CN1938090A - 加氢裂化催化剂以及制备液态烃的方法 - Google Patents

加氢裂化催化剂以及制备液态烃的方法 Download PDF

Info

Publication number
CN1938090A
CN1938090A CNA2005800104847A CN200580010484A CN1938090A CN 1938090 A CN1938090 A CN 1938090A CN A2005800104847 A CNA2005800104847 A CN A2005800104847A CN 200580010484 A CN200580010484 A CN 200580010484A CN 1938090 A CN1938090 A CN 1938090A
Authority
CN
China
Prior art keywords
catalyst
hydrocracking
alkane
quality
gas oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800104847A
Other languages
English (en)
Inventor
青木信雄
关浩幸
东正浩
池田雅一
和久俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Publication of CN1938090A publication Critical patent/CN1938090A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/22Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

一种包括结晶硅铝酸盐、氧化铝-氧化硼和周期表第VIII族贵金属的催化剂。这是一种能获得高裂化活性、高中间馏分油收率和低倾点瓦斯油产物的链烷烃加氢裂化催化剂。

Description

加氢裂化催化剂以及制备液态烃的方法
发明领域
本发明涉及一种用于在氢气的存在下从链烷烃制备液态烃的催化剂以及利用该催化剂制备液态烃的方法。
发明背景
近年来,对硫和芳烃含量低的清洁液体燃料的需求迅速增加。为了响应所述的需求,燃料油生产商已研究了各种生产清洁燃料的方法。在这些方法当中,被认为最具有前景的方法是将链烷烃如石蜡在催化剂的存在下进行加氢裂化的方法。
在链烷烃加氢裂化工艺中,重要的是以更高的收率生产有用的中间馏分油,从而提高该工艺的经济效率。另外,所得瓦斯油还必需具有低倾点。也就是说,开发出能提高加氢裂化工艺的裂化活性和中间馏分油收率并使该工艺能生产低倾点瓦斯油的高效加氢裂化催化剂是提高该工艺经济效率的关键。
减压瓦斯油的加氢裂化已经商业化并且是创立了几十年的技术。但是,由于链烷烃的反应性与减压瓦斯油的反应性之间的差异是如此显著,以至于难以将用于减压瓦斯油的催化剂原样用于链烷烃的加氢裂化反应,因此不断加大研究和开发力度以开发出能用于链烷烃的高效催化剂。只有很少的一些有关此类催化剂的专利和报道。例如,下面的专利文献1公开了一种包括负载于含硅铝氧化物载体内的铂的催化剂。在非专利文献2研究的一个实施例中使用包括负载于结晶硅铝酸盐(沸石)内的铂的催化剂来实施链烷烃加氢裂化反应。
但是,结晶硅铝酸盐催化剂虽然可使裂化活性达到令人满意的高水平,但不利的是中间馏分油的收率低且所得瓦斯油不能获得足够的倾点。另一方面,无定形固体酸催化剂(典型例子是硅铝催化剂)可使中间馏分油的收率和所得瓦斯油的倾点达到令人满意的高水平,但裂化活性低。也就是说,迄今还没有开发出一种能满足高的裂化活性和中间馏分油收率同时所得瓦斯油倾点低的催化剂,由此严重阻碍了链烷烃加氢裂化工艺经济效率的提高。
(1)专利文献1:日本专利公开号6-41549
(2)非专利文献2:“沸石”(第6卷,334-348页,1986)
发明内容
本发明的目的是提供一种用于链烷烃加氢裂化的新型催化剂,所述催化剂可同时满足裂化活性和中间馏分油收率较高以及所得瓦斯油倾点较低,由此提高加氢裂化过程的产率。
本发明人进行了深入研究,结果发现用一种包括结晶硅铝酸盐和氧化铝-氧化硼的组合的催化剂可解决上述问题,据此而完成了本发明。
即,本发明涉及一种链烷烃加氢裂化催化剂,包括结晶硅铝酸盐、氧化铝-氧化硼和周期表第VIII族贵金属。
本发明还涉及一种其中结晶硅铝酸盐平均粒径为0.5μm或更小的上述催化剂。
本发明还涉及一种使用上述催化剂将链烷烃进行加氢裂化来制备液态烃的方法。
下面将更详细地描述本发明。
本文所用的术语“硅铝酸盐”表示由三种元素即铝、硅和氧所构成的金属氧化物。尽管可共存另外的金属元素,但其量应为不至影响到本发明达到良好效果的程度,该氧化物形式的金属元素的量为氧化铝和氧化硅总量的5质量%或更少且优选3质量%或更少。可共存的金属元素的例子是钛、镧、锰、镓和锌。优选钛和镧。
硅铝酸盐的结晶度可以用所有Al原子中四面体配位的Al原子的比率来估算,所述的比率可通过固体27Al NMR波谱法测定。本发明中所用的术语“结晶硅铝酸盐”表示四面体配位的Al原子比率为50%或更高的硅铝酸盐。任何结晶硅铝酸盐都可用于本发明,只要四面体配位的Al原子比率为50%或更高即可。但是优选使用包含70%或更高的四面体配位的Al原子的结晶硅铝酸盐,更优选使用含80%或更高的四面体配位的Al原子的结晶硅铝酸盐。
适用于本发明的结晶硅铝酸盐是所谓的沸石。优选Y-或USY-型沸石、β-型沸石、丝光沸石和ZSM-5,最优选USY-型沸石。如果需要,可使用两或多种类型的结晶硅铝酸盐。
对本发明所用结晶硅铝酸盐的平均粒径没有特别限制。但是,优选平均粒径为1.0μm或更小,特别优选0.5μm或更小。
本发明的加氢裂化催化剂的特征在于它包括结晶硅铝酸盐和氧化铝-氧化硼。对氧化铝-氧化硼中氧化铝与氧化硼之含量比没有特别的限制。但是,氧化铝与氧化硼之比通常优选为30-99质量%∶70-1质量%、更优选50-95质量%∶50-5质量%、且最优选70-90质量%∶30-10质量%。
对催化剂中结晶硅铝酸盐与氧化铝-氧化硼的质量比没有特别的限制。但是所述的质量比通常优选为0.001-2.000、更优选0.010-1.500、且最优选0.015-0.200。
可不使用粘结剂将催化剂模制成所需形状。但是,如果需要的话,可使用粘结剂。对粘结剂没有特别的限制。但是,优选的粘结剂是氧化铝、氧化硅、氧化硅-氧化铝、二氧化钛和氧化镁,且最优选的是氧化铝。对整个模制催化剂中粘结剂的百分率没有特别的限制。但是,该百分率通常为5-99质量%,优选20-99质量%。
本发明的催化剂必须含有周期表第VIII族贵金属作为活性组分。当用非周期表第VIII族金属的金属作为活性剂时,用含该金属的催化剂进行加氢裂化得到的中间馏分油的收率会极度下降,从而不能实现本发明的目的。
周期表第VIII族贵金属的具体例子包括钴、镍、铑、钯、铱和铂。最优选的是钯和铂。可通过已知方法如浸渍法或离子交换法将这些金属负载于上述模制催化剂上来制备本发明催化剂。
如果需要,可以将两或多种贵金属组合负载。例如,同时负载铂和钯。对贵金属的负载量没有特别的限制。基于催化剂的总质量计,负载量通常为0.02-2质量%。
在本发明中,本文所用的术语“链烷烃”表示链烷烃分子的含量为70摩尔%或更高的烃。对烃分子的碳原子数没有特别的限制。但是,通常使用有10-100个碳原子的链烷烃。本发明催化剂对具有20或更多个碳原子的链烷烃即所谓“石蜡”的加氢裂化反应特别有效。
对将成为加氢裂化过程原料的链烷烃的生产方法没有特别的限制。因此,本发明的催化剂可应用于各种链烷烃,如石油基或合成链烷烃。但是,特别优选的链烷烃是通过费-托合成过程生产的所谓FT石蜡。
本发明催化剂可用于常规固定床反应器装置。反应条件是反应温度为200-500℃,氢压为0.5至12MPa,链烷烃原料的LHSV(液时空速)为0.1-10/h。优选的条件是反应温度为250-400℃,氢压为2.0-8.0MPa,链烷烃原料的LHSV(液时空速)为0.3-5.0/h。
