CN1937180A - 富硅氧化物的制造方法及半导体器件的制造方法 - Google Patents

富硅氧化物的制造方法及半导体器件的制造方法 Download PDF

Info

Publication number
CN1937180A
CN1937180A CNA2006101001100A CN200610100110A CN1937180A CN 1937180 A CN1937180 A CN 1937180A CN A2006101001100 A CNA2006101001100 A CN A2006101001100A CN 200610100110 A CN200610100110 A CN 200610100110A CN 1937180 A CN1937180 A CN 1937180A
Authority
CN
China
Prior art keywords
layer
silicon
sio
silicon source
sro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006101001100A
Other languages
English (en)
Inventor
李正贤
房想奉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1937180A publication Critical patent/CN1937180A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3141Deposition using atomic layer deposition techniques [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32055Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

提供了一种用在非易失性存储器件中的富硅氧化物(SRO)的制造方法以及使用该SRO的半导体器件。所述制造SRO的方法包括如下步骤:向所述衬底上吸收不含氧的第一硅源气体并通过含氧反应气体和所述第一硅源气体之间的氧化反应形成SiO2层;以及通过不含氧的第二硅源气体和对应于所述第二硅源气体的反应气体之间的还原反应形成Si层。所述制造方法方便了SRO中O浓度的调节并提供了出色的台阶覆盖,于是允许制造高质量的半导体器件。

Description

富硅氧化物的制造方法及半导体器件的制造方法
技术领域
本发明涉及一种制造富硅氧化物(SRO)的方法,尤其涉及一种制造SRO以及使用该SRO的半导体器件的方法。
背景技术
使用SRO的电荷存储器件最近得到了关注。该电荷存储器件具有许多优点。充当电荷俘获层的SRO具有适当比例的Si和SiO2,于是和常规动态随机存取存储器(DRAM)相比提供了非常优异的电特性。具有高Si/O比的SRO在高于预定温度的温度下被退火,SRO中的Si和SiO2彼此分离。于是有可能形成与SiO2分开的Si点(Si dots)。曾经提出过利用由Si点形成技术产生的Si纳米晶体的存储器件(美国专利No.6690059)。
通常,能够通过化学气相淀积(CVD)或原子层淀积(ALD)形成SRO。CVD提供的台阶覆盖由于等离子体屏蔽效应而变差。由于用作硅源的诸如四乙氧基硅烷(tetra-ethoxy-silane,TEOS)的前体与用作氧化剂的H2O之间的置换反应,ALD使得调节氧(O)的量,即调节Si和O(Si/O比)之比困难。
发明内容
本发明提供了一种台阶覆盖优异并能够容易地调节硅浓度的制造富硅氧化物(SRO)的方法以及使用该SRO的半导体器件。
根据本发明的一方面,提供了一种在衬底上制造具有SiO2和富余Si(extra Si)的SRO的方法,包括如下步骤:向所述衬底上吸收不含氧的第一硅源气体并通过含氧反应气体和所述第一硅源气体之间的氧化反应形成SiO2层;以及通过不含氧的第二硅源气体和对应于所述第二硅源气体的反应气体之间的还原反应形成Si层。
根据本发明的另一方面,提供了一种制造半导体器件的方法,所述半导体器件包括在其两侧具有源极和漏极的硅有源层、覆盖所述有源层的具有SRO的栅极绝缘层、以及覆盖所述栅极绝缘层并在所述有源层上生成电场的栅极,其中制造SRO的方法包括如下步骤:向所述衬底上吸收不含氧的第一硅源气体并通过含氧反应气体和所述第一硅源气体之间的氧化反应形成SiO2层;以及通过不含氧的第二硅源气体和对应于所述第二硅源气体的反应气体之间的还原反应形成Si层。
以预定周期交替地重复所述SiO2层的形成和所述Si层的形成步骤,以通过氧化和还原反应形成交替的SiO2和Si层的多层堆体。所述SiO2层和Si层均可以具有单层或多层结构。在形成所述SiO2层的步骤期间供应氧等离子体,且在形成所述Si层的步骤期间供应氢等离子体。所述第一和第二硅源是同样的前体。所述第一和第二硅源可以是SiCl基的前体,比如六氯二硅烷(HCDS)。用于所述第一硅源的反应气体为H2O,用于所述第二硅源的反应气体为H2
附图说明
通过参考附图详细描述其示范性实施例,本发明的以上和其他特征和益处将变得更加显见,附图中:
图1A和1B示出了根据本发明实施例制造富硅氧化物(SRO)的方法的原理;
图2为示出根据本发明实施例制造SRO的方法的流程图;
图3为利用四乙氧基硅烷(TEOS)和六氯二硅烷(hexa-chloro-di-silane,HCDS)作为源制造的薄膜的X射线光电子光谱(XPS)曲线;
图4为曲线图,示出了在相同的淀积条件下使用TEOS、SiH4和HCDS作为源100次循环后淀积的薄膜相对于淀积温度的厚度;
图5A-5C为示出根据本发明制造的SRO样品的电特性的曲线图;
图6A和6B示出了根据本发明制造的非易失性存储器件的堆叠结构;以及
图7A-7J示出了根据本发明实施例制造鳍型晶体管的方法的步骤。
具体实施方式
在根据本发明实施例的制造富硅氧化物(SRO)的方法中,如图1A和1B所示,使用原子层淀积(ALD)形成SiO2层和Si层。更具体地说,在前体被吸收到衬底上之后,将反应气体引入反应室内。然后,将高的RF功率施加到反应气体以生成等离子体。当反应气体是H2O时,生成氧等离子体。当反应气体是H2时,生成氢等离子体。在通过氧等离子体和氢等离子体把反应能量供应给前体时,在前体和反应气体之间发生氧化反应和还原反应,形成SiO2层和Si层。通过利用等离子体的ALD交替地堆叠SiO2层和Si层,形成具有多层结构的SRO。
在形成SRO之前可以在衬底上形成另一个材料层。还要理解的是,当称SRO在诸如衬底或其他堆叠结构的结构“上”时,它可以直接在该结构上,或者还可以存在中间层。例如,当把根据本发明的SRO用于非易失性存储器时,它充当着作为存储器的基本结构的晶体管的栅极绝缘层,可以在栅极绝缘层之下形成硅有源层。此外,以下将通过举例而非限制的方式给出堆叠次序或堆叠层数。
图2为示出根据本发明实施例使用ALD制造SRO的方法的流程图。
a)在将衬底载入ALD室后,供应第一Si源气体以将Si吸收到衬底上,然后将诸如Ar的吹扫气体引入ALD室中(步骤10到12)。
b)将诸如H2O的氧化剂供应到ALD室中以产生等离子体,并利用氧等离子体氧化被吸收到衬底上的Si源,以在衬底上形成SiO2层(步骤13)。
c)必要时有选择地重复步骤a)和b)超过一次,以形成多个具有原子层厚度的SiO2层。
d)供应Si源以将Si源吸收到覆盖衬底的SiO2层上,然后利用Ar作为吹扫气体进行吹扫(步骤14和15)。
e)将H2供应到反应室中以产生等离子体,并在SiO2层上形成Si层(步骤16)。
f)必要时有选择地重复步骤d)和e)超过一次,以形成多个具有原子层厚度的Si层。
g)必要时有选择地重复步骤a)到f)超过一次。
重复上述工序以调节Si/O比,如有必要可以在衬底上重复堆叠多个SiO2层和Si层。
在当前实施例中,在25℃的温度、约10Torr以上的压强下从蒸发器向反应室供应硅源气体。该硅源可以是六氯二硅烷(HCDS)。利用等离子体增强的原子层淀积(PEALD)执行该工艺。
图3为使用本发明中所用的常规四乙氧基硅烷(TEOS)和HCDS制造的薄膜的X射线光电子光谱(XPS)曲线。从图3明显看出,利用HCDS获得的薄膜比利用TEOS源获得的薄膜展现出更清晰的Si峰。
图4为曲线图,示出了在相同的淀积条件下使用TEOS、SiH4和HCDS作为源100次循环后淀积的薄膜相对于淀积温度的厚度。如图4所明显示出的,因为利用HCDS获得的薄膜具有类似于利用TEOS源获得的薄膜的淀积速率,所以能够将HCDS用于典型的半导体工艺。
图5A-5C为曲线图,示出了根据本发明制造的SRO样品#1、#2和#3的电特性。
样品#1是通过以1∶6的堆叠比在10次循环中淀积Si和SiO2形成的。样品#2是通过以2∶12的堆叠比在5次循环中淀积Si和SiO2形成的。样品#3是通过以4∶24的堆叠比在3次循环中淀积Si和SiO2形成的。
如从图5A-5C所明显看出的,通过在10次循环中淀积由单个Si层和六个SiO2层构成的单位堆叠结构而形成的SRO样品1表现出最佳的电压-电容特性。作为在10V的应力电压下的测量结果,本发明能够提供高于3.2V的存储窗口。
本发明的制造方法使用ALD获得具有最佳台阶覆盖的SRO。该制造方法提供了优异的台阶覆盖和出众的电气性能,同时使得调节SRO中所含的O浓度容易。
图6A和6B示出了根据本发明制造的非易失性存储器件的堆叠结构。
参考图6A,首先,在p衬底上形成栅极氧化物层并在栅极氧化物层上形成多晶Si栅极。如在典型SRO存储器中那样,栅极氧化物层具有三层结构,包括最下的隧穿氧化物层、最上的控制氧化物层和中间的SRO层。
本发明的新颖方面在于SRO层,其由交替的SiO2和Si层的重复堆体构成。每个堆体包括至少一个原子层厚度的SiO2层和Si层。
具有上述结构的晶体管能够使用能够从常规方法推论得到的SRO制造技术容易地制造。
图6B为包括典型SRO的晶体管的纵向剖面图。图6B中所示的晶体管具有鳍形结构,其中有源层在衬底上垂直地立起。如上所述,晶体管包括:包括多层结构的SRO的栅极氧化物层以及覆盖栅极氧化物层的栅极。与鳍型晶体管相关的背景技术能够在韩国专利申请No.2004-0008598中找到。现在将参考图7A-7J简单描述制造鳍型晶体管的方法。将不给出公知工艺的详细解释。为了清晰起见放大了层和区域的厚度且仅示出了主要部分。
参考图7A,制备绝缘体上硅(SOI)衬底10,其具有下部Si衬底10a、中间绝缘层10b和上部Si衬底10c。如图7B所示,在上部Si衬底10c上形成第一光致抗蚀剂掩模11,用于形成鳍型晶体管的焊盘。参考图7C,未被第一光致抗蚀剂掩模11覆盖的上部Si衬底10c的暴露部分被干法蚀刻至预定深度,然后剥离第一光致抗蚀剂掩模11,由此获得在上部Si衬底10c的两侧突出的焊盘10d。如图7D所示,形成具有H形状的第二光致抗蚀剂图案12,覆盖两个焊盘10d,并构图焊盘10d之间的薄鳍形有源层。可以使用电子束光刻法构图第二光致抗蚀剂掩模。参考图7E,未被第二光致抗蚀剂掩模12覆盖的上部Si衬底10c的暴露部分被蚀刻,以获得鳍形有源层10e,然后使用剥离剂去除第二光致抗蚀剂掩模12。
参考图7F,在焊盘10d、有源层10e和绝缘层10b的暴露部分上形成栅极绝缘层13,栅极绝缘层13包括通过根据本发明的SRO制造工艺形成的SRO层和控制氧化物层以及分别在绝缘层10b上方和下方的隧穿氧化物层。更具体地说,在形成SRO层之前使用诸如淀积技术的常规技术形成SiO2隧穿氧化物层。然后,使用常规淀积技术在SRO层上形成SiO2控制氧化物层。
参考图7G,在所得的堆叠结构上淀积将被用作栅极14的材料的多晶Si。如图7H所示,形成第三光致抗蚀剂图案15以便构图栅极14。参考图7I,未被第三光致抗蚀剂掩模15覆盖的一部分所得结构被蚀刻,以形成栅极14,随后使用剥离剂除去第三光致抗蚀剂掩模15。如图7J所示,执行离子注入,以便使未被栅极14和焊盘10d覆盖的有源层10e具有导电性。
根据形成SRO的方法,使用含氧的源材料形成SiO2层和Si层,于是方便了O浓度的调节。通过调节形成于堆体中的分立的SiO2和Si层的数量和堆叠循环的数量容易调节O浓度。
利用表现出出色台阶覆盖的ALD的制造方法适于应用到具有复杂表面轮廓的结构,例如鳍晶体管,尤其是作为电荷储存存储器的非易失性存储器件。
尽管已经参考其示范性实施例特别展示和描述了本发明,但是仅以举例的方式,而非是限制的方式给出实施例。本发明不局限于以上描述和示出的结构和设置。亦即,本领域的普通技术人员应当理解,在不背离权利要求所述的本发明的精神和范围的情况下,可以在其中做出许多形式和细节上的变化。

Claims (20)

1.一种在衬底上制造具有SiO2和富余Si的富硅氧化物的方法,所述方法包括:
向所述衬底上吸收不含氧的第一硅源气体并通过含氧反应气体和所述第一硅源气体之间的氧化反应形成SiO2层;以及
通过不含氧的第二硅源气体和对应于所述第二硅源气体的反应气体之间的还原反应形成Si层。
2.如权利要求1所述的方法,其中以预定周期交替地重复所述SiO2层的形成和所述Si层的形成,以通过氧化和还原反应形成交替的SiO2和Si层的多层堆体。
3.如权利要求1所述的方法,其中所述SiO2层和Si层均具有多层结构。
4.如权利要求1所述的方法,其中在形成所述SiO2层期间供应氧等离子体,且在形成所述Si层期间供应氢等离子体。
5.如权利要求1所述的方法,其中所述第一和第二硅源是同样的前体。
6.如权利要求1所述的方法,其中所述第一和第二硅源为SiCl基的前体。
7.如权利要求1所述的方法,其中所述第一和第二硅源为六氯二硅烷。
8.如权利要求6所述的方法,其中用于所述第一硅源的反应气体为H2O,用于所述第二硅源的反应气体为H2
9.如权利要求3所述的方法,其中所述第一和第二硅源为六氯二硅烷。
10.如权利要求9所述的方法,其中用于所述第一硅源的反应气体为H2O,用于所述第二硅源的反应气体为H2
11.一种制造半导体器件的方法,所述半导体器件包括在其两侧具有源极和漏极的硅有源层、覆盖所述有源层的具有富硅氧化物的栅极绝缘层、以及覆盖所述栅极绝缘层并在所述有源层上生成电场的栅极,其中制造所述富硅氧化物的方法包括:
向所述衬底上吸收不合氧的第一硅源气体并通过含氧反应气体和所述第一硅源气体之间的氧化反应形成SiO2层;以及
通过不含氧的第二硅源气体和对应于所述第二硅源气体的反应气体之间的还原反应形成Si层。
12.如权利要求11所述的方法,其中以预定周期交替地重复所述SiO2层的形成和所述Si层的形成,以通过氧化和还原反应形成交替的SiO2和Si层的多层堆体。
13.如权利要求11所述的方法,其中所述SiO2层和Si层均具有多层结构。
14.如权利要求11所述的方法,其中在形成所述SiO2层期间供应氧等离子体,且在形成所述Si层期间供应氢等离子体。
15.如权利要求11所述的方法,其中所述第一和第二硅源是同样的前体。
16.如权利要求11所述的方法,其中所述第一和第二硅源为SiCl基的前体。
17.如权利要求11所述的方法,其中所述第一和第二硅源为六氯二硅烷。
18.如权利要求16所述的方法,其中用于所述第一硅源的反应气体为H2O,用于所述第二硅源的反应气体为H2
19.如权利要求13所述的方法,其中所述第一和第二硅源为六氯二硅烷。
20.如权利要求19所述的方法,其中用于所述第一硅源的反应气体为H2O,用于所述第二硅源的反应气体为H2
CNA2006101001100A 2005-09-23 2006-06-28 富硅氧化物的制造方法及半导体器件的制造方法 Pending CN1937180A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050088713A KR101100428B1 (ko) 2005-09-23 2005-09-23 SRO(Silicon Rich Oxide) 및 이를적용한 반도체 소자의 제조방법
KR88713/05 2005-09-23

Publications (1)

Publication Number Publication Date
CN1937180A true CN1937180A (zh) 2007-03-28

Family

ID=37894657

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006101001100A Pending CN1937180A (zh) 2005-09-23 2006-06-28 富硅氧化物的制造方法及半导体器件的制造方法

Country Status (4)

Country Link
US (1) US7410913B2 (zh)
JP (1) JP2007088436A (zh)
KR (1) KR101100428B1 (zh)
CN (1) CN1937180A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103689A (zh) * 2013-04-10 2014-10-15 三星电子株式会社 半导体器件及其制造方法
CN105679652A (zh) * 2016-01-22 2016-06-15 华北电力大学(保定) 一种制备nc-Si/SiOx薄膜MIS结构器件的方法
CN108847393A (zh) * 2018-05-24 2018-11-20 上海集成电路研发中心有限公司 鳍式场效应晶体管结构的形成方法
CN109148302A (zh) * 2018-07-23 2019-01-04 上海集成电路研发中心有限公司 一种全包围栅极鳍式场效应晶体管的制作方法
CN112526663A (zh) * 2020-11-04 2021-03-19 浙江大学 一种基于原子层沉积的吸收膜及其制作方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122458A1 (ja) * 2008-03-31 2009-10-08 国立大学法人広島大学 量子ドットの製造方法
US8088665B2 (en) * 2008-08-11 2012-01-03 Intel Corporation Method of forming self-aligned low resistance contact layer
KR101496149B1 (ko) 2008-12-08 2015-02-26 삼성전자주식회사 결정질 실리콘 제조 방법
TW201029155A (en) * 2009-01-21 2010-08-01 Nanya Technology Corp Non-volatile memory cell and fabrication method thereof
KR101538068B1 (ko) 2009-02-02 2015-07-21 삼성전자주식회사 열전소자 및 그 제조방법
US8461640B2 (en) 2009-09-08 2013-06-11 Silicon Storage Technology, Inc. FIN-FET non-volatile memory cell, and an array and method of manufacturing
JP5541223B2 (ja) * 2010-07-29 2014-07-09 東京エレクトロン株式会社 成膜方法及び成膜装置
JP2013077805A (ja) * 2011-09-16 2013-04-25 Hitachi Kokusai Electric Inc 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
US9634018B2 (en) 2015-03-17 2017-04-25 Silicon Storage Technology, Inc. Split gate non-volatile memory cell with 3D finFET structure, and method of making same
JP6644900B2 (ja) 2015-11-03 2020-02-12 シリコン ストーリッジ テクノロージー インコーポレイテッドSilicon Storage Technology, Inc. 金属ゲートを有するスプリットゲート不揮発性フラッシュメモリセル及びその製造方法
US10312247B1 (en) 2018-03-22 2019-06-04 Silicon Storage Technology, Inc. Two transistor FinFET-based split gate non-volatile floating gate flash memory and method of fabrication
US10468428B1 (en) 2018-04-19 2019-11-05 Silicon Storage Technology, Inc. Split gate non-volatile memory cells and logic devices with FinFET structure, and method of making same
US10727240B2 (en) 2018-07-05 2020-07-28 Silicon Store Technology, Inc. Split gate non-volatile memory cells with three-dimensional FinFET structure
US10748808B2 (en) 2018-07-16 2020-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. Dielectric gap-filling process for semiconductor device
US10937794B2 (en) 2018-12-03 2021-03-02 Silicon Storage Technology, Inc. Split gate non-volatile memory cells with FinFET structure and HKMG memory and logic gates, and method of making same
US10797142B2 (en) 2018-12-03 2020-10-06 Silicon Storage Technology, Inc. FinFET-based split gate non-volatile flash memory with extended source line FinFET, and method of fabrication
US20210193671A1 (en) 2019-12-20 2021-06-24 Silicon Storage Technology, Inc. Method Of Forming A Device With Split Gate Non-volatile Memory Cells, HV Devices Having Planar Channel Regions And FINFET Logic Devices
US11114451B1 (en) 2020-02-27 2021-09-07 Silicon Storage Technology, Inc. Method of forming a device with FinFET split gate non-volatile memory cells and FinFET logic devices
US11362100B2 (en) 2020-03-24 2022-06-14 Silicon Storage Technology, Inc. FinFET split gate non-volatile memory cells with enhanced floating gate to floating gate capacitive coupling
JP7425929B2 (ja) 2020-09-21 2024-01-31 シリコン ストーリッジ テクノロージー インコーポレイテッド 平面状のスプリットゲート不揮発性メモリセル、高電圧デバイス、及びfinfet論理デバイスを有するデバイスを形成する方法
CN114446972A (zh) 2020-10-30 2022-05-06 硅存储技术股份有限公司 具有鳍式场效应晶体管结构的分裂栅非易失性存储器单元、hv和逻辑器件及其制造方法
WO2023172279A1 (en) 2022-03-08 2023-09-14 Silicon Storage Technology, Inc. Method of forming a device with planar split gate non-volatile memory cells, planar hv devices, and finfet logic devices on a substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656729A (en) * 1985-03-25 1987-04-14 International Business Machines Corp. Dual electron injection structure and process with self-limiting oxidation barrier
JP2005197602A (ja) * 2004-01-09 2005-07-21 Renesas Technology Corp 半導体装置およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103689A (zh) * 2013-04-10 2014-10-15 三星电子株式会社 半导体器件及其制造方法
CN104103689B (zh) * 2013-04-10 2018-12-04 三星电子株式会社 半导体器件及其制造方法
CN105679652A (zh) * 2016-01-22 2016-06-15 华北电力大学(保定) 一种制备nc-Si/SiOx薄膜MIS结构器件的方法
CN108847393A (zh) * 2018-05-24 2018-11-20 上海集成电路研发中心有限公司 鳍式场效应晶体管结构的形成方法
CN109148302A (zh) * 2018-07-23 2019-01-04 上海集成电路研发中心有限公司 一种全包围栅极鳍式场效应晶体管的制作方法
CN109148302B (zh) * 2018-07-23 2021-07-20 上海集成电路研发中心有限公司 一种全包围栅极鳍式场效应晶体管的制作方法
CN112526663A (zh) * 2020-11-04 2021-03-19 浙江大学 一种基于原子层沉积的吸收膜及其制作方法

Also Published As

Publication number Publication date
KR20070034249A (ko) 2007-03-28
JP2007088436A (ja) 2007-04-05
KR101100428B1 (ko) 2011-12-30
US20070072424A1 (en) 2007-03-29
US7410913B2 (en) 2008-08-12

Similar Documents

Publication Publication Date Title
CN1937180A (zh) 富硅氧化物的制造方法及半导体器件的制造方法
US9219076B2 (en) Nonvolatile semiconductor memory device and method for manufacturing the same
US7498217B2 (en) Methods of manufacturing semiconductor memory devices with unit cells having charge trapping layers
US20140308789A1 (en) Semiconductor memory device and method of manufacturing the same
JP2010056533A (ja) 半導体装置及びその製造方法
US20070042548A1 (en) Methods of forming floating gates in non-volatile memory devices including alternating layers of amorphous silicon and ALD dopant layers and floating gates so formed
JP5706353B2 (ja) 半導体装置及びその製造方法
KR20070024762A (ko) 반도체 소자의 캐패시터 및 그 형성방법과, 비휘발성메모리 소자 및 그 제조방법
JP2012124322A (ja) 半導体記憶装置の製造方法
JP2020150227A (ja) 半導体装置およびその製造方法
US20070063266A1 (en) Semiconductor device and method for manufacturing the same
TWI295492B (en) Method for fabricating a trench capacitor, method for fabricating a memory cell, trench capacitor and memory cell
KR100794831B1 (ko) 반도체 장치의 제조 방법
US20100006913A1 (en) Semiconductor device and method for manufacturing the same
JP2007096151A (ja) 半導体記憶装置およびその製造方法
US20080054400A1 (en) Capacitor and method of manufacturing the same
JP5620426B2 (ja) 不揮発性半導体記憶装置およびその製造方法
CN108389864B (zh) 三维闪存器件的制造方法
JP2014017461A (ja) 半導体装置の製造方法
KR20220039704A (ko) 반도체 장치
KR20100078285A (ko) 복합 박막 형성 방법
CN101246842A (zh) 半导体集成电路工艺中形成浅沟槽隔离区域的方法
JP2011171500A (ja) 半導体装置及びその製造方法
JPH0888321A (ja) 半導体装置の製造方法及び半導体装置の構造
JP2009238903A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication