JP2005253365A - 細菌芽胞処理チップ及び細菌芽胞処理装置 - Google Patents

細菌芽胞処理チップ及び細菌芽胞処理装置 Download PDF

Info

Publication number
JP2005253365A
JP2005253365A JP2004069434A JP2004069434A JP2005253365A JP 2005253365 A JP2005253365 A JP 2005253365A JP 2004069434 A JP2004069434 A JP 2004069434A JP 2004069434 A JP2004069434 A JP 2004069434A JP 2005253365 A JP2005253365 A JP 2005253365A
Authority
JP
Japan
Prior art keywords
gene
bacterial spore
sample
processing chip
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004069434A
Other languages
English (en)
Other versions
JP4116579B2 (ja
Inventor
Hisao Inami
久雄 稲波
Yasuhiko Sasaki
康彦 佐々木
Akira Miyake
亮 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004069434A priority Critical patent/JP4116579B2/ja
Publication of JP2005253365A publication Critical patent/JP2005253365A/ja
Application granted granted Critical
Publication of JP4116579B2 publication Critical patent/JP4116579B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】 本発明は、取扱いが容易で安価、かつ細菌芽胞から遺伝子の抽出・分析までが一括して自動化できる細菌芽胞処理チップ、及びそれを備えた小型・可搬の細菌芽胞処理装置を提供する
【解決手段】 芽胞を形成した細菌を含む試料が供給される注入口102と、前記注入口に供給された前記試料に導入される発芽促進剤を保管する発芽促進液保管部111と、前記試料と前記発芽促進剤とを混合した液に導入される溶解液を保管する溶解液保管部112と、前記試料と前記発芽促進剤と前記溶解液とを混合し、前記試料から遺伝子が溶出される遺伝子溶出部103と、前記溶出遺伝子と結合する遺伝子結合担体を備える遺伝子抽出部113と、前記遺伝子抽出部に導入される洗浄液を保管する洗浄液保管部114と、前記遺伝子抽出部に導入される溶離液を保管する溶離液保管部115と、前記溶離液により溶離された前記遺伝子が導入される反応部104とを備えている細菌芽胞処理チップ101。
【選択図】 図1

Description

本発明は、供給された試料中の細菌芽胞を処理する細菌芽胞処理チップに関する。
従来、細菌を分析するには、培地に細菌を移し、培養して細菌が増殖するかを観察する、培養法が主流であった。しかしながら、培養に2〜3日間を要するため、近年では細菌の遺伝子を増幅し、その遺伝子を検出することで目的細菌の有無を判別する遺伝子検査法も取り入れられている。ここで、炭そ菌やセレウス菌などの細菌は、周囲に水分が少なく、栄養が枯渇した状況になると数時間内で芽胞を形成する。この芽胞は非常に固い殻状の物質で、熱、化学物質、紫外線等に強い抵抗力を持つため、適切な芽胞の処理が必要である。細菌芽胞の殺菌方法は、下記特許文献1に開示されている。特許文献1には、細菌芽胞に発芽誘導物質を加えて芽胞を発芽させた後に、バクテリオシンを含有する乳酸発酵液を加えて殺菌を行う例が示されている。
特開2002−330740号公報
しかしながら、前記公知例に記載の細菌芽胞の殺菌方法は、乳酸発酵液の存在下で細菌芽胞の増殖を抑制するものであり、細菌の遺伝子検査を主眼としたものではない。さらに、発芽した炭そ菌やセレウス菌は人体に多大な影響を与えることから、細菌芽胞の遺伝子検査は、密閉系で自動化されたシステムで行われるのが望ましい。また、遺伝子検査では試薬のコストが非常に高いことから、分析システムの小型化も大きな課題となる。
そこで、本願発明は、前記課題の少なくともいずれかを解決する細菌芽胞処理チップを提供するものである。
前記課題を解決するために、以下の形態を有する。これにより、微量の試薬で安全、かつ短時間のうちに、細菌芽胞の処理をチップ上で簡易に行うことができる。
本発明により、細菌芽胞からの遺伝子抽出処理を安全かつ短時間にチップ上で簡易に行うことができる細菌芽胞処理チップ或は細菌芽胞処理装置を提供することができる。
本発明の実施例を以下に説明する。なお、本発明は、本明細書に開示した内容に限定するものではなく、公知技術に基づく変更を制限するものではない。
[実施例1]
本発明の一実施例として、芽胞を形成した細菌から遺伝子を抽出し、ポリメラーゼ連鎖反応により遺伝子を増幅させることで、対象の細菌が存在するか否かを検出する例を説明する。ここで芽胞を形成する細菌とは、バチルス属菌、クロストリディウム属菌等の細菌であることができる。
(分析の原理)
分析工程は大きく分けて、細菌芽胞に発芽促進剤を添加して細菌芽胞を発芽させる工程と、発芽した細菌から遺伝子を抽出する工程、とからなる。ここで、遺伝子の抽出は、一般的に知られる固相抽出法により行う。固相抽出法とは、まず固体表面に遺伝子を特異的に結合させ、次に他物質と区別して遺伝子のみを水溶液に溶離させることで抽出する方法である。以下、固相抽出法をステップ毎に説明する。
ステップ1・・・芽胞の発芽
細菌芽胞に発芽促進剤を加え、一定時間を経過すると細菌芽胞が発芽を開始する。発芽する段階で、細菌は自ら芽胞を壊すので、発芽により細菌の細胞壁がむき出しの状態になる。
ステップ2・・・細胞膜の溶解
試料にカオトロピックイオン(分子の直径が大きい−1価の陰イオン)を含む溶液を混合し、細菌の細胞膜をカオトロピックイオンの働きにより破壊する。またカオトロピックイオンは、同時に試料中に含まれる多くの蛋白質を変性し、ヌクレアーゼ(核酸を分解する酵素)の働きを阻害する。
ステップ3・・・結合
溶解後の混合物にシリカが加わると、カオトロピックイオンの働きにより、遺伝子とシリカが特異的に結合する。一般的には混合物をガラスフィルタに通す方法が用いられる。
ステップ4・・・洗浄
試料に含まれる蛋白質や、カオトロピックイオンが抽出物に混入すると、遺伝子増幅による遺伝子の検出を阻害するので、遺伝子−シリカを洗浄する操作が必要となる。ここでは高濃度のエタノールで洗浄する。遺伝子は高濃度のエタノールに溶解しにくい性質を持っているため、シリカに吸着している遺伝子はこの過程で溶離しない。
ステップ5・・・溶離
洗浄後、水もしくは低塩濃度の溶液を遺伝子−シリカに加え、遺伝子をシリカから溶離する。
ステップ6・・・遺伝子検出
溶離した遺伝子にプライマ(目的とするDNA領域の両末端の20塩基ほどと同じ塩基配列をもつ一本鎖DNA)、DNA合成酵素(ポリメラーゼ)と四種類の基質(dNTP)等を加え、温度サイクル「熱変性−アニーリング−相補鎖の合成」をかけることで遺伝子は増幅する(PCR:ポリメラーゼ連鎖反応)。ここで上記試薬に加え、蛍光色素を予め注入しておき、励起光を照射しながら温度サイクルをかけることで、遺伝子の増幅をリアルタイムに検出することができる。
(細菌芽胞処理チップの構成)
細菌芽胞を処理する細菌芽胞処理チップの構成を図1を用いて説明する。図1は、細菌芽胞処理チップ101の詳細図である。本実施例では、溶解液保管槽と遺伝子増幅試薬を備える形態について説明する。
細菌芽胞処理チップ101は、発芽促進液を保管する発芽促進液保管槽111と、細胞膜溶解液を保管する溶解液保管槽112と、試料注入口102(廃液槽としても使用される場合有)と、発芽した細菌芽胞が溶解液により溶解し細菌遺伝子が溶出する遺伝子溶出槽103(廃液槽としても使用される場合有)と、遺伝子結合担体を流路に充填した遺伝子抽出エリア113と、洗浄液を保管する洗浄液保管槽114と、遺伝子溶離液を保管する溶離液保管槽115と、遺伝子の検出を行う反応槽104と、それぞれの槽を構成する流路において保管された液が位置するよりも流路の末端側に位置し、外部の流路との接点となるチップポート(121〜128)から構成される。ここでチップ内外の流体が連通される。流体とは例えば空気などの気体である。場合によっては水などの液体であってもよい。本実施例では、さらに、遺伝子増幅試薬を保管する遺伝子増幅試薬保管槽116を備えた例を示している。これらのチップポートでチップ内と外部との間を流体が連通させることができる。これらチップ構成要素の大部分は、マイクロファブリケーション技術によりパターン転写された微細流路である。
ここで細菌芽胞処理チップ101の作成方法を述べる。細菌芽胞処理チップ101の材料として、加工費用が高くまた割れやすいガラスよりも、廃棄処理性に優れる樹脂のほうが好ましい。樹脂の種類は特に限定されるものではないが、本実施例では以下の優れた特性を有するポリジメチルシロキサン(PDMS:ダウコーニングアジア社製、シルポット184)を使用した。本チップには以下の特性を備えることが好ましい。
・生体適合性良好(通常のシリコンゴムは生理的に不活性)
・サブミクロンの精度で型の転写が可能(硬化前は低粘度で流動性に富むため、複雑な形状の細部まで良好に浸透)
・低コストである(従来の汎用マイクロデバイス材料であるパイレックスガラスに比べて、1/100以下とすることができる)
・焼却により容易に廃棄可能
図2に、樹脂基板(以下には一例としてPDMSを使用した場合を記載)を使用した細菌芽胞処理チップ101作成の流れを示す。細菌芽胞処理チップは、細菌芽胞処理チップの構成要素をかたどるパターンをフォトリソグラフィー技術により作製し、このパターンを樹脂に転写成形して成型することができる。プロセスは大きく分けて、〔1〕PDMSに転写するパターンの成形、〔2〕PDMSへのパターン転写、〔3〕PDMS同士の接合、からなる。以下、各プロセスを段階を追って説明する。
〔1〕PDMSに転写するパターンの成形
パターンの材料として感光性厚膜レジスト207(Micro、Chem社製,NANO SU−8)をシリコンウェハ208に塗布(ステップ201)、フォトマスク209を感光性厚膜レジスト207の上に置いて露光(ステップ202)、現像の工程(ステップ203)を経てマイクロパターンが成形される。従来のウェットエッチングによるフォトファブリケーションと異なり、短形断面を保持しながら曲線形状を成形できる長所を有する。