工业应用
将包括结晶硅铝酸盐、氧化铝-氧化硼和周期表第VIII族贵金属的本发明催化剂用于链烷烃加氢裂化反应时,可同时获得高的裂化活性和中间馏分油收率以及所得液态烃的倾点低。
实施本发明的最佳方式
下面将参照实施例和对比例更详细地描述本发明,但本发明不受限于此。
(实施例1)
将包括30g平均粒径约0.4μm的USY沸石和970g氧化铝-氧化硼的尺寸为1/16英寸(约1.6mm)的柱状载体用含有二氯四氨合铂(II)的水溶液浸渍,使铂元素的量为载体的0.8质量%。将该载体在120℃下干燥3小时,然后在500℃下焙烧1小时,由此制得催化剂。
将所制备的催化剂(200ml)填充入固定床流动反应器中并用来对链烷烃进行加氢裂化。本文所用的原料是链烷烃含量为95%且碳数分布为20至80的FT石蜡。氢压为3MPa,原料的LHSV为2.0/h。将沸点为360℃或更低的级分定义为“裂化产物”。测定能获得裂化产物为原料量80质量%的反应温度。还测定沸点为145℃-360℃的中间馏分油的收率,以及所得沸点为260℃-360℃的瓦斯油的倾点。结果示于下表1中。
(实施例2)
将30g平均粒径约为0.4μm的USY沸石、570g氧化铝-氧化硼粉末和400g用作粘结剂的氧化铝进行模制,由此得到尺寸为1/16英寸(约1.6mm)的柱状载体。按照与实施例1相同的方式将铂负载到载体内,使铂的量为载体的0.8质量%。将载体在120℃下干燥3小时,然后在500℃下焙烧1小时,由此制得催化剂。
按照与实施例1相同的方式用该催化剂进行加氢裂化反应,以便测定能得到裂化产物为原料量80质量%的反应温度,测定沸点为145℃-360℃的中间馏分油的收率以及所得沸点为260℃-360℃的瓦斯油的倾点。结果示于下表1中。
(实施例3)
按照与实施例1相同的方法进行催化剂的制备和加氢裂化,所不同的是用平均粒径为0.8μm的USY型沸石,这样来测定能得到裂化产物为原料量80质量%的反应温度,测定沸点为145℃-360℃的中间馏分油的收率以及所得沸点为260℃-360℃的瓦斯油的倾点。结果示于下表1中。
(对比例1)
按照与实施例1相同的方法进行催化剂的制备和加氢裂化,所不同的是用氧化铝代替氧化铝-氧化硼,这样来测定能得到裂化产物为原料量80质量%的反应温度,测定沸点为145℃-360℃的中间馏分油的收率以及所得沸点为260℃-360℃的瓦斯油的倾点。结果示于下表1中。
(对比例2)
按照与实施例1相同的方法进行催化剂的制备和加氢裂化,所不同的是不使用USY-型沸石,这样来测定能得到裂化产物为原料量80质量%的反应温度,测定沸点为145℃-360℃的中间馏分油的收率以及所得沸点为260℃-360℃的瓦斯油的倾点。结果示于下表1中。
(对比例3)
按照与实施例1相同的方法进行催化剂的制备和加氢裂化,所不同的是载体负载有基于载体计5质量%的镍和基于载体计15质量%的钨来代替铂,这样来测定能得到裂化产物为原料量80质量%的反应温度,测定沸点为145℃-360℃的中间馏分油的收率以及所得沸点为260℃-360℃的瓦斯油的倾点。结果示于下表1中。
从表1所示的结果可明显看出,结晶硅铝酸盐和氧化铝-氧化硼的组合可同时满足高裂化活性、高中间馏分油收率和所得瓦斯油的倾点低。此外,还明显看出,周期表第VIII族贵金属作为活性金属是有效的。
表1
    裂化温度℃     中间馏分油收率质量%     所得瓦斯油的倾点℃
实施例1     298     52.9     -37.5
实施例2     305     53.0     -37.5
实施例3     301     50.9     -37.5
对比例1     330     47.5     -30.0
对比例2     355     47.4     -37.5
对比例3     361     25.5     -35.0

Claims (3)

1、一种链烷烃加氢裂化催化剂,包括结晶硅铝酸盐、氧化铝-氧化硼和周期表第VIII族贵金属。
2、权利要求1所述的链烷烃加氢裂化催化剂,其中结晶硅铝酸盐的平均粒径为0.5μm或更小。
3、一种用权利要求1或2的催化剂进行链烷烃加氢裂化反应来制备液态烃的方法。
CNA2005800104847A 2004-03-29 2005-03-10 加氢裂化催化剂以及制备液态烃的方法 Pending CN1938090A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004094817A JP4313237B2 (ja) 2004-03-29 2004-03-29 水素化分解触媒および液状炭化水素の製造方法
JP094817/2004 2004-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201310116022XA Division CN103212431A (zh) 2004-03-29 2005-03-10 加氢裂化催化剂以及制备液态烃的方法

Publications (1)

Publication Number Publication Date
CN1938090A true CN1938090A (zh) 2007-03-28

Family

ID=35056028

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201310116022XA Pending CN103212431A (zh) 2004-03-29 2005-03-10 加氢裂化催化剂以及制备液态烃的方法
CNA2005800104847A Pending CN1938090A (zh) 2004-03-29 2005-03-10 加氢裂化催化剂以及制备液态烃的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201310116022XA Pending CN103212431A (zh) 2004-03-29 2005-03-10 加氢裂化催化剂以及制备液态烃的方法

Country Status (7)

Country Link
US (2) US20070029228A1 (zh)
EP (1) EP1733789A4 (zh)
JP (1) JP4313237B2 (zh)
CN (2) CN103212431A (zh)
AU (1) AU2005225266B2 (zh)
MY (1) MY165564A (zh)
WO (1) WO2005092500A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2662605T3 (es) * 2004-04-28 2018-04-09 Hydrocarbon Technology & Innovation, Llc Procedimientos y sistemas de hidroprocesamiento de lecho fijo y procedimientos para la mejora de un sistema de lecho fijo existente
US10941353B2 (en) * 2004-04-28 2021-03-09 Hydrocarbon Technology & Innovation, Llc Methods and mixing systems for introducing catalyst precursor into heavy oil feedstock
ES2585891T3 (es) * 2004-04-28 2016-10-10 Headwaters Heavy Oil, Llc Métodos y sistemas de hidroprocesamiento en lecho en ebullición
JP5180427B2 (ja) * 2004-06-01 2013-04-10 出光興産株式会社 含蝋原料油の水素化分解触媒
US7462338B2 (en) * 2004-12-28 2008-12-09 Umicore Ag & Co. Kg Boron-alumina catalyst support
JP4791167B2 (ja) * 2005-12-09 2011-10-12 Jx日鉱日石エネルギー株式会社 水素化精製方法
JP5349736B2 (ja) * 2006-01-30 2013-11-20 Jx日鉱日石エネルギー株式会社 ワックスの水素化分解方法
JP4848191B2 (ja) * 2006-02-13 2011-12-28 Jx日鉱日石エネルギー株式会社 合成油の水素化処理方法
JP4908022B2 (ja) * 2006-03-10 2012-04-04 Jx日鉱日石エネルギー株式会社 炭化水素油の製造方法および炭化水素油
CN101410182A (zh) * 2006-03-30 2009-04-15 新日本石油株式会社 加氢裂化催化剂和制备燃料基础材料的方法
JP4808172B2 (ja) * 2006-03-30 2011-11-02 Jx日鉱日石エネルギー株式会社 水素化分解触媒および燃料基材の製造方法
JP4908038B2 (ja) * 2006-03-30 2012-04-04 Jx日鉱日石エネルギー株式会社 合成油の処理方法、水素製造用炭化水素油及びディーゼル燃料基材用炭化水素油
JP2007269897A (ja) * 2006-03-30 2007-10-18 Nippon Oil Corp ワックスの水素化分解方法
JP4908037B2 (ja) * 2006-03-30 2012-04-04 Jx日鉱日石エネルギー株式会社 合成油の処理方法、灯油煙点向上剤用炭化水素油及びディーゼル燃料基材用炭化水素油
JP2007270061A (ja) * 2006-03-31 2007-10-18 Nippon Oil Corp 液体燃料基材の製造方法
JP5925406B2 (ja) * 2006-03-31 2016-06-01 Jxエネルギー株式会社 水素化分解触媒の製造方法および燃料基材の製造方法
CN101547996A (zh) * 2006-11-21 2009-09-30 新日本石油株式会社 液体燃料的制造方法
MY150403A (en) * 2007-01-15 2014-01-15 Nippon Oil Corp Processes for production of liquid fuel
US8366911B2 (en) * 2007-05-01 2013-02-05 Nippon Oil Corporation Method of producing liquid fuel
US8034232B2 (en) 2007-10-31 2011-10-11 Headwaters Technology Innovation, Llc Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US8142645B2 (en) * 2008-01-03 2012-03-27 Headwaters Technology Innovation, Llc Process for increasing the mono-aromatic content of polynuclear-aromatic-containing feedstocks
EP2654948A4 (en) 2010-12-20 2015-02-11 Chevron Usa Inc HYDROPROCESSING CATALYSTS AND MANUFACTURING METHOD THEREFOR
JP5660956B2 (ja) 2011-03-31 2015-01-28 独立行政法人石油天然ガス・金属鉱物資源機構 水素化分解触媒及び炭化水素油の製造方法
JP5660957B2 (ja) 2011-03-31 2015-01-28 独立行政法人石油天然ガス・金属鉱物資源機構 再生水素化分解触媒及び炭化水素油の製造方法
US9790440B2 (en) 2011-09-23 2017-10-17 Headwaters Technology Innovation Group, Inc. Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US9644157B2 (en) 2012-07-30 2017-05-09 Headwaters Heavy Oil, Llc Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking
JP2012211344A (ja) * 2012-08-08 2012-11-01 Jx Nippon Oil & Energy Corp ワックスの水素化分解方法
US11414608B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor used with opportunity feedstocks
US11414607B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with increased production rate of converted products
US11421164B2 (en) 2016-06-08 2022-08-23 Hydrocarbon Technology & Innovation, Llc Dual catalyst system for ebullated bed upgrading to produce improved quality vacuum residue product
US11732203B2 (en) 2017-03-02 2023-08-22 Hydrocarbon Technology & Innovation, Llc Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling
JP7336831B2 (ja) 2017-03-02 2023-09-01 ハイドロカーボン テクノロジー アンド イノベーション、エルエルシー ファウリングが少ない堆積物を伴う改良された沸騰床リアクター
CA3057131C (en) 2018-10-17 2024-04-23 Hydrocarbon Technology And Innovation, Llc Upgraded ebullated bed reactor with no recycle buildup of asphaltenes in vacuum bottoms
CN112138642A (zh) * 2020-09-27 2020-12-29 福州大学 一种裂化催化剂的制备方法和用途

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622501A (en) * 1969-04-10 1971-11-23 Standard Oil Co Catalyst and hydrocarbon processes employing same
US3862898A (en) * 1973-07-30 1975-01-28 Pullman Inc Process for the production of olefinically unsaturated hydrocarbons
US3993557A (en) * 1974-03-27 1976-11-23 Pine Lloyd A Hydrocarbon conversion process employing boria-alumina compositions
US4182693A (en) * 1975-10-28 1980-01-08 Exxon Research & Engineering Co. Hydrocarbon treating catalyst
JPS57207546A (en) * 1981-06-13 1982-12-20 Shokubai Kasei Kogyo Kk Hydrocracking catalyst composition and its production
JPS59203639A (ja) * 1983-05-06 1984-11-17 Chiyoda Chem Eng & Constr Co Ltd 炭化水素の水素化分解用触媒
JPS59216635A (ja) * 1983-05-25 1984-12-06 Res Assoc Residual Oil Process<Rarop> 炭化水素転化用結晶性触媒組成物およびその製法
US4584089A (en) * 1983-10-24 1986-04-22 Standard Oil Company (Indiana) Borosilicate-containing catalyst and reforming processes employing same
JPH0631333B2 (ja) * 1984-11-22 1994-04-27 重質油対策技術研究組合 炭化水素類の水素化分解方法
WO1986005715A1 (en) * 1985-03-29 1986-10-09 Catalysts & Chemicals Industries Co., Ltd. Hydrotreatment catalyst
JPH02214544A (ja) * 1989-02-16 1990-08-27 Nippon Oil Co Ltd 重質石油類の水素化分解触媒
US5073530A (en) 1989-05-10 1991-12-17 Chevron Research And Technology Company Hydrocracking catalyst and process
US5166111A (en) * 1989-07-07 1992-11-24 Chevron Research Company Low-aluminum boron beta zeolite
US5120425A (en) * 1989-07-07 1992-06-09 Chevron Research Company Use of zeolite SSZ-33 in hydrocarbon conversion processes
GB9119505D0 (en) 1991-09-12 1991-10-23 Shell Int Research Process for the preparation of middle distillates
US5318692A (en) * 1992-11-30 1994-06-07 Exxon Research And Engineering Company FCC for producing low emission fuels from high hydrogen and low nitrogen and aromatic feeds
BR9901875A (pt) * 1998-05-13 2000-05-09 Inst Francais Du Petrole Processo para a melhora do ponto de escoamento e catalisador à base de pelo menos um zeólito mtt,ton, fer.
WO2001015805A1 (fr) * 1999-08-30 2001-03-08 Cosmo Oil Co., Ltd. Catalyseur destine a l'hydrotraitement du gas-oil, et procede d'hydrotraitement du gas-oil
JP2001240876A (ja) * 2000-02-29 2001-09-04 Japan Energy Corp 二段水素化分解による中間留分の製造方法、それに用いる触媒、およびその再生方法
EP1547683B1 (en) * 2002-09-24 2017-01-11 Nippon Oil Corporation Hydrocracking catalyst and process for production of liquid hydrocarbons

Also Published As

Publication number Publication date
AU2005225266B2 (en) 2010-07-15
US7700818B2 (en) 2010-04-20
JP2005279382A (ja) 2005-10-13
WO2005092500A1 (ja) 2005-10-06
MY165564A (en) 2018-04-05
CN103212431A (zh) 2013-07-24
US20070029228A1 (en) 2007-02-08
JP4313237B2 (ja) 2009-08-12
EP1733789A4 (en) 2010-12-08
AU2005225266A1 (en) 2005-10-06
EP1733789A1 (en) 2006-12-20
US20080306321A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
CN1938090A (zh) 加氢裂化催化剂以及制备液态烃的方法
US20050145541A1 (en) Hydrocracking catalyst and process of producing liquid hydrocarbon
JP5639742B2 (ja) 高活性zsm−48および脱ろう方法
EP1390449B1 (en) Process for isomerization dewaxing of hydrocarbon streams
EP2629888B1 (en) Hydrocracking catalyst for preparing valuable light aromatic hydrocarbons from polycyclic aromatic hydrocarbons
JP2008512231A (ja) ゼオライト及び高メソ細孔性を有する水素化触媒
CN102666802A (zh) 转化链烷烃原料的方法
AU2007233022B2 (en) Hydrocracking catalyst and process for producing fuel substrate
NZ242260A (en) Hydrocracking process using differentially distributed catalyst
JP6046776B2 (ja) 水素化分解触媒および燃料基材の製造方法
JPH08501113A (ja) 中間留分の水素化分解製法
EP1640434A1 (en) Hydrocracking process and catalyst composition
JP2010001241A (ja) 一酸化炭素と水素からの炭化水素の製造方法
JP5027391B2 (ja) 含蝋原料油の水素化分解触媒
JP2004255241A (ja) 水素化分解触媒および液状炭化水素の製造方法
CN110062653A (zh) 用于脱蜡的催化剂系统
US20230141033A1 (en) Selective production of n-paraffin hydrocracking products from heavier n-paraffins
CN105038844A (zh) 液体燃料的制造方法
CN117642485A (zh) 将合成气转化成液体燃料
US20070131586A1 (en) Non-sulfided Ni-based hydrocracking catalysts
JP5998127B2 (ja) 潤滑油用基油の製造方法
JP2004255242A (ja) 水素化分解触媒および液状炭化水素の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20070328