through hole.
  • the hot-melt sealing structure includes a ball valve for sealing the opening, and a ball valve for fixing the ball valve on the electrode release layer. heat sensitive structure.
  • the liquid storage chamber further includes a sealing ring accommodating groove surrounding the liquid discharge port;
  • the solution storage chamber also includes a sealing ring and an adhesive, the sealing ring is located in the sealing ring accommodating groove, and the adhesive is filled between the sealing ring and the sealing ring accommodating groove.
  • the microfluidic chip provided by the embodiment of the present disclosure, it also includes a liquid storage chamber cover and a waterproof membrane, the liquid storage chamber cover is provided with an air outlet, and the waterproof membrane covers the air outlet. mouth.
  • the cover layer further includes a fifth slot surrounding the liquid inlet hole on a side away from the channel plate layer, the The fifth card slot is embedded with the electrode release layer.
  • the embodiment of the present disclosure also provides a nucleic acid extraction method of the above-mentioned microfluidic chip, including:
  • Positive pressure and negative pressure are alternately applied through the first air-driven port, so that the mixed solution after lysing the nucleic acid is introduced into the nucleic acid extraction channel to separate and extract nucleic acid.
  • an embodiment of the present disclosure also provides a nucleic acid extraction device, including a microfluidic chip and a magnetic supply component, wherein the microfluidic chip is the above-mentioned microfluidic chip, and the magnetic supply component is located in the The side of the channel plate layer away from the cover plate layer.
  • FIG. 1 is a schematic structural diagram of a microfluidic chip provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of each layer in a microfluidic chip provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a channel plate layer provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a cover layer provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a fifth channel between the fifth valve and the waste liquid groove provided by an embodiment of the present disclosure
  • Fig. 6 is another structural schematic diagram of the fifth channel between the fifth valve and the waste liquid groove provided by the embodiment of the present disclosure.
  • Fig. 7 is another structural schematic diagram of the fifth channel between the fifth valve and the waste liquid groove provided by the embodiment of the present disclosure.
  • Fig. 8 is another structural schematic diagram of the fifth channel between the fifth valve and the waste liquid groove provided by the embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the valve provided by an embodiment of the present disclosure in an open state
  • Fig. 10 is a schematic diagram of the valve shown in Fig. 9 in a closed state
  • Fig. 11 is another schematic diagram of the valve provided by the embodiment of the present disclosure in an open state
  • Fig. 12 is a schematic diagram of the valve shown in Fig. 11 in a closed state
  • Fig. 13 is another structural schematic diagram of each layer in the microfluidic chip provided by the embodiment of the present disclosure.
  • Fig. 14 is another schematic diagram of the valve provided by the embodiment of the present disclosure in an open state
  • Figure 15 is a schematic diagram of the valve shown in Figure 14 in a closed state
  • Fig. 16 is another schematic diagram of the valve provided by the embodiment of the present disclosure in an open state
  • Figure 17 is a schematic diagram of the valve shown in Figure 16 in a closed state
  • FIG. 18 is a simplified structural schematic diagram of a microfluidic chip provided by an embodiment of the present disclosure.
  • FIG. 19 is another simplified structural schematic diagram of a microfluidic chip provided by an embodiment of the present disclosure.
  • Fig. 20 is another simplified structural schematic diagram of the microfluidic chip provided by the embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of a claw connector provided by an embodiment of the present disclosure.
  • Fig. 22 is a schematic structural diagram of a solution storage chamber provided by an embodiment of the present disclosure.
  • Fig. 23 is a flowchart of a nucleic acid extraction method provided by an embodiment of the present disclosure.
  • a microfluidic chip provided by an embodiment of the present disclosure, as shown in FIGS. 1 to 4 includes:
  • the channel plate layer 01, the channel plate layer 01 includes: a liquid inlet groove 101, a mixing and cracking channel 102, a nucleic acid extraction channel 103, a first air pressure drive port 104 and a second air pressure drive port 105, wherein the liquid inlet
  • the groove 101, the mixed cracking channel 102, the nucleic acid extraction channel 103 and the first pneumatic drive port 104 are sequentially connected to form a liquid flow channel, and the liquid inlet groove 101, the mixed cracking channel 102 and the second pneumatic drive port 105 are connected in sequence Form another liquid flow channel;
  • the cover layer 02 is arranged opposite to the channel plate layer 01, and the cover layer 02 includes a liquid inlet through hole 201 corresponding to the liquid inlet groove 101;
  • the solution storage cavity 03 is located on the side of the cover layer 02 away from the channel plate layer 01 , and the solution storage cavity 03 includes a liquid outlet hole corresponding to the liquid inlet hole 201 .
  • the lysis reagent after the lysis reagent is mixed with the sample solution, it is added to the solution storage chamber 03, and the solution storage chamber 03 is controlled to release the mixed solution of the sample solution and the lysis reagent, and in the solution storage chamber 03 Pre-stored reagents; driven by the positive pressure and negative pressure alternately applied by the second pneumatic drive port 105, the sample solution and reagents are introduced into the mixed lysis channel 102, and flow back and forth in the mixed lysis channel 102 to be fully mixed, Effectively lyse the nucleic acid; finally, driven by the positive pressure and negative pressure alternately applied by the first air pressure drive port 104, the mixed solution after the cleaved nucleic acid is introduced into the nucleic acid extraction channel 103, and flows back and forth in the nucleic acid extraction channel 103 , to achieve the separation and extraction of nucleic acids.
  • the entire nucleic acid extraction process is performed in the microfluidic chip, which not only reduces the possible danger of the operator contacting the exposed sample solution, but also simplifies the extraction process. It simplifies the operation process, reduces possible errors caused by human operation, and avoids the user from providing the operation container by himself, and the portability is also improved.
  • the material of the channel plate layer 01 and the cover plate layer 02 may be polymethyl methacrylate (PMMA).
  • the solution storage chamber 03 includes a magnetic bead buffer storage chamber 301, a binding solution storage chamber 302, a cleaning solution storage chamber 303 and an eluent storage chamber 304;
  • Liquid inlet through hole 201 includes magnetic bead buffer liquid inlet through hole a1, binding liquid inlet through hole a2, cleaning liquid inlet through hole a3 and eluent liquid inlet through hole a4;
  • Liquid inlet groove 101 includes: magnetic bead buffer liquid inlet groove b1, binding liquid inlet groove b2, cleaning liquid inlet groove b3 and eluent liquid inlet groove b4;
  • the magnetic bead buffer storage chamber 301, the magnetic bead buffer liquid inlet through hole a1 and the magnetic bead buffer liquid inlet groove b1 are sequentially connected;
  • the binding solution storage chamber 302, the binding solution inlet through hole a2 and the binding solution inlet groove b2 are sequentially connected;
  • the cleaning liquid storage chamber 303, the cleaning liquid inlet through hole a3 and the cleaning liquid inlet groove b3 are sequentially connected;
  • the eluent storage chamber 304 , the eluent inlet through hole a4 and the eluent inlet groove b4 are sequentially connected.
  • the mixed lysis channel 102 may include a mixed lysis groove 1021, which directly communicates with the mixed lysis groove 1021 and the first channel A of the magnetic bead buffer solution inlet groove b1, and directly communicates with the mixed lysis groove 1021
  • the second channel B of the binding liquid inlet groove b2 is directly connected to the mixing lysis groove 1021 and the third channel C of the cleaning liquid inlet groove b3, and is directly connected to the mixing lysis groove 1021 and the eluent inlet
  • the fourth channel D of the groove b4 indirectly communicates with the fifth channel E of the mixed lysis groove 1021 and the second air pressure drive port 105, and the sixth channel directly communicates with the mixed lysis groove 1021 and the nucleic acid extraction channel 103 F.
  • the above-mentioned microfluidic chip provided by the embodiments of the present disclosure may further include: a first valve for controlling whether the liquid in the first channel A circulates 41, the second valve 42 used to control whether the liquid in the second channel B circulates, the third valve 43 used to control whether the liquid in the third channel C circulates, used to control the flow of the liquid in the fourth channel D
  • the fourth valve 44 for controlling the flow of liquid the fifth valve 45 for controlling whether the liquid in the fifth channel E is flowing, and the sixth valve 46 for controlling whether the liquid in the sixth channel F is flowing.
  • the liquid By setting valves at different channels, the liquid can be better controlled to flow back and forth in different channels, and the time for lysing nucleic acids and separating and extracting nucleic acids can be increased, thereby obtaining nucleic acids with higher purity.
  • the first valve, the second valve, the third valve, the fourth valve, the fifth valve and the sixth valve may be magnetic valves or air valves.
  • the magnetic bead buffer can be prestored in the magnetic bead buffer storage cavity 301
  • the binding solution can be prestored in the binding solution storage cavity 302
  • the cleaning solution can be prestored in the cleaning solution storage cavity 303
  • the eluent can be prestored in the eluent.
  • the eluent is stored in the storage cavity 304 .
  • Step 2 Mix the lysis reagent with the sample solution. Then add it into the magnetic bead buffer storage chamber 301, and mix evenly with the magnetic bead buffer in the magnetic bead buffer storage chamber 301. Open the first valve 41 and the fifth valve 45, and close the rest of the valves, so that the mixed liquid of the magnetic bead buffer, lysis reagent and sample solution in the magnetic bead buffer storage chamber 301 passes through the first valve 41 that is opened and flows from the first channel A is introduced into the mixed lysis groove 1021 to lyse nucleic acid, and the cleaved nucleic acid is adsorbed by the magnetic beads in the mixed lysis groove 1021 . And the magnetic beads can be adsorbed on the inner wall of the mixing and cracking groove 1021 by magnetic components such as electromagnets, and the waste liquid generated by cracking is discharged from the fifth channel E through the opened fifth valve 45 .
  • Step 3 Open the second valve 42 and the fifth valve 45, and close the other valves.
  • the binding solution in the binding solution storage chamber 302 is released from the second channel B into the mixing and lysis groove 1021 through the opened second valve 42 .
  • the magnetic beads adsorbed with nucleic acid flow back and forth in the mixing and lysis groove 1021 to fully increase the binding force between the magnetic beads and nucleic acid.
  • the magnetic beads are adsorbed on the inner wall of the mixing and cracking groove 1021 by magnetic components such as electromagnets, and the waste liquid is discharged from the fifth channel E through the opened fifth valve 45 .
  • Step 4 Open the third valve 43 and the sixth valve 46, and close the other valves.
  • the cleaning solution in the cleaning solution storage chamber 303 is released from the third channel C into the mixing and cracking groove 1021 through the opened third valve 43 .
  • the magnetic beads and cleaning solution adsorbed with nucleic acid pass through the opened sixth valve 46 and pass through the sixth channel F in the mixing and lysis groove 1021 and the nucleic acid extraction groove. Flow back and forth in the channel 103 to effectively wash the magnetic beads adsorbed with nucleic acid.
  • the magnetic beads adsorbed with nucleic acid After flowing back and forth for many times, the magnetic beads adsorbed with nucleic acid finally enter the nucleic acid extraction channel 103, and then the magnetic beads are adsorbed on the inner wall of the nucleic acid extraction channel 103 in the electromagnet accommodating groove by a magnetic supply component such as an electromagnet. superior.
  • the waste liquid is driven and removed by the negative pressure of the second pneumatic drive port 105 .
  • Step 5 Close all valves, and alternately drive the positive pressure and negative pressure of the first air pressure drive port 104 and the second air pressure drive port 105, and blow air back and forth into the nucleic acid extraction channel 103, so as to absorb the nucleic acid
  • the residual organic reagents on the magnetic beads evaporate.
  • Step 6 Open the fourth valve 44 and the sixth valve 46, and close the other valves.
  • the eluent in the eluent storage chamber 304 is released from the fourth channel D into the mixing and cracking groove 1021 through the opened fourth valve 44, then passes through the opened sixth valve 46 and passes through the sixth channel F Enter the nucleic acid extraction channel 103.
  • the eluent and the magnetic beads adsorbed with nucleic acid flow back and forth in the mixing and lysis groove 1021 and the nucleic acid extraction channel 103 (that is, to ensure that the magnetic beads are in a suspended state). ), incubating at a temperature of 56° C. for 5 minutes in the state where the magnetic beads are suspended, so as to separate the magnetic beads from the nucleic acid and obtain pure nucleic acid.
  • Step 7 Close all the valves, and adsorb the magnetic beads on the inner wall of the nucleic acid extraction channel 103 in the electromagnet accommodating groove through the electromagnet and other magnetic components. And driven by the negative pressure of the first air pressure drive port 104 , the eluent containing nucleic acid is discharged out of the nucleic acid extraction channel 103 .
  • a product recovery tube can be connected outside the first pneumatically driven port 104 to recover the eluate containing nucleic acid into the product recovery tube for subsequent detection.
  • the width and depth of the first channel A to the sixth channel F are all in the range of 0.3 mm to 1 mm, preferably 1 mm ⁇ 0.5 mm ( width x depth).
  • the fifth channel E between the fifth valve 45 and the second pneumatic drive port is fold In Fig. 3, an "L"-shaped broken line is specifically shown.
  • the broken line-shaped fifth channel E includes a first part E11 and a second part E12 that are arranged to intersect and conduct with each other, wherein the first part E11 and the fifth channel E
  • the valve 45 is directly connected, and the second part E12 is indirectly connected with the second pneumatic drive port 105 (specifically, there is a waste liquid groove directly connected with the two respectively between the second part E12 and the second pneumatic drive port 105) 106), the length of the first part E11 may be greater than the length of the second part E12.
  • the angle between the first part E11 and the second part E12 can be 30°-150°, that is, greater than or equal to 30° and less than or equal to 150°.
  • the angle between the first part E11 and the second part E12 may be a straight line knuckle as shown in FIG. 5 or an arc knuckle as shown in FIG. 6 to FIG. 8 , which is not limited here.
  • the first valve 41, the second valve 42, the third valve 43, the fourth valve 44, the Any one of the five valves 45 and the sixth valve 46 includes: a first limiting through hole 401 on the channel plate layer 01, a second limiting through hole 401 corresponding to the first limiting through hole 401 on the cover plate layer 02
  • the bottom film 404 of 401 , and the elastic film 405 carrying the valve core 403 on the side of the cover plate 02 facing the channel plate 01 , and the elastic film 405 covers the second limiting through hole 402 .
  • part or all of the valve core 403 is located in the second limiting through hole 402, and the elastic film 405 seals the second limiting through hole 402, making the first limiting through hole 401 in a connected state, ensuring the normal flow of liquid, thereby opening the valve.
  • the elastic film 405 seals the second limiting through hole 402, making the first limiting through hole 401 in a connected state, ensuring the normal flow of liquid, thereby opening the valve.
  • the valve core 403 can be adsorbed by magnetic components such as electromagnets, so that at least part of the valve core 403 (that is, part or all of the valve core 403) is located in the first limiting through hole 401 and Without displacement, the elastic membrane 405 seals the first limiting through hole 401 under the pressure of the valve core 403 to block the flow of liquid, thereby closing the valve.
  • the elastic membrane 405 seals the first limiting through hole 401 under the pressure of the valve core 403 to block the flow of liquid, thereby closing the valve.
  • the first limiting through hole 401 on the channel plate layer 01 and setting the bottom film 404 that seals the first limiting through hole 401, not only the liquid leakage of the first limiting through hole 401 is avoided, but also the The manufacturing process requirements for the channel plate layer 01 are specified.
  • the elastic film 405 may be a flexible film such as polydimethylsilane (PDMS) with good elasticity.
  • PDMS polydimethylsilane
  • a smaller and lighter valve core 403 can be selected, such as a steel column.
  • any one of the fourth valve 44 , the fifth valve 45 and the sixth valve 46 includes: a limiting groove 401 ′ on the channel plate layer 01 , which is set corresponding to the limiting groove 401 ′ on the cover plate layer 02
  • the second limiting through hole 402, the valve core 403 that moves between the limiting groove 401' and the second limiting through hole 402, and the valve core 403 is carried on the side of the cover plate layer 02 facing the channel plate layer 01
  • the elastic film 405 is used, and the elastic film 405 covers the second limiting through hole 402 .
  • the valve type shown in Figure 11 and Figure 12 is different from the valve type shown in Figure 5 and Figure 10 in that the first limiting through hole 401 of the channel plate layer 01 can be replaced by a limiting groove 401 ', thereby saving the bottom film 404, but the process requirements are higher.
  • the thickness of the bottom film 404 or the thickness of the bottom of the groove is too small to be unfavorable for processing, and the thickness is too large to affect the responsiveness of the valve.
  • the thickness of the bottom film 404 or the thickness of the bottom of the groove can be within 0.5mm-2mm, preferably 1mm, so as to ensure the working distance of the electromagnet, increase the response effect of the valve, and facilitate the process.
  • the channel plate layer 01 can not only be a single-layer structure with a relatively simple structure as shown in FIG. Better laminate structure.
  • the channel plate layer 01 may include a first channel layer 011, a first glue layer 012, and a second channel layer 013 that are sequentially stacked, wherein the first channel layer 011 is close to the cover plate layer 02;
  • the first channel layer 011 includes a first mixing and cracking groove 211, which directly communicates with the first valve 41 and the first sub-channel A1 of the magnetic bead buffer solution inlet groove b1, and directly communicates with the second valve 42 and the binding solution inlet
  • the second sub-channel B1 of the groove b2 directly communicates with the third valve 43 and the third sub-channel C1 of the cleaning liquid inlet groove b3, and directly communicates with the fourth valve 44 and the eluent inlet groove b4.
  • the first glue layer 012 includes the second mixed lysis groove 212 and the first nucleic acid extraction channel 1031 which are independent of each other;
  • the second channel layer 013 includes the third mixed lysis groove 213, the second nucleic acid extraction channel 1032, directly communicates with the first valve 41 and the fifth sub-channel A2 of the third mixed lysis groove 213, and directly communicates with the second valve 42 and the sixth sub-channel B2 of the third mixing and cracking groove 213 are directly connected to the seventh sub-channel C2 of the third valve 43 and the third mixing and cracking groove 213, and are directly connected to the fourth valve 44 and the third mixing and cracking groove.
  • the eighth sub-channel D2 of the groove 213 directly communicates with the third mixed cracking groove 213 and the ninth sub-channel E1 of the fifth valve 45, and indirectly communicates with the fifth valve 45 and the tenth sub-channel of the second pneumatic drive port 105.
  • the channel E2 is directly connected to the third mixed lysis groove 213 and the eleventh sub-channel F1 of the sixth valve 46, and the twelfth sub-channel F2 directly connected to the six valve 46 and the second nucleic acid extraction channel 1032;
  • the first sub-channel A1 and the fifth sub-channel A2 constitute the first channel A
  • the second sub-channel B1 and the sixth sub-channel B2 constitute the second channel B
  • the seven sub-channels C2 form the third channel C
  • the fourth sub-channel D1 and the eighth sub-channel D2 form the fourth channel D
  • the ninth sub-channel E1 and the tenth sub-channel E2 form the fifth channel E
  • the eleventh sub-channel F1 and the twelfth sub-channel F2 constitute the sixth channel F;
  • the first mixed cracking groove 211, the second mixed cracking groove 212, and the third mixed cracking groove 213 directly penetrate in sequence to form the mixed cracking groove 1021, and the first mixed cracking groove 211 is on the plane where the cover layer 02 is located.
  • the orthographic projection, the orthographic projection of the second mixed cracking groove 212 on the plane where the cover layer 02 is located, and the orthographic projection of the third mixed cracking groove 213 on the plane where the cover plate layer 02 is located approximately coincide;
  • the first nucleic acid extraction channel 1031 and the second nucleic acid extraction channel 1032 directly penetrate to form the nucleic acid extraction channel 103, and the orthographic projection of the first nucleic acid extraction channel 1031 on the plane where the cover layer 02 is located is the same as that of the second nucleic acid extraction channel 1032.
  • the orthographic projections on the plane where the cover layer 02 is located roughly coincide.
  • the first valve 41, the second valve 42, the third valve 43, the fourth valve 44, the Any one of the five valves 45 and the sixth valve 46 includes: a first limiting through hole 401 on the first channel layer 011, a drain directly connected to the first limiting through hole 401 on the first glue layer 012
  • any one of the first valve 41, the second valve 42, the third valve 43 and the fourth valve 44 is provided with a drainage hole 406; as shown in Figure 16 and Figure 17, Any one of the fifth valve 45 and the sixth valve 46 is provided with two drainage holes 406 .
  • valve core 403 is located in the second limiting through hole 402, elastically
  • the membrane 405 seals the second limiting through hole 402 , and the liquid at the first limiting through hole 401 is injected into the sub-channel A2 / B2 / C2 / D2 through the drainage hole 406 and then flows out to the third mixing and cracking groove 213 . As shown in FIG.
  • the first valve 41 , the second valve 42 , the third valve 43 and the fourth valve 44 are top-in-bottom-out type valves.
  • the microfluidic chip provided by the embodiments of the present disclosure, as shown in FIG. 5 to FIG. 12 and FIG. 14 to FIG. 17 , it may further include: One side of the first protective film 407 seals the second limiting through hole 402 . In this way, the spool 403 can be prevented from accidentally falling off from the second limiting through hole 402 .
  • the cover layer 02 further includes expansion grooves surrounding the second limiting through hole 402 203 , the orthographic projection of the expansion groove 203 on the plane of the cover layer 02 overlaps with the orthographic projection of the elastic film 405 on the plane of the cover layer 02 .
  • the presence of the expansion groove 203 can increase the gas space around the valve, reduce the change of air pressure around the valve, and improve the stability of the valve.
  • the expansion groove 203 may include a first expansion groove groove and/or the second expansion groove, wherein the first expansion groove is located on the side of the cover layer 02 away from the channel plate layer 01, and the second expansion groove is located on the side of the cover layer 02 facing the channel plate layer 01 side, the orthographic projection of the first expansion groove on the plane where the cover layer 02 is located is approximately the same as the orthographic projection of the elastic film 405 on the plane where the cover layer 02 is located, and the orthographic projection of the second expansion groove on the plane where the cover layer 02 is located The orthographic projection lies within the orthographic projection of the elastic membrane 405 on the plane of the cover layer 02 .
  • the boundary of the orthographic projection of the second expansion groove on the plane of the cover layer 02 is the same as the boundary of the elastic film 405 on the plane of the cover layer 02
  • the distance between the boundaries of the orthographic projection is 0.5 mm ⁇ 1.0 mm to ensure the edge-holding effect of the elastic film 405 on the second expansion groove 203 .
  • the depth of the first expansion groove is 0.8mm- 1.2 mm, and the depth of the second expansion groove is 11 ⁇ m ⁇ 50 ⁇ m.
  • the channel plate layer 01 and the cover plate layer 02 can be bonded by thermocompression or double-sided adhesive.
  • the channel plate layer 01 and the cover plate layer 02 are bonded by thermocompression, as shown in FIG. 1 and FIG.
  • the groove b2 is directly connected in sequence; the cleaning liquid storage chamber 303, the cleaning liquid inlet through hole a3 and the cleaning liquid inlet groove b3 are directly connected in sequence; the eluent storage chamber 304, the eluent inlet through hole a4 and the eluent
  • the liquid inlet and liquid grooves b4 are directly connected successively.
  • the second glue layer 05 includes the first through hole c1 directly connecting the binding liquid inlet through hole a1 and the magnetic bead buffer liquid inlet groove b1, and the first through hole c1 directly connecting the binding liquid inlet through hole a2 and the binding liquid inlet groove b2
  • the second through hole c2 is directly connected to the cleaning liquid inlet through hole a3 and the third through hole c3 of the cleaning liquid inlet groove b3 is directly connected to the eluent liquid inlet through hole a4 and the eluent inlet groove b4.
  • the magnetic beads in the mixing and lysis groove 1021 carry a substance compatible with the nucleic acid, which can adsorb the nucleic acid, so as to realize the combination with the nucleic acid. Without the action of external magnetic force, the magnetic beads adsorbed with nucleic acid can flow back and forth in the mixing and lysis groove 1021 driven by positive or negative pressure. In the presence of external magnetic force, the magnetic beads adsorbing nucleic acid will be adsorbed on the inner wall of the mixing and lysis groove 1021. In this case, the waste liquid in the mixing and lysis groove 1021 can be removed by means of negative pressure driving.
  • the mixing and lysis groove 1021 includes a reaction groove 021 and a buffer groove 022 connected to each other.
  • the reaction groove 021 can directly communicate with the first channel A, the second channel B, the third channel C, the fourth channel D, and the sixth channel F respectively, and the buffer groove 022 and the fifth channel
  • the channel E is directly connected, so that the buffer groove 022 communicates with the second air pressure driving port 105 through the fifth channel E.
  • This arrangement can make the liquid flow back and forth in the connected reaction groove 021 and the buffer groove 022 under the drive of the positive or negative pressure of the second air pressure drive port 105, and the reaction groove 021 and the buffer groove 022 can be fully mixed.
  • the design of the two mixing areas of the buffer groove 022 can reduce the pollution of the liquid.
  • the reaction groove 021 can also be directly connected with the first channel A, the second channel B, the third channel C, and the fourth channel D respectively, and the buffer groove 022 directly communicates with the fifth channel E and the sixth channel F respectively, so that the buffer groove 022 directly communicates with the waste liquid groove 106 through the fifth channel E, and connects with the nucleic acid extraction channel 103 through the sixth channel F conduction.
  • the liquid is in a connected reaction.
  • the groove 021 and the buffer groove 022 flow back and forth to fully mix.
  • the fifth channel E between the buffer groove 022 and the fifth valve 45 can be composed of a linear channel as shown in FIG. 18 , or can be arced by a linear channel as shown in FIGS. Formed grooves to effectively prevent waste liquid from flowing backwards.
  • the cover layer 02 further includes an expansion through hole 202 completely covering the reaction groove 021 , After the cover plate layer 02 is combined with the channel plate layer 01 , the reaction groove 021 and the expansion through hole 202 can form a larger reaction chamber to accommodate more liquid.
  • the reaction groove 021 and the expansion through hole 202 may be circular to facilitate the thorough mixing of the liquid so as to cleave the nucleic acid more effectively.
  • the buffer groove 022 may be in the shape of a spindle with narrow ends and a wide middle.
  • the spindle-shaped streamline shape is beneficial to reduce the dead volume of the liquid.
  • the width is greatest at about 1/2 to 3/4 of the spindle shape.
  • the diversion channel 023 and the diversion channel 1023 are in an "S" shape to increase the reaction time of the liquid and cleave the nucleic acid more fully.
  • microfluidic chip in the above-mentioned microfluidic chip provided by the embodiments of the present disclosure, as shown in FIG. 2 to FIG. 4 and FIG. Groove 106 directly communicates with nucleic acid extraction channel 103, fifth channel E and second air pressure drive port 105 respectively; cover plate layer 02 also includes waste liquid through hole 204 correspondingly communicated with waste liquid groove 106; microfluidic chip It also includes a waste liquid cavity 06 embedded in the waste liquid through hole 204 . In some embodiments, the waste liquid cavity 06 is boxed, and can be adhered to the waste liquid through hole 204 with an adhesive.
  • the channel plate layer 01 is a stacked structure in FIG.
  • Two inlets are directly connected with the first nucleic acid extraction channel 1031 in the first glue layer 012 and the tenth sub-channel E2 in the second channel layer 013, and the waste liquid groove 106 has a connection with the second channel layer 013.
  • An outlet that is directly connected to the pneumatic drive port 105 is provided with a notch at the position facing the waste liquid groove 106 in the first adhesive layer 012 and the second channel layer 013 .
  • the groove 106 is cut off, that is, the second adhesive layer 05 has an opening f directly above the waste liquid groove 106 .
  • the second adhesive layer 05 needs to set a corresponding opening e directly above the reaction groove 021 .
  • the waste liquid driven by the negative pressure of the second pneumatic drive port 105 can enter the waste liquid chamber 06, thereby improving the efficiency of the microfluidic chip. In addition, it can avoid replacing the pressure supply tube (such as a syringe, etc.) at the second pneumatic drive port 105 every time the waste liquid is removed.
  • the pressure supply tube such as a syringe, etc.
  • the microfluidic chip in the above-mentioned microfluidic chip provided by the embodiments of the present disclosure, as shown in FIG. 2 to FIG. 4 and FIG. 107 ; the microfluidic chip also includes a liquid-absorbing core (not shown in the figure) located on the support column 107 .
  • the support column 107 can support the liquid-absorbing core, so that the liquid-absorbing core will not block the passage between the waste liquid groove 106 and the nucleic acid extraction channel 103, the buffer groove 022 and the second air pressure drive port 105 due to excessive extrusion.
  • the liquid-absorbent core can be any liquid-absorbable material such as liquid-absorbent cotton, liquid-absorbent paper, and water-absorbent silica gel, and is preferably liquid-absorbent cotton that can absorb organic liquids and inorganic liquids.
  • the amount of absorbent cotton is adjusted according to the volume of waste liquid to be treated. In this disclosure, the size of the waste liquid chamber 06 is 17.75mm*7.75mm*12mm, and the maximum liquid storage volume is 1.5mL, which effectively avoids pollution.
  • the first air pressure drive port 104 and the second air pressure drive port 105 are respectively arranged on both sides of the nucleic acid extraction channel 103 in the second direction Y, the waste liquid groove 106 and the second air pressure drive port
  • the port 105 is located on the same side of the nucleic acid extraction channel 103 , and the second direction Y crosses the first direction X.
  • the above arrangement can make the first air-driven port 104 and the second air-driven port 105 basically on the same level as each channel, so as to realize rapid passage into each channel through the first air-driven port 104 and the second air-driven port 105. Vent or pump air.
