CN105679652A - 一种制备nc-Si/SiOx薄膜MIS结构器件的方法 - Google Patents

一种制备nc-Si/SiOx薄膜MIS结构器件的方法 Download PDF

Info

Publication number
CN105679652A
CN105679652A CN201610044708.6A CN201610044708A CN105679652A CN 105679652 A CN105679652 A CN 105679652A CN 201610044708 A CN201610044708 A CN 201610044708A CN 105679652 A CN105679652 A CN 105679652A
Authority
CN
China
Prior art keywords
film
structure device
siox film
mis structure
siox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610044708.6A
Other languages
English (en)
Inventor
徐艳梅
张贵银
赵占龙
王永杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201610044708.6A priority Critical patent/CN105679652A/zh
Publication of CN105679652A publication Critical patent/CN105679652A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供一种制备nc-Si/SiOx薄膜MIS结构器件的方法,所述方法包括:样品制备步骤、样品准备步骤、抽真空步骤、通气步骤、射频发生步骤、加偏压步骤、薄膜生长步骤等。本发明通过加衬底负偏压控制等离子体的能量和离子流密度,增大了N2O分解的氧离子和Si结合速率同时抑制了氮粒子和Si的结合,避免和衬底上的硅活性基团生成Si-N键,减少膜中载流子陷阱的形成,从而提高薄膜的载流子输运效率。

Description

一种制备nc-Si/SiOx薄膜MIS结构器件的方法
技术领域
本发明涉及一种nc-Si/SiOx薄膜MIS结构器件的方法。
背景技术
纳米晶硅(nc-Si)因量子限制效应而具有一系列独特的光电性能,在全色显示和光伏器件等领域具有诱人的应用前景,通常nc-Si材料采用以SiO2或SiOX为介质的镶嵌结构,相比于SiO2,SiOX作为镶嵌结构具有很多优点,比如有更低的表面态密度,更高的介电常数,而且SiOX带隙可以通过X值调节。这些优点使得nc-Si/SiOx薄膜在异质结中具有更广泛的应用前景。
PECVE法沉积SiOX薄膜通常采用SiH4和N2O作为气体源。X值的调节通过改变SiH4和N2O的馈入比例即可实现。当N2O和SiH4被电离后硅烷与氧离子的动能基本保持一致,容易结合形成SiOx,而氮离子动能均比氧离子和硅烷衰减快,加之大量氮离子已经在N2O开始电离产生的氧离子重新结合生成一氧化氮(NO)挥发气体被排除,因此氮离子再与硅烷发生碰撞反应的概率较低。但是还会残存一部分N离子进入到SiOx薄膜。残存的这部分N会对薄膜的性质产生影响,使得薄膜缺陷增加,影响其电输运,最终导致薄膜光电效率减弱。因此,消除N原子掺入是提高nc-Si/SiOx薄膜质量关键的环节。
发明内容
鉴于现有技术中的上述问题,提出了本发明,本发明的目的在于以SiH4和N2O为反应源用PECVD法生长nc-Si/SiOx薄膜过程中,通过加衬底负偏压控制等离子体的能量和离子流密度。增大了N2O分解的氧离子和Si结合速率同时抑制了氮粒子和Si的结合,避免和衬底上的硅活性基团生成Si-N键,减少膜中载流子陷阱的形成,从而提高薄膜的载流子输运效率。
根据本发明的一方面,提供一种制备nc-Si/SiOx薄膜MIS结构器件的方法,其中,MIS结构器件的M层为电极层,I层为nc-Si/SiOx薄膜,S层为P型晶体硅,其特征在于,所述方法包括以下步骤:(1)样品制备步骤:将双面抛光的P型(100)晶相单晶硅片裁成3cm×3cm见方小片,作为待生长薄膜的衬底,所述单晶硅的电阻率为5-10Ω·cm;(2)样品准备步骤:将单晶硅片先用丙酮和甲醇混合液浸泡3分钟,然后烘干,再用体积比为1:2:5的NH4OH:H2O2:H2O混合液浸泡5分钟,经去离子水处理后,再放入体积比为1:10的HF:H2O溶液中1分钟,然后取出,用去离子水清洗,最后烘干;(3)抽真空步骤;将单晶硅片衬底放在下电极上,进行抽真空,腔内真空度达到10-4pa时加热下电极,加热温度为200-500℃;(4)通气步骤:通入纯度为99.9999%的SiH4气体、纯度为99.999%的H2气体和纯度99.999%的N2O气体的混合气体,其中SiH4、H2和N2O总流量90sccm-150sccm,流量比为2:98:2-2:98:10,反应气压为100-300pa;(5)射频发生步骤:开启射频电源,调节最佳匹配,其中射频电源频率为13.56Mz,功率为80-200w;(6)加偏压步骤:开启下电极偏压源,直流负偏压,电压值为10-100v;(7)薄膜生长步骤:生长nc-Si/SiOx薄膜,生长时间为1-2小时,膜厚为200nm-300nm;以及(8)将生长有nc-Si/SiOx薄膜的单晶硅片取出,放入高真空电阻蒸发镀膜机,并将铝条放入所述镀膜机,打开机械泵腔内压强先抽到5.5pa然后打开分子泵和冷却水将压强抽到10-4帕,再继续抽1小时后开始镀电极膜层,蒸发电压1.45V,镀膜时间为5分钟,镀膜完成后,将nc-Si/SiOx薄膜MIS结构器件取出,测量器件的电学性质。
作为优选的方案,在所述抽真空步骤中,下电极的加热温度为350℃。
作为优选的方案,在所述通气步骤中,SiH4、H2和N2O总流量为104sccm。
作为优选的方案,在所述通气步骤中,SiH4、H2和N2O的流量比为2:98:4。
作为优选的方案,在所述通气步骤中,所述反应气压为230pa。
作为优选的方案,在所述加偏压步骤中,直流负偏压的电压值为65v。
作为优选的方案,在所述射频发生步骤中,射频电源的功率为120w。
作为优选的方案,在所述生长步骤中,氢化纳米晶硅薄膜的厚度控制为200纳米,生长时间为1小时。
附图说明
图1为制备nc-Si/SiOx薄膜MIS结构器件的装置的结构示意图。
具体实施方式
现在,参照附图详细说明本发明的示例性实施例。应当指出,除非另外具体说明,在这些实施例中描述的部件、数字表示和数值的相对配置不限制本发明的范围。
首先,参照图1说明本发明的制备nc-Si/SiOx薄膜MIS结构器件的方法。附图标记说明如下:
1射频阴极;2下电极;3进气口;4出气口;5样品;
6金属反应腔
本发明制备设备包括射频阴极1、下电极2、进气口3、排气口4、样品5和金属反应腔6。
将SiH4、H2和N2O的混合气体从进气口3通入金属反应腔,未反应完的SiH4、H2和N2O及中间产物N2,NO等气体,从排气口5排出。射频阴极1与下电极2之间的距离为5cm,样品5放置于下电极2上。
直流偏压源为下电极2提供直流偏压。偏压为直流负偏压,电压值为10-100v,优选65v。
样品5为单晶硅片,表面积3cm×3cm,厚度0.1mm。
在制备nc-Si/SiOx薄膜时,在射频阴极1和下电极2之间形成等离子放电区,样品5位于等离子放电区内。
接下来,说明nc-Si/SiOx薄膜的形成过程。
首先笑气N2O在等离子体中被分解,产生氧原子或氧自由基,被激活的氧基或者与SiH反应,生成(SiH3)2O,或者参与表面形成氧化物。反应过程为:
N2O+X*→NO+N*
NO+X*→O*+N*
SiH4+O*→(SiH3)2O+H2
(SiH3)2O+O*→SiO2+H2+H2O
其中,X*表示等离子体中的自由基或电子。
下面具体说明本发明的制备nc-Si/SiOx薄膜MIS结构器件的方法,其中M层为电极层,优选为银电极层,I层为nc-Si/SiOx薄膜,S层为P型晶体硅。该方法包括以下步骤:
(1)样品制备步骤:将双面抛光的P型(100)晶相单晶硅片裁成3cm×3cm见方小片,作为待生长薄膜的衬底,所述单晶硅的电阻率为5-10Ω·cm;
(2)样品准备步骤:将单晶硅片衬底先用丙酮和甲醇混合液浸泡3分钟,然后烘干,再用体积比为1:2:5的NH4OH:H2O2:H2O混合液浸泡5分钟,经去离子水处理后,再放入HF:H2O(1:10)中1分钟,然后取出,用去离子水清洗,最后烘干;
(3)抽真空步骤;将单晶硅片衬底放在下电极上,进行抽真空,腔内真空度达到10-4pa时加热下电极,加热温度为200-500℃,优选350℃。(4)通气步骤:通入反应气体SiH4(纯度99.9999%)、H2(纯度99.999%)和N2O(纯度99.999%)的混合气体,其中SiH4、H2和N2O总流量90sccm-150sccm,优选104sccm,流量比2:98:2--2:98:10,优选2:98:4,反应气压为100--300pa,优选230pa;
(5)射频发生步骤:开启射频电源,调节最佳匹配,其中射频电源频率为13.56Mz,功率为80-200w,优选120w。
(6)加偏压步骤:开启下电极偏压源,直流负偏压,电压值为10-100v,优选65v。
(7)薄膜生长步骤:生长nc-Si/SiOx薄膜,生长时间为1-2小时,膜厚为200nm-300nm,膜厚优选为200nm,生长时间优选为1小时。
(8)将生长有nc-Si/SiOx薄膜的单晶硅片取出,放入高真空电阻蒸发镀膜机,并将铝条放入所述镀膜机,打开机械泵腔内压强先抽到5.5pa然后打开分子泵和冷却水将压强抽到10-4帕,再继续抽1小时后开始镀电极膜层,蒸发电压1.45V,镀膜时间为5分钟,镀膜完成后,将nc-Si/SiOx薄膜MIS结构器件取出,测量器件的电学性质。
本发明制备的nc-Si/SiOx薄膜MIS结构器件,通过衬底直流偏压的控制减小了等离子中N离子进入薄膜的几率,降低了薄膜缺陷态形成,提高了MIS器件载流子传输效率。

Claims (8)

1.一种制备nc-Si/SiOx薄膜MIS结构器件的方法,其中,MIS结构器件的M层为电极层,I层为nc-Si/SiOx薄膜,S层为P型晶体硅,其特征在于,所述方法包括以下步骤:
(1)样品制备步骤:将双面抛光的P型(100)晶相单晶硅片裁成3cm×3cm见方小片,作为待生长薄膜的衬底,所述单晶硅的电阻率为5-10Ω·cm;
(2)样品准备步骤:将单晶硅片先用丙酮和甲醇混合液浸泡3分钟,然后烘干,再用体积比为1:2:5的NH4OH:H2O2:H2O混合液浸泡5分钟,经去离子水处理后,再放入体积比为1:10的HF:H2O溶液中1分钟,然后取出,用去离子水清洗,最后烘干;
(3)抽真空步骤;将单晶硅片衬底放在下电极上,进行抽真空,腔内真空度达到10-4pa时加热下电极,加热温度为200-500℃;
(4)通气步骤:通入纯度为99.9999%的SiH4气体、纯度为99.999%的H2气体和纯度99.999%的N2O气体的混合气体,其中SiH4、H2和N2O总流量90sccm-150sccm,流量比为2:98:2-2:98:10,反应气压为100-300pa;
(5)射频发生步骤:开启射频电源,调节最佳匹配,其中射频电源频率为13.56Mz,功率为80-200w;
(6)加偏压步骤:开启下电极偏压源,直流负偏压,电压值为10-100v;
(7)薄膜生长步骤:生长nc-Si/SiOx薄膜,生长时间为1-2小时,膜厚为200nm-300nm;以及
(8)将生长有nc-Si/SiOx薄膜的单晶硅片取出,放入高真空电阻蒸发镀膜机,并将铝条放入所述镀膜机,打开机械泵,腔内压强先抽到5.5pa然后打开分子泵和冷却水将压强抽到10-4帕,再继续抽1小时后开始镀电极膜层,蒸发电压1.45V,镀膜时间为5分钟,镀膜完成后,将nc-Si/SiOx薄膜MIS结构器件取出,测量器件的电学性质。
2.根据权利要求1所述的制备nc-Si/SiOx薄膜MIS结构器件的方法,其特征在于,在所述抽真空步骤中,下电极的加热温度为350℃。
3.根据权利要求1所述的制备nc-Si/SiOx薄膜MIS结构器件的方法,其特征在于,在所述通气步骤中,SiH4、H2和N2O总流量为104sccm。
4.根据权利要求1所述的制备nc-Si/SiOx薄膜MIS结构器件的方法,其特征在于,在所述通气步骤中,SiH4、H2和N2O的流量比为2:98:4。
5.根据权利要求1所述的制备nc-Si/SiOx薄膜MIS结构器件的方法,其特征在于,在所述通气步骤中,所述反应气压为230pa。
6.根据权利要求1所述的制备nc-Si/SiOx薄膜MIS结构器件的方法,其特征在于,在所述加偏压步骤中,直流负偏压的电压值为65v。
7.根据权利要求1所述的制备nc-Si/SiOx薄膜MIS结构器件的方法,其特征在于,在所述射频发生步骤中,射频电源的功率为120w。
8.根据权利要求1-7所述的制备nc-Si/SiOx薄膜MIS结构器件的方法,其特征在于,在所述生长步骤中,氢化纳米晶硅薄膜的厚度控制为200纳米,生长时间为1小时。
CN201610044708.6A 2016-01-22 2016-01-22 一种制备nc-Si/SiOx薄膜MIS结构器件的方法 Pending CN105679652A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610044708.6A CN105679652A (zh) 2016-01-22 2016-01-22 一种制备nc-Si/SiOx薄膜MIS结构器件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610044708.6A CN105679652A (zh) 2016-01-22 2016-01-22 一种制备nc-Si/SiOx薄膜MIS结构器件的方法

Publications (1)

Publication Number Publication Date
CN105679652A true CN105679652A (zh) 2016-06-15

Family

ID=56302319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610044708.6A Pending CN105679652A (zh) 2016-01-22 2016-01-22 一种制备nc-Si/SiOx薄膜MIS结构器件的方法

Country Status (1)

Country Link
CN (1) CN105679652A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1937180A (zh) * 2005-09-23 2007-03-28 三星电子株式会社 富硅氧化物的制造方法及半导体器件的制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1937180A (zh) * 2005-09-23 2007-03-28 三星电子株式会社 富硅氧化物的制造方法及半导体器件的制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.P. LI ET AL.: "Electroluminescence from Au/extra-thin Si-rich SiO2 film/n+-Si under reverse biases and its mechanism", 《THIN SOLID FILMS》 *
LI HUI-MIN ET AL.: "Influence of substrate bias voltage on the microstructure of nc-SiOx:H film", 《CHIN. PHYS. B》 *

Similar Documents

Publication Publication Date Title
JP4553891B2 (ja) 半導体層製造方法
CN100530700C (zh) 太阳能电池及其制造方法
JP4441607B2 (ja) 半導体基板を不動態化する方法
CN104094418A (zh) 硅基太阳能电池的钝化薄膜堆叠
CN101805894B (zh) 一种低温下制备氢化纳米晶态碳化硅薄膜的方法
CN113481487A (zh) 一种太阳能电池片及其背面pecvd法和应用
CN111063612B (zh) 一种提高本征非晶硅钝化效果的镀膜工艺、钝化结构、异质结太阳能电池及制备工艺
CN103262219A (zh) 半导体层的氢钝化方法
CN112267105A (zh) 一种用于硅异质结太阳电池生产的单腔pecvd沉积工艺
CN112011788A (zh) 硅异质结太阳能电池本征非晶硅膜层的制备方法
CN108598212A (zh) 一种太阳能电池钝化的方法
CN110952073B (zh) 一种薄层SiO2钝化膜的制备方法及制备的电池
CN105679652A (zh) 一种制备nc-Si/SiOx薄膜MIS结构器件的方法
WO2012058822A1 (zh) 一种黑硅钝化方法
KR20040018182A (ko) 산소 또는 질소로 종단된 실리콘 나노 결정 구조체의형성방법과 이것에 의해 형성된 산소 또는 질소로 종단된실리콘 나노 결정 구조체
CN104037264B (zh) 一种pecvd沉积低表面复合太阳电池介电层的方法
Chae et al. Ultrafast deposition of microcrystalline Si by thermal plasma chemical vapor deposition
CN105244412A (zh) 一种n型晶硅电池硼发射极的钝化方法
CN112349792B (zh) 一种单晶硅钝化接触结构及其制备方法
EP0680384B1 (en) Microwave energized process for the preparation of high quality semiconductor material
CN115224159A (zh) 一种高效TOPCon太阳电池及其制备方法
CN114068306A (zh) 一种高均匀性二氧化硅薄膜的制备方法
JP4813637B2 (ja) 薄膜多結晶シリコン及びシリコン系光電変換素子の製造方法
CN112018217A (zh) 硅异质结太阳能电池的制备方法及其太阳能电池
CN105568250A (zh) 一种pecvd沉积氢化纳米晶硅薄膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160615