〔2〕PDMSへのパターン転写
PDMS210と硬化剤を重量比10:1の割合で混合し、パターン上に塗布、100℃で1時間加熱することによりPDMS210は硬化する(ステップ204)。凸形状のマイクロパターンより、凹形状のPDMS210が得られる(ステップ205)。
〔3〕PDMS同士の接合
パターンが転写されたPDMS210の表面を酸素プラズマ処理し、2枚のPDMS210を重ねあわせることで、2枚のPDMS210は接合する。接合強度は、接合部位を剥がそうとするとPDMS210が破断するほど充分なものである。なお一方をPDMS210として、シリコン、ガラスと接合させてもよい。PDMSの成形方法は上記の手法に限定されるものではなく、例えば押し出し成形によって加工することができる。
本細菌芽胞処理チップ101のより詳細な構造を図1、図3を用いて説明する。図3は細菌芽胞処理チップ101の断面図である。細菌芽胞処理チップ101は2枚のPDMSがプラズマ処理により表面改質され、接合したものである。まずPDMS第1層131には、試料注入口兼廃液槽102となる貫通穴が形成されている。試料注入口兼廃液槽102の体積は10〜100μLで、大気開放である。PDMS第2層132には、様々な試薬槽(111〜116)となる微小流路110がパターン成形されている。微小流路110は断面形状が縦0.1mm、横0.5mmで形成した。断面形状は特に限定されないが、横/縦10以下が好ましい。横/縦が10以上となると、PDMS第1層131がたわんで微小流路110の矩形構造が崩れる恐れがある。
さらにPDMS第2層132には、微小流路110と外部装置の流路とを連通するチップポート120と、遺伝子溶出槽103及び反応槽104となる貫通穴が形成されている。遺伝子溶出槽103に導入される、細菌芽胞や発芽促進剤を含む液体の体積は10〜30μLである。また反応槽104に導入される遺伝子を含む液体の体積は10〜40μLである。特に、反応槽104の体積を10〜20μLとすることで、熱応答性が向上し、反応槽104の温度制御が迅速化する。これにより、反応槽104の温度を秒単位で変化させながら最適な条件下で反応を進行させることができる。また反応槽104の体積を微小化することで、反応槽104における溶離液と遺伝子増幅試薬との混合が短時間(例えば約1秒程度)で済むため、混合操作が容易となる。なお、反応槽104は、試料の注入口102よりも厚さ方向から見た面積が大きい。特許文献1に開示された従来技術では超音波素子等を用いて混合を行っていたが、本実施例によれば、簡素化のためには混合操作を用いないことも考えられる。或は、用いるにしても簡易なものですむ。
なお、遺伝子溶出槽103及び反応槽104は貫通穴であるから、当然底となる板が必要である。後述するが、細菌芽胞処理チップ101の底板140は温度制御機構から遺伝子溶出槽103及び反応槽104に熱を伝える媒体の役割も果たすことから、熱伝導性が良い材料であることが好ましい。さらに、底板140の表面が鏡面であれば、反応槽104内での蛍光が底板140に反射するから、遺伝子の検出感度が高くなる。底板140として好ましいのはクロムであり、最も好ましいのはシリコンである。シリコンは熱伝導性が良好であり、かつPDMSとの接合が酸素プラズマ処理のみで容易に行えるからである。
本細菌芽胞処理チップ101には、5つの試薬槽(発芽促進剤保管槽111、溶解液保管槽112、洗浄液保管槽114、溶離液保管槽115、遺伝子増幅試薬保管槽116)が内蔵されている。いずれの試薬槽も、流路形状が好ましい。試薬槽内の試薬を送液するために、試薬槽の背後から流体(空気や水)を試薬槽に送る。このとき、試薬槽が流路形状でなかった場合、流体の通り抜けやすい部位(液ぬれ性のよい部位)のみ試薬が押し出され、その他の部位の試薬が試薬槽に残るためである。消費する試薬の量を減らすために、試薬槽を流路形状にするのは効果的である。
ここで、発芽促進剤保管槽111の体積は10〜20μL、溶解液保管槽112の体積は10〜20μL、洗浄液保管槽114の体積は10〜30μL、溶離液保管槽115の体積は5〜10μL、遺伝子増幅試薬保管槽116の体積は5〜10μLが好ましい。特に、溶離液(含遺伝子)と遺伝子増幅試薬との和が10μL以下であると、前述のように反応槽104における溶離液と遺伝子増幅試薬との混合が迅速化し、かつ反応が均一となるため最適である。このように、試薬槽や反応槽の体積をマイクロ化することで、試薬量が削減され低コストとなるだけでなく、温度制御が迅速、混合が迅速、反応が均一といった長所が得られる。
遺伝子抽出エリア113に充填する遺伝子結合担体として、石英ウール、ガラスウール、ガラスファイバー、ガラスビーズが適用可能である。ガラスビーズ適用の際は、接触面積を大きくするためにビーズサイズを20〜50μmとするのが好ましく、20〜30μmが最適である。
また、遺伝子保持担体を堰きとめるために、エリアを構成する流路が1箇所以上狭まっていることが好ましい。
例えば、遺伝子結合担体を遺伝子抽出エリア113に保持するために、遺伝子抽出エリア113の微小流路中、2箇所の流路幅を10μmまで狭めると良い。すなわち、狭められた流路が遺伝子結合担体に対して堰となる。流路を10μm未満にすると流体抵抗が大きく流体制御が困難になる。よって、堰としての流路幅は10〜20μmが好適である。
(細菌芽胞処理装置の構成)
図4に、細菌芽胞処理チップ101をセットする装置の断面図を示す。分析装置は大きく分けて、流体系、温調系、そして光学検出系の3つから構成される。細菌芽胞処理チップ101をセットする基板100には、細菌芽胞処理チップ101を吸着させるための吸着溝150、細菌芽胞処理チップ101のポートに連通する装置内流路162、遺伝子溶出槽103及び反応槽104の温度を最適化するための温度制御機構170が内蔵されている。装置には各制御を行う制御機構を備える。装置に、ポンプ160を制御するポンプ制御機構165、バルブ161を制御するバルブ制御機構166、光源180を制御する光源制御機構185、光検出器181を制御する光検出器制御機構186、光検出器の信号を変換する光信号変換機187及び変換された光信号を表示するデータ表示画面188が搭載される。
細菌芽胞処理チップ101を基板100の上に置き、基板100の吸着溝150を真空引きすることにより、細菌芽胞処理チップ101は基板100に吸着する。このように真空チャックを行うことで、チップポート120と装置内流路162が確実に接続され、流体の漏れを防止する一方で、細菌芽胞処理チップ101は基板100に対して容易に着脱可能となる。細菌芽胞処理チップ101を使い捨てとするには、真空チャックによる細菌芽胞処理チップ101の固定方式が極めて実用的である。
温度制御機構170としては、様々な発熱体が適用可能であるが、例えば、好ましいのはペルチェである。ペルチェを使用した場合、印加電流の向きを変えるだけで昇温・冷却操作を簡便に行うことができる。
装置内流路162は、それぞれバルブ161を介してポンプ160に接続される。ポンプ160は、送風・吸引の切替えが可能なものがより好ましく、また複数個あると好ましい。ある試薬槽の試薬を送液したい場合には、バルブ161を切り替えてその試薬槽に連通するポートのみに送風を行う。
このように流体を制御するバルブ161を細菌芽胞処理チップ101の内部ではなく、分析装置側に設けることが好ましい。これにより、細菌芽胞処理チップ101には機械部品がなくなり、小型化・ディスポーザブル化を実現することができる。
光検出系は、反応槽104内の遺伝子に励起光を照射する光源180と、反応槽104内の蛍光を測定する光検出器181から構成される。光源180は様々な波長領域のものが使用可能であるが、蛍光色素として一般的なエチジウムブロマイドを用いた場合、紫外線ランプや紫外線レーザーを用いるのが好ましい。光検出器181は、光検出器181受光面が反応槽104の真上にくるよう配置する。光検出器181としてはCCDカメラ、光電子倍増管、フォトダイオード等を使用できるが、装置を小型化するにはフォトダイオードが好ましい。
本発明では、機械部品を内蔵しない小型の細菌芽胞処理チップを基板上に置いて簡便な光検出器を組み合わせるだけの、小型で可搬の分析装置を提供することが出来る。
(分析の手順)
細菌芽胞処理チップ101を用いた分析の手順を、図4、図5、図6を参照しながら説明する。図5は、分析方法の手順を示すフローチャート図である。図6は、実施例1の流体ハンドリングのプロファイルを示す図である。
分析の手順としては、主に以下の手順を有することができる。
まず、試料の細菌芽胞に発芽促進剤を供給し、細菌芽胞を発芽させる。
そして、試料の細胞壁を壊す溶解液を発芽した前記試料と混合する。
次に、前記溶解液と試料の混合液を、遺伝子保持担体が充填された流路に送液する。
そして、試料に含まれる蛋白質等を洗浄する洗浄液を前記遺伝子保持担体が充填された流路に送液し、さらにその廃液を試料が当初保持されていた槽に送液する。
次に、遺伝子保持担体に吸着された遺伝子を溶離する溶離液を前記遺伝子保持担体が充填された流路に送液し、さらに遺伝子を検出する反応槽へと送液する。
その後、分析対象の遺伝子の有無を検出する。以下に一例を具体的に説明する。
初めに、5種類の試薬、すなわち発芽促進剤、細胞膜溶解液、洗浄液、遺伝子溶離液、遺伝子増幅試薬がそれぞれ発芽促進剤保管槽111、溶解液保管槽112、洗浄液保管槽114と、溶離液保管槽115、遺伝子増幅試薬保管槽116に内蔵され、凍結保存しておいた細菌芽胞処理チップ101を室温で解凍する。細菌芽胞処理チップ101に予め1検査分のみの試薬を内蔵してユーザーに提供することで、細菌芽胞処理チップ101を1検査の使い切りとしても試薬の無駄がなく、経済性が向上する。またユーザーは試薬を各試薬保存槽に分注する手間を省くことができ、時間が短縮されるだけでなく、汚染を防ぐことも出来る。さらに、この細菌芽胞処理チップ101を凍結した状態でユーザーに提供し、ユーザーが0℃で細菌芽胞処理チップ101を凍結保存することで、試薬の活性は1ヶ月保たれる。また、−20℃で凍結保存しておけば、半年以上試薬の活性を保つことが可能である。このように、使い捨て可能な細菌芽胞処理チップ101に予め1検査分のみの試薬を内蔵し、細菌芽胞処理チップ101を冷蔵あるいは冷凍した状態でユーザーに提供することで、簡便な分析環境を作ることができる(ステップ311)。
次に、細菌芽胞処理チップ101を基板100の上に置き、チップポート120と装置内流路162が連通したのを確認したのち、吸着溝150を減圧する。このようにして真空引きし、真空チャックにより細菌芽胞処理チップ101を基板100に固定する(ステップ312)。
そして、試料注入口兼廃液槽102に試料を10μL分注する。試料とは、芽胞を形成した細菌の粉末、あるいは兼濁液である(ステップ313)。
次に、分析装置内のバルブ161を切り替えて発芽促進剤ポート121にのみポンプ160から流体を流す。(ポート121:開、他のポート122〜128:閉)ここで使用する流体は、水、アルコール、あるいは空気など、試薬と接した時に試薬の活性が損なわれないものであればよい。
発芽促進剤保管槽111内の発芽促進剤20μLは流体によって試料注入口兼廃液槽102に注入され、試料注入口兼廃液槽102内の試料と混合される。ここで発芽促進剤としては、アラニン、アデノシン、グルコースを含むブイヨンが好ましい。特にL−アラニンを1mM〜10mM含有するブイヨンが最適である(ステップ314)。
次に、分析装置内のバルブ161を切り替えてチップポートA122からチップ内部を減圧するようポンプ160を吸引作動させる。(ポート121、122:開、他のポート123〜128:閉、なお、ポート121は閉でも可。)これにより、試料注入口兼廃液槽102内の試料と発芽促進剤は遺伝子溶出槽103に移動する。そして、試料注入口兼廃液槽102内の液体が全て遺伝子溶出槽103に移行した段階で、ポンプ160を停止する。さらに細菌芽胞処理チップ101の下部に設けた温度制御機構170を駆動し、底板140を介して反応槽104の温度が25〜40℃になるように制御する。細菌芽胞を発芽させるのにより好ましいのは35〜40℃であり、最も好ましいのは35〜37℃である。細菌芽胞が発芽を開始するのは10分後であり、細菌芽胞の全てが発芽するのは60分後である。このように、細菌芽胞の発芽工程をチップ内の閉じた空間で行うため、一度発芽すると人体に悪影響を及ぼす炭そ菌やセレウス菌の処理には好適である(ステップ315)。
次に、溶解液ポート123にのみポンプ160から流体を流す。(ポート121、123:開、他のポート122、124〜128:閉、なお、ポート121は閉でも可。)溶解液保管槽112内の細胞膜溶解液20μLは流体によって遺伝子溶出槽103に注入され、発芽した細菌と混合される。これにより、細菌の細胞膜が破壊され、細菌の遺伝子が細胞外部に放出される。ここで細胞膜溶解液としては、グアニジンチオシアン酸塩、グアニジン塩化水素、ヨウ化ナトリウム、臭化カリウムといったカオトロピックイオンを含む溶液が好ましい(ステップ316)。
次に、分析装置内のバルブ161を切り替えてチップポートB124からチップ内部を減圧するようポンプ160を吸引作動させる。(ポート121〜124:開、他のポート121、125〜128:閉、なお、ポート121は閉でも可。)これにより、遺伝子溶出槽103内の遺伝子懸濁液は遺伝子抽出エリア113に移動する。そして、遺伝子溶出槽103内の遺伝子懸濁液が全て遺伝子抽出エリア113に移行した段階で、ポンプ160を停止する。これにより、遺伝子抽出エリア113内の遺伝子結合担体に遺伝子が捕獲される(ステップ317)。
次に、分析装置内のバルブ161を切り替えてポート122〜124を閉じ、さらに洗浄液ポート125にのみポンプ160から流体を流す。(ポート121〜123、125:開、他のポート124、126〜128:閉、なお、溶解液ポート121は閉でも可。)洗浄液保管槽114内の洗浄液20μLは流体によって遺伝子抽出エリア113に送液される。ここで洗浄液としては、TRIS塩酸が使用可能であり、50%以上の高濃度エタノールがより好ましい。この洗浄液により、遺伝子抽出エリア113に残留する発芽促進剤や蛋白質やカオトロピックイオンは除去される。そして、遺伝子抽出エリア113を経た洗浄液が遺伝子溶出槽103さらには試料注入口102側に流れるようにする。例えば、遺伝子抽出エリア113を洗浄した洗浄液が試料注入口兼廃液槽102に移行した段階で、ポンプ160を停止する。本実施例のように廃液槽を試料注入口と兼ねさせることで、細菌芽胞処理チップ101のサイズを小型化することができ、使い捨ての用途にはより好適である。このとき、試料注入口102の他に、又は代わりに、発芽促進剤保管槽111或は溶解液保管槽112に使用済みの洗浄液を導入するようにすることもできる。これにより、試料注入口102を大型化しなくとも廃液を蓄えられる。或は、試料注入口から外部へ廃液が漏れることを効果的に抑制することができる。この際、発芽促進剤保管槽111と試料注入口兼廃液槽102と遺伝子抽出エリア113と溶離液保管槽115とが直列に配置されている、又は溶解液保管槽112と試料注入口兼廃液槽102と遺伝子抽出エリア113と溶離液保管槽115とが直列に配置されていることで、流体の制御手順が最も簡便で済み、分析時間が最短となる(ステップ318)。
次に、分析装置内のバルブ161を切り替えてポート122、123、125を閉じ、溶離ポート126とチップポートC128を開く。そしてポンプ160を駆動し溶離ポート126に流体を流す。(ポート121、126、128:開、他のポート122〜125、127:閉、なお、溶解液ポート121は閉でも可。)溶離液保管槽115内の溶離液5μLは流体によって遺伝子抽出エリア113に送液される。ここで溶離液としては、滅菌蒸留水、TRIS−EDTAやTRIS−アセテート等のバッファ溶液が使用可能である。この溶離液により、遺伝子抽出エリア113の遺伝子結合担体に捕獲されていた遺伝子が溶離する。そして、遺伝子を含む溶離液が遺伝子抽出エリア113の末端に達した時に、チップポートC128から反応槽104を減圧するよう別のポンプ160を吸引作動させる。これにより、遺伝子を含む溶離液が試料注入口兼廃液槽102に送液されることなく、反応槽104に導かれる。そして溶離液が反応槽104に全て移行した段階で、ポンプ160を停止する。これにより、試料の前処理すなわち遺伝子の抽出が完了したことになる(ステップ319)。
ここで、抽出された試料について遺伝子検出装置によって検出を行う。
以下は遺伝子の検出手順の一例を示す。分析装置内のバルブ161を切り替えて溶離液ポート126とチップポートC128を閉じ、遺伝子増幅試薬ポート127にのみポンプ160から流体を流す。(遺伝子増幅試薬ポート127:開、他のポート121〜126、128:閉。)遺伝子増幅試薬保管槽116内の遺伝子増幅試薬5μLは流体によって反応槽104に注入され、反応槽104内の遺伝子と混合される。ここで遺伝子増幅試薬は、2.5mM濃度の4種類のdNTP(dATP、dCTP、dGTP、dTTP)、バッファ(100mM濃度TRIS塩酸、500mM濃度KCl、15mM濃度MgCl2)、2種類のプライマ、DNA合成酵素(TaqDNAポリメラーゼ、TthDNAポリメラーゼ、VentDNAポリメラーゼ、サーモシーケナーゼのいずれか)、蛍光色素(エチジウムブロマイド、SYBR GREEN(Molecular Probe製)のいずれか)から構成される(ステップ320)。
次に、細菌芽胞処理チップ101の下部に設けた温度制御機構170を駆動し、底板140を介して反応槽104の温度が下記の2種類の設定値を往復するように温度サイクルをかける(ステップ321)。
温度サイクル例としては、下記の程度を実施する。
「90〜95℃、10〜30秒 ⇔ 65〜70℃、10〜30秒」×30〜45回
好ましい一例として、以下の温度サイクルを実施する。
「94℃、30秒 ⇔ 68℃、30秒」×45回
温度サイクルをかけながら、細菌芽胞処理チップ101上部の光源180から励起光を反応槽104に照射する。遺伝子は、2本鎖の内部にインターカレートした蛍光色素を有すると、吸収した光源180光のエネルギーを蛍光色素に渡す(エネルギー転移)。その結果、蛍光色素は励起されて蛍光を発する。すなわち、試料中に目的遺伝子が存在した場合、遺伝子が増幅するに従って発する蛍光量が増加する。よって、温度サイクルの間、光検出器181により反応槽104内の蛍光量をモニタすることで、図7に示されるように、目的遺伝子の有無がリアルタイムに検出可能となる(ステップ322)。
そして基板100の吸着溝150の吸着力を下げた後に基板からチップを取り出す。例えば、分析が完了した時、細菌芽胞処理チップ101を分析装置から取り出し、廃棄する(ステップ323)。試料や試薬の後処理が必要ない上に、反応検出部の洗浄操作が必要ないため、簡便・迅速な分析を提供することができる。
本発明の細菌芽胞処理チップを使用することで、細菌芽胞から遺伝子を抽出する工程が小型のチップ内で自動化される。細菌芽胞の発芽工程に人手を一切介さないため、誰でも安全に細菌芽胞から遺伝子抽出が可能である。さらに、細菌芽胞処理チップ内にバルブ等の機械部品が含まれず、また廃棄槽が試薬注入口を兼ねるなど省スペースが実現された結果、使い捨て用途に好適な細菌芽胞処理チップが提供できる。また、反応槽や流路を微細加工により作製し容積を微小化した結果、試薬量が削減され低コストとなるだけでなく、温度制御が迅速、混合が迅速、反応が均一といった長所が得られる。さらにディスポーザブルな細菌芽胞処理チップに予め1検査分のみの試薬を内蔵し、細菌芽胞処理チップを冷蔵・冷凍した状態でユーザーに提供することで、極めて簡便・迅速な遺伝子の検出が可能となる。
なお、本実施例で説明したチップの反応槽104は大気との間に大気の連通を妨げる壁を備える形態であることができる。一方で、製造上の観点などから、反応槽104領域は大気開放となっていることもできる。その際、紫外線を透過する石英ガラス等で反応槽104を覆うと反応液の蒸発を防止することができる。
また、反応槽の個数は1個の例を示した。しかし、検査する対象他に応じる等の観点で複数個であってもよい。
また、このように構成することにより、分析チップ内の流体がチップ外部の流体機器(ポンプ、バルブ)により流体や試薬などの流れが制御されているので、チップ内にポンプや多数のバルブを配置することを抑制することができる簡易なチップ構成にすることができる。
これにより、細菌芽胞を含む試料からの遺伝子抽出・分析までが簡便・迅速となり、試薬を予め貯蔵し分析後に試薬と共に処分しうる分析チップ及びそれを備えた分析装置を提供することができる。
また、本実施例では、蛇行流路状の液保管槽や遺伝子抽出エリアの細管の断面積は、これらの保管槽と他のエリア(例えば注入口や反応槽)をつなぐ連絡流路部より大きく形成することにより、試薬等の流体を保管槽などから排出する際の圧力損失を小さくことができる。
一方で、液が保管されている保管槽部の細管の断面積が大きすぎて液の排出時に液残りの発生を抑制する程度の小ささであることが好ましい。例えば、この連絡流路部の細管断面積に対して、10倍以下程度にすることが考えられる。或いはさらに保管槽等と連絡流路との液流通の際の拡大・縮小損失を小さくする観点で、例えば5倍以下程度にすることが考えられる。
前記は断面積として規定したが、細管の高さは保管槽等の領域と連絡流路との差を同じかあまり変えずに、幅を前述の高さの差より大きく変えることが製造の観点で容易となり好ましい。例えば、前記の断面積として規定した数値を幅として規定することができる。
また、前記保管槽あるいは遺伝子抽出エリアと対応するポートとの間に、前記保管槽あるいは遺伝子抽出エリアの細管断面積よりも狭くなっている領域を有することが、保管している液の漏洩などを抑制する点で好ましい。
[実施例2]
本実施例は、基本的には実施例1で説明した形態を備えることができるが、本実施例では、細菌芽胞処理チップ101の試料注入口兼廃液槽102は大気開放でなく、少なくとも試料を試料注入口兼廃液槽102に分注した後には、試料注入口102には大気の連通を妨げる壁などのカバーが形成される。例えば、図8のように樹脂との密着性が良いガラス薄板(例えば顕微鏡用のカバーガラス)等の試料注入口兼廃液槽カバー105を試料注入口兼廃液槽102に被し、試料注入口兼廃液槽102を密閉することも出来る。試料注入口兼廃液槽102をカバーする工程は、手動でもよいが、分析装置側に試料注入口兼廃液槽カバー105を装着する機構が備わっているとより好ましい。なお、これらのカバーは予め大気の連通を妨げるよう覆われている形態であることが操作上の観点では効率的である。
これに伴って、実施例2における流体ハンドリングのプロファイルの例を図9に示す。実施例1におけるステップ311から314までは実施例2も同様である。ステップ315以降を説明する。分析装置内のバルブ161を切り替えてチップポートA122を開き、発芽促進剤ポート121に引き続きポンプ160から流体を流す。(ポート121〜122:開、他のポート123〜128:閉。)これにより、試料注入口兼廃液槽102内の試料と発芽促進剤は遺伝子溶出槽103に移動する。そして、試料注入口兼廃液槽102内の液体が全て遺伝子溶出槽103に移行した段階で、ポンプ160を停止する(ステップ315)。
次に、分析装置内のバルブ161を切り替えてチップポートA122を閉じ、発芽促進剤ポート121は開いたまま溶解液ポート123に流体を流す。(発芽促進液ポート121、洗浄液ポート123:開、他のポート122、124〜128:閉。)溶解液保管槽112内の細胞膜溶解液は流体によって遺伝子溶出槽103に注入され、発芽した細菌と混合される(ステップ316)。
次に、分析装置内のバルブ161を切り替えて溶解液ポート123を閉じ、チップポートB124を開いて発芽促進剤ポート121に流体を流す。(ポート121、124:開、他のポート122〜123、125〜128:閉。)これにより、遺伝子溶出槽103内の遺伝子懸濁液は遺伝子抽出エリア113に移動する。そして、遺伝子溶出槽103内の遺伝子懸濁液を遺伝子抽出エリア113に移行終了した段階で、ポンプ160を停止する(ステップ317)。
次に、分析装置内のバルブ161を切り替えてチップポートB124を閉じ、発芽促進剤ポート121は開いたまま洗浄液ポート125に流体を流す。(ポート121、125:開、他のポート122〜124、126〜128:閉。)洗浄液保管槽114内の洗浄液が流体によって遺伝子抽出エリア113に送液される。そして、遺伝子抽出エリア113を洗浄した洗浄液が全て遺伝子溶出槽103さらには試料注入口102側に移行した段階で、ポンプ160を停止する(ステップ318)。
次に、分析装置内のバルブ161を切り替えて発芽促進剤ポート121と洗浄液ポート125を閉じ、溶離液ポート126とチップポートC128を開く。(ポート126、128:開、他のポート121〜125、127:閉。)そしてポンプ160を駆動し溶離ポート126に流体を流す。溶離液保管槽115内の溶離液は流体によって遺伝子抽出エリア113に送液される。この溶離液により、遺伝子抽出エリア113の遺伝子結合担体に捕獲されていた遺伝子が溶離し、チップポートC128が開いている反応槽104へと導かれる。そして溶離液が反応槽104に全て移行した段階で、ポンプ160を停止する(ステップ319)。
このように、試料注入口兼廃液槽102を密閉することで、ポンプによる流体(ここでは例えば空気)の流入操作で処理を効果的に行うことができる。実施例1のような吸引操作を不要とすることも考えられる。さらに、試料注入口兼廃液槽102が大気開放ゆえ起こりうる大気からの汚染や、試薬類の漏れを防止することができる。
[実施例3]
本実施例は基本的には実施例1で説明した形態を用いることができるが、本実施例では温度を一定に保ったまま遺伝子の増幅を行う。
試料から遺伝子を抽出するまでの工程は実施例1と同じである。この場合、遺伝子増幅試薬の成分が異なる。すなわち遺伝子増幅試薬は10mM濃度の4種類のdNTP(dATP、dCTP、dGTP、dTTP)、バッファ(2mM濃度MgSO4)、4種類のプライマ、100mM濃度のMgSO、4M濃度のBETAINE、DNA合成酵素(4Unit/μLのBstポリメラーゼ)、蛍光色素(エチジウムブロマイド、SYBR GREEN(Molecular Probe製)のいずれか)の混合物とする。また温度制御機構170による反応槽104の温度調整は60〜65℃の範囲とする。そして目的遺伝子が存在した場合、温度制御開始1時間ほどで蛍光量が増加する。また、蛍光検出を行うのではなく、副生成物のピロリン酸マグネシウムによる白濁を吸光光度計により測定してもよい。
4種類のプライマの設計がやや困難であるが、温度のサイクルが必要ないのでペルチェより簡便なヒーターで温度調節が可能である。分析装置の構成要素を簡素化できる長所を有する。
[実施例4]
本実施例は、基本的には実施例1で説明した形態を用いることができるが、分析チップ101の底板140として、水晶振動子や表面弾性波素子などの圧電素子を適用する。圧電素子は、その電極上に付着した重さを発振周波数の変化に定量的に変換することから、微量な質量変化を反応雰囲気下で連続的に測定する手法として広く利用されている。そこで、所定の予め塩基配列が既知の様々なヌクレオチドをチップ底板140としての圧電素子に固定しておく。固定方法は下記の如くが好ましい。まず圧電素子の電極上にスパッタリング、蒸着などの方法でガラス薄膜を形成する。ガラスとしては、電極素材であるクロムやチタンと最も接着性のよいSiOを主成分としたものが好ましい。このガラス薄膜にアミノプロピルトリメトキシシラン(APS)を添加し、120〜160℃程度でベークすると、ガラス薄膜の表面にアミノ基が固定される。ここで、電極とガラス薄膜の厚みがそれぞれ0.1〜1μmであることが好ましい。双方の厚みが1μmを超えると、圧電素子の周波数応答が悪くなるためである。さらに、アミノ基がコーティングされたガラス薄膜にヌクレオチドを塗布し、恒温恒湿槽内で37℃、湿度90%で1時間保温する。その後、UVクロスリンカーを用いて60mJ/cmの紫外線を圧電素子に照射することで、ヌクレオチドは圧電素子に強固に固定される。
試料から遺伝子を抽出するまでの工程は実施例1と同じである。そして反応槽104に送液された遺伝子を温度制御機構170により94℃付近まで昇温すると、遺伝子は熱変性して一本鎖となる。この一本鎖遺伝子と底板140上に固定されたヌクレオチドが結合したとき、圧電素子の発振周波数が変化する。よって、この周波数変化を測定することにより、固定したヌクレオチドと相補的な遺伝子の配列を読み取りが可能となる。
液中で圧電素子を使用した場合、液温が1℃変化すると周波数は15〜30Hz変化するため液温の正確な制御が必須となるが、本実施例では、遺伝子増幅試薬が不要となり、また温度サイクルが要らないため検出時間が短くなる長所がある。
細菌芽胞処理チップの構成を示す拡大図である。 反細菌芽胞処理チップの作成手順を示すフローチャート図である。 実施例1の細菌芽胞処理チップの断面図である。 細菌芽胞処理装置の構成を示す断面図である。 実施例1の分析手順を示すフローチャート図である。 実施例1の流体ハンドリングのプロファイルを示す図である。 実施例1の実験結果の一例である。 実施例2の細菌芽胞処理チップの断面図である。 実施例2の流体ハンドリングのプロファイルを示す図である。
符号の説明
100…基板、101…細菌芽胞処理チップ、102…試料注入口兼廃液槽、103…遺伝子溶出槽兼廃液槽、104…反応槽、105…試料注入口兼廃液槽カバー、110…微小流路、111…発芽促進剤保管槽、112…溶解液保管槽、113…遺伝子抽出エリア、114…洗浄液保管槽、115…溶離液保管槽、116…遺伝子増幅試薬保管槽、120…チップポート、121…発芽促進剤ポート、122…チップポートA、123…溶解液ポート、124…チップポートB、125…洗浄液ポート、126…溶離液ポート、127…遺伝子増幅試薬ポート、128…チップポートC、131…PDMS第1層、132…PDMS第2層、140…底板、150…吸着溝、160…ポンプ、161…バルブ、162…装置内流路、165…ポンプ制御機構、166…バルブ制御機構、170…温度制御機構、180…光源、181…光検出器、185…光源制御機構、186…光検出器制御機構、187…光信号変換機、188…データ表示画面

Claims (17)

  1. 芽胞を形成した細菌を含む試料が供給される注入口と、
    前記注入口に供給された前記試料に導入される発芽促進液を保管する発芽促進液保管部と、
    前記試料と前記発芽促進液とを混合した液に導入される溶解液を保管する溶解液保管部と、
    前記試料と前記発芽促進液と前記溶解液とを混合し、前記試料から遺伝子が溶出される遺伝子溶出部と、
    前記溶出遺伝子と結合する遺伝子結合担体を備える遺伝子抽出部と、
    前記遺伝子抽出部に導入される洗浄液を保管する洗浄液保管部と、
    前記遺伝子抽出部に導入される溶離液を保管する溶離液保管部と、
    前記溶離液により溶離された前記遺伝子が導入される反応部と、を備えていることを特徴とする細菌芽胞処理チップ。
  2. 請求項1において、
    前記遺伝子抽出部の前記試料を含む液が導入される領域より前記遺伝子溶出部乃至前記注入口から離れた領域に、前記洗浄液保管部から前記洗浄液が導入される流路が連絡されていることを特徴とする細菌芽胞処理チップ。
  3. 請求項1において、
    前記洗浄液保管部から前記遺伝子抽出部に導入された前記洗浄液は前記遺伝子抽出部を経た後に前記遺伝子溶出部乃至前記注入口側に流れるよう形成された流路を通過することを特徴とする細菌芽胞処理チップ。
  4. 請求項1において、
    遺伝子溶出部乃至前記注入口と前記遺伝子抽出部と前記洗浄液保管部とが流路を介して直列に配置されたことを特徴とする細菌芽胞処理チップ。
  5. 請求項1において、
    前記遺伝子溶出部と前記遺伝子抽出部との間から分岐して前記反応部に連絡する流路を有することを特徴とする細菌芽胞処理チップ。
  6. 請求項1において、
    前記発芽促進液保管部、前記溶解液保管部、前記洗浄液保管部或は溶離液保管部のいずれかの保管部は、幅よりも長手方向の長さが長い流路が曲がり部を介して複数連絡されて形成され、
    前記保管部の他端には前記保管された液体が保管部から排出される際に導入される流体の導入部を備えることを特徴とする細菌芽胞処理チップ。
  7. 請求項6において、
    前記いずれかの保管部を構成する流路は、前記保管部と注入口とを連絡する連絡流路の断面積に対して、10倍以下の最大断面積を有することを特徴とする細菌芽胞処理チップ。
  8. 請求項6において、
    前記いずれかの保管部を構成する流路の断面構造が横/縦が10以下であることを特徴とする細菌芽胞処理チップ。
  9. 請求項1において、
    前記発芽促進液保管部の発芽促進液が保管された領域より前記注入口から離れた側に位置し、前記発芽促進液が前記注入口に導入される際に流体が前記発芽促進液保管部に供給される第一の流体導入部と、
    前記遺伝子溶出部より前記注入口から離れた側に位置し、前記試料と前記発芽促進液とが混合した液体が前記注入口から前記遺伝子溶出部へ導入される前に前記遺伝子溶出部内にある流体を前記遺伝子溶出部の外に排出する第一の流体排出部と、
    前記溶解液保管部の前記溶解液が保管された領域より前記遺伝子溶出部から離れた側に位置し、前記溶解液が前記遺伝子溶出部に導入される際に流体が前記溶解液保管部に供給される第二の流体導入部と、
    前記遺伝子抽出部より前記遺伝子溶出部から離れた側に位置し、前記溶出遺伝子が前記遺伝子抽出部に導入される前に前記遺伝子抽出部内にある流体を前記遺伝子抽出部の外に排出する第二の流体排出部と、
    前記洗浄液保管部の前記洗浄液が貯蔵された領域より前記遺伝子抽出部から離れた側に前記洗浄液が前記注入口に導入される際に流体が供給される第三の流体導入部と、
    前記溶離保管部の前記溶離液が貯蔵された領域より前記遺伝子抽出部から離れた側に前記溶離液が前記注入口に導入される際に流体が供給される第四の流体導入部と、
    溶離された前記遺伝子を含む前記液を前記遺伝子抽出部から前記反応部に導入される際に流体が供給される第五の流体導入部と、
    を備えることを特徴とする細菌芽胞処理チップ。
  10. 芽胞を形成した細菌を含む試料が供給される注入口と、前記注入口に供給された前記試料に導入される発芽促進液を保管する発芽促進液保管部と、前記試料と前記発芽促進液とを混合した液に導入される溶解液を保管する溶解液保管部と、前記試料と前記発芽促進液と前記溶解液とを混合し、前記試料から遺伝子が溶出される遺伝子溶出部と、前記溶出遺伝子と結合する遺伝子結合担体を備える遺伝子抽出部と、前記遺伝子抽出部に導入される洗浄液を保管する洗浄液保管部と、前記遺伝子抽出部に導入される溶離液を保管する溶離液保管部と、前記溶離液により溶離された前記遺伝子が導入される反応部とを備えた細菌芽胞処理チップが設置されるチップ設置部と、
    前記細菌芽胞処理チップに流体を導入する流体導入機構と、
    溶離した遺伝子を検出する検出機構と、
    を備えることを特徴とする細菌芽胞処理装置。
  11. 請求項10において、
    前記洗浄液保管部から前記遺伝子抽出部に導入された前記洗浄液は前記遺伝子抽出部から遺伝子溶出部乃至前記注入口に流れるよう制御されることを特徴とする細菌芽胞処理装置。
  12. 被検査体を注入する試料注入口と、前記試料注入口に連絡した試薬が貯蔵された試薬槽と、被検査体である細菌芽胞から遺伝子を溶出する槽と、遺伝子を精製抽出するための流路と、抽出した遺伝子の検出を行う反応槽と、前記試薬槽と外部流路を結ぶ流路と、を有する細菌芽胞処理チップを冷却して冷凍する工程と、
    前記冷凍した遺伝子処理チップを搬送する工程と、
    を有することを特徴とする細菌芽胞処理チップの使用方法。
  13. 被検査体を注入する試料注入口と、前記試料注入口に連絡した試薬が貯蔵された試薬槽と、被検査体である細菌芽胞から遺伝子を溶出する槽と、遺伝子を洗浄・精製抽出するための流路と、抽出した遺伝子の検出を行う反応槽と、前記試薬槽と外部流路を結ぶ流路と、を有する細菌芽胞処理チップを冷却して冷蔵する工程と、
    前記冷蔵した遺伝子処理チップを搬送する工程と、
    を有することを特徴とする細菌芽胞処理チップの使用方法。
  14. 細菌芽胞に発芽促進剤を添加する工程と、
    細菌芽胞が発芽した後に細胞壁を溶解する溶解液を添加し、遺伝子を溶出する工程と、
    溶出した遺伝子をシリカ担体に吸着させた後、洗浄液を添加して洗浄する工程と、
    溶離液の添加により遺伝子をシリカ担体から溶離する工程と、
    溶離した遺伝子を検出する工程と、
    を有することを特徴とする細菌芽胞処理及び遺伝子検出方法。
  15. 請求項14において、
    発芽促進剤が、アラニン、アデノシン、グルコース、を含むブイヨンであることを特徴とする細菌芽胞処理及び遺伝子検出方法。
  16. 請求項14において、
    発芽促進剤を添加したのち、25℃から37℃、10分から60分で保持することを特徴とする細菌芽胞処理及び遺伝子検出方法。
  17. 被検査体を注入する試料注入口と、前記試料注入口に連絡した試薬が貯蔵された試薬槽と、被検査体である細菌芽胞から遺伝子を溶出する槽と、遺伝子を洗浄・精製抽出するための流路と、抽出した遺伝子の検出を行う反応槽と、前記試薬槽と外部流路を結ぶ流路と、を有する細菌芽胞処理チップが、一旦、冷却して冷蔵或は冷凍されて保管された後に供給される工程と、
    前記提供された分析チップを室温に戻す工程と、
    前記試料注入口に遺伝子を含む試料が導入され、前記試薬により遺伝子が抽出される工程と、
    前記遺伝子を検出する工程と、
    を有することを特徴とする細菌芽胞処理及び遺伝子検出方法。
JP2004069434A 2004-03-11 2004-03-11 細菌芽胞処理チップ及び細菌芽胞処理装置 Expired - Fee Related JP4116579B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004069434A JP4116579B2 (ja) 2004-03-11 2004-03-11 細菌芽胞処理チップ及び細菌芽胞処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004069434A JP4116579B2 (ja) 2004-03-11 2004-03-11 細菌芽胞処理チップ及び細菌芽胞処理装置

Publications (2)

Publication Number Publication Date
JP2005253365A true JP2005253365A (ja) 2005-09-22
JP4116579B2 JP4116579B2 (ja) 2008-07-09

Family

ID=35079706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004069434A Expired - Fee Related JP4116579B2 (ja) 2004-03-11 2004-03-11 細菌芽胞処理チップ及び細菌芽胞処理装置

Country Status (1)

Country Link
JP (1) JP4116579B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967266A1 (en) 2006-11-22 2008-09-10 FUJIFILM Corporation Microfluidic chip
JP2011220947A (ja) * 2010-04-14 2011-11-04 Hitachi Engineering & Services Co Ltd 微生物検査装置及び微生物検査チップ
US8628953B2 (en) 2007-11-29 2014-01-14 Hitachi Plant Technologies, Ltd. Capturing carrier, capturing device, analysis system using the same, and method for capturing and testing microorganisms
WO2023020220A1 (zh) * 2021-08-17 2023-02-23 京东方科技集团股份有限公司 微流控芯片、其核酸提取方法及核酸提取装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967266A1 (en) 2006-11-22 2008-09-10 FUJIFILM Corporation Microfluidic chip
US8628953B2 (en) 2007-11-29 2014-01-14 Hitachi Plant Technologies, Ltd. Capturing carrier, capturing device, analysis system using the same, and method for capturing and testing microorganisms
JP2011220947A (ja) * 2010-04-14 2011-11-04 Hitachi Engineering & Services Co Ltd 微生物検査装置及び微生物検査チップ
WO2023020220A1 (zh) * 2021-08-17 2023-02-23 京东方科技集团股份有限公司 微流控芯片、其核酸提取方法及核酸提取装置

Also Published As

Publication number Publication date
JP4116579B2 (ja) 2008-07-09

Similar Documents

Publication Publication Date Title
JP2005065607A (ja) 遺伝子処理チップおよび遺伝子処理装置
JP4690787B2 (ja) 微生物検知チップ及び微生物検知システム並びに微生物検知方法
JP6704882B2 (ja) 結合要素を用いたアッセイのための装置及び方法
JP5993397B2 (ja) アッセイ
US7867757B2 (en) Fluid manipulation in a microfabricated reaction chamber systems
JP4965651B2 (ja) 核酸増幅装置を用いた核酸含有液体サンプル分析用使い捨て装置
US20050196779A1 (en) Self-contained microfluidic biochip and apparatus
JP5258835B2 (ja) ポリヌクレオチドの検出及び定量装置
JP2013532488A (ja) ポリメラーゼ連鎖反応のための加圧可能なカートリッジ
JP2008148570A (ja) 微生物検出システム
JP2007209223A (ja) 微生物検知システム
JP2013505010A (ja) 簡易核酸増幅装置及び簡易核酸増幅装置の使用方法
JP4116579B2 (ja) 細菌芽胞処理チップ及び細菌芽胞処理装置
KR20240013129A (ko) 분석물 검출 카트리지 및 그 사용 방법
US20090291505A1 (en) Analytical Device for Thermally Treating a Fluid and/or Monitoring a Property Thereof
AU2017340652A1 (en) Method and analysis system for testing a sample
CN116536147A (zh) Pcr检测设备
US10953403B2 (en) Method and analysis system for testing a sample
JP5441035B2 (ja) 試料解析装置
EP1878495A1 (en) Analytical device for thermally treating a fluid and/or monitoring a property thereof
JP3819001B2 (ja) 核酸の分離精製方法
CN116891800A (zh) 检测核酸的芯片装置和仪器以及其应用
GB2383546A (en) A microfabricated reaction chamber system.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees