WO2022105406A1 - 微流控生物反应芯片及其使用方法 - Google Patents

微流控生物反应芯片及其使用方法 Download PDF

Info

Publication number
WO2022105406A1
WO2022105406A1 PCT/CN2021/119142 CN2021119142W WO2022105406A1 WO 2022105406 A1 WO2022105406 A1 WO 2022105406A1 CN 2021119142 W CN2021119142 W CN 2021119142W WO 2022105406 A1 WO2022105406 A1 WO 2022105406A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
microfluidic
air hole
liquid storage
liquid
Prior art date
Application number
PCT/CN2021/119142
Other languages
English (en)
French (fr)
Inventor
吴旭东
Original Assignee
江苏卓微生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏卓微生物科技有限公司 filed Critical 江苏卓微生物科技有限公司
Publication of WO2022105406A1 publication Critical patent/WO2022105406A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped

Definitions

  • the present disclosure relates to the technical fields of biochemistry and molecular biology, and in particular, to a microfluidic biological reaction chip and a method for using the same.
  • molecular detection technologies mainly include nucleic acid molecular hybridization, polymerase chain reaction (PCR) and biochip technology.
  • Molecular detection products are mainly used in the detection of various clinical departments such as tumor, infection, genetics, and prenatal screening, as well as physical examination centers, technical service centers, third-party testing institutions, and the rapid microbiological testing market.
  • nucleic acid extraction by spin column method or magnetic bead method used in the field of biotechnology generally requires four steps of lysis, binding, rinsing, and elution, plus subsequent nucleic acid molecule hybridization, polymerase chain reaction (PCR) ) and biochips and other detection steps, making the entire “sample to result” fully automated instrument very difficult to achieve.
  • PCR polymerase chain reaction
  • microfluidic biological reaction chip including:
  • a reaction base on which is provided at least one liquid storage cavity, at least one air hole, at least one liquid addition cavity, and a reaction pool;
  • the end face of the elastic substrate facing the reaction matrix is provided with a plurality of microfluidic channels;
  • some of the microfluidic channels in the plurality of microfluidic channels are configured to communicate with the liquid storage cavity and the air hole, some of the microfluidic channels are configured to communicate with the liquid storage cavity and the reaction tank, and some of the microfluidic channels are configured to communicate with the liquid storage cavity and the reaction tank. It is configured to communicate with the liquid addition chamber and the air hole, and part of the microfluidic channel is configured to communicate with the liquid addition chamber and the reaction tank.
  • the reactive matrix is made of hard material.
  • the elastic substrate is made of soft material.
  • the liquid storage chamber includes two separate chambers separated by a partition;
  • a communication port configured to communicate with the two separate cavities is provided at the bottom of the partition plate.
  • the liquid storage chamber includes two separate chambers separated by a partition;
  • a communication port configured to communicate with the two separate cavities is provided on the partition plate.
  • At least one of the liquid storage chambers corresponds to one of the air holes
  • One of the split chambers is distributed on a side close to the air hole corresponding to the liquid storage chamber, and the other split chamber is distributed on a side away from the air hole corresponding to the liquid storage chamber.
  • the liquid addition chamber includes two separation chambers separated by a partition plate; and
  • the bottom of the partition plate is provided with a through port configured to communicate with the two separation chambers.
  • the liquid addition chamber includes two separation chambers separated by a partition plate; and
  • a through port configured to communicate with the two separation chambers is provided on the baffle plate.
  • At least one of the liquid filling chambers corresponds to at least one of the air holes
  • One of the separation chambers is distributed on the side close to the air hole corresponding to the liquid addition chamber, and the other separation chamber is distributed on the side away from the air hole corresponding to the liquid addition chamber.
  • one end of the reaction matrix is fixedly connected to one end of the elastic substrate.
  • the reactive matrix and the elastic substrate are configured to form an included angle A around the fixed end.
  • the microfluidic bioreaction chip further includes a fixing clip configured to clamp and fix one side end of the reaction matrix and the elastic substrate.
  • the reactive matrix and the elastic substrate are configured to form an included angle A around the fixing clip.
  • the end face of the reaction matrix facing the elastic substrate is also covered with a first coating
  • the first covering film includes a covering layer attached to the reaction substrate, and a connecting film connected to the covering layer by bending.
  • the end face of the elastic substrate facing the reaction matrix is also covered with a second coating
  • the second covering film is bonded and connected with the connecting film.
  • An embodiment of the present disclosure provides the microfluidic bioreactor chip, wherein the elastic substrate is provided with ventilation holes.
  • the ventilation hole is a through hole structure with both upper and lower surfaces open;
  • one of the ventilation holes corresponds to at least one of the air holes
  • At least one of the ventilation holes is located at one end of the microfluidic channel, and communicates with at least one of the corresponding air holes through the microfluidic channel.
  • At least one of the ventilation holes corresponds to at least one of the reaction pools
  • At least one of the ventilation holes is located at one end of the microfluidic channel, and communicates with the corresponding at least one of the reaction cells through the microfluidic channel.
  • the present disclosure provides a method for using a microfluidic biological reaction chip, using the microfluidic biological reaction chip; including:
  • Step S1 the elastic substrate and the facing end face of the reaction matrix are attached
  • Step S2 The microfluidic channel on the elastic substrate forms the connection channel between the liquid storage cavity and the air hole, the liquid storage cavity and the reaction tank, the liquid addition cavity and the air hole, and the liquid addition cavity and the reaction cell, so that the liquid storage cavity and the air hole and the liquid storage cavity are connected.
  • the cavity and the reaction tank, the liquid addition cavity and the air hole, and the liquid addition cavity and the reaction tank are respectively communicated with each other.
  • FIG. 1 is a schematic structural diagram of a microfluidic bioreactor chip of the present disclosure from a first perspective
  • FIG. 2 is a first-view structural schematic diagram of a reaction matrix of the disclosed microfluidic bioreactor chip
  • FIG. 3 is a schematic structural diagram of the second view of the reaction matrix of the disclosed microfluidic bioreactor chip
  • FIG. 4 is a schematic structural diagram of a reaction matrix of the disclosed microfluidic bioreactor chip
  • Fig. 5 is the A-direction sectional schematic diagram of Fig. 4;
  • FIG. 6 is a schematic cross-sectional view taken along the line B of FIG. 4;
  • FIG. 7 is a schematic structural diagram of an elastic substrate of the disclosed microfluidic bioreactor chip under one embodiment
  • FIG. 8 is a schematic structural diagram of the disclosed microfluidic bioreactor chip from a second perspective
  • FIG. 9 is a schematic diagram of the flow of gas in the pores of the microfluidic bioreactor chip of the present disclosure between the pores and the corresponding liquid storage chamber and reaction pool;
  • FIG. 10 is a schematic diagram of a first perspective view of a liquid storage chamber and a liquid addition chamber of the disclosed microfluidic bioreactor chip in another embodiment
  • FIG. 11 is a schematic diagram of a second perspective view of the liquid storage chamber and the liquid addition chamber of the disclosed microfluidic bioreactor chip in another embodiment
  • FIG. 12 is a schematic diagram of a state of cooperation between the liquid storage chamber and the microfluidic channel of the disclosed microfluidic bioreactor chip in another embodiment.
  • FIG. 13 is a schematic diagram of a state of cooperation between the liquid storage chamber and the microfluidic channel of the microfluidic bioreactor chip disclosed in another embodiment.
  • FIG. 14 is a schematic diagram of a state of cooperation between the liquid storage chamber and the microfluidic channel of the disclosed microfluidic bioreactor chip in another embodiment.
  • 15 is a schematic structural diagram of the elastic substrate of the disclosed microfluidic bioreactor chip under another embodiment
  • FIG. 16 is a schematic diagram of the vent hole, the liquid storage cavity and the microfluidic channel of the disclosed microfluidic bioreactor chip in a state of cooperation in another embodiment.
  • reaction matrix 1 liquid storage cavity 11, partition plate 111, communication port 112, split cavity 113, air hole 12, liquid addition cavity 13, separation cavity 131, port 132, partition plate 133, reaction tank 15, elastic
  • the substrate 2 the microfluidic channel 21 , the ventilation hole 22 , the fixing clip 3 , the first coating 4 , the sticking layer 41 , the connecting membrane 42 , the second coating 5 , the sealing membrane 6 , and the sealing plug 7 .
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of the two elements or the interaction relationship between the two elements.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of the two elements or the interaction relationship between the two elements.
  • a first feature above or below a second feature may include the first and second features in direct contact, or may include the first and second features not in direct contact but through additional characteristic contact between them.
  • the first feature being above, above and above the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is below, below and below the second feature includes the first feature is directly below and diagonally below the second feature, or simply means that the first feature level is smaller than the second feature.
  • an embodiment of the present disclosure provides a microfluidic bioreactor chip, including:
  • the reaction substrate 1 is provided with at least one liquid storage chamber 11, at least one air hole 12, at least one liquid addition chamber 13, and a reaction pool 15 on the reaction substrate 1;
  • an elastic substrate 2 the end face of the elastic substrate 2 facing the reaction matrix 1 is provided with a plurality of microfluidic channels 21;
  • some of the microfluidic channels 21 of the plurality of microfluidic channels 21 are configured to communicate with the liquid storage chamber 11 and the air hole 12, and some of the microfluidic channels 21 are configured to communicate with the liquid storage chamber 11 and the reaction tank 15 , part of the microfluidic channel 21 is configured to communicate with the liquid addition chamber 13 and the air hole 12 , and part of the microfluidic channel 21 is configured to communicate with the liquid addition chamber 13 and the reaction tank 15 .
  • the air hole 12 is a through hole structure with both upper and lower surfaces open. That is, the air hole 12 is a through hole structure with one end facing the elastic substrate 2 and one end facing away from the elastic substrate 2 open.
  • a closing device is provided on the bottom surface of the reaction substrate 1 at a position corresponding to the air hole 12 . The sealing device closes the lower surface of the air hole 12, and when in use, the sealing device can be removed and used.
  • the closure means may be any of closure membrane 6, closure plug 7, closure plate.
  • the reaction matrix 1 is made of hard material
  • the elastic substrate 2 is made of soft material.
  • the liquid storage chamber 11 includes two separate chambers 113 separated by a partition 111 ;
  • a communication port 112 configured to communicate with the two split cavities 113 is provided at the bottom of the partition plate 111 .
  • the fixing method of the partition plate and the liquid storage chamber includes, but is not limited to, bonding, snap-fit, chute or integral molding.
  • the liquid storage chamber 11 includes two divided chambers 113 separated by a partition 111;
  • the partition plate 111 is provided with a communication port 112 configured to communicate with the two split cavities 113 .
  • At least one of the liquid storage chambers 11 corresponds to one of the air holes 12;
  • One of the split chambers 113 is distributed on a side close to the air hole 12 corresponding to the liquid storage chamber 11 , and the other split chamber 113 is distributed on a side away from the air hole 12 corresponding to the liquid storage chamber 11 .
  • the liquid addition chamber 13 includes two separation chambers 131 separated by a partition plate 133; and
  • the bottom of the partition plate 133 is provided with a through port 132 configured to communicate with the two separation chambers 131 .
  • the liquid addition chamber 13 includes two separation chambers 131 separated by a partition plate 133; and
  • the partition plate 133 is provided with a through port 132 configured to communicate with the two separation chambers 131 .
  • At least one of the liquid addition chambers 13 corresponds to at least one of the air holes 12;
  • One of the separation chambers 131 is distributed on the side close to the air hole 12 corresponding to the liquid addition chamber 13 , and the other separation chamber 131 is distributed on the side away from the air hole 12 corresponding to the liquid addition chamber 13 .
  • the elastic substrate 2 is further provided with ventilation holes 22 .
  • the ventilation hole 22 is a hole structure with both upper and lower surfaces open. That is, the vent hole 22 is a hole structure in which both the end facing the reaction substrate 1 and the end facing away from the reaction substrate 1 are open.
  • the air hole 12 is a pore structure with an upper surface open and a lower surface closed. That is, the air hole 12 is a hole structure in which one end facing the elastic substrate 2 is open, and one end facing away from the elastic substrate 2 is closed.
  • at least one vent hole 22 corresponds to at least one air hole 12 .
  • the ventilation hole 22 is located at one end of the microfluidic channel 21 and communicates with the corresponding air hole 12 through the microfluidic channel 21 .
  • at least one vent 22 corresponds to at least one reaction cell 15 .
  • the vent hole 22 is located at one end of the microfluidic channel 21 and communicates with the corresponding reaction cell 15 through the microfluidic channel 21 .
  • At least one vent hole 22 corresponds to at least one liquid storage chamber 11 .
  • the vent hole 22 is located at one end of the microfluidic channel 21 and directly communicates with the corresponding liquid storage chamber 11 through the microfluidic channel 21 .
  • At least one vent hole 22 corresponds to at least one liquid storage chamber 13 .
  • the vent hole 22 is located at one end of the microfluidic channel 21 and directly communicates with the corresponding liquid adding chamber 13 through the microfluidic channel 21 .
  • liquid storage chamber 11 and the liquid addition chamber 13 may not be configured with corresponding air holes 12 , but may directly communicate with the air holes 22 through the microfluidic channel 21 .
  • the vent hole 22 can be connected with a fluid driving device to drive the fluid, and some of the microfluidic channels 21 in the microfluidic channels 21 are configured to communicate with each other.
  • the liquid storage chamber 11 and the air hole 12 part of the microfluidic channel 21 is configured to communicate with the liquid storage chamber 11 and the reaction tank 15, part of the microfluidic channel 21 is configured to communicate with the liquid filling chamber 13 and the air hole 12, and part of the microfluidic channel 21 is configured to communicate Add liquid chamber 13 and reaction tank 15.
  • one end of the reaction matrix 1 is fixedly connected to one end of the elastic substrate 2 .
  • the reactive substrate 1 and the elastic substrate 2 are configured to form an included angle A around the fixed end.
  • the microfluidic bioreaction chip further includes a fixing clip 3 configured to clamp and fix one side end of the reaction matrix 1 and the elastic substrate 2 .
  • the reactive matrix 1 and the elastic substrate 2 are configured to form an included angle A around the fixing clip 3 .
  • the end face of the reaction substrate 1 facing the elastic substrate 2 is also covered with a first coating 4;
  • the first coating 4 includes a coating layer 41 attached to the reaction substrate 1 , and a connecting film 42 connected to the coating layer 41 by bending.
  • the end face of the elastic substrate 2 facing the reaction substrate 1 is further covered with a second coating 5;
  • the second covering film 5 is connected to the connecting film 42 by adhesive bonding.
  • An embodiment of the present disclosure provides a method for using a microfluidic biological reaction chip, using the microfluidic biological reaction chip; including:
  • Step S1 the elastic substrate 2 is attached to the end face facing the reaction matrix 1;
  • Step S2 the microfluidic channel 21 on the elastic substrate 2 is formed between the liquid storage cavity 11 and the air hole 12, the liquid storage cavity 11 and the reaction pool 15, the liquid addition cavity 13 and the air hole 12, and the liquid addition cavity 13 and the reaction cell 15.
  • the connecting channel is connected so that the liquid storage cavity 11 and the air hole 12, the liquid storage cavity 11 and the reaction tank 15, the liquid addition cavity 13 and the air hole 12, and the liquid addition cavity 13 and the reaction cell 15 are connected respectively.
  • the microfluidic biological reaction chip provided by the present disclosure can solve the technical problems of simplifying the experimental process, improving the experimental efficiency, and reducing the risk of contamination when the reaction liquid is transferred.
  • the present disclosure provides a method for using a microfluidic bioreaction chip to solve the technical problems of simplifying the experimental process, improving the experimental efficiency, and reducing the risk of contamination when the reaction liquid is transferred.
  • the microfluidic bioreaction chip and the method for using the same include an elastic substrate and a reaction substrate.
  • the elastic substrate is attached to the reaction substrate, a plurality of Some of the microfluidic channels in the microfluidic channel are configured to communicate with the liquid storage cavity and the air hole, some of the microfluidic channels are configured to communicate with the liquid storage cavity and the reaction tank, some of the microfluidic channels are configured to communicate with the liquid addition cavity and the air hole, and some of the microfluidic channels are configured to communicate with each other. It is configured to communicate with the liquid addition chamber and the reaction tank.
  • a unique air pressure driving technology can be used in the fully enclosed reaction matrix to provide a power source for the liquid in the liquid storage chamber in the microfluidic bioreactor chip and the liquid in the liquid addition chamber to enter the reaction pool together for reaction.
  • the overall reaction process simplifies the experimental process, improves the experimental efficiency, and also reduces the risk of contamination of the reaction liquid during transfer.
  • this embodiment provides a microfluidic biological reaction chip, including: a reaction substrate 1 and an elastic substrate 2 located below.
  • the reactive substrate 1 is made of hard material such as but not limited to acrylic or epoxy resin; and the elastic substrate 2 is made of soft material such as but not limited to polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • both the reaction substrate 1 and the elastic substrate 2 adopt a rectangular structure or a similar rectangular structure.
  • the thickness of the elastic substrate 2 may be the same as the thickness of the reaction substrate 1, or the thickness of the elastic substrate 2 may be smaller than that of the reaction substrate 1, and the drawings in this embodiment only take the latter case as an example.
  • the reaction substrate 1 is provided with at least one liquid storage chamber 11 , at least one air hole 12 , at least one liquid addition chamber 13 (one or more liquid addition chambers), and a reaction tank 15 .
  • the liquid storage chamber 11 here is configured to store biological reaction reagents.
  • at least two air holes 12 are provided on the reaction substrate 1 .
  • the air hole 12 includes a liquid storage cavity air hole corresponding to the liquid storage cavity, and a liquid addition cavity air hole corresponding to the liquid filling cavity.
  • the air hole of the liquid storage chamber corresponding to the liquid storage chamber may also be referred to as the air hole of the liquid storage chamber; the air hole corresponding to the liquid addition chamber may also be referred to as the air hole of the liquid addition chamber.
  • At least one liquid storage chamber 11 corresponds to one air hole 12 (liquid storage chamber air hole), or each of the at least one liquid storage chamber 11 corresponds to one air hole 12 (liquid storage chamber air hole). In some embodiments, the liquid storage chamber 11 is adjacent to the corresponding air hole 12 . In some embodiments, at least one liquid addition chamber 13 corresponds to one air hole 12 (liquid addition chamber air hole), or each of the at least one liquid addition chamber 13 corresponds to one air hole 12 (liquid addition chamber air hole). In some embodiments, the liquid filling chamber 13 is adjacent to the corresponding air hole.
  • At least one of the liquid storage chambers 11 corresponds to one of the air holes 12 ; and/or at least one of the liquid addition chambers 13 corresponds to one of the air holes 12 .
  • a plurality of liquid storage chambers 11 are provided on the reaction substrate 1 .
  • a plurality of liquid storage chambers 11 correspond to one air hole 12 .
  • each of the plurality of liquid storage chambers 11 corresponds to one air hole 12 .
  • each liquid storage chamber 11 and each corresponding air hole 12 constitute a liquid storage chamber-air hole pair.
  • a plurality of liquid addition chambers 13 are provided on the reaction substrate 1 .
  • a plurality of liquid filling chambers 13 correspond to one air hole 12 .
  • each of the plurality of liquid addition chambers 13 corresponds to one air hole 12 .
  • the liquid-filling cavity 13 and the corresponding air hole 12 form a liquid-filling cavity-air hole pair.
  • the reaction substrate 1 in this embodiment is provided with two liquid storage chambers 11 , and the connecting line between the two liquid storage chambers 11 is parallel to the rectangular structure of the reaction substrate 1 . width direction side.
  • One liquid adding chamber 13 is provided in this embodiment. That is, a liquid filling chamber 13 and two liquid storage chambers 11 are provided on the reaction substrate 1.
  • a total of three air holes 12 are provided, one liquid addition chamber 13 corresponds to one air hole 12, and the other air hole 12 corresponds to One of the two liquid storage chambers 11 corresponds to one of the liquid storage chambers 11 , and the other air hole 12 corresponds to the other liquid storage chamber 11 .
  • the gas circulating in the air hole 12 can form the power for the liquid to circulate in the liquid storage chamber 11 or the liquid adding chamber 13 corresponding to the air hole 12 .
  • the three air holes 12 can be connected to the same external air pressure pump system through an air pipe respectively, or each air hole 12 can be connected to the same external air pressure pump system through an air pipe respectively.
  • An external air pressure pump system is connected, which is not absolutely limited in this embodiment. It should be noted that as long as the gas communication device and the gas supply device that can supply the gas to the air hole 12 can be realized, the use requirements of this embodiment can be met.
  • the air hole 12 may be a through hole structure with both upper and lower surfaces open.
  • the end surface of the elastic substrate 2 facing the reaction substrate 1 is provided with a plurality of microfluidic channels 21 .
  • some of the microfluidic channels 21 in the plurality of microfluidic channels 21 are configured to communicate with the liquid storage chamber 11 and the air hole 12 .
  • part of the microfluidic channel 21 is configured to communicate with the liquid storage chamber 11 and the reaction tank 15
  • part of the microfluidic channel 21 is configured to communicate with the liquid addition chamber 13 and the air hole 12
  • part of the microfluidic channel 21 is configured to communicate with the liquid addition chamber 13 and the reaction tank 15.
  • the microfluidic channel 21 is configured between the liquid storage chamber 11 and the air hole 12 , between the liquid storage chamber 11 and the reaction cell 15 , between the liquid addition chamber 13 and the air hole 12 , and between the liquid addition chamber 13 and the reaction cell 15 . the medium of circulation between them. That is to say, the microfluidic channel 21 forms between the liquid storage chamber 11 and the air hole 12 , between the liquid storage chamber 11 and the reaction cell 15 , between the liquid addition chamber 13 and the air hole 12 , and between the liquid addition chamber 13 and the reaction cell 15 . medium of circulation.
  • the liquid storage chamber 11 and the air hole 12 When the elastic substrate 2 is not attached to the reaction substrate 1, the liquid storage chamber 11 and the air hole 12, the liquid storage chamber 11 and the reaction cell 15, the liquid addition chamber 13 and the air hole 12, and the liquid addition chamber
  • the cavity 13 and the reaction tank 15 are not directly connected, but are separated from each other independently.
  • microfluidic channels 21 need to be connected to the split chambers 113 respectively in order to play the role of pushing out the liquid in the liquid storage chamber by air pressure.
  • the liquid storage chamber 11 in this embodiment includes two separate chambers separated by the partition plate 111 . 113 ; and a communication port 112 configured to communicate with the two split cavities 113 is provided at the bottom of the partition plate 111 .
  • the liquid adding chamber 13 includes two separation chambers 131 separated by a partition plate 133 ; and a through port 132 configured to communicate with the two separation chambers 131 is provided at the bottom of the partition plate 133 .
  • one split cavity is distributed on the side close to the air hole 12 corresponding to the liquid storage cavity 11
  • the other split cavity is distributed on the far side. one side of the air hole 12 .
  • one of the separation chambers 131 is distributed on the side close to the air hole 12 corresponding to the liquid feeding chamber 13
  • the other separation chamber 131 is distributed on the side of the air hole 12 corresponding to the liquid feeding chamber 13 The side away from the air hole 12 .
  • the gas circulating in the air hole 12 can pass into one split cavity, pass through the communication port 112, and then enter another split cavity, and pass through one separation cavity 131 and then pass through the port 132, and then enter another separation cavity 131 , in this way, the gas circulation efficiency in the liquid storage chamber 11 and the liquid addition chamber 13 can be effectively improved.
  • the two split chambers 113 can be For the two independent chambers separated by the partition plate 111, a communication port 112 is provided on the partition plate 111 to realize the communication of the reagent liquids in the two separate chambers 113 as independent chambers.
  • the two separation cavities 131 may be two independent cavities separated by the partition plate 133, but the through opening 132 is provided on the partition plate 133 to realize the two separation cavities 131 as independent cavities. connection of the reagent liquid.
  • the reaction substrate 1 and the elastic substrate 2 of the microfluidic bioreactor chip of this embodiment there is a correspondence between the bonding between the reaction substrate 1 and the elastic substrate 2 of the microfluidic bioreactor chip.
  • One width side end of the elastic substrate 2 is clamped and fixed with a fixing clip 3 , through which the reaction matrix 1 is kept connected with one of the width sides of the elastic substrate 2 .
  • the reaction matrix 1 and the elastic substrate 2 can form a fixed end with one side end or one width side end corresponding to the two before they are bonded together, the application of this embodiment can be satisfied.
  • the present disclosure includes, but is not limited to, the use of the retaining clip 3, which is provided here for illustration only.
  • the reaction substrate 1 and the elastic substrate 2 are configured to form an included angle A around the fixing clip 3 .
  • 0° ⁇ A ⁇ 30° it should be noted that as long as the reaction matrix 1 and the elastic substrate 2 can be configured to form an included angle A around the fixed end, the application requirements of this embodiment can be met, so the included angle is not limited to 0° ⁇ A ⁇ 30° The range can also be >30°. In the optional case, 0° ⁇ A ⁇ 30°. That is to say, the reaction substrate 1 and the elastic substrate 2 are not in direct contact with each other except for the positions held by the fixing clips 3 before they are attached. It should be noted that A ⁇ 30° here, because if the angle of A here is too large, the opposite inner surfaces of the reaction matrix 1 and the elastic substrate 2 will be exposed during the film tearing process. in the air, thereby increasing the risk of contamination.
  • the end face of the reaction matrix 1 toward the elastic substrate 2 is also A first covering film 4 is attached.
  • the first coating 4 includes a coating layer 41 attached to the reaction substrate 1 , and a connecting film 42 connected to the coating layer 41 by bending.
  • An integrated structure is adopted for the connecting film 42 and the covering layer 41 in this embodiment.
  • the end face of the elastic substrate 2 facing the reaction substrate 1 is also covered with a second coating 5; and the second coating 5 is bonded and connected with the connecting film 42, and the second coating 5 and the connecting film 42 here are beneficial to The two films are bonded by their natural tackiness.
  • the encapsulation of the reaction liquid pre-existing in the reaction matrix 1 can be effectively realized, and the reaction matrix 1 can be formed.
  • the barrier effect with the elastic substrate 2 When the reaction liquid in the reaction matrix 1 needs to be reacted, it is only necessary to tear the first coating 4 and the second coating 5 together.
  • the overall use process is efficient and convenient, and the first coating 4 and the second coating 5 are easy to use.
  • the use cost of the second coating 5 is low.
  • the first coating 4 and the second coating 5 in this embodiment can be made of, for example, but not limited to, PET material. That is, as long as it is a film that can have a certain viscosity and can achieve the effect of sticking to the reaction substrate 1 and the elastic substrate 2, it can meet the usage requirements of this embodiment.
  • the air pipes corresponding to the air holes 12 provided on the reaction substrate 1 in this embodiment can be connected from The reaction substrate 1 faces away from the elastic substrate 2 , that is, the bottom end face of the reaction substrate 1 in this embodiment, to connect the gas pipe.
  • a sealing device structure is provided on the bottom surface of the reaction substrate 1 at the position corresponding to the air hole 12 , as shown in FIG. 13 corresponding to the position of the air hole 12 .
  • the sealing film 6, or a sealing plug 7 is provided at the position corresponding to the air hole 12 with reference to FIG. 14.
  • microfluidic biological reaction chip On the basis of the above-mentioned microfluidic biological reaction chip, in a possible implementation manner, a method for using the microfluidic biological reaction chip is also provided, including:
  • Step S1 the elastic substrate and the facing end face of the reaction matrix are attached
  • Step S2 the microfluidic channel on the elastic substrate forms a connection channel between the liquid storage cavity and the air hole, the liquid storage cavity and the reaction tank, the liquid addition cavity and the air hole, and the liquid addition cavity and the reaction tank, so that the liquid storage cavity and the air hole, The liquid storage cavity and the reaction tank, the liquid addition cavity and the air hole, and the liquid addition cavity and the reaction tank are respectively communicated with each other.
  • the method for using the microfluidic bioreactor chip of this embodiment is as follows:
  • the corresponding reagents are pre-stored in the liquid storage chamber 11 of the reaction matrix 1, and the newly added liquid is added to the liquid addition chamber 13, and the first coating 4 is attached, and the elastic base also attached with the second coating 5
  • the sheets 2 are clamped together by the fixing clip 3, and the reaction matrix 1 and the elastic substrate 2 form an included angle A, and the ends of the first coating 4 and the second coating 5 close to the fixing clip 3 are bonded by their own adhesive. together.
  • the plurality of microfluidic channels 21 arranged on the elastic substrate 2 form the space between the liquid storage chamber 11 and the air hole 12, between the liquid storage chamber 11 and the reaction tank 15, and between the liquid addition chamber 13 and the air hole 12. and the circulation channel between the liquid addition chamber 13 and the reaction cell 15, and the gas is introduced into the air hole 12 through the external air pressure pump system, so that the pre-stored reagent in the liquid storage chamber 11 will pass through the micro-pump under the action of the air pressure.
  • the flow channel 21 enters the reaction cell 15, and the newly added liquid in the liquid addition chamber 13 simultaneously enters the reaction cell 15 through the microfluidic channel 21, so that the pre-stored reagent and the newly added liquid can complete the biological reaction in the reaction cell 15.
  • Pre-stored reagents can be, for example, including but not limited to erythrocyte lysate, magnetic beads, fluorescent reagents.
  • the newly added liquid can be, for example, including but not limited to cell suspension, blood.
  • the structure of the air hole 12 is changed to face the elastic substrate 2 .
  • One end is open, and the other end facing away from the elastic substrate 2 is closed, and no closing device is provided.
  • the elastic substrate 2 is provided with ventilation holes 22 .
  • the ventilation hole 22 is a through hole structure in which the upper and lower surfaces are all open.
  • One of the vent holes 22 is directly communicated with the corresponding reaction cell 15 through the microfluidic channel 21 .
  • the remaining ventilation holes 22 are respectively located at one end of the microfluidic channel 21 and communicate with the corresponding air holes 12 respectively through the microfluidic channel 21 .
  • the reaction matrix 1 and the elastic substrate 2 are gradually attached to each other as the two films are withdrawn, and the plurality of microfluidic channels 21 arranged on the elastic substrate 2 form the space between the liquid storage cavity 11 and the air hole 12, and the storage space is formed.
  • the circulation channels between the liquid chamber 11 and the reaction tank 15, between the liquid addition chamber 13 and the air hole 12, and between the liquid addition chamber 13 and the reaction tank 15 are connected to the corresponding air holes 12 through the external air pressure pump system.
  • the vent hole 22 of the gas is passed into the gas, and the vent hole 22 is communicated with the air hole 12 through the microfluidic channel 21 to drive the fluid flow, so that under the action of the air pressure, the pre-stored reagent in the liquid storage chamber 11 enters the reaction cell through the microfluidic channel 21. 15.
  • the newly added liquid in the liquid addition chamber 13 enters the reaction tank 15 through the microfluidic channel 21 at the same time, so that the pre-stored reagent and the newly added liquid can complete the biological reaction in the reaction tank 15.
  • One vent hole 22 connected with the reaction tank 15 can be connected to the negative pressure air path for vacuum suction or directly contact the atmosphere, so that when other liquids enter the reaction tank again, the gas stored before the reaction tank is discharged, otherwise these Gas can only be compressed.
  • the present disclosure provides a microfluidic biological reaction chip and a method of using the same.
  • the microfluidic biological reaction chip includes an elastic substrate and a reaction substrate. When the elastic substrate is attached to the reaction substrate, some of the microfluidic channels in the plurality of microfluidic channels are configured to communicate with the liquid storage cavity and the air hole, and some of the microfluidic channels It is configured to communicate with the liquid storage chamber and the reaction tank, some of the microfluidic channels are configured to communicate with the liquid addition chamber and the air hole, and some of the microfluidic channels are configured to communicate with the liquid addition chamber and the reaction pool.
  • a unique air pressure driving technology can be used in the fully enclosed reaction matrix to provide a power source for the liquid in the liquid storage chamber in the microfluidic bioreactor chip and the liquid in the liquid addition chamber to enter the reaction pool together for reaction.
  • the overall reaction process simplifies the experimental process, improves the experimental efficiency, and also reduces the risk of contamination of the reaction liquid during transfer.
  • the present disclosure provides a method for using a microfluidic bioreaction chip to solve the technical problems of simplifying the experimental process, improving the experimental efficiency, and reducing the risk of contamination when the reaction liquid is transferred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种微流控生物反应芯片及其使用方法,包括:反应基体和弹性基片,在反应基体上设有至少一个储液腔、至少一个气孔、至少一个加液腔,以及反应池;弹性基片朝向反应基体的端面设有多条微流通道;当弹性基片与反应基体贴合时,多条微流通道中的部分微流通道配置成连通储液腔与气孔,部分微流通道配置成连通储液腔与反应池,部分微流通道配置成连通加液腔与气孔,以及部分微流通道配置成连通加液腔与反应池。

Description

微流控生物反应芯片及其使用方法
相关申请的交叉引用
本公开要求于2020年11月18日提交中国专利局的申请号为202011295302.8名称为“微流控生物反应芯片及其使用方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及生物化学和分子生物学技术领域,尤其涉及一种微流控生物反应芯片及其使用方法。
背景技术
目前,分子检测技术主要有核酸分子杂交、聚合酶链反应(PCR)和生物芯片技术等。分子检测产品主要应用在肿瘤、感染、遗传、产前筛查等临床各科的检测,以及体检中心、技术服务中心、第三方检测机构及微生物快速检测市场等方面。
当前,血液常规、细胞学、病理学及免疫学等检验手段均朝着自动化、一体化、标准化方向发展,但由于分子检测其自身技术复杂性,“从样品到结果”的全自动化仪器平台极少或者存在诸多难以解决的技术问题。例如,在生物技术领域中使用的离心柱法或磁珠法进行核酸提取,一般需要进行裂解、结合、漂洗、洗脱等四个步骤,加上后续的核酸分子杂交、聚合酶链反应(PCR)和生物芯片等检测步骤,使整个“从样品到结果”的全自动化仪器非常难以实现,单就各步骤中有效成分的转移而言,现有技术中多采用手动转移的方式,不仅操作繁琐、费时费力。更有甚者还在于整个操作过程容易造成污染,影响提取物的纯度,且物料很难充分、高效地进行转移,影响实验结果。
发明内容
本公开提供一种微流控生物反应芯片,包括:
反应基体,在所述反应基体上设有至少一个储液腔、至少一个气孔、至少一个加液腔,以及反应池;
弹性基片,所述弹性基片朝向反应基体的端面设有多条微流通道;
当弹性基片与反应基体贴合时,多条所述微流通道中的部分微流通道配置成连通储液腔与气孔,部分微流通道配置成连通储液腔与反应池,部分微流通道配置成连通加 液腔与气孔,以及部分微流通道配置成连通加液腔与反应池。
可选地,所述反应基体采用硬质材质制成;以及
所述弹性基片采用软性材质制成。
可选地,所述储液腔包括由隔板分离的两个分体腔;以及
在所述隔板的底部设有配置成连通两个分体腔的连通口。
可选地,所述储液腔包括由隔板分离的两个分体腔;以及
在所述隔板上设有配置成连通两个分体腔的连通口。
可选地,至少一个所述储液腔对应一个所述气孔;
一个所述分体腔分布在靠近对应所述储液腔的气孔的一侧,另一个所述分体腔分布在远离对应所述储液腔的气孔的一侧。
可选地,所述加液腔包括由隔挡板分离的两个分离腔;以及
在所述隔挡板的底部设有配置成连通两个分离腔的通口。
可选地,所述加液腔包括由隔挡板分离的两个分离腔;以及
在所述隔挡板上设有配置成连通两个分离腔的通口。
可选地,至少一个所述加液腔对应至少一个所述气孔;
一个所述分离腔分布在靠近对应所述加液腔的气孔的一侧,另一个所述分离腔分布在远离对应所述加液腔的气孔的一侧。
可选地,所述反应基体的一侧端与所述弹性基片的一侧端固定连接。
可选地,所述反应基体和弹性基片配置成围绕所述固定端形成夹角A。
可选地,所述微流控生物反应芯片还包括配置成将反应基体和弹性基片的一侧端夹持固定的固定夹。
可选地,所述反应基体和弹性基片配置成围绕所述固定夹形成夹角A。
可选地,0°≤A≤30°。
可选地,所述反应基体朝向弹性基片的端面还贴覆有第一覆膜;
所述第一覆膜包括贴覆在反应基体上的贴覆层,以及与所述贴覆层弯折相连的衔接膜。
可选地,所述弹性基片朝向反应基体的端面还贴覆有第二覆膜;以及
所述第二覆膜与衔接膜粘接相连。
本公开一实施方式提供所述的微流控生物反应芯片,所述弹性基片设置有通气孔。
可选地,所述通气孔为上、下两表面全部开口的通孔结构;
可选地,一个所述通气孔对应至少一个所述气孔;
可选地,至少一个所述通气孔位于所述微流通道的一端,通过所述微流通道与对应的少一个所述气孔连通。
可选地,至少一个所述通气孔对应至少一个所述反应池;
可选地,至少一个所述通气孔位于所述微流通道的一端,通过所述微流通道与对应的至少一个所述反应池连通。
本公开提供一种微流控生物反应芯片的使用方法,采用所述的微流控生物反应芯片;包括:
步骤S1:弹性基片与反应基体相向面对的端面贴合;
步骤S2:弹性基片上的微流通道形成储液腔与气孔、储液腔与反应池、加液腔与气孔以及加液腔与反应池之间的衔接通道,使得储液腔与气孔、储液腔与反应池、加液腔与气孔以及加液腔与反应池之间分别相连通。
附图说明
图1为本公开的微流控生物反应芯片的第一视角结构示意图;
图2为本公开的微流控生物反应芯片的反应基体的第一视角结构示意图;
图3为本公开的微流控生物反应芯片的反应基体的第二视角结构示意图;
图4为本公开的微流控生物反应芯片的反应基体的结构示意图;
图5为图4的A向剖视示意图;
图6为图4的B向剖视示意图;
图7为本公开的微流控生物反应芯片的弹性基片在一种实施方式下的结构示意图;
图8为本公开的微流控生物反应芯片的第二视角结构示意图;
图9为本公开的微流控生物反应芯片的气孔内气体在气孔与相应的储液腔和反应池之间的流通情况示意图;
图10为本公开的微流控生物反应芯片的储液腔和加液腔在另一种实施方式下的第一视角示意图;
图11为本公开的微流控生物反应芯片的储液腔和加液腔在另一种实施方式下的第二视角示意图;
图12为本公开的微流控生物反应芯片的储液腔与微流道通之间在另一种实施方式下配合状态下的示意图。
图13为本公开的微流控生物反应芯片的储液腔与微流道通之间在另一种实施方式下配合状态下的示意图。
图14为本公开的微流控生物反应芯片的储液腔与微流道通之间在另一种实施方式下配合状态下的示意图。
图15为本公开的微流控生物反应芯片的弹性基片在另一种实施方式下的结构示意图;
图16为本公开的微流控生物反应芯片的通气孔、储液腔与微流道通之间在另一种实施方式下配合状态下的示意图。
图中:反应基体1、储液腔11、隔板111、连通口112、分体腔113、气孔12、加液腔13、分离腔131、通口132、隔挡板133、反应池15、弹性基片2、微流通道21、通气孔22、固定夹3、第一覆膜4、贴覆层41、衔接膜42、第二覆膜5、封闭膜6、封闭塞7。
具体实施方式
为了使本公开的内容更容易被清楚地理解,下面根据实施例并结合附图,对本公开作进一步详细的说明。
在下文的实施方式和实施例中,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本公开的实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
在本公开的描述中,需要理解的是,指示方位或位置关系的术语为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的含义。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该公开产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操 作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之上或之下可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征之上、上方和上面包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征之下、下方和下面包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
参见图1、2和7,本公开一实施方式提供一种微流控生物反应芯片,包括:
反应基体1,在所述反应基体1上设有至少一个储液腔11、至少一个气孔12、至少一个加液腔13,以及反应池15;
弹性基片2,所述弹性基片2朝向反应基体1的端面设有多条微流通道21;
当弹性基片2与反应基体1贴合时,多条所述微流通道21中的部分微流通道21配置成连通储液腔11与气孔12,部分微流通道21配置成连通储液腔11与反应池15,部分微流通道21配置成连通加液腔13与气孔12,以及部分微流通道21配置成连通加液腔13与反应池15。
在一些实施方式中,气孔12为上、下表面均开口的通孔结构。即气孔12为面向弹性基片2的一端和背向弹性基片2的一端均开口的通孔结构。在一些实施方式中,在反应基体1的底表面对应气孔12的位置设置有封闭装置。所述封闭装置封闭住气孔12的下表面,当在使用时,可将封闭装置取下即可使用。在一些实施方式中,封闭装置可以为封闭膜6、封闭塞7、封闭板中的任一种。
在一些实施方式中,所述反应基体1采用硬质材质制成;以及
所述弹性基片2采用软性材质制成。
参见图2,在一些实施方式中,所述储液腔11包括由隔板111分离的两个分体腔113;以及
在所述隔板111的底部设有配置成连通两个分体腔113的连通口112。
在一些实施方式中,隔板与储液腔的固定方式包括但不限于粘接、卡扣、滑槽或一体成型。
参见图2和5,在一些实施方式中,所述储液腔11包括由隔板111分离的两个分体腔113;以及
在所述隔板111上设有配置成连通两个分体腔113的连通口112。
在一些实施方式中,至少一个所述储液腔11对应一个所述气孔12;
一个所述分体腔113分布在靠近对应所述储液腔11的气孔12的一侧,另一个所述分体腔113分布在远离对应所述储液腔11的气孔12的一侧。
在一些实施方式中,所述加液腔13包括由隔挡板133分离的两个分离腔131;以及
参见图6,在所述隔挡板133的底部设有配置成连通两个分离腔131的通口132。
在一些实施方式中,所述加液腔13包括由隔挡板133分离的两个分离腔131;以及
在所述隔挡板133上设有配置成连通两个分离腔131的通口132。
在一些实施方式中,至少一个所述加液腔13对应至少一个所述气孔12;
一个所述分离腔131分布在靠近对应所述加液腔13的气孔12的一侧,另一个所述分离腔131分布在远离对应所述加液腔13的气孔12的一侧。
在一些实施方式中,弹性基片2上还设置有通气孔22。在一些实施方式中,通气孔22为上、下两表面全部开口的孔结构。即通气孔22为面向反应基体1的一端和背向反应基体1的一端均开口的孔结构。在一些实施方式中,气孔12为上表面开口下表面封闭的孔结构。即气孔12为面向弹性基片2的一端开口,背向弹性基片2的一端封闭的孔结构。在一些实施方式中,至少一个通气孔22对应至少一个气孔12。在一些实施方式中,通气孔22位于微流通道21的一端,通过微流通道21与对应的气孔12连通。在一些实施方式中,至少一个通气孔22对应至少一个反应池15。在一些实施方式中,通气孔22位于微流通道21的一端,通过微流通道21与对应的反应池15连通。
在一些实施方式中,至少一个通气孔22对应至少一个储液腔11。在一些实施方式中,通气孔22位于微流通道21的一端,通过微流通道21与对应的储液腔11直接连通。
在一些实施方式中,至少一个通气孔22对应至少一个储液腔13。在一些实施方式中,通气孔22位于微流通道21的一端,通过微流通道21与对应的加液腔13直接连通。
需要说明的是,储液腔11和加液腔13可以不配置对应的气孔12,而直接可以通过微流通道21与通气孔22连通。
在一些示例性的实施方式中,当反应基体1和弹性基片2贴合时,通气孔22可以与流体驱动装置相连,以驱动流体,微流通道21中的部分微流通道21配置成连通储液 腔11与气孔12,部分微流通道21配置成连通储液腔11与反应池15,部分微流通道21配置成连通加液腔13与气孔12,以及部分微流通道21配置成连通加液腔13与反应池15。
在一些实施方式中,所述反应基体1的一侧端与所述弹性基片2的一侧端固定连接。
参加图3,在一些实施方式中,所述反应基体1和弹性基片2配置成围绕所述固定端形成夹角A。
在一些实施方式中,所述微流控生物反应芯片还包括配置成将反应基体1和弹性基片2的一侧端夹持固定的固定夹3。
在一些实施方式中,所述反应基体1和弹性基片2配置成围绕所述固定夹3形成夹角A。
在一些实施方式中,0°≤A≤30°。
在一些实施方式中,所述反应基体1朝向弹性基片2的端面还贴覆有第一覆膜4;
所述第一覆膜4包括贴覆在反应基体1上的贴覆层41,以及与所述贴覆层41弯折相连的衔接膜42。
在一些实施方式中,所述弹性基片2朝向反应基体1的端面还贴覆有第二覆膜5;以及
所述第二覆膜5与衔接膜42粘接相连。
本公开一实施方式提供一种微流控生物反应芯片的使用方法,采用所述的微流控生物反应芯片;包括:
步骤S1:弹性基片2与反应基体1相向面对的端面贴合;
步骤S2:弹性基片2上的微流通道21形成通储液腔11与气孔12、储液腔11与反应池15、加液腔13与气孔12以及加液腔13与反应池15之间的衔接通道,使得通储液腔11与气孔12、储液腔11与反应池15、加液腔13与气孔12以及加液腔13与反应池15之间分别相连通。
本公开提供的微流控生物反应芯片,可解决简化实验流程、提高实验效率并降低反应液体转移时被污染的风险的技术问题。本公开提供的微流控生物反应芯片的使用方法,以解决简化实验流程、提高实验效率并降低反应液体转移时被污染的风险的技术问题。
采用了上述技术方案,本公开具有以下的有益效果:本公开的微流控生物反应芯片及其使用方法,包括弹性基片和反应基体,当弹性基片与反应基体贴合时,多条所述 微流通道中的部分微流通道配置成连通储液腔与气孔,部分微流通道配置成连通储液腔与反应池,部分微流通道配置成连通加液腔与气孔,以及部分微流通道配置成连通加液腔与反应池。如此,即可在全封闭的反应基体内采用独特的气压驱动技术,为微流控生物反应芯片内的储液腔内的液体与加液腔内的液体共同进入到反应池中反应提供动力来源,整体的反应过程简化了实验流程,并提高了实验效率,同时还可降低反应液体转移时被污染的风险。
实施例
请参阅图1至图12所示,本实施例提供了一种微流控生物反应芯片,包括:位于下方的反应基体1和弹性基片2。反应基体1采用硬质材质例如但不限于亚克力或者环氧树脂制成;以及弹性基片2采用软性材质例如但不限于聚二甲基硅氧烷(PDMS)制成。
结合本实施例附图,以一种可选的实施情况来说,反应基体1和弹性基片2均采用矩形结构或者类似矩形的结构。弹性基片2的厚度可以与反应基体1的厚度相同,也可以是弹性基片2的厚度小于反应基体1的厚度,本实施附图仅仅以后者的情况为例。
在反应基体1上设有至少一个储液腔11、至少一个气孔12、至少一个加液腔13(一个或多个加液腔),以及反应池15。此处的储液腔11配置成储存生物反应试剂。在一些实施方式中,在反应基体1上设有至少两个气孔12。在一些实施方式中,气孔12包括对应于储液腔的储液腔气孔,以及对应于加液腔的加液腔气孔。在本申请中,对应于储液腔的储液腔气孔也可以称为储液腔气孔;对应于加液腔的气孔也可以称为加液腔气孔。在一些实施方式中,至少一个储液腔11对应一个气孔12(储液腔气孔),或者至少一个储液腔11中的每一个对应一个气孔12(储液腔气孔)。在一些实施方式中,储液腔11与对应的气孔12相邻。在一些实施方式中,至少一个加液腔13对应一个气孔12(加液腔气孔),或者至少一个加液腔13中的每一个对应一个气孔12(加液腔气孔)。在一些实施方式中,加液腔13与对应的气孔相邻。在一些可选的实施方式中,至少一个所述储液腔11对应一个所述气孔12;和/或至少一个所述加液腔13对应一个所述气孔12。在一些实施方式中,在反应基体1上设有多个储液腔11。在一些实施方式中,多个储液腔11对应一个气孔12。在一些实施方式中,多个储液腔11中的每一个对应一个气孔12。换句话说,各个储液腔11与相应的各个气孔12组成储液腔-气孔对(pair)。在一些实施方式中,在反应基体1上设有多个加液腔13。在一些实施方式中,多个加液腔13对应一个气孔12。在一些实施方式中,多个加液腔13中的每一个对应一个气孔12。换句话说,加液腔13与相应的气孔12组成加液腔-气孔对。考虑到生物反应过程中对 于试剂的种类的使用需求,本实施例的反应基体1上设有两个储液腔11,且两个储液腔11的连线平行于矩形结构的反应基体1的宽度方向侧。本实施例的加液腔13设置一个。即在反应基体1上一共设置一个加液腔13和两个储液腔11,针对这样的情况,气孔12一共设置三个,为一个加液腔13与一个气孔12对应,另一个气孔12与两个储液腔11中的其中一个储液腔11对应,再一个气孔12则是与另一个储液腔11对应。如下所述,当弹性基片2与反应基体1贴合时,气孔12内流通的气体可以形成与该气孔12对应的储液腔11或者加液腔13中的液体流通的动力。
此处需要加以说明的是,对于本实施例的三个气孔12来说,三个气孔12可以分别通过一个气管来连接同一个外加气压泵系统,也可以是每个气孔12分别通过一个气管来连接一个外加气压泵系统,对此本实施例不做绝对限定。需要说明的是,只要能够可以实现对于气孔12的气体供给的气体连通装置和供气装置,均可满足本实施例的使用需求。气孔12可以为上、下表面均开口的通孔结构。
再来说弹性基片2,弹性基片2朝向反应基体1的端面设有多条微流通道21。关于本实施例的多条微流通道21来说,当弹性基片2与反应基体1贴合时,多条微流通道21中的部分微流通道21配置成连通储液腔11与气孔12,部分微流通道21配置成连通储液腔11与反应池15,部分微流通道21配置成连通加液腔13与气孔12,以及部分微流通道21配置成连通加液腔13与反应池15。也就是说微流通道21被配置为储液腔11与气孔12之间、储液腔11与反应池15之间、加液腔13与气孔12之间,以及加液腔13与反应池15之间的流通媒介。也就是说微流通道21形成了储液腔11与气孔12之间、储液腔11与反应池15之间、加液腔13与气孔12之间,以及加液腔13与反应池15之间的流通媒介。而在当弹性基片2未与反应基体1贴合时,储液腔11与气孔12之间、储液腔11与反应池15之间、加液腔13与气孔12之间,以及加液腔13与反应池15之间都是不直接连通,而是彼此独立相隔开的。
需要说明的是,微流通道21需分别连接分体腔113才能起到用气压把储液腔内的液体推出的作用。
在上述结构的基础上,还需要进一步说明的是,请参阅图9所示,以一种可选的实施情况举例,本实施例的储液腔11包括由隔板111分离的两个分体腔113;以及在隔板111的底部设有配置成连通两个分体腔113的连通口112。同样的,加液腔13包括由隔挡板133分离的两个分离腔131;以及在隔挡板133的底部设有配置成连通两个分离腔131的通口132。需要说明的是,此处被隔板111分开的两个分体腔来说,其中一个分体腔分布在靠近对应该储液腔11的气孔12的一侧,而另一个分体腔则是分布在远离 气孔12的一侧。同样的,此处被隔挡板分开的两个分离腔131来说,其中一个分离腔131分布在靠近对应该加液腔13的气孔12的一侧,而另一个分离腔131则是分布在远离气孔12的一侧。这样设置的意义在于使得气孔12内流通的气体可以通入一个分体腔后经过连通口112后再进入另一个分体腔,以及通入一个分离腔131后经过通口132后再进入另一个分离腔131中,如此,可以有效提高气体在储液腔11和加液腔13中的流通效率。
请参阅图10至图12所示,关于本实施例的储液腔11和加液腔13,在上述结构的基础上还可以做出如下的改进,即对于两个分体腔113来说可以是被隔板111分开的两个独立的腔体,而是在隔板111上设置连通口112来实现两个分体腔113作为独立的腔体内的试剂液体的连通。同理,两个分离腔131来说可以是被隔挡板133分开的两个独立的腔体,而是在隔挡板133上设置通口132来实现两个分离腔131作为独立的腔体内的试剂液体的连通。
此外,还需要加以说明的是,对于本实施例的微流控生物反应芯片来说,在微流控生物反应芯片的反应基体1和弹性基片2在贴合之间两者之间相对应的一个宽度侧端夹持固定有一个固定夹3,通过该固定夹3来保持反应基体1与弹性基片2的其中一个宽度侧的相连。需要说明的是,只要能够实现反应基体1和弹性基片2在贴合之前两者之间相对应的一个侧端或者一个宽度侧端形成固定端的任何固定方式,均可满足本实施例的使用需求,本公开包括但并不限于固定夹3的使用,这里仅是为了举例说明。
并且在上述结构的基础上,反应基体1和弹性基片2配置成围绕固定夹3形成夹角A。此处可选的情况下,0°≤A≤30°。需要说明的是,只要能够实现对于反应基体1和弹性基片2配置成围绕固定端形成夹角A,均可满足本实施例的使用需求,因此夹角不限于0°≤A≤30°的范围,也可以>30°。在可选的情况下,0°≤A≤30°。也就是说反应基体1与弹性基片2在贴合之前两者之间除了固定夹3夹持的位置,其余位置是不直接接触的。需要说明的是,此处的A≤30°,因为若此处的A的角度过大时,在撕膜的过程中会使得撕膜过程中反应基体1和弹性基片2相对的内表面暴露在空气中,从而增加被污染的风险。
进一步考虑到在反应基体1与弹性基片2在贴合之前保持两者之间角度,使得两者之间不产生贴合反应,本实施例还在反应基体1朝向弹性基片2的端面还贴覆有第一覆膜4。第一覆膜4包括贴覆在反应基体1上的贴覆层41,以及与贴覆层41弯折相连的衔接膜42。对于本实施例的衔接膜42与贴覆层41来说采用一体化结构。弹性基片2朝向反应基体1的端面还贴覆有第二覆膜5;以及第二覆膜5与衔接膜42粘接相连,此 处的第二覆膜5与衔接膜42之间是利于两种膜本身的自然粘性来粘接的。
通过第一覆膜4对于反应基体1的贴覆,以及第二覆膜5对于弹性基片2的贴覆,可以有效实现对于预存在反应基体1内的反应液体的封装,且形成反应基体1与弹性基片2之间的隔挡效果。而在需要对反应基体1内的反应液体进行反应的时候,只需要将第一覆膜4和第二覆膜5一起撕开即可,整体的使用过程高效便捷,且第一覆膜4和第二覆膜5的使用成本较低。
对于本实施例的第一覆膜4和第二覆膜5均可采用例如但不限于PET材质制成。即只要是能够具有一定粘性的可以实现对于反应基体1和弹性基片2的贴覆效果的膜均可满足本实施例的使用需求。
由于本实施例的反应基体1朝向弹性基片2的端面在未进行生物反应之间贴覆有第一覆膜4,因此本实施例设置在反应基体1上的气孔12对应连接的气管可以从反应基体1背离弹性基片2也即本实施例的反应基体1的底端面来连接气管。
在上述的微流控生物反应芯片的基础上,在一种可能的实现方式中,在反应基体1的底表面对应气孔12的位置设置有封闭装置结构,如参照图13对应气孔12的位置设置的封闭膜6,或者参照图14对应气孔12的位置设置有封闭塞7,在使用芯片时,撕下封闭膜6或者取下封闭塞7,再将反应基体1的底端面来连接气管,通过外加的气压泵系统来对气孔12中通入气体。
在上述的微流控生物反应芯片的基础上,在一种可能的实现方式中,还提供了一种微流控生物反应芯片的使用方法,包括:
步骤S1:弹性基片与反应基体相向面对的端面贴合;
步骤S2:弹性基片上的微流通道形成通储液腔与气孔、储液腔与反应池、加液腔与气孔以及加液腔与反应池之间的衔接通道,使得通储液腔与气孔、储液腔与反应池、加液腔与气孔以及加液腔与反应池之间分别相连通。
在一种可能的实现方式中,关于本实施例的微流控生物反应芯片的使用方法如下:
在反应基体1的储液腔11中预储存相应试剂,以及在加液腔13内加入新加样的液体,并贴上第一覆膜4,与同样贴有第二覆膜5的弹性基片2通过固定夹3来夹持在一起,并使得反应基体1与弹性基片2形成夹角A,第一覆膜4与第二覆膜5靠近固定夹3的一端依靠自身的粘性粘合在一起。当需要预储存在储液腔11中的液体与新加样的液体进入反应池15里面反应的时候,只需要撕拉第一覆膜4,由于第二覆膜5与第一覆膜4的一端粘接在一起,因此在此过程中,第一覆膜4离开反应基体1的同时,第二覆膜 5可同步地慢慢离开弹性基片2。而在第一覆膜4和第二覆膜5撤离的过程中,反应基体1和弹性基片2随着两个覆膜的撤离和逐渐相贴合,当弹性基片2贴合在反应基体1上时,设置在弹性基片2上的多条微流通道21即形成了储液腔11与气孔12之间、储液腔11与反应池15之间、加液腔13与气孔12之间,以及加液腔13与反应池15之间的流通通道,并通过外加的气压泵系统来对气孔12中通入气体,使得气压的推动作用下,储液腔11内的预存试剂通过微流通道21进入到反应池15,同时加液腔13内的新加样液体同时通过微流通道21进入到反应池15,从而便于预存试剂和新加样液体在反应池15中完成生物反应。
预存试剂可以是例如包括但不限于红细胞裂解液,磁珠,荧光试剂。新加样液体可以是例如包括但不限于细胞悬液、血液。
参阅图15至图16所示,在一种可能的实现方式中,在上述的微流控生物反应芯片的基础上,与之不同的是,将气孔12的结构改为面向弹性基片2的一端开口,背向弹性基片2的一端封闭的孔结构,并且不再设置封闭装置。弹性基片2上设置有通气孔22。该通气孔22为上、下两表面全部开口的通孔结构。其中,一个通气孔22通过微流通道21直接与对应的反应池15连通。其余的通气孔22分别位于微流通道21的一端,通过微流通道21分别与对应的气孔12连通。反应基体1和弹性基片2随着两个覆膜的撤离和逐渐相贴合,设置在弹性基片2上的多条微流通道21即形成了储液腔11与气孔12之间、储液腔11与反应池15之间、加液腔13与气孔12之间,以及加液腔13与反应池15之间的流通通道,并通过外加的气压泵系统来对与对应的气孔12连通的通气孔22通入气体,通气孔22通过微流通道21与气孔12连通,以驱动流体流动,使得气压的推动作用下,储液腔11内的预存试剂通过微流通道21进入到反应池15,同时加液腔13内的新加样液体同时通过微流通道21进入到反应池15,从而便于预存试剂和新加样液体在反应池15中完成生物反应。其中与反应池15相连通的一个通气孔22,可以接负压气路做真空抽吸或者直接接触大气,以便在其他液体再进入反应池时,使得反应池之前存储的气体排出去,否则这些气体就只能是被压缩。
工业实用性
本公开提供一种微流控生物反应芯片及其使用方法。微流控生物反应芯片包括弹性基片和反应基体,当弹性基片与反应基体贴合时,多条所述微流通道中的部分微流通道配置成连通储液腔与气孔,部分微流通道配置成连通储液腔与反应池,部分微流通道配置成连通加液腔与气孔,以及部分微流通道配置成连通加液腔与反应池。如此,即可在 全封闭的反应基体内采用独特的气压驱动技术,为微流控生物反应芯片内的储液腔内的液体与加液腔内的液体共同进入到反应池中反应提供动力来源,整体的反应过程简化了实验流程,并提高了实验效率,同时还可降低反应液体转移时被污染的风险。本公开提供的微流控生物反应芯片的使用方法,以解决简化实验流程、提高实验效率并降低反应液体转移时被污染的风险的技术问题。

Claims (17)

  1. 一种微流控生物反应芯片,其特征在于,包括:
    反应基体,在所述反应基体上设有至少一个储液腔、至少一个气孔、至少一个加液腔,以及反应池;
    弹性基片,所述弹性基片朝向反应基体的端面设有多条微流通道;
    当弹性基片与反应基体贴合时,多条所述微流通道中的部分微流通道配置成连通储液腔与气孔,部分微流通道配置成连通储液腔与反应池,部分微流通道配置成连通加液腔与气孔,以及部分微流通道配置成连通加液腔与反应池。
  2. 根据权利要求1所述的微流控生物反应芯片,其特征在于,所述反应基体采用硬质材质制成;以及
    所述弹性基片采用软性材质制成。
  3. 根据权利要求1~2任一项所述的微流控生物反应芯片,其特征在于,所述储液腔包括由隔板分离的两个分体腔;以及
    在所述隔板的底部设有配置成连通两个分体腔的连通口。
  4. 根据权利要求1~2任一项所述的微流控生物反应芯片,其特征在于,
    所述储液腔包括由隔板分离的两个分体腔;以及
    在所述隔板上设有配置成连通两个分体腔的连通口。
  5. 根据权利要求3或4所述的微流控生物反应芯片,其特征在于,所述至少一个所述储液腔对应一个所述气孔,或者所述至少一个储液腔中的每一个对应一个气孔;
    一个所述分体腔分布在靠近对应所述储液腔的气孔的一侧,另一个所述分体腔分布在远离对应所述储液腔的气孔的一侧。
  6. 根据权利要求1~5任一项所述的微流控生物反应芯片,其特征在于,所述加液腔包括由隔挡板分离的两个分离腔;以及
    在所述隔挡板的底部设有配置成连通两个分离腔的通口。
  7. 根据权利要求1~5任一项所述的微流控生物反应芯片,其特征在于,所述加液腔包括由隔挡板分离的两个分离腔;以及
    在所述隔挡板上设有配置成连通两个分离腔的通口。
  8. 根据权利要求6或7所述的微流控生物反应芯片,其特征在于,至少一个所述加液腔对应至少一个所述气孔;
    一个所述分离腔分布在靠近对应所述加液腔的气孔的一侧,另一个所述分离腔分布在远离对应所述加液腔的气孔的一侧。
  9. 根据权利要求1~8任一项所述的微流控生物反应芯片,其特征在于,所述反应基体的一侧端与所述弹性基片的一侧端固定连接。
  10. 根据权利要求9所述的微流控生物反应芯片,其特征在于,所述反应基体和弹性基片配置成围绕所述固定端形成夹角A。
  11. 根据权利要求1~10任一项所述的微流控生物反应芯片,其特征在于,所述微流控生物反应芯片还包括配置成将反应基体和弹性基片的一侧端夹持固定的固定夹。
  12. 根据权利要求11所述的微流控生物反应芯片,其特征在于,所述反应基体和弹性基片配置成围绕所述固定夹形成夹角A。
  13. 根据权利要求10或12所述的微流控生物反应芯片,其特征在于,0°≤A≤30°。
  14. 根据权利要求1~13任一项所述的微流控生物反应芯片,其特征在于,所述反应基体朝向弹性基片的端面还贴覆有第一覆膜;
    所述第一覆膜包括贴覆在反应基体上的贴覆层,以及与所述贴覆层弯折相连的衔接膜。
  15. 根据权利要求14所述的微流控生物反应芯片,其特征在于,所述弹性基片朝向反应基体的端面还贴覆有第二覆膜;以及
    所述第二覆膜与衔接膜粘接相连。
  16. 根据权利要求1~15任一项所述的微流控生物反应芯片,其特征在于,所述弹性基片设置有通气孔;
    优选地,所述通气孔为上、下两表面全部开口的通孔结构;
    优选地,一个所述通气孔对应至少一个所述气孔;
    优选地,至少一个所述通气孔位于所述微流通道的一端,通过所述微流通道与对应的至少一个所述气孔连通;
    优选地,至少一个所述通气孔对应至少一个所述反应池;
    优选地,至少一个所述通气孔位于所述微流通道的一端,通过所述微流通道与对应的至少一个所述反应池连通。
  17. 一种微流控生物反应芯片的使用方法,其特征在于,采用如权利要求1~15任一项所述的微流控生物反应芯片;包括:
    步骤S1:弹性基片与反应基体相向面对的端面贴合;
    步骤S2:弹性基片上的微流通道形成通储液腔与气孔、储液腔与反应池、加液腔与 气孔以及加液腔与反应池之间的衔接通道,使得通储液腔与气孔、储液腔与反应池、加液腔与气孔以及加液腔与反应池之间分别相连通。
PCT/CN2021/119142 2020-11-18 2021-09-17 微流控生物反应芯片及其使用方法 WO2022105406A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011295302.8 2020-11-18
CN202011295302.8A CN112403544A (zh) 2020-11-18 2020-11-18 微流控生物反应芯片及其使用方法

Publications (1)

Publication Number Publication Date
WO2022105406A1 true WO2022105406A1 (zh) 2022-05-27

Family

ID=74773088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119142 WO2022105406A1 (zh) 2020-11-18 2021-09-17 微流控生物反应芯片及其使用方法

Country Status (2)

Country Link
CN (1) CN112403544A (zh)
WO (1) WO2022105406A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115656126A (zh) * 2022-10-24 2023-01-31 大连海事大学 一种用于化学反应动力学原位实时监测的装置与方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112403544A (zh) * 2020-11-18 2021-02-26 江苏卓微生物科技有限公司 微流控生物反应芯片及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105848773A (zh) * 2013-12-27 2016-08-10 株式会社朝日精细橡胶研究所 三维微型化学芯片
CN106226545A (zh) * 2016-07-06 2016-12-14 苏州大学 具有可编程进样功能的微流控三维芯片
CN107213925A (zh) * 2016-03-22 2017-09-29 李榕生 联合检测男性典型肿瘤标志物用微流控芯片装置
CN110616138A (zh) * 2019-10-09 2019-12-27 山东百骏生物科技有限公司 一种分腔室多指标核酸扩增微流控芯片
CN112403544A (zh) * 2020-11-18 2021-02-26 江苏卓微生物科技有限公司 微流控生物反应芯片及其使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2613759Y (zh) * 2003-03-31 2004-04-28 穆海东 一种蛋白质芯片
CN102667477B (zh) * 2009-07-24 2015-01-07 阿科尼生物系统公司 流通池装置
CN102866257B (zh) * 2011-07-06 2013-10-02 东莞博识生物科技有限公司 一种具有储液室兼泵室的微流体样品舟
EP3604208B1 (en) * 2017-03-30 2024-02-07 Zeon Corporation Microchannel chip manufacturing method
CN206951220U (zh) * 2017-04-12 2018-02-02 扬中市华瑞通讯仪器有限公司 一种微流控芯片
CN213966682U (zh) * 2020-11-18 2021-08-17 江苏卓微生物科技有限公司 微流控生物反应芯片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105848773A (zh) * 2013-12-27 2016-08-10 株式会社朝日精细橡胶研究所 三维微型化学芯片
CN107213925A (zh) * 2016-03-22 2017-09-29 李榕生 联合检测男性典型肿瘤标志物用微流控芯片装置
CN106226545A (zh) * 2016-07-06 2016-12-14 苏州大学 具有可编程进样功能的微流控三维芯片
CN110616138A (zh) * 2019-10-09 2019-12-27 山东百骏生物科技有限公司 一种分腔室多指标核酸扩增微流控芯片
CN112403544A (zh) * 2020-11-18 2021-02-26 江苏卓微生物科技有限公司 微流控生物反应芯片及其使用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115656126A (zh) * 2022-10-24 2023-01-31 大连海事大学 一种用于化学反应动力学原位实时监测的装置与方法

Also Published As

Publication number Publication date
CN112403544A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
JP6698770B2 (ja) 試料導入から結果出力までのプロセス化を提供する単一構造バイオチップおよび製造方法
WO2022105406A1 (zh) 微流控生物反应芯片及其使用方法
US20230256451A1 (en) Unitary Biochip Providing Sample-in to Results-Out Processing and Methods of Manufacture
JP5049404B2 (ja) 相互接続マルチチャンバデバイスを使用する流体処理および移送の方法
US10711234B2 (en) Microfluidic platform for investigating cell-based interactions
US20140248618A1 (en) Microfluidic flow cell assemblies and method of use
JP4964955B2 (ja) 核酸増幅による液体サンプル分析用使い捨て装置
CA2415055A1 (en) Methods and devices for high throughput fluid delivery
WO2023020220A1 (zh) 微流控芯片、其核酸提取方法及核酸提取装置
WO2023040477A1 (zh) 体外诊断分析装置及试剂卡盒
CN111989157A (zh) 微流控芯片
WO2012126292A1 (zh) 一种用于生物芯片的接口装置
US20220241786A1 (en) Centrifugal Microfluidic Chip, Kit and System for On-Chip Gas Supply
CN213966682U (zh) 微流控生物反应芯片
CN115400806A (zh) 一体化核酸提取微流控芯片盒和核酸提取及检测方法
CN115926980A (zh) 一种用于细胞培养的芯片装置及方法
CN218121996U (zh) 微流控检测芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893557

Country of ref document: EP

Kind code of ref document: A1