  • the length of the area where the mixed cracking channel 102 is located and the length of the area where the nucleic acid extraction channel 103 is located increase sequentially, so that the liquid inlet groove 101, the mixed cracking channel 102, the nucleic acid extraction channel 103, and the first air pressure drive port 104 and the second air pressure drive port 105 are integrated on the same channel plate 01, while ensuring that the channel plate 01 is small in size and easy to carry.
  • the cover plate layer 02 and the channel plate layer 01 have substantially coincident shapes.
  • the channel plate layer 01 also includes The first positioning hole 108 on one side of the channel 103 and the two sides of the mixing and cracking channel 102 in the second direction Y; the cover layer 02 has a second positioning hole 205 at the position corresponding to the first positioning hole 108 .
  • the positioning hole can be used for bonding alignment between the channel plate layer 01 and the cover plate layer 02 .
  • the nucleic acid extraction channel 103 is serpentine. In this way, the liquid reaction time can be increased and the efficiency of nucleic acid extraction can be improved.
  • magnet accommodating groove can be positioned at nucleic acid extraction channel 103 place area, and mixed cracking groove 1021 place area, can supply magnetic parts such as electromagnet to rise so that magnetic bead is adsorbed on nucleic acid extraction groove On the tube wall of the channel 103, or adsorbed on the tube wall of the mixing and cracking groove 1021, it is convenient to separate the nucleic acid.
  • the channel plate layer 01 further includes a second A card slot 109, the orthographic projection of the first card slot 109 on the plane where the cover layer 02 is located does not overlap with the orthographic projections of the first pneumatic drive port 104 and the second pneumatic drive port 105 on the plane where the cover plate layer 02 is located
  • the cover layer 02 also includes a second card slot 206 on the side away from the channel plate layer 01, wherein the orthographic projection of the second card slot 206 on the plane where the cover layer 02 is located is the same as that of the first card slot 109 on the cover layer
  • the orthographic projections on the plane where 02 are located overlap each other;
  • the microfluidic chip also includes a claw-type connector 07, and parts of the claw-type connector 07 (specifically, four rectangular parallelepiped protrusions 701) are embedded in the first card slot 109 and
  • the channel plate layer 01 also includes a third slot 110 located below the first air pressure drive port 104 and the second air pressure drive port 105;
  • the cover plate layer 02 also includes a The fourth card slot 207 on the side, wherein the orthographic projection of the fourth card slot 207 on the plane of the cover layer 02 overlaps with the orthographic projection of the third card slot 110 on the plane of the cover layer 02; the claw connector 07 (the circular protrusion 703 in the figure) fits into the third card slot 110 and the fourth card slot 207 .
  • the solution storage chamber 03 includes a liquid storage chamber 3011 with a discharge port g, and a side close to the discharge port g.
  • the electrode release layer 3012 and the heat-melt sealing structure (not shown in the figure), wherein, the electrode release layer 3012 has an opening h at the position corresponding to the discharge port g, and the heat-melt sealing structure seals the liquid discharge port g And the opening h, the drain port g and the opening h constitute the liquid outlet through hole.
  • a certain volume of liquid can be pre-stored in the liquid storage chamber 3011 and sealed with a hot-melt sealing structure to achieve long-term storage.
  • the hot-melt sealing structure melts, opening the channel between the liquid storage chamber 3011 and the liquid inlet groove 101, and the liquid enters the liquid inlet groove 101 due to gravity to complete the liquid release, avoiding the risk caused by manual addition of reagents , and the solution storage chamber 03 has a simple structure, which is convenient and safe to operate.
  • the heat-melt sealing structure includes a ball valve for sealing the opening h, and a heat-sensitive structure for fixing the ball valve on the electrode release layer 3012 .
  • the ball valve will rise to the upper part of the liquid storage chamber 3011 due to buoyancy, so that the liquid in the liquid storage chamber 3011 flows to the mixing and cracking channel 102 through the liquid outlet g and the opening h.
  • the material of the ball valve may be polyvinyl chloride (PVC), and the material of the heat-sensitive structure may be paraffin.
  • the liquid storage chamber 3011 further includes a sealing ring 3013 accommodating the groove i around the liquid outlet g; the solution storage chamber 03 also includes a sealing ring 3013 and an adhesive (not shown in the figure), the sealing ring 3013 is located in the sealing ring accommodating groove i, and the adhesive is filled between the sealing ring 3013 and the sealing ring accommodating groove i, so as to realize The good sealing of the liquid storage chamber 3011 prevents the pre-stored liquid in the liquid storage chamber 3011 from volatilizing.
  • the sealing ring 3013 can be an O-ring with a diameter of 3mm-4mm (preferably 3.5mm), and the material can be elastic materials such as silica gel, nitrile and fluorine rubber, preferably fluorine rubber.
  • the O-ring is put into the sealing-ring accommodation groove i and then slightly protrudes from the sealing-ring accommodation groove i. After applying glue, use pressure to make the elastic O-ring fully fill the sealing-ring accommodation groove i to achieve the isolation storage.
  • the function of the liquid chamber 3011 and the outer adhesive of the O-shaped sealing ring, while the O-shaped sealing ring ensures that the organic reagent in the liquid storage chamber 3011 does harm to the adhesive.
  • an air outlet j is provided, and the waterproof membrane covers the air outlet j.
  • the waterproof membrane can prevent external water vapor from entering the liquid storage chamber 3011 and prevent the liquid in the liquid storage chamber 3011 from volatilizing, and can balance the internal and external air pressure of the liquid storage chamber 3011 .
  • the above-mentioned liquid storage chamber 3011 and the liquid storage chamber cover 3014 can be integrated, so that the liquid to be stored can be injected from the exhaust port j, and then a waterproof film is provided on the exhaust port j. Do limited.
  • the cover layer 02 also includes a liquid inlet hole 201 on the side away from the channel plate layer 01
  • the fifth card slot 208, the fifth card slot 208 is embedded with an electrode release layer 3012 to realize the fixed connection between the cover layer 02 and the solution storage chamber 03.
  • an embodiment of the present disclosure provides a nucleic acid extraction method for the above-mentioned microfluidic chip. Since the principle of solving the problem of the nucleic acid extraction method is similar to that of the above-mentioned microfluidic chip, the embodiment of the present disclosure
  • the implementation of the provided nucleic acid extraction method can refer to the implementation of the above-mentioned microfluidic chip provided in the embodiments of the present disclosure, and repeated descriptions will not be repeated.
  • the nucleic acid extraction method of the aforementioned microfluidic chip provided in an embodiment of the present disclosure, as shown in FIG. 23 , includes:
  • S2302. Alternately apply positive pressure and negative pressure through the second air pressure drive port, so as to introduce the sample solution, lysis reagent and pre-stored reagent into the mixed lysis channel for mixing, and lyse the nucleic acid;
  • nucleic acid extraction method provided by the embodiments of the present disclosure may specifically include the following steps:
  • Step 1 Pre-store 175 ⁇ L of magnetic bead buffer in the magnetic bead buffer storage chamber 301, pre-store 300 ⁇ L of binding solution in the binding solution storage chamber 302, pre-store 600 ⁇ L of cleaning solution in the cleaning solution storage chamber 303, and store 100 ⁇ L in the eluent eluent.
  • the second step taking 10 5 cells as a standard sample volume, dilute the cells with 1 ⁇ phosphate buffer as a sample solution. Mix the lysis reagent with the sample solution and incubate at 65°C for 10 minutes. Then add it into the magnetic bead buffer storage chamber 301, and mix evenly with the magnetic bead buffer in the magnetic bead buffer storage chamber 301.
  • Step 3 Open the second valve 42 and the fifth valve 45, and close the other valves.
  • the binding solution in the binding solution storage chamber 302 is released from the second channel B into the reaction groove 021 through the opened second valve 42 .
  • the magnetic beads adsorbed with nucleic acid flow back and forth in the reaction groove 021 and the buffer groove 022 under the alternating positive pressure and negative pressure of the second air-driven port 105, so as to fully increase the binding force between the magnetic beads and the nucleic acid.
  • the magnetic beads are adsorbed on the inner wall of the reaction groove 021 through the magnetic supply parts such as electromagnets, and the waste liquid enters the waste liquid chamber 06 from the fifth channel E through the opened fifth valve 45 and is sucked.
  • Absorbent core is adiomagnets.
  • Step 4 Open the third valve 43 and the sixth valve 46, and close the other valves.
  • the cleaning solution in the cleaning solution storage chamber 303 is released into the reaction groove 021 from the third channel C through the opened third valve 43 .
  • the magnetic beads and cleaning solution adsorbed with nucleic acid pass through the opened sixth valve 46 and pass through the sixth channel F in the reaction groove 021 and the nucleic acid extraction channel. Flow back and forth in 103 to effectively wash the magnetic beads adsorbed with nucleic acid.
  • the magnetic beads adsorbed with nucleic acid After flowing back and forth for many times, the magnetic beads adsorbed with nucleic acid finally enter the nucleic acid extraction channel 103, and then the magnetic beads are adsorbed on the inner wall of the nucleic acid extraction channel 103 in the electromagnet accommodating groove by a magnetic supply component such as an electromagnet. superior.
  • the waste liquid is driven into the waste liquid cavity 06 by the negative pressure of the second pneumatic drive port 105 and absorbed by the liquid-absorbing core.
  • Step 5 Close all valves, and alternately drive the positive pressure and negative pressure of the first air pressure drive port 104 and the second air pressure drive port 105, and blow air back and forth into the nucleic acid extraction channel 103, so as to absorb the nucleic acid
  • the residual organic reagents on the magnetic beads evaporate.
  • Step 6 Open the fourth valve 44 and the sixth valve 46, and close the other valves.
  • the eluent in the eluent storage chamber 304 is released into the reaction groove 021 from the fourth channel D through the opened fourth valve 44, it passes through the opened sixth valve 46 and enters through the sixth channel F.
  • Nucleic acid extraction channel 103 Driven alternately by the positive pressure and negative pressure of the first air pressure drive port 104, the eluent and the magnetic beads adsorbed with nucleic acid flow back and forth in the reaction groove 021 and the nucleic acid extraction channel 103 (that is, to ensure that the magnetic beads are in a suspended state) , incubating at 56° C. for 5 minutes in the state of magnetic beads suspension, so as to separate the magnetic beads from nucleic acid and obtain pure nucleic acid.
  • Step 7 Close all the valves, and adsorb the magnetic beads on the inner wall of the nucleic acid extraction channel 103 in the electromagnet accommodating groove through the electromagnet and other magnetic components. And driven by the negative pressure of the first air pressure drive port 104 , the eluent containing nucleic acid is discharged out of the nucleic acid extraction channel 103 .
  • a product recovery tube can be connected outside the first pneumatically driven port 104 to recover the eluate containing nucleic acid into the product recovery tube for subsequent detection.
  • an embodiment of the present disclosure provides a nucleic acid extraction device, including a microfluidic chip and a magnetic supply component (such as an electromagnet), wherein the microfluidic chip is the above-mentioned microfluidic chip provided by an embodiment of the present disclosure , the magnetic supply component is located on the side of the channel plate layer away from the cover plate layer. Since the problem-solving principle of the nucleic acid extraction device is similar to the problem-solving principle of the above-mentioned microfluidic chip, the implementation of the nucleic acid extraction device provided by the embodiment of the present disclosure can refer to the implementation of the above-mentioned microfluidic chip provided by the embodiment of the present disclosure. , the repetitions will not be repeated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

微流控芯片、其核酸提取方法及核酸提取装置,包括沟道板层(01),该沟道板层(01)包括:进液凹槽(101)、混合裂解沟道(102)、核酸提取沟道(103)、第一气压驱动口(104)和第二气压驱动口(105),其中,进液凹槽(101)、混合裂解沟道(102)、核酸提取沟道(103)和第一气压驱动口(104)依次连通形成一条液体流动通道,进液凹槽(101)、混合裂解沟道(102)和第二气压驱动口(105)依次连通形成另一条液体流动通道;盖板层(02),与沟道板层(01)相对设置,盖板层(02)包括与进液凹槽(101)对应设置的进液通孔(201);溶液贮存腔(03),位于盖板层(02)背离沟道板层(01)的一侧,溶液贮存腔(03)包括与进液通孔(201)对应设置的出液通孔。

Description

微流控芯片、其核酸提取方法及核酸提取装置
相关申请的交叉引用
本申请要求在2021年08月17日提交中国专利局、申请号为202110942041.2、申请名称为“微流控芯片、其核酸提取方法及核酸提取装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及微流控技术领域,尤其涉及一种微流控芯片、其核酸提取方法及核酸提取装置。
背景技术
将样品中的核酸与其他生物大分子进行分离以及纯化技术是分子检测所需样品制备过程中的基础,属于生命科学研究应用以及体外诊断领域的关键技术。传统核酸提取方式主要采用离心管内提取方式,无论是人工还是机器自动,都不免会造成空间和试剂的浪费,进而增加成本。随着微流控技术的发展应用,微流控技术可以有效降低样本量,降低成本,且有着便携的优势,在体外床旁诊断方面具有得天独厚的优势,基于微流控的核酸提取方法得到了发展,但一般的微流控核酸提取方法只是把二氧化硅、硅藻等吸附核酸的物质固定在通道内壁,然后手动的方式加入试剂和移除废液,方法步骤繁琐,耗时耗力,造成结果提取率和重复性都较差。鉴于此,有必要提供一种高效、自动、方便使用的基于微流控技术的集成式核酸提取芯片。
发明内容
本公开实施例提供的微流控芯片、其核酸提取方法及核酸提取装置,具体方案如下:
一方面,本公开实施例提供的一种微流控芯片,包括:
沟道板层,所述沟道板层包括:进液凹槽、混合裂解沟道、核酸提取沟道、第一气压驱动口和第二气压驱动口,其中,所述进液凹槽、所述混合裂解沟道、所述核酸提取沟道和所述第一气压驱动口依次连通形成一条液体流动通道,所述进液凹槽、所述混合裂解沟道和所述第二气压驱动口依次连通形成另一条液体流动通道;
盖板层,与所述沟道板层相对设置,所述盖板层包括与所述进液凹槽对应设置的进液通孔;
溶液贮存腔,位于所述盖板层背离所述沟道板层的一侧,所述溶液贮存腔包括与所述进液通孔对应设置的出液通孔。
可选地,在本公开实施例提供的上述微流控芯片中,所述溶液贮存腔包括磁珠缓冲液贮存腔、结合液贮存腔、清洗液贮存腔和洗脱液贮存腔;
所述进液通孔包括磁珠缓冲液进液通孔、结合液进液通孔、清洗液进液通孔和洗脱液进液通孔;
所述进液凹槽包括:磁珠缓冲液进液凹槽、结合液进液凹槽、清洗液进液凹槽和洗脱液进液凹槽;
其中,所述磁珠缓冲液贮存腔、所述磁珠缓冲液进液通孔与所述磁珠缓冲液进液凹槽依次连通;
所述结合液贮存腔、所述结合液进液通孔与所述结合液进液凹槽依次连通;
所述清洗液贮存腔、所述清洗液进液通孔与所述清洗液进液凹槽依次连通;
所述洗脱液贮存腔、所述洗脱液进液通孔与所述洗脱液进液凹槽依次连通。
可选地,在本公开实施例提供的上述微流控芯片中,所述混合裂解沟道包括混合裂解凹槽,直接连通所述混合裂解凹槽与所述磁珠缓冲液进液凹槽的第一沟道,直接连通所述混合裂解凹槽与所述结合液进液凹槽的第二沟道, 直接连通所述混合裂解凹槽与所述清洗液进液凹槽的第三沟道,直接连通所述混合裂解凹槽与所述洗脱液进液凹槽的第四沟道,间接连通所述混合裂解凹槽与所述第二气压驱动口的第五沟道,以及直接连通所述混合裂解凹槽与所述核酸提取沟道的第六沟道。
可选地,在本公开实施例提供的上述微流控芯片中,还包括:用于控制所述第一沟道中的液体是否流通的第一阀门,用于控制所述第二沟道中的液体是否流通的第二阀门,用于控制所述第三沟道中的液体是否流通的第三阀门,用于控制所述第四沟道中的液体是否流通的第四阀门,用于控制所述第五沟道中的液体是否流通的第五阀门,以及用于控制所述第六沟道中的液体是否流通的第六阀门。
可选地,在本公开实施例提供的上述微流控芯片中,在所述第五阀门与所述第二气压驱动口之间的所述第五沟道为折线形。
可选地,在本公开实施例提供的上述微流控芯片中,折线形的所述第五沟道包括交叉设置且相互导通的第一部分和第二部分,其中,所述第一部分与所述第五阀门直接导通,所述第二部分与所述第二气压驱动口间接导通,所述第一部分的长度大于所述第二部分的长度。
可选地,在本公开实施例提供的上述微流控芯片中,所述第一部分和所述第二部分的夹角为30°~150°。
可选地,在本公开实施例提供的上述微流控芯片中,所述第一阀门、所述第二阀门、所述第三阀门、所述第四阀门、所述第五阀门和所述第六阀门中的任一个包括:在所述沟道板层上的第一限位通孔,在所述盖板层上与所述第一限位通孔对应设置的第二限位通孔,在所述第一限位通孔与所述第二限位通孔之间移动的阀芯,在所述沟道板层背离所述盖板层的一侧密封所述第一限位通孔的底膜,以及在所述盖板层面向所述沟道板层一侧承载所述阀芯的弹性膜,且所述弹性膜覆盖所述第二限位通孔。
可选地,在本公开实施例提供的上述微流控芯片中,所述第一阀门、所述第二阀门、所述第三阀门、所述第四阀门、所述第五阀门和所述第六阀门 中的任一个包括:在所述沟道板层上的限位凹槽,在所述盖板层上与所述限位凹槽对应设置的第二限位通孔,在所述限位凹槽与所述第二限位通孔之间移动的阀芯,以及在所述盖板层面向所述沟道板层一侧承载所述阀芯的弹性膜,且所述弹性膜覆盖所述第二限位通孔。
可选地,在本公开实施例提供的上述微流控芯片中,所述沟道板层包括依次层叠设置的第一沟道层、第一胶层和第二沟道层,其中,所述第一沟道层靠近所述盖板层;
所述第一沟道层包括第一混合裂解凹槽,直接连通所述第一阀门与所述磁珠缓冲液进液凹槽的第一子沟道,直接连通所述第二阀门与所述结合液进液凹槽的第二子沟道,直接连通所述第三阀门与所述清洗液进液凹槽的第三子沟道,以及直接连通第四阀门与所述洗脱液进液凹槽的第四子沟道;
所述第一胶层包括相互独立的第二混合裂解凹槽和第一核酸提取沟道;
所述第二沟道层包括第三混合裂解凹槽,第二核酸提取沟道,直接连通所述第一阀门与所述第三混合裂解凹槽的第五子沟道,直接连通所述第二阀门与所述第三混合裂解凹槽的第六子沟道,直接连通所述第三阀门与所述第三混合裂解凹槽的第七子沟道,直接连通所述第四阀门与所述第三混合裂解凹槽的第八子沟道,直接连通所述第三混合裂解凹槽与所述第五阀门的第九子沟道,间接连通所述第五阀门与所述第二气压驱动口的第十子沟道,直接连通所述第三混合裂解凹槽与所述第六阀门的第十一子沟道,以及直接连通所述六阀门与所述第二核酸提取沟道的第十二子沟道;
其中,所述第一子沟道和所述第五子沟道构成所述第一沟道,所述第二子沟道和所述第六子沟道构成所述第二沟道,所述第三子沟道和所述第七子沟道构成所述第三沟道,所述第四子沟道和所述第八子沟道构成所述第四沟道,所述第九子沟道和所述第十子沟道构成所述第五沟道,所述第十一子沟道和所述第十二子沟道构成所述第六沟道;
所述第一混合裂解凹槽、所述第二混合裂解凹槽、所述第三混合裂解凹槽依次直接贯通构成所述混合裂解凹槽,且所述第一混合裂解凹槽在所述盖 板层所在平面上的正投影、所述第二混合裂解凹槽在所述盖板层所在平面上的正投影、以及所述第三混合裂解凹槽在所述盖板层所在平面上的正投影大致重合;
所述第一核酸提取沟道与所述第二核酸提取沟道直接贯通构成所述核酸提取沟道,所述第一核酸提取沟道在所述盖板层所在平面上的正投影与所述第二核酸提取沟道在所述盖板层所在平面上的正投影大致重合。
可选地,在本公开实施例提供的上述微流控芯片中,所述第一阀门、所述第二阀门、所述第三阀门、所述第四阀门、所述第五阀门和所述第六阀门中的任一个包括:在所述第一沟道层上的第一限位通孔,在所述第一胶层上与所述第一限位通孔直接连通的引流孔,在所述盖板层上与所述第一限位通孔对应设置的第二限位通孔,在所述第一限位通孔与所述第二限位通孔之间移动的阀芯,以及在所述盖板层面向所述第一沟道层一侧承载所述阀芯的弹性膜,且所述弹性膜覆盖所述第二限位通孔;
其中,所述第一阀门、所述第二阀门、所述第三阀门和所述第四阀门中的任一个设置有一个所述引流孔,所述第五阀门和所述第六阀门中的任一个设置两个所述引流孔。
可选地,在本公开实施例提供的上述微流控芯片中,还包括:在所述盖板层背离所述沟道板层的一侧密封所述第二限位通孔的第一保护膜。
可选地,在本公开实施例提供的上述微流控芯片中,所述盖板层还包括围绕所述第二限位通孔的扩容凹槽,所述扩容凹槽在所述盖板层所在平面上的正投影与所述弹性膜在所述盖板层所在平面上的正投影相互交叠。
可选地,在本公开实施例提供的上述微流控芯片中,所述扩容凹槽包括第一扩容凹槽和/或第二扩容凹槽,其中,所述第一扩容凹槽位于所述盖板层背离所述沟道板层的一侧,所述第二扩容凹槽位于所述盖板层面向所述沟道板层的一侧,所述第一扩容凹槽在所述盖板层所在平面上的正投影与所述弹性膜在所述盖板层所在平面上的正投影大致相同,所述第二扩容凹槽在所述盖板层所在平面上的正投影位于所述弹性膜在所述盖板层所在平面上的正投 影内。
可选地,在本公开实施例提供的上述微流控芯片中,所述第二扩容凹槽在所述盖板层所在平面上的正投影边界与所述弹性膜在所述盖板层所在平面上的正投影边界之间的距离为0.5mm~1.0mm。
可选地,在本公开实施例提供的上述微流控芯片中,在所述盖板层所在平面的垂直方向上,所述第一扩容凹槽的深度为0.8mm~1.2mm,所述第二扩容凹槽的深度为11μm~50μm。
可选地,在本公开实施例提供的上述微流控芯片中,还包括粘结所述盖板层与所述沟道板层的第二胶层,所述第二胶层包括直接连通所述结合液进液通孔与所述磁珠缓冲液进液凹槽的第一过孔,直接连通所述结合液进液通孔与所述结合液进液凹槽的第二过孔,直接连通所述清洗液进液通孔与所述清洗液进液凹槽的第三过孔,直接连通所述洗脱液进液通孔与所述洗脱液进液凹槽的第四过孔,容纳所述弹性膜的容置孔,以及直接连通所述混合裂解凹槽的第五过孔。
可选地,在本公开实施例提供的上述微流控芯片中,还包括位于所述混合裂解凹槽内的磁珠。
可选地,在本公开实施例提供的上述微流控芯片中,所述混合裂解凹槽包括相互连通的反应凹槽和缓冲凹槽,其中,所述反应凹槽与所述第一沟道、所述第二沟道、所述第三沟道、所述第四沟道、所述第六沟道分别直接连通,所述缓冲凹槽与所述第五沟道直接连通。
可选地,在本公开实施例提供的上述微流控芯片中,所述混合裂解凹槽包括相互连通的反应凹槽和缓冲凹槽,其中,所述反应凹槽与所述第一沟道、所述第二沟道、所述第三沟道、所述第四沟道分别直接连通,所述缓冲凹槽与所述第五沟道、所述第六沟道分别直接连通。
可选地,在本公开实施例提供的上述微流控芯片中,所述盖板层还包括完全覆盖所述反应凹槽的扩容通孔,以及在所述盖板层背离所述沟道板层的一侧密封所述扩容通孔的第二保护膜。
可选地,在本公开实施例提供的上述微流控芯片中,所述缓冲凹槽为纺锤形。
可选地,在本公开实施例提供的上述微流控芯片中,在所述纺锤形延伸方向上1/2~3/4的位置处宽度最大。
可选地,在本公开实施例提供的上述微流控芯片中,所述混合裂解凹槽还包括直接连通所述混合裂解凹槽与所述缓冲凹槽的导流沟道,所述导流沟道为“S”形。
可选地,在本公开实施例提供的上述微流控芯片中,所述沟道板层还包括废液凹槽,所述废液凹槽与所述核酸提取沟道、所述第五沟道和所述第二气压驱动口分别直接连通;
所述盖板层还包括与所述废液凹槽对应连通的废液通孔;
所述微流控芯片还包括嵌入所述废液通孔的废液腔。
可选地,在本公开实施例提供的上述微流控芯片中,所述沟道板层还包括位于所述废液凹槽内的支撑柱;
所述微流控芯片还包括位于所述支撑柱上的吸液芯。
可选地,在本公开实施例提供的上述微流控芯片中,所述进液凹槽、所述混合裂解沟道和所述核酸提取沟道在第一方向上依次并排设置,所述第一气压驱动口和所述第二气压驱动口分别设置在所述核酸提取沟道在第二方向上的两侧,所述废液凹槽与所述第二气压驱动口位于所述核酸提取沟道的同侧,所述第二方向与所述第一方向交叉设置。
可选地,在本公开实施例提供的上述微流控芯片中,在所述第二方向上,所述沟道板层在所述进液凹槽所在区域的长度、在所述混合裂解沟道所在区域的长度、在所述核酸提取沟道所在区域的长度依次增大。
可选地,在本公开实施例提供的上述微流控芯片中,所述沟道板层还包括位于所述废液凹槽远离所述核酸提取沟道一侧、以及位于所述混合裂解沟道在所述第二方向上的两侧的第一定位孔;所述盖板层在第一定位孔对应的位置具有第二定位孔。
可选地,在本公开实施例提供的上述微流控芯片中,所述核酸提取沟道为蛇形。
可选地,在本公开实施例提供的上述微流控芯片中,所述沟道板层还包括在背离所述盖板层一侧的磁铁容置槽,所述磁铁容置槽位于所述核酸提取沟道所在区域、以及所述混合裂解凹槽所在区域。
可选地,在本公开实施例提供的上述微流控芯片中,所述沟道板层还包括在背离所述盖板层一侧的第一卡槽,所述第一卡槽在所述盖板层所在平面上的正投影与所述第一气压驱动口、所述第二气压驱动口在所述盖板层所在平面上的正投影互不交叠;
所述盖板层还包括在背离所述沟道板层一侧的第二卡槽,其中所述第二卡槽在所述盖板层所在平面上的正投影与所述第一卡槽在所述盖板层所在平面上的正投影相互交叠;
所述微流控芯片还包括爪型连接器,所述爪型连接器的部分嵌入所述第一卡槽和所述第二卡槽,且所述爪型连接器包括与所述第一气压驱动口或所述第二气压驱动口连通的供压通道。
可选地,在本公开实施例提供的上述微流控芯片中,所述沟道板层还包括位于所述第一气压驱动口和所述第二气压驱动口下方的第三卡槽;
所述盖板层还包括在面向所述沟道板层一侧的第四卡槽,其中所述第四卡槽在所述盖板层所在平面上的正投影与所述第三卡槽在所述盖板层所在平面上的正投影相互交叠;
所述爪型连接器的部分嵌入所述第三卡槽和所述第四卡槽。
可选地,在本公开实施例提供的上述微流控芯片中,所述溶液贮存腔包括具有排液口的储液腔室、靠近所述排液口一侧的电极释放层和热熔性封堵结构,其中,所述电极释放层在对应所述排液口的位置具有开孔,所述热熔性封堵结构密封所述排液口和所述开孔,所述排液口和所述开孔构成所述出液通孔。
可选地,在本公开实施例提供的上述微流控芯片中,所述热熔性封堵结 构包括封堵所述开孔的球阀,以及将所述球阀固定于所述电极释放层上的热敏结构。
可选地,在本公开实施例提供的上述微流控芯片中,所述储液腔室还包括围绕所述排液口的密封圈容置槽;
所述溶液贮存腔还包括密封圈和粘合剂,所述密封圈位于所述密封圈容置槽内,所述粘合剂填充于所述密封圈与所述密封圈容置槽之间。
可选地,在本公开实施例提供的上述微流控芯片中,还包括储液腔盖和防水膜,所述储液腔盖上设有排气口,所述防水膜覆盖所述排气口。
可选地,在本公开实施例提供的上述微流控芯片中,所述盖板层还包括在背离所述沟道板层一侧包围所述进液通孔的第五卡槽,所述第五卡槽内嵌有所述电极释放层。
另一方面,本公开实施例还提供了一种上述微流控芯片的核酸提取方法,包括:
将样品液和裂解试剂混合后加入所述溶液贮存腔,控制所述溶液贮存腔释放所述样品液与裂解试剂的混合液体、以及所述溶液贮存腔中预存的试剂;
通过所述第二气压驱动口交替施加正压和负压,以将所述样品液、所述裂解试剂和所述预存的试剂导入所述混合裂解沟道进行混合,并裂解出核酸;
通过所述第一气压驱动口交替施加正压和负压,以将裂解出核酸后的混合液导入所述核酸提取沟道进行分离提取核酸。
另一方面,本公开实施例还提供了一种核酸提取装置,包括微流控芯片和供磁部件,其中,所述微流控芯片为上述微流控芯片,所述供磁部件位于所述沟道板层背离所述盖板层的一侧。
附图说明
图1为本公开实施例提供的微流控芯片的结构示意图;
图2为本公开实施例提供的微流控芯片中各层的一种结构示意图;
图3为本公开实施例提供的沟道板层的一种结构示意图;
图4为本公开实施例提供的盖板层的结构示意图;
图5为本公开实施例提供的第五阀门与废液凹槽之间的第五沟道的一种结构示意图;
图6为本公开实施例提供的第五阀门与废液凹槽之间的第五沟道的又一种结构示意图;
图7为本公开实施例提供的第五阀门与废液凹槽之间的第五沟道的又一种结构示意图;
图8为本公开实施例提供的第五阀门与废液凹槽之间的第五沟道的又一种结构示意图;
图9为本公开实施例提供的阀门在开启状态下的一种示意图;
图10为图9所示阀门在关闭状态下的一种示意图;
图11为本公开实施例提供的阀门在开启状态下的又一种示意图;
图12为图11所示阀门在关闭状态下的一种示意图;
图13为本公开实施例提供的微流控芯片中各层的又一种结构示意图;
图14为本公开实施例提供的阀门在开启状态下的又一种示意图;
图15为图14所示阀门在关闭状态下的一种示意图;
图16为本公开实施例提供的阀门在开启状态下的又一种示意图;
图17为图16所示阀门在关闭状态下的一种示意图;
图18为本公开实施例提供的微流控芯片的一种简化结构示意图;
图19为本公开实施例提供的微流控芯片的又一种简化结构示意图;
图20为本公开实施例提供的微流控芯片的又一种简化结构示意图;
图21为本公开实施例提供的爪型连接器的结构示意图;
图22为本公开实施例提供的溶液贮存腔的结构示意图;
图23为本公开实施例提供的核酸提取方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
本公开实施例提供的一种微流控芯片,如图1至图4所示,包括:
沟道板层01,该沟道板层01包括:进液凹槽101、混合裂解沟道102、核酸提取沟道103、第一气压驱动口104和第二气压驱动口105,其中,进液凹槽101、混合裂解沟道102、核酸提取沟道103和第一气压驱动口104依次连通形成一条液体流动通道,进液凹槽101、混合裂解沟道102和第二气压驱动口105依次连通形成另一条液体流动通道;
盖板层02,与沟道板层01相对设置,盖板层02包括与进液凹槽101对应设置的进液通孔201;
溶液贮存腔03,位于盖板层02背离沟道板层01的一侧,溶液贮存腔03包括与进液通孔201对应设置的出液通孔。
在本公开实施例提供的上述微流控芯片中,在将裂解试剂与样品液混合后加入溶液贮存腔03,控制溶液贮存腔03释放样品液与裂解试剂的混合液、以及溶液贮存腔03中预存的试剂;后在第二气压驱动口105交替施加的正压 和负压的驱动下,样品液和试剂导入混合裂解沟道102,并在混合裂解沟道102内来回流动而得到充分混合,有效裂解出核酸;最后在第一气压驱动口104交替施加的正压和负压的驱动下,使得裂解出核酸后的混合液导入核酸提取沟道103,并在核酸提取沟道103内来回流动,实现核酸的分离提取。
由上述内容可见,在本公开中除加入样品液的步骤之外,整个核酸提取过程均为在微流控芯片中的操作,不仅降低了操作人员接触暴露在外样品液可能产生的危险,还简化了操作流程,减小了人为操作可能产生的误差,同时避免了使用者自己提供操作容器,便携性也得到了提升。
在一些实施例中,沟道板层01和盖板层02的材料可以为聚甲基丙烯酸甲酯(PMMA)。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,为了便于加入不同试剂(例如磁珠缓冲液、结合液、清洗液和洗脱液等),如图2至图4所示,溶液贮存腔03包括磁珠缓冲液贮存腔301、结合液贮存腔302、清洗液贮存腔303和洗脱液贮存腔304;
进液通孔201包括磁珠缓冲液进液通孔a1、结合液进液通孔a2、清洗液进液通孔a3和洗脱液进液通孔a4;
进液凹槽101包括:磁珠缓冲液进液凹槽b1、结合液进液凹槽b2、清洗液进液凹槽b3和洗脱液进液凹槽b4;
其中,磁珠缓冲液贮存腔301、磁珠缓冲液进液通孔a1与磁珠缓冲液进液凹槽b1依次连通;
结合液贮存腔302、结合液进液通孔a2与结合液进液凹槽b2依次连通;
清洗液贮存腔303、清洗液进液通孔a3与清洗液进液凹槽b3依次连通;
洗脱液贮存腔304、洗脱液进液通孔a4与洗脱液进液凹槽b4依次连通。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,为了便于实现不同试剂(例如磁珠缓冲液、结合液、清洗液和洗脱液等)的独立流通,如图2和图3所示,混合裂解沟道102可以包括混合裂解凹槽1021,直接连通混合裂解凹槽1021与磁珠缓冲液进液凹槽b1的第一沟道A,直接连通混 合裂解凹槽1021与结合液进液凹槽b2的第二沟道B,直接连通混合裂解凹槽1021与清洗液进液凹槽b3的第三沟道C,直接连通混合裂解凹槽1021与洗脱液进液凹槽b4的第四沟道D,间接连通混合裂解凹槽1021与第二气压驱动口105的第五沟道E,以及直接连通混合裂解凹槽1021与核酸提取沟道103的第六沟道F。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2和图3所示,还可以包括:用于控制第一沟道A中的液体是否流通的第一阀门41,用于控制第二沟道B中的液体是否流通的第二阀门42,用于控制第三沟道C中的液体是否流通的第三阀门43,用于控制第四沟道D中的液体是否流通的第四阀门44,用于控制第五沟道E中的液体是否流通的第五阀门45,以及用于控制第六沟道F中的液体是否流通的第六阀门46。通过在不同沟道处设置阀门,可更好地控制液体在不同沟道内来回流动,增加裂解核酸和分离提取核酸的时间,从而获得纯度较高的核酸。第一阀门、第二阀门、第三阀门、第四阀门、第五阀门、第六阀门可以是磁阀、气阀。
在具体实施时,第一步:可在磁珠缓冲液贮存腔301中预存磁珠缓冲液,在结合液贮存腔302中预存结合液,清洗液贮存腔303中预存清洗液,在洗脱液贮存腔304中贮存洗脱液。
第二步:将裂解试剂与样品液混合。然后加入到磁珠缓冲液贮存腔301中,与磁珠缓冲液贮存腔301中磁珠缓冲液混合均匀。打开第一阀门41和第五阀门45,并关闭其余阀门,使得磁珠缓冲液贮存腔301中磁珠缓冲液、裂解试剂与样品液的混合液体通过打开的第一阀门41由第一沟道A导入混合裂解凹槽1021中,裂解出核酸,裂解出的核酸被混合裂解凹槽1021内的磁珠吸附。并可通过电磁铁等供磁部件将磁珠吸附在混合裂解凹槽1021的内壁上,裂解产生的废液通过打开的第五阀门45由第五沟道E排除。
第三步:打开第二阀门42和第五阀门45,并关闭其余阀门。此时,结合液贮存腔302中的结合液通过打开的第二阀门42由第二沟道B释放进混合裂解凹槽1021。在第二气压驱动口105的正压和负压交替驱动下吸附有核酸的 磁珠在混合裂解凹槽1021内来回流动,以充分增大磁珠与核酸的结合力。接着通过电磁铁等供磁部件将磁珠吸附在混合裂解凹槽1021的内壁上,废液通过打开的第五阀门45由第五沟道E排除。
第四步:打开第三阀门43和第六阀门46,并关闭其余阀门。此时,清洗液贮存腔303中的清洗液通过打开的第三阀门43由第三沟道C释放进混合裂解凹槽1021。在第一气压驱动口104的正压和负压交替驱动下,吸附有核酸的磁珠和清洗液通过打开的第六阀门46并经由第六沟道F在混合裂解凹槽1021和核酸提取沟道103内来回流动,以有效清洗吸附有核酸的磁珠。待来回流动多次之后,吸附有核酸的磁珠最终进入核酸提取沟道103内,再通过电磁铁等供磁部件在电磁铁容置凹槽内将磁珠吸附在核酸提取沟道103的内壁上。废液通过第二气压驱动口105的负压驱动排除。
第五步:关闭全部阀门,并通过第一气压驱动口104和第二气压驱动口105的正压和负压交替驱动,向核酸提取沟道103内部来回吹吸空气,以将吸附有核酸的磁珠上残留的有机试剂挥发掉。
第六步:打开第四阀门44和第六阀门46,并关闭其余阀门。此时,洗脱液贮存腔304中的洗脱液通过打开的第四阀门44由第四沟道D释放进混合裂解凹槽1021,之后通过打开的第六阀门46并经由第六沟道F进入核酸提取沟道103。在第一气压驱动口104的正压和负压交替驱动下,洗脱液和吸附有核酸的磁珠在混合裂解凹槽1021和核酸提取沟道103内来回流动(即保证磁珠处于悬浮状态),在磁珠悬浮的状态下,在56℃温度下孵育5分钟,从而将磁珠与核酸分离,获取纯净的核酸。
第七步:关闭全部阀门,并通过电磁铁等供磁部件在电磁铁容置凹槽内将磁珠吸附在核酸提取沟道103的内壁上。并通过第一气压驱动口104的负压驱动,将包含核酸的洗脱液排出核酸提取沟道103。例如,可以在第一气压驱动口104出外接一个产物回收管,以将包含核酸的洗脱液回收至该产物回收管内,便于进行后续检测。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,第一沟道A 至第六沟道F的宽度和深度范围均为0.3mm~1mm,优选为1mm×0.5mm(宽度×深度)。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2和图3所示,在第五阀门45与第二气压驱动口之间的第五沟道E为折线形,图3中具体示出了“L”形的折线,该折线形的第五沟道E包括交叉设置且相互导通的第一部分E11和第二部分E12,其中,第一部分E11与第五阀门45直接导通,第二部分E12与第二气压驱动口105间接导通(具体地,第二部分E12与第二气压驱动口105之间具有与二者分别直接导通的废液凹槽106),第一部分E11的长度可以大于第二部分E12的长度。上述设置方式,可以有效防止废液凹槽106中的废液倒灌。
另外,考虑到第一部分E11和第二部分E12的夹角过小会增大液体进入废液凹槽106的阻力,而夹角过大则无法起到对液体的缓冲作用,因此,为了改善该技术问题,如图5至图8所示,第一部分E11和第二部分E12的夹角可以为30°~150°,即大于或等于30°且小于或等于150°。可选地,在第一部分E11和第二部分E12的夹角位置可以为图5中所示的直线折角,也可以为如图6至图8所示的弧形折角,在此不做限定。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2至图10所示,第一阀门41、第二阀门42、第三阀门43、第四阀门44、第五阀门45和第六阀门46中的任一个包括:在沟道板层01上的第一限位通孔401,在盖板层02上与第一限位通孔401对应设置的第二限位通孔402,在第一限位通孔401与第二限位通孔402之间移动的阀芯403,在沟道板层01背离盖板层02的一侧密封第一限位通孔401的底膜404,以及在盖板层02面向沟道板层01一侧承载阀芯403的弹性膜405,且弹性膜405覆盖第二限位通孔402。
在具体实施时,一方面,如图5所示,在未受到外部磁力的情况下,阀芯403的局部或全部位于第二限位通孔402内,弹性膜405密封第二限位通孔402,使得第一限位通孔401处于连通的状态,保证了液体的正常流动,从而开启阀门。另一方面,如图10所示,可通过电磁铁等供磁部件吸附阀芯403, 使得阀芯403的至少部分(即阀芯403的局部或全部)位于第一限位通孔401内而不会发生移位,弹性膜405在阀芯403的压力作用下密封第一限位通孔401,以阻断液体流动,从而关闭阀门。另外,通过在沟道板层01上设置第一限位通孔401,并设置密封第一限位通孔401的底膜404,不仅避免了第一限位通孔401发生漏液,还降低了对沟道板层01的制作工艺要求。
在一些实施例中,弹性膜405可以为弹性较好的聚二甲基硅烷(PDMS)等柔性薄膜。另外,为了使得阀芯403对弹性膜405的压力较小,以利于弹性膜405正常复位,可选用较小较轻的阀芯403,例如钢柱。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2至图4、图11和图12所示,第一阀门41、第二阀门42、第三阀门43、第四阀门44、第五阀门45和第六阀门46中的任一个包括:在沟道板层01上的限位凹槽401’,在盖板层02上与限位凹槽401’对应设置的第二限位通孔402,在限位凹槽401’与第二限位通孔402之间移动的阀芯403,以及在盖板层02面向沟道板层01一侧承载阀芯403的弹性膜405,且弹性膜405覆盖第二限位通孔402。可以看出,图11和图12所示的阀门类型与图5和图10所示的阀门类型不同的是,沟道板层01的第一限位通孔401可以替换为限位凹槽401’,从而节约了底膜404,但对工艺要求较高。在一些实施例中,底膜404的厚度或凹槽底部的厚度太小不利于加工,厚度太大影响阀门响应度。基于此,底膜404的厚度或凹槽底部的厚度可以在0.5mm~2mm以内,优选1mm,以保证电磁铁的工作距离,增加阀门的响应效果,同时利于工艺加工。
需要说明的是,在本公开实施例提供的上述微流控芯片中,沟道板层01不仅可以为图3所示结构较简单的单层结构,还可以为图13所示防漏液性能较好的叠层结构。具体而言,在图13中沟道板层01可以包括依次层叠设置的第一沟道层011、第一胶层012和第二沟道层013,其中,第一沟道层011靠近盖板层02;
第一沟道层011包括第一混合裂解凹槽211,直接连通第一阀门41与磁珠缓冲液进液凹槽b1的第一子沟道A1,直接连通第二阀门42与结合液进液 凹槽b2的第二子沟道B1,直接连通第三阀门43与清洗液进液凹槽b3的第三子沟道C1,以及直接连通第四阀门44与洗脱液进液凹槽b4的第四子沟道D1;
第一胶层012包括相互独立的第二混合裂解凹槽212和第一核酸提取沟道1031;
第二沟道层013包括第三混合裂解凹槽213,第二核酸提取沟道1032,直接连通第一阀门41与第三混合裂解凹槽213的第五子沟道A2,直接连通第二阀门42与第三混合裂解凹槽213的第六子沟道B2,直接连通第三阀门43与第三混合裂解凹槽213的第七子沟道C2,直接连通第四阀门44与第三混合裂解凹槽213的第八子沟道D2,直接连通第三混合裂解凹槽213与第五阀门45的第九子沟道E1,间接连通第五阀门45与第二气压驱动口105的第十子沟道E2,直接连通第三混合裂解凹槽213与第六阀门46的第十一子沟道F1,以及直接连通六阀门46与第二核酸提取沟道1032的第十二子沟道F2;
其中,第一子沟道A1和第五子沟道A2构成第一沟道A,第二子沟道B1和第六子沟道B2构成第二沟道B,第三子沟道C1和第七子沟道C2构成第三沟道C,第四子沟道D1和第八子沟道D2构成第四沟道D,第九子沟道E1和第十子沟道E2构成第五沟道E,第十一子沟道F1和第十二子沟道F2构成第六沟道F;
第一混合裂解凹槽211、第二混合裂解凹槽212、第三混合裂解凹槽213依次直接贯通构成混合裂解凹槽1021,且第一混合裂解凹槽211在盖板层02所在平面上的正投影、第二混合裂解凹槽212在盖板层02所在平面上的正投影、以及第三混合裂解凹槽213在盖板层02所在平面上的正投影大致重合;
第一核酸提取沟道1031与第二核酸提取沟道1032直接贯通构成核酸提取沟道103,第一核酸提取沟道1031在盖板层02所在平面上的正投影与第二核酸提取沟道1032在盖板层02所在平面上的正投影大致重合。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图14至图17所示,第一阀门41、第二阀门42、第三阀门43、第四阀门44、第五阀 门45和第六阀门46中的任一个包括:在第一沟道层011上的第一限位通孔401,在第一胶层012上与第一限位通孔401直接连通的引流孔406,在盖板层02上与第一限位通孔401对应设置的第二限位通孔402,在第一限位通孔401与第二限位通孔402之间移动的阀芯403,以及在盖板层02面向沟道板层01一侧承载阀芯403的弹性膜405;
其中,如图14和图15所示,第一阀门41、第二阀门42、第三阀门43和第四阀门44中的任一个设置有一个引流孔406;如图16和图17所示,第五阀门45和第六阀门46中的任一个设置两个引流孔406。
在具体实施时,如图13所示,液体自进液通孔201注入后,依次流经进液凹槽101及对应的子沟道A1/B1/C1/D1后,到达第一限位通孔401处。如图14所示,在第一阀门41、第二阀门42、第三阀门43和第四阀门44中的任一个开启时,阀芯403的至少部分位于第二限位通孔402内,弹性膜405密封第二限位通孔402,第一限位通孔401处的液体经引流孔406注入子沟道A2/B2/C2/D2后流出至第三混合裂解凹槽213。如图15所示,在第一阀门41、第二阀门42、第三阀门43和第四阀门44中的任一个关闭时,阀芯403的至少部分位于第一限位通孔401内,弹性膜405密封第一限位通孔401,第一限位通孔401处的液体无法流动。在此情况下,第一阀门41、第二阀门42、第三阀门43和第四阀门44为上进下出型阀。
另外,如图13所示,液体自进液通孔201注入后,在第一阀门41、第二阀门42、第三阀门43和第四阀门44中任一个的控制下流入第三混合裂解凹槽213。如图16所示,在第五阀门45和第六阀门46中的任一个开启时,阀芯403的至少部分位于第二限位通孔402内,弹性膜106密封第二限位通孔402,第三混合裂解凹槽213处的液体经子沟道E1/F1及其中一个引流孔406(即图13和图16中右侧的引流孔406)注入第一限位通孔401处,再由与第一限位通孔401直接连通的另一个引流孔406(即图13和图16中左侧的引流孔406)流出至子沟道E2/F2。如图17所示,在第五阀门45和第六阀门46中的任一个关闭时,阀芯403的至少部分位于第一限位通孔401内,弹性膜 405密封第一限位通孔401,第一限位通孔401处的液体无法流动。在此情况下,第五阀门45和第六阀门46为下进下出型阀。
由以上内容可以看出,在沟道板层01为叠层结构的情况下,液体通道的出入口和阀控空间不在同一层,从而在阀门关闭时可以有效防止漏液。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图5至图12、图14至图17所示,还可以包括:在盖板层02背离沟道板层01的一侧密封第二限位通孔402的第一保护膜407。这样可以防止阀芯403自第二限位通孔402意外脱落。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2、图4和图13所示,盖板层02还包括围绕第二限位通孔402的扩容凹槽203,扩容凹槽203在盖板层02所在平面上的正投影与弹性膜405在盖板层02所在平面上的正投影相互交叠。扩容凹槽203的存在,可以增大阀门周围的气体空间,减小阀门周围的气压变化,利于提高阀门的稳定性。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,为了尽可能增大阀门周围的气体空间,以进一步提高控制阀的稳定性,扩容凹槽203可以包括第一扩容凹槽和/或第二扩容凹槽,其中,第一扩容凹槽位于盖板层02背离沟道板层01的一侧,第二扩容凹槽位于盖板层02面向沟道板层01的一侧,第一扩容凹槽在盖板层02所在平面上的正投影与弹性膜405在盖板层02所在平面上的正投影大致相同,第二扩容凹槽在盖板层02所在平面上的正投影位于弹性膜405在盖板层02所在平面上的正投影内。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,第二扩容凹槽在盖板层02所在平面上的正投影边界与弹性膜405在盖板层02所在平面上的正投影边界之间的距离为0.5mm~1.0mm,以保证弹性膜405对第二扩容凹槽203的压边效果。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,为了提高阀门的稳定效果,在盖板层02所在平面的垂直方向上,第一扩容凹槽的深度为0.8mm~1.2mm,第二扩容凹槽的深度为11μm~50μm。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,沟道板层01与盖板层02可使用热压键合,也可使用双面胶粘贴。
具体地,在沟道板层01与盖板层02使用热压键合的情况下,如图1和图2所示,结合液贮存腔302、结合液进液通孔a2与结合液进液凹槽b2依次直接连通;清洗液贮存腔303、清洗液进液通孔a3与清洗液进液凹槽b3依次直接连通;洗脱液贮存腔304、洗脱液进液通孔a4与洗脱液进液凹槽b4依次直接连通。
在沟道板层01与盖板层02使用双面胶粘贴的情况下,如图13所示,还可以包括粘结盖板层02与沟道板层01的第二胶层05,第二胶层05包括直接连通结合液进液通孔a1与磁珠缓冲液进液凹槽b1的第一过孔c1,直接连通结合液进液通孔a2与结合液进液凹槽b2的第二过孔c2,直接连通清洗液进液通孔a3与清洗液进液凹槽b3的第三过孔c3,直接连通洗脱液进液通孔a4与洗脱液进液凹槽b4的第四过孔c4,容纳弹性膜405的容置孔d,以及直接连通混合裂解凹槽1021的第五过孔e。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2、图3和图13所示,微流控芯片还包括位于混合裂解凹槽1021内的磁珠(图中未示出)。
在具体实施时,混合裂解凹槽1021内的磁珠带有与核酸相匹配的物质,可以吸附核酸,以实现与核酸的结合。在没有外界磁力的作用下,吸附有核酸的磁珠可以在正压或负压的驱动下在混合裂解凹槽1021内来回流动。在外界磁力存在时,吸附核酸的磁珠会被吸附在混合裂解凹槽1021的内壁上,在此情况下,可以通过负压驱动的方式来移除混合裂解凹槽1021内的废液。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2、图3和图13所示,混合裂解凹槽1021包括相互连通的反应凹槽021和缓冲凹槽022,其中,反应凹槽021可以与第一沟道A、第二沟道B、第三沟道C、第四沟道D、第六沟道F分别直接连通,缓冲凹槽022与第五沟道E直接连通,使得缓冲凹槽022通过第五沟道E与第二气压驱动口105导通。这样设置, 可以使得在第二气压驱动口105所加载正压或负压的驱动下,液体可在连通的反应凹槽021和缓冲凹槽022内来回流动进行充分混合,并且反应凹槽021和缓冲凹槽022这两个混合区的设计可以减少液体的污染。
在另一些实施例中,如图18所示,反应凹槽021还可以与第一沟道A、第二沟道B、第三沟道C、第四沟道D分别直接连通,缓冲凹槽022与第五沟道E、第六沟道F分别直接连通,使得缓冲凹槽022通过第五沟道E与废液凹槽106直接连通、并通过第六沟道F与核酸提取沟道103导通。如此则可在核酸提取沟道103直接连通的第一气压驱动口104或废液凹槽106直接连通的第二气压驱动口105所加载正压或负压的驱动下,使得液体在连通的反应凹槽021和缓冲凹槽022内来回流动进行充分混合。
在一些实施例中,缓冲凹槽022与第五阀门45之间的第五通道E可以由图18所示直线型沟道组成,也可以由图19和图20所示直线型沟道加弧形沟道组成,以有效防止废液发生倒灌。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2、图4和图9所示,盖板层02还包括完全覆盖反应凹槽021的扩容通孔202,使得盖板层02与沟道板层01对合后,反应凹槽021与扩容通孔202可以形成一个体积较大的反应腔,从而容纳更多的液体。在一些实施例中,反应凹槽021和扩容通孔202可以为圆形,以利于液体充分混合从而更有效地裂解出核酸。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,还可以在盖板层02背离沟道板层01的一侧具有密封扩容通孔202的第二保护膜(图中未示出)。这样可以保证在使用正压或负压驱动液体时没有空气干扰,从而利于液体在通道内来回流动。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2、图3和图9所示,缓冲凹槽022可以为两端窄、中间宽的纺锤形。纺锤形的流线造型有利于减少液体的死体积。可选地,在纺锤形约1/2~3/4的位置宽度最大。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2、图 3和图9所示,混合裂解凹槽1021还包括连通反应凹槽021与缓冲凹槽022的导流沟道023,导流沟道1023为“S”形,以增加液体反应时间,更充分地裂解出核酸。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2至图4、以及图9所示,沟道板层01还包括废液凹槽106,该废液凹槽106与核酸提取沟道103、第五沟道E和第二气压驱动口105分别直接连通;盖板层02还包括与废液凹槽106对应连通的废液通孔204;微流控芯片还包括嵌入废液通孔204的废液腔06。在一些实施例中,废液腔06呈盒装,可用粘结剂粘连于废液通孔204处。
值得注意的是,在图9中沟道板层01为叠层结构时,可以在第一沟道层011面向盖板层02的一侧设置废液凹槽106,该废液凹槽106具有两个入口,分别与第一胶层012中的第一核酸提取沟道1031、以及第二沟道层013中的第十子沟道E2直接连通,并且该废液凹槽106具有与第二气压驱动口105直接连通的一个出口,在第一胶层012和第二沟道层013中与废液凹槽106正对的位置设有缺角。另外,为了使得沟道板层01收集的废液可以进入盖板层02的废液通孔204,需要将粘结盖板层02与沟道板层01的第二胶层05在废液凹槽106处切割掉,即第二胶层05在废液凹槽106的正上方存在开口f。同样,为了使得反应凹槽021与扩容通孔202导通,第二胶层05在反应凹槽021的正上方还需要设置相应的开口e。
在一些实施例中,在上述第二步、第三步和第四步中,通过第二气压驱动口105的负压驱动排除的废液可进入废液腔06,从而提高微流控芯片的集成度,并且,可避免每次排除废液后更换第二气压驱动口105处的供压管(例如注射器等)。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2至图4、以及图9所示,沟道板层01还包括位于废液凹槽106内的支撑柱107;微流控芯片还包括位于支撑柱107上的吸液芯(图中未示出)。支撑柱107可支撑吸液芯,使吸液芯不会因过度挤压而堵塞废液凹槽106与核酸提取沟道 103、缓冲凹槽022和第二气压驱动口105之间的通道。在一些实施例中,吸液芯可以为吸液棉,吸液纸,吸水硅胶等任何可吸收液体的物质,优选为可吸收有机液体和无机液体的吸液棉。吸液棉用量根据所需处理废液体积进行调整,本公开中废液腔06尺寸为17.75mm*7.75mm*12mm,最大储液体积为1.5mL,有效避免污染。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2、图3和图9所示,进液凹槽101、混合裂解沟道102和核酸提取沟道103在第一方向X上依次并排设置,第一气压驱动口104和第二气压驱动口105分别设置在核酸提取沟道103在第二方向Y上的两侧,废液凹槽106与第二气压驱动口105位于核酸提取沟道103的同侧,第二方向Y与第一方向X交叉设置。上述设置方式,可以使第一气压驱动口104及第二气压驱动口105与各个通道基本位于同一水平面上,以便于实现通过第一气压驱动口104及第二气压驱动口105快速向各个通道内通气或抽气。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图1所示,在第二方向Y上,沟道板层01在进液凹槽101所在区域的长度、在混合裂解沟道102所在区域的长度、在核酸提取沟道103所在区域的长度依次增大,以在将进液凹槽101、混合裂解沟道102、核酸提取沟道103、第一气压驱动口104和第二气压驱动口105集成在同一沟道板层01上的同时,可保证沟道板层01的体积较小,便于携带。相应地,盖板层02与沟道板层01具有基本重合的形状。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图1至图4、以及图9所示,沟道板层01还包括位于废液凹槽106远离核酸提取沟道103一侧、以及位于混合裂解沟道102在第二方向Y上的两侧的第一定位孔108;盖板层02在第一定位孔108对应的位置具有第二定位孔205。该定位孔可用于沟道板层01与盖板层02键合对位使用。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2、图3和图9所示,核酸提取沟道103为蛇形。如此,可以增加液体反应时间,提 高核酸提取效率。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图2、图3和图9所示,沟道板层01还包括在背离盖板层02一侧的磁铁容置槽(图中未示出),磁铁容置槽可以位于核酸提取沟道103所在区域、以及混合裂解凹槽1021所在区域,可供电磁铁等供磁部件上升以使磁珠吸附在核酸提取沟道103的管壁上、或吸附在混合裂解凹槽1021的管壁上,便于分离出核酸。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图1至图4、以及图21所示,沟道板层01还包括在背离盖板层02一侧的第一卡槽109,第一卡槽109在盖板层02所在平面上的正投影与第一气压驱动口104、第二气压驱动口105在盖板层02所在平面上的正投影互不交叠;盖板层02还包括在背离沟道板层01一侧的第二卡槽206,其中第二卡槽206在盖板层02所在平面上的正投影与第一卡槽109在盖板层02所在平面上的正投影相互交叠;微流控芯片还包括爪型连接器07,爪型连接器07的部分(具体为四个长方体型的凸出部701)嵌入第一卡槽109和第二卡槽206,且爪型连接器07包括与第一气压驱动口104或第二气压驱动口105连通的供压通道702。通过在第一气压驱动可和第二气压驱动口105出设置爪型连接器07,可增加整个芯片的气密性。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图1至图4、以及图21所示,为了增强爪型连接器07与沟道板层01和盖板层02之间的牢固性,沟道板层01还包括位于第一气压驱动口104和第二气压驱动口105下方的第三卡槽110;盖板层02还包括在面向沟道板层01一侧的第四卡槽207,其中第四卡槽207在盖板层02所在平面上的正投影与第三卡槽110在盖板层02所在平面上的正投影相互交叠;爪型连接器07的部分(图中的圆形凸出部703)嵌入第三卡槽110和第四卡槽207。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图22所示,溶液贮存腔03包括具有排液口g的储液腔室3011、靠近排液口g一侧的电极释放层3012和热熔性封堵结构(图中未示出),其中,电极释放层3012 在对应排液口g的位置具有开孔h,热熔性封堵结构密封排液口g和开孔h,排液口g和开孔h构成出液通孔。
在本公开中,可以在储液腔室3011中预先存储一定体积的液体,并用热熔性封堵结构密封以实现长久保存,在需要释放液体时只需使电极释放层3012加电升温,使热熔性封堵结构熔化,打开贯通储液腔室3011和进液凹槽101之间的孔道,液体由于重力作用进入进液凹槽101中即完成液体释放,避免手动添加试剂带来的风险,且溶液贮存腔03的结构简单,便于操作安全。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,热熔性封堵结构包括封堵开孔h的球阀,以及将球阀固定于电极释放层3012上的热敏结构。在热敏结构受热熔化后,球阀会由于浮力作用上升至储液腔室3011的上部,从而使得储液腔室3011的液体通过排液口g和开孔h流至混合裂解沟道102。在一些实施例中,球阀的材料可以为聚氯乙烯(PVC),热敏结构的材料可以为石蜡。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图22所示,储液腔室3011还包括围绕排液口g的密封圈3013容置槽i;溶液贮存腔03还包括密封圈3013和粘合剂(图中未示出),密封圈3013位于密封圈容置槽i内,粘合剂填充于密封圈3013与密封圈容置槽i之间,以实现储液腔室3011的良好密封性,避免储液腔室3011中预存的液体挥发。
在一些实施例中,密封圈3013可以为直径3mm-4mm(优选为3.5mm)的O型密封圈,材料可选硅胶、丁腈和氟胶等弹性物质,优选为氟胶。组装时O型密封圈放入密封圈容置槽i后略微凸出密封圈容置槽i,涂胶后利用压力使富有弹性的O型密封圈完全填充密封圈容置槽i即达到隔绝储液腔室3011与O型密封圈外粘合剂的作用,同时O型密封圈保证了储液腔室3011中有机试剂对粘合剂带来的危害。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图22所示,还包括储液腔盖3014和防水膜(图中未示出),储液腔盖3014上设有排气口j,防水膜覆盖排气口j。防水膜能够防止外部水汽进入储液腔室3011, 以及防止储液腔室3011中的液体挥发,并且能够平衡储液腔室3011的内外气压。在一些实施例中,上述储液腔室3011和储液腔盖3014可以为一体结构,从而可以从排气口j注入要存储的液体,再在排气口j上设置防水膜,在此不做限定。
在一些实施例中,在本公开实施例提供的上述微流控芯片中,如图1和图4所示,盖板层02还包括在背离沟道板层01一侧包围进液通孔201的第五卡槽208,第五卡槽208内嵌有电极释放层3012,实现盖板层02与溶液贮存腔03之间的固定连接。
基于同一发明构思,本公开实施例提供了一种上述微流控芯片的核酸提取方法,由于该核酸提取方法解决问题的原理与上述微流控芯片解决问题的原理相似,因此,本公开实施例提供的该核酸提取方法的实施可以参见本公开实施例提供的上述微流控芯片的实施,重复之处不再赘述。
具体地,本公开实施例提供的一种上述微流控芯片的核酸提取方法,如图23所示,包括:
S2301、将样品液和裂解试剂混合后加入溶液贮存腔,控制溶液贮存腔释放样品液与裂解试剂的混合液体、以及溶液贮存腔中预存的试剂;
S2302、通过第二气压驱动口交替施加正压和负压,以将样品液、裂解试剂和预存的试剂导入混合裂解沟道进行混合,并裂解出核酸;
S2303、通过第一气压驱动口交替施加正压和负压,以将裂解出核酸后的混合液导入核酸提取沟道进行分离提取核酸。
为了更好地理解本公开实施例提供的上述核酸提取方法,以下对其进行详细说明。
在具体实施时,本公开实施例提供的上述核酸提取方法具体可以包括以下步骤:
第一步:可在磁珠缓冲液贮存腔301中预存175μL磁珠缓冲液,在结合液贮存腔302中预存300μL结合液,清洗液贮存腔303中预存600μL清洗液,在洗脱液贮存100μL洗脱液。
第二步:以10 5个细胞为标准样本量,将细胞用1×磷酸缓冲液稀释,作为样品液。将裂解试剂与样品液混合,置于65℃孵育10分钟。然后加入到磁珠缓冲液贮存腔301中,与磁珠缓冲液贮存腔301中磁珠缓冲液混合均匀。打开第一阀门41和第五阀门45,并关闭其余阀门,使得磁珠缓冲液贮存腔301中磁珠缓冲液、裂解试剂与样品液的混合液体通过打开的第五阀门45由第一沟道A导入混合裂解凹槽1021中,裂解出核酸,裂解出的核酸被混合裂解凹槽1021内的磁珠吸附。并可通过电磁铁等供磁部件将磁珠吸附在混合裂解凹槽1021的内壁上,裂解产生的废液通过打开的第五阀门45由第五沟道E进入废液腔06被吸液芯吸收。
第三步:打开第二阀门42和第五阀门45,并关闭其余阀门。此时,结合液贮存腔302中的结合液通过打开的第二阀门42由第二沟道B释放进反应凹槽021。在第二气压驱动口105的正压和负压交替驱动下吸附有核酸的磁珠在反应凹槽021和缓冲凹槽022内来回流动,以充分增大磁珠与核酸的结合力。接着静置3分钟后,通过电磁铁等供磁部件将磁珠吸附在反应凹槽021的内壁上,废液通过打开的第五阀门45由第五沟道E进入废液腔06被吸液芯吸收。
第四步:打开第三阀门43和第六阀门46,并关闭其余阀门。此时,清洗液贮存腔303中的清洗液通过打开的第三阀门43由第三沟道C释放进反应凹槽021。在第一气压驱动口104的正压和负压交替驱动下,吸附有核酸的磁珠和清洗液通过打开的第六阀门46并经由第六沟道F在反应凹槽021和核酸提取沟道103内来回流动,以有效清洗吸附有核酸的磁珠。待来回流动多次之后,吸附有核酸的磁珠最终进入核酸提取沟道103内,再通过电磁铁等供磁部件在电磁铁容置凹槽内将磁珠吸附在核酸提取沟道103的内壁上。废液通过第二气压驱动口105的负压驱动进入废液腔06被吸液芯吸收。
第五步:关闭全部阀门,并通过第一气压驱动口104和第二气压驱动口105的正压和负压交替驱动,向核酸提取沟道103内部来回吹吸空气,以将吸附有核酸的磁珠上残留的有机试剂挥发掉。
第六步:打开第四阀门44和第六阀门46,并关闭其余阀门。此时,洗脱液贮存腔304中的洗脱液通过打开的第四阀门44由第四沟道D释放进反应凹槽021后,通过打开的第六阀门46并经由第六沟道F进入核酸提取沟道103。在第一气压驱动口104的正压和负压交替驱动下,洗脱液和吸附有核酸的磁珠在反应凹槽021和核酸提取沟道103内来回流动(即保证磁珠处于悬浮状态),在磁珠悬浮的状态下,在56℃温度下孵育5分钟,从而将磁珠与核酸分离,获取纯净的核酸。
第七步:关闭全部阀门,并通过电磁铁等供磁部件在电磁铁容置凹槽内将磁珠吸附在核酸提取沟道103的内壁上。并通过第一气压驱动口104的负压驱动,将包含核酸的洗脱液排出核酸提取沟道103。例如,可以在第一气压驱动口104出外接一个产物回收管,以将包含核酸的洗脱液回收至该产物回收管内,便于进行后续检测。
基于同一发明构思,本公开实施例提供了一种核酸提取装置,包括微流控芯片和供磁部件(例如电磁铁),其中,微流控芯片为本公开实施例提供的上述微流控芯片,供磁部件位于沟道板层背离盖板层的一侧。由于该核酸提取装置解决问题的原理与上述微流控芯片解决问题的原理相似,因此,本公开实施例提供的该核酸提取装置的实施可以参见本公开实施例提供的上述微流控芯片的实施,重复之处不再赘述。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (40)

  1. 一种微流控芯片,其中,包括:
    沟道板层,所述沟道板层包括:进液凹槽、混合裂解沟道、核酸提取沟道、第一气压驱动口和第二气压驱动口,其中,所述进液凹槽、所述混合裂解沟道、所述核酸提取沟道和所述第一气压驱动口依次连通形成一条液体流动通道,所述进液凹槽、所述混合裂解沟道和所述第二气压驱动口依次连通形成另一条液体流动通道;
    盖板层,与所述沟道板层相对设置,所述盖板层包括与所述进液凹槽对应设置的进液通孔;
    溶液贮存腔,位于所述盖板层背离所述沟道板层的一侧,所述溶液贮存腔包括与所述进液通孔对应设置的出液通孔。
  2. 如权利要求1所述的微流控芯片,其中,所述溶液贮存腔包括磁珠缓冲液贮存腔、结合液贮存腔、清洗液贮存腔和洗脱液贮存腔;
    所述进液通孔包括磁珠缓冲液进液通孔、结合液进液通孔、清洗液进液通孔和洗脱液进液通孔;
    所述进液凹槽包括:磁珠缓冲液进液凹槽、结合液进液凹槽、清洗液进液凹槽和洗脱液进液凹槽;
    其中,所述磁珠缓冲液贮存腔、所述磁珠缓冲液进液通孔与所述磁珠缓冲液进液凹槽依次连通;
    所述结合液贮存腔、所述结合液进液通孔与所述结合液进液凹槽依次连通;
    所述清洗液贮存腔、所述清洗液进液通孔与所述清洗液进液凹槽依次连通;
    所述洗脱液贮存腔、所述洗脱液进液通孔与所述洗脱液进液凹槽依次连通。
  3. 如权利要求2所述的微流控芯片,其中,所述混合裂解沟道包括混合 裂解凹槽,直接连通所述混合裂解凹槽与所述磁珠缓冲液进液凹槽的第一沟道,直接连通所述混合裂解凹槽与所述结合液进液凹槽的第二沟道,直接连通所述混合裂解凹槽与所述清洗液进液凹槽的第三沟道,直接连通所述混合裂解凹槽与所述洗脱液进液凹槽的第四沟道,间接连通所述混合裂解凹槽与所述第二气压驱动口的第五沟道,以及直接连通所述混合裂解凹槽与所述核酸提取沟道的第六沟道。
  4. 如权利要求3所述的微流控芯片,其中,还包括:用于控制所述第一沟道中的液体是否流通的第一阀门,用于控制所述第二沟道中的液体是否流通的第二阀门,用于控制所述第三沟道中的液体是否流通的第三阀门,用于控制所述第四沟道中的液体是否流通的第四阀门,用于控制所述第五沟道中的液体是否流通的第五阀门,以及用于控制所述第六沟道中的液体是否流通的第六阀门。
  5. 如权利要求4所述的微流控芯片,其中,在所述第五阀门与所述第二气压驱动口之间的所述第五沟道为折线形。
  6. 如权利要求5所述的微流控芯片,其中,折线形的所述第五沟道包括交叉设置且相互导通的第一部分和第二部分,其中,所述第一部分与所述第五阀门直接导通,所述第二部分与所述第二气压驱动口间接导通,所述第一部分的长度大于所述第二部分的长度。
  7. 如权利要求6所述的微流控芯片,其中,所述第一部分和所述第二部分的夹角30°~150°。
  8. 如权利要求4所述的微流控芯片,其中,所述第一阀门、所述第二阀门、所述第三阀门、所述第四阀门、所述第五阀门和所述第六阀门中的任一个包括:在所述沟道板层上的第一限位通孔,在所述盖板层上与所述第一限位通孔对应设置的第二限位通孔,在所述第一限位通孔与所述第二限位通孔之间移动的阀芯,在所述沟道板层背离所述盖板层的一侧密封所述第一限位通孔的底膜,以及在所述盖板层面向所述沟道板层一侧承载所述阀芯的弹性膜,且所述弹性膜覆盖所述第二限位通孔。
  9. 如权利要求4所述的微流控芯片,其中,所述第一阀门、所述第二阀门、所述第三阀门、所述第四阀门、所述第五阀门和所述第六阀门中的任一个包括:在所述沟道板层上的限位凹槽,在所述盖板层上与所述限位凹槽对应设置的第二限位通孔,在所述限位凹槽与所述第二限位通孔之间移动的阀芯,以及在所述盖板层面向所述沟道板层一侧承载所述阀芯的弹性膜,且所述弹性膜覆盖所述第二限位通孔。
  10. 如权利要求4所述的微流控芯片,其中,所述沟道板层包括依次层叠设置的第一沟道层、第一胶层和第二沟道层,其中,所述第一沟道层靠近所述盖板层;
    所述第一沟道层包括第一混合裂解凹槽,直接连通所述第一阀门与所述磁珠缓冲液进液凹槽的第一子沟道,直接连通所述第二阀门与所述结合液进液凹槽的第二子沟道,直接连通所述第三阀门与所述清洗液进液凹槽的第三子沟道,以及直接连通第四阀门与所述洗脱液进液凹槽的第四子沟道;
    所述第一胶层包括相互独立的第二混合裂解凹槽和第一核酸提取沟道;
    所述第二沟道层包括第三混合裂解凹槽,第二核酸提取沟道,直接连通所述第一阀门与所述第三混合裂解凹槽的第五子沟道,直接连通所述第二阀门与所述第三混合裂解凹槽的第六子沟道,直接连通所述第三阀门与所述第三混合裂解凹槽的第七子沟道,直接连通所述第四阀门与所述第三混合裂解凹槽的第八子沟道,直接连通所述第三混合裂解凹槽与所述第五阀门的第九子沟道,间接连通所述第五阀门与所述第二气压驱动口的第十子沟道,直接连通所述第三混合裂解凹槽与所述第六阀门的第十一子沟道,以及直接连通所述六阀门与所述第二核酸提取沟道的第十二子沟道;
    其中,所述第一子沟道和所述第五子沟道构成所述第一沟道,所述第二子沟道和所述第六子沟道构成所述第二沟道,所述第三子沟道和所述第七子沟道构成所述第三沟道,所述第四子沟道和所述第八子沟道构成所述第四沟道,所述第九子沟道和所述第十子沟道构成所述第五沟道,所述第十一子沟道和所述第十二子沟道构成所述第六沟道;
    所述第一混合裂解凹槽、所述第二混合裂解凹槽、所述第三混合裂解凹槽依次直接贯通构成所述混合裂解凹槽,且所述第一混合裂解凹槽在所述盖板层所在平面上的正投影、所述第二混合裂解凹槽在所述盖板层所在平面上的正投影、以及所述第三混合裂解凹槽在所述盖板层所在平面上的正投影大致重合;
    所述第一核酸提取沟道与所述第二核酸提取沟道直接贯通构成所述核酸提取沟道,所述第一核酸提取沟道在所述盖板层所在平面上的正投影与所述第二核酸提取沟道在所述盖板层所在平面上的正投影大致重合。
  11. 如权利要求10所述的微流控芯片,其中,所述第一阀门、所述第二阀门、所述第三阀门、所述第四阀门、所述第五阀门和所述第六阀门中的任一个包括:在所述第一沟道层上的第一限位通孔,在所述第一胶层上与所述第一限位通孔直接连通的引流孔,在所述盖板层上与所述第一限位通孔对应设置的第二限位通孔,在所述第一限位通孔与所述第二限位通孔之间移动的阀芯,以及在所述盖板层面向所述第一沟道层一侧承载所述阀芯的弹性膜,且所述弹性膜覆盖所述第二限位通孔;
    其中,所述第一阀门、所述第二阀门、所述第三阀门和所述第四阀门中的任一个设置有一个所述引流孔,所述第五阀门和所述第六阀门中的任一个设置两个所述引流孔。
  12. 如权利要求8、9或11所述的微流控芯片,其中,还包括:在所述盖板层背离所述沟道板层的一侧密封所述第二限位通孔的第一保护膜。
  13. 如权利要求8、9或11所述的微流控芯片,其中,所述盖板层还包括围绕所述第二限位通孔的扩容凹槽,所述扩容凹槽在所述盖板层所在平面上的正投影与所述弹性膜在所述盖板层所在平面上的正投影相互交叠。
  14. 如权利要求13所述的微流控芯片,其中,所述扩容凹槽包括第一扩容凹槽和/或第二扩容凹槽,其中,所述第一扩容凹槽位于所述盖板层背离所述沟道板层的一侧,所述第二扩容凹槽位于所述盖板层面向所述沟道板层的一侧,所述第一扩容凹槽在所述盖板层所在平面上的正投影与所述弹性膜在 所述盖板层所在平面上的正投影大致相同,所述第二扩容凹槽在所述盖板层所在平面上的正投影位于所述弹性膜在所述盖板层所在平面上的正投影内。
  15. 如权利要求14所述的微流控芯片,其中,所述第二扩容凹槽在所述盖板层所在平面上的正投影边界与所述弹性膜在所述盖板层所在平面上的正投影边界之间的距离为0.5mm~1.0mm。
  16. 如权利要求14所述的微流控芯片,其中,在所述盖板层所在平面的垂直方向上,所述第一扩容凹槽的深度为0.8mm~1.2mm,所述第二扩容凹槽的深度为11μm~50μm。
  17. 如权利要求8、9或11所述的微流控芯片,其中,还包括粘结所述盖板层与所述沟道板层的第二胶层,所述第二胶层包括直接连通所述结合液进液通孔与所述磁珠缓冲液进液凹槽的第一过孔,直接连通所述结合液进液通孔与所述结合液进液凹槽的第二过孔,直接连通所述清洗液进液通孔与所述清洗液进液凹槽的第三过孔,直接连通所述洗脱液进液通孔与所述洗脱液进液凹槽的第四过孔,容纳所述弹性膜的容置孔,以及直接连通所述混合裂解凹槽的第五过孔。
  18. 如权利要求3所述的微流控芯片,其中,还包括位于所述混合裂解凹槽内的磁珠。
  19. 如权利要求3所述的微流控芯片,其中,所述混合裂解凹槽包括相互连通的反应凹槽和缓冲凹槽,其中,所述反应凹槽与所述第一沟道、所述第二沟道、所述第三沟道、所述第四沟道、所述第六沟道分别直接连通,所述缓冲凹槽与所述第五沟道直接连通。
  20. 如权利要求3所述的微流控芯片,其中,所述混合裂解凹槽包括相互连通的反应凹槽和缓冲凹槽,其中,所述反应凹槽与所述第一沟道、所述第二沟道、所述第三沟道、所述第四沟道分别直接连通,所述缓冲凹槽与所述第五沟道、所述第六沟道分别直接连通。
  21. 如权利要求19或20所述的微流控芯片,其中,所述盖板层还包括完全覆盖所述反应凹槽的扩容通孔,以及在所述盖板层背离所述沟道板层的 一侧密封所述扩容通孔的第二保护膜。
  22. 如权利要求19或20所述的微流控芯片,其中,所述缓冲凹槽为纺锥形。
  23. 如权利要求22所述的微流控芯片,其中,在所述纺锤形延伸方向上1/2~3/4的位置处宽度最大。
  24. 如权利要求19或20所述的微流控芯片,其中,所述混合裂解凹槽还包括直接连通所述混合裂解凹槽与所述缓冲凹槽的导流沟道,所述导流沟道为“S”形。
  25. 如权利要求19所述的微流控芯片,其中,所述沟道板层还包括废液凹槽,所述废液凹槽与所述核酸提取沟道、所第五沟道和所述第二气压驱动口分别直接连通;
    所述盖板层还包括与所述废液凹槽对应连通的废液通孔;
    所述微流控芯片还包括嵌入所述废液通孔的废液腔。
  26. 如权利要求25所述的微流控芯片,其中,所述沟道板层还包括位于所述废液凹槽内的支撑柱;
    所述微流控芯片还包括位于所述支撑柱上的吸液芯。
  27. 如权利要求25所述的微流控芯片,其中,所述进液凹槽、所述混合裂解沟道和所述核酸提取沟道在第一方向上依次并排设置,所述第一气压驱动口和所述第二气压驱动口分别设置在所述核酸提取沟道在第二方向上的两侧,所述废液凹槽与所述第二气压驱动口位于所述核酸提取沟道的同侧,所述第二方向与所述第一方向交叉设置。
  28. 如权利要求27所述的微流控芯片,其中,在所述第二方向上,所述沟道板层在所述进液凹槽所在区域的长度、在所述混合裂解沟道所在区域的长度、在所述核酸提取沟道所在区域的长度依次增大。
  29. 如权利要求27所述的微流控芯片,其中,所述沟道板层还包括位于所述废液凹槽远离所述核酸提取沟道一侧、以及位于所述混合裂解沟道在所述第二方向上的两侧的第一定位孔;所述盖板层在第一定位孔对应的位置具 有第二定位孔。
  30. 如权利要求3~11、18~20任一项所述的微流控芯片,其中,所述核酸提取沟道为蛇形。
  31. 如权利要求3~11、18~20任一项所述的微流控芯片,其中,所述沟道板层还包括在背离所述盖板层一侧的磁铁容置槽,所述磁铁容置槽位于所述核酸提取沟道所在区域、以及所述混合裂解凹槽所在区域。
  32. 如权利要求1~11、18~20任一项所述的微流控芯片,其中,所述沟道板层还包括在背离所述盖板层一侧的第一卡槽,所述第一卡槽在所述盖板层所在平面上的正投影与所述第一气压驱动口、所述第二气压驱动口在所述盖板层所在平面上的正投影互不交叠;
    所述盖板层还包括在背离所述沟道板层一侧的第二卡槽,其中所述第二卡槽在所述盖板层所在平面上的正投影与所述第一卡槽在所述盖板层所在平面上的正投影相互交叠;
    所述微流控芯片还包括爪型连接器,所述爪型连接器的部分嵌入所述第一卡槽和所述第二卡槽,且所述爪型连接器包括与所述第一气压驱动口或所述第二气压驱动口连通的供压通道。
  33. 如权利要求32所述的微流控芯片,其中,所述沟道板层还包括位于所述第一气压驱动口和所述第二气压驱动口下方的第三卡槽;
    所述盖板层还包括在面向所述沟道板层一侧的第四卡槽,其中所述第四卡槽在所述盖板层所在平面上的正投影与所述第三卡槽在所述盖板层所在平面上的正投影相互交叠;
    所述爪型连接器的部分嵌入所述第三卡槽和所述第四卡槽。
  34. 如权利要求1~11、18~20任一项所述的微流控芯片,其中,所述溶液贮存腔包括具有排液口的储液腔室、靠近所述排液口一侧的电极释放层和热熔性封堵结构,其中,所述电极释放层在对应所述排液口的位置具有开孔,所述热熔性封堵结构密封所述排液口和所述开孔,所述排液口和所述开孔构成所述出液通孔。
  35. 如权利要求34所述的微流控芯片,其中,所述热熔性封堵结构包括封堵所述开孔的球阀,以及将所述球阀固定于所述电极释放层上的热敏结构。
  36. 如权利要求34所述的微流控芯片,其中,所述储液腔室还包括围绕所述排液口的密封圈容置槽;
    所述溶液贮存腔还包括密封圈和粘合剂,所述密封圈位于所述密封圈容置槽内,所述粘合剂填充于所述密封圈与所述密封圈容置槽之间。
  37. 如权利要求34所述的微流控芯片,其中,还包括储液腔盖和防水膜,所述储液腔盖上设有排气口,所述防水膜覆盖所述排气口。
  38. 如权利要求34所述的微流控芯片,其中,所述盖板层还包括在背离所述沟道板层一侧包围所述进液通孔的第五卡槽,所述第五卡槽内嵌有所述电极释放层。
  39. 一种如权利要求1~38任一项所述的微流控芯片的核酸提取方法,其中,包括:
    将样品液和裂解试剂混合后加入所述溶液贮存腔,控制所述溶液贮存腔释放所述样品液与裂解试剂的混合液体、以及所述溶液贮存腔中预存的试剂;
    通过所述第二气压驱动口交替施加正压和负压,以将所述样品液、所述裂解试剂和所述预存的试剂导入所述混合裂解沟道进行混合,并裂解出核酸;
    通过所述第一气压驱动口交替施加正压和负压,以将裂解出核酸后的混合液导入所述核酸提取沟道进行分离提取核酸。
  40. 一种核酸提取装置,其中,包括微流控芯片和供磁部件,其中,所述微流控芯片为如权利要求1~38任一项所述的微流控芯片,所述供磁部件位于所述沟道板层背离所述盖板层的一侧。
PCT/CN2022/108153 2021-08-17 2022-07-27 微流控芯片、其核酸提取方法及核酸提取装置 WO2023020220A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110942041.2A CN115703993A (zh) 2021-08-17 2021-08-17 微流控芯片、其核酸提取方法及核酸提取装置
CN202110942041.2 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023020220A1 true WO2023020220A1 (zh) 2023-02-23

Family

ID=85180468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108153 WO2023020220A1 (zh) 2021-08-17 2022-07-27 微流控芯片、其核酸提取方法及核酸提取装置

Country Status (2)

Country Link
CN (1) CN115703993A (zh)
WO (1) WO2023020220A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115151630A (zh) * 2020-09-22 2022-10-04 京东方科技集团股份有限公司 核酸提取微流控芯片、核酸提取装置及提取方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253365A (ja) * 2004-03-11 2005-09-22 Hitachi Ltd 細菌芽胞処理チップ及び細菌芽胞処理装置
US20150361419A1 (en) * 2013-01-21 2015-12-17 Nanobiosys Inc. Microfluidic chip for extracting nucleic acids, device for extracting nucleic acids comprising same, and method for extracting nucleic acids using same
US20170292146A1 (en) * 2014-09-17 2017-10-12 Helixbind, Inc. Methods and devices for detecting and identifying microorganisms
CN109536366A (zh) * 2018-11-29 2019-03-29 合肥中科易康达生物医学有限公司 一种基于改性毛细管的核酸检测微流控芯片及核酸检测系统
CN110343611A (zh) * 2019-08-14 2019-10-18 无锡研奥电子科技有限公司 一种微流控芯片
CN212426057U (zh) * 2020-07-07 2021-01-29 江苏汇先医药技术有限公司 一种用于生物样本处理的微流控芯片
CN112322453A (zh) * 2020-12-03 2021-02-05 中国计量科学研究院 一种用于核酸提取、扩增及检测的微流控芯片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253365A (ja) * 2004-03-11 2005-09-22 Hitachi Ltd 細菌芽胞処理チップ及び細菌芽胞処理装置
US20150361419A1 (en) * 2013-01-21 2015-12-17 Nanobiosys Inc. Microfluidic chip for extracting nucleic acids, device for extracting nucleic acids comprising same, and method for extracting nucleic acids using same
US20170292146A1 (en) * 2014-09-17 2017-10-12 Helixbind, Inc. Methods and devices for detecting and identifying microorganisms
CN109536366A (zh) * 2018-11-29 2019-03-29 合肥中科易康达生物医学有限公司 一种基于改性毛细管的核酸检测微流控芯片及核酸检测系统
CN110343611A (zh) * 2019-08-14 2019-10-18 无锡研奥电子科技有限公司 一种微流控芯片
CN212426057U (zh) * 2020-07-07 2021-01-29 江苏汇先医药技术有限公司 一种用于生物样本处理的微流控芯片
CN112322453A (zh) * 2020-12-03 2021-02-05 中国计量科学研究院 一种用于核酸提取、扩增及检测的微流控芯片

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115151630A (zh) * 2020-09-22 2022-10-04 京东方科技集团股份有限公司 核酸提取微流控芯片、核酸提取装置及提取方法

Also Published As

Publication number Publication date
CN115703993A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
US20220023862A1 (en) Microfluidic cartridge for processing and detecting nucleic acids
JP6698786B2 (ja) 試料導入から結果出力までのプロセス化を提供する単一構造バイオチップおよび製造方法
CN112226361B (zh) 一种基于磁珠转移和阀控移液的核酸检测卡盒及检测方法
WO2023020220A1 (zh) 微流控芯片、其核酸提取方法及核酸提取装置
US11485968B2 (en) Microfluidic cartridge for processing and detecting nucleic acids
WO2021164530A1 (zh) 检测芯片及其使用方法、检测装置
CN111205966A (zh) 样本提取芯片和生物反应装置
WO2022105406A1 (zh) 微流控生物反应芯片及其使用方法
CN111073811A (zh) 一种用于实时荧光核酸扩增检测的微流控芯片及检测方法
CN110841727B (zh) 微流控芯片、微流控系统及操作方法
CN112986554B (zh) 基于离心式微流控的牛奶中小分子检测方法及其专用芯片
US20220333048A1 (en) Nucleic acid extraction microfluidic chip, and nucleic acid extraction device and extraction method
CN207498376U (zh) 主动控制流路的多通量微流控核酸检测芯片
CN114292734B (zh) 一种全流程集成液滴数字pcr芯片、制备方法和应用
WO2023040477A1 (zh) 体外诊断分析装置及试剂卡盒
CN115400806A (zh) 一体化核酸提取微流控芯片盒和核酸提取及检测方法
CN212426057U (zh) 一种用于生物样本处理的微流控芯片
JP5898635B2 (ja) 核酸分析カートリッジの製造方法
CN219385100U (zh) 试剂卡盒
CN117384750B (zh) 一种全集成数字化核酸分析卡盒
CN116515617B (zh) 一种离心式pcr-荧光多靶标检测芯片
JP2014081329A (ja) 核酸分析カートリッジ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE