CN112349792B - 一种单晶硅钝化接触结构及其制备方法 - Google Patents

一种单晶硅钝化接触结构及其制备方法 Download PDF

Info

Publication number
CN112349792B
CN112349792B CN202011229632.7A CN202011229632A CN112349792B CN 112349792 B CN112349792 B CN 112349792B CN 202011229632 A CN202011229632 A CN 202011229632A CN 112349792 B CN112349792 B CN 112349792B
Authority
CN
China
Prior art keywords
hfn
hfo
silicon wafer
sputtering
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011229632.7A
Other languages
English (en)
Other versions
CN112349792A (zh
Inventor
黄仕华
康桥
丁月珂
李林华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuzhou Jietai New Energy Technology Co ltd
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN202011229632.7A priority Critical patent/CN112349792B/zh
Publication of CN112349792A publication Critical patent/CN112349792A/zh
Application granted granted Critical
Publication of CN112349792B publication Critical patent/CN112349792B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种单晶硅钝化接触结构及其制备方法,包括单晶硅片,单晶硅片的正反面均交替沉积有n层HfOx和HfNy,n=5‑20;每一层HfOx或HfNy的厚度为3nm,其中最接近单晶硅片的为第1层,即HfOx1和HfNy1,最远离单晶硅片的为第n层,即HfOxn和HfNyn;其中:2.0>x1>x2>…>x9>xn>1.0,1.33>y1>y2>…>y9>yn>0.67。本发明采用反应磁控溅射方法沉积组分渐变的HfOx/HfNy多层薄膜,对单晶硅实现全表面钝化和选择性接触,可以克服上述提到的隧穿氧化层钝化接触技术的缺陷,并具有不使用危险气体(硅烷、磷烷或硼烷)、沉积速度快、成本低等优点。

Description

一种单晶硅钝化接触结构及其制备方法
技术领域
本发明属于晶体硅太阳能电池领域,涉及一种组分渐变氧化铪/氮化铪多层薄膜的单晶硅钝化接触结构,以及其制备方法。
背景技术
随着单晶硅片的少子寿命大幅提高和厚度不断减少,如何减少硅片表面的载流子复合是进一步提高晶体硅太阳能电池效率的关键。表面钝化可以分为化学钝化和场效应钝化两类,其中化学钝化是通常使用介质薄膜与硅表面的悬挂键(未配位的硅原子)结合来实现减少界面处缺陷密度的作用。场效应钝化是通过向界面下掺杂或是在界面处形成固定电荷获得内建电场,屏蔽硅片界面处的电子或空穴浓度,减少硅片界面处的少数载流子(少子)浓度,降低界面的载流子复合,最终实现表面钝化的作用。
目前晶体硅太阳能电池的表面钝化通常采用氧化硅、氮化硅、氧化铝等半导体介质薄膜,其钝化工艺发展非常成熟。热生长的二氧化硅薄膜(SiO2)可以用作任意掺杂水平的n型和p型单晶硅的表面钝化层,并通过退火可以显著提高其钝化性能。氢化非晶氮化硅(a-SiNx:H)为p型晶体硅的重掺杂n型发射极提供了良好的前表面钝化,同时也起到了电池前表面的抗反射作用。氧化铝(AlOx)在退火后具有较高的负固定电荷密度,该固定电荷将电子从界面中屏蔽出来,引起有效的场效应钝化,对p型和n型晶体硅均具有良好的表面钝化作用。然而这些氧化硅、氮化硅、氧化铝等表面钝化层都是绝缘材料,导电性能很差,通常需要对对这些钝化层进行开孔,然后再制备金属电极以完成光生载流子的电学输运,这个局部的金属与硅的接触将成为复合损失的来源。
为了减少晶体硅表面的复合和避免金属电极与晶体硅的直接接触,在金属与硅片之间插入超薄氧化硅作为隧穿层和重掺杂的微晶硅作为载流子收集层,从而实现硅片的全表面钝化和选择性接触,这就是目前光伏行业非常热门的隧穿氧化层钝化接触(TOPCon)技术。由于作为隧穿层的二氧化硅通常只有1.0~2.0nm,多晶硅中重掺杂的杂质在晶体硅电池的后续退火工艺中会扩散进入二氧化硅,导致二氧化硅对晶体硅的钝化效果变差。因此,寻找更合适的全表面钝化和选择性接触技术,既能对晶体硅具有优异的钝化性能,同时有具有良好的电学接触功能,对进一步提高晶体硅太阳能电池的效率非常重要。
氧化铪(HfOx)是一种宽禁带和高介电常数的材料,对晶体硅表面具有良好的钝化性能,而且通过调控氧化铪中氧空位的浓度可以改变其电学性能。通过调控氮化铪(HfNy)中氮的组分,其导电性能可以从绝缘性转变到金属性。在退火的过程中,氮化铪/氧化铪叠层与晶体硅界面之间会形成一层超薄的氧化硅,进一步增强了对硅表面的钝化效果。
发明内容
本发明的目的是通过调控氧化铪中氧空位的浓度,以及调控氮化铪(HfNy)中氮的组分比例,提供一种组分渐变氧化铪/氮化铪多层薄膜的单晶硅钝化接触结构。
本发明的另一目的是提供上述结构的制备方法。
为此,本发明采用的技术方案是这样的:一种单晶硅钝化接触结构,包括单晶硅片,其特征在于:单晶硅片的正反面均交替沉积有n层HfOx和HfNy,n=5-20;每一层HfOx或HfNy的厚度为3nm,其中最接近单晶硅片的为第1层,即HfOx1和HfNy1,最远离单晶硅片的为第n层,即HfOxn和HfNyn;其中:2.0>x1>x2>…>x9>xn>1.0,1.33>y1>y2>…>y9>yn>0.67。
优选地,n=10。
本发明还采用这样的技术方案:一种单晶硅钝化接触结构的制备方法,包括下述步骤:
1)清洗单晶硅片;
2)采用磁控溅射法生长组分渐变的氧化铪/氮化铪多层薄膜:
溅射用的靶材为金属铪(Hf)靶,纯度大于99.999%;溅射工作气体氩气(Ar)、反应气体氧气(O2)和氮气(N2)的纯度大于99.999%;硅片衬底温度为150~250℃,薄膜生长时腔内的工作气压为0.5~1.0Pa,溅射功率为10~15W;每层薄膜的生长厚度设置为3nm;具体生长工艺如下:
a1)清洗后的单晶硅片用1%氢氟酸溶液浸泡,去除硅片表面的氧化层;
a2)对溅射腔体抽真空,直至真空度优于5×10-5Pa;
a3)铪靶预溅射:溅射腔通入氩气,溅射功率为50-100W,溅射时间为5-10min,去除靶材表面的污染物和氧化层;
a4)硅片正面溅射第一层氧化铪(HfOx1)薄膜:溅射腔通入反应气体氧气,HfOx1薄膜生长结束以后,关闭氩气和氧气阀门;
a5)硅片正面溅射第一层氮化铪(HfNy1)薄膜:当腔室的真空度优于5×10-3Pa时,重新打开氩气阀门,并通入反应气体氮气,HfNy1薄膜生长结束以后,关闭氩气和氮气阀门;
a6)重复上述a4)和a5)步骤,在硅片正面依次生长HfOx2、HfNy2、HfOx3、HfNy3、……、HfOxn、HfNyn薄膜;
a7)通过机械手在不破真空的情况下翻转硅片,然后在硅片背面生长HfOx和HfNy多层薄膜,方法与正面相同;
3)退火处理:
在硅片前后表面生长完HfOx和HfNy多层薄膜以后,放入短波红外线快速退火炉中,抽真空,以氩气为保护气体,炉膛温度升温至600~650℃,保温60~120s,然后冷却至室温。
作为优选的技术方案,在步骤2)中,溅射过程中氩气的流量保持为32sccm;氧气和氮气的流量在溅射第一层薄膜时为32sccm,然后每次减少3sccm。
本发明采用反应磁控溅射方法沉积组分渐变的HfOx/HfNy多层薄膜,对单晶硅实现全表面钝化和选择性接触,可以克服上述提到的隧穿氧化层钝化接触技术的缺陷,并具有不使用危险气体(硅烷、磷烷或硼烷)、沉积速度快、成本低等优点。在单晶硅表面沉积氧空位浓度低的HfOx层,起到对硅表面进行钝化的效果,再沉积氮组分高的HfNy层,进一步强化对硅的钝化,同时也起到载流子收集的作用。然后,沉积氧空位逐渐增大的HfOx层和氮组分逐渐减少的HfNy层,最后,沉积的HfOx/HfNy多层薄膜在不降低对硅表面的钝化效果的同时,增强了对载流子的收集作用。
附图说明
以下结合附图和本发明的实施方式来作进一步详细说明
图1为单晶硅钝化接触结构示意图。
具体实施方式
参见附图。典型的单晶硅钝化接触结构示意图如图1所示,单晶硅片正面和反面的分别沉积10层HfOx/HfNy,其中每一层HfOx或HfNy的厚度为3nm,x为Hf原子与O原子比,y为Hf原子与N原子比。在单晶硅衬底上采用反应磁控溅射方法制备了结构为组分渐变氧化铪-氮化铪多层薄膜/单晶硅/组分渐变氧化铪-氮化铪多层薄膜的钝化接触,为了减少薄膜中的缺陷,随后在600-700℃温度下进行退火处理。相比于隧穿氧化层钝化接触而言,饱和电流密度(J0)和接触电阻率(ρc)可以得到显著的降低。
本实施例所述的单晶硅钝化接触结构的制备方法,包括以下步骤:
1)硅片清洗
选择电阻率为0.5~1.5Ω.cm、厚度为200~300μm、双面未抛光的n型或p型单晶硅片作为衬底。由于硅片表面的清洗工艺对后续薄膜钝化效果的影响非常大,因此我们采用如下严格的清洗工艺,下列清洗工艺中所用到的烧杯、镊子、花篮等均为聚四氟乙烯材质制造的,所用的化学试剂均为分析纯等级,而且每一种试剂采用专用的实验器具,避免交叉污染。
具体操作如下:
b1)将硅片依次利用丙酮、无水乙醇溶液超声清洗10min,去除表面有机物;
b2)采用水虎鱼溶液(H2SiO4:H2O2=3:1)清洗10min,进一步去除表面有机物;
b3)利用1%的氢氟酸溶液浸泡2min,去除表面氧化层;
b4)利用15%的氢氧化钠溶液在80℃温度下水浴处理10min,去除表面损伤层;
b5)在硝酸、氢氟酸与冰醋酸溶液(体积比为3:3:1)中腐蚀2min,对表面进行化学抛光,然后用去离子水反复冲洗3次以上;
b6)按(29%)NH4OH:(30%)H2O2:去离子水=1:1:5比例,配制清洗溶液,80℃水浴加热10min,去除微尘粒;
b7)按(37%)HCl:(30%)H2O2:DIW=1:1:5比例,配制清洗溶液,80℃浴加热10min,去除金属离子;
b8)在1%氢氟酸溶液中浸泡3min,去除表面氧化层;
b9)在H2SO4:H2O2=3:1溶液中浸泡15min,去除有机物,形成表面氧化保护层。
2)采用磁控溅射法生长组分渐变的氧化铪/氮化铪多层薄膜
溅射用的靶材为金属铪(Hf)靶,纯度大于99.999%。溅射工作气体氩气(Ar)、反应气体氧气(O2)和氮气(N2)的纯度大于99.999%。为了防止靶材在溅射过程中温度的升高,采用循环冷却水使之保持为室温。为了制备致密、缺陷密度低的高质量薄膜,靶材与样品之间距离尽量要大,一般为10~15cm,同时样品处于等离子体辉光边缘位置,降低薄膜的沉积速率。硅片衬底温度为150~250℃,薄膜生长时腔内的工作气压为0.5~1.0Pa,溅射功率为10~15W;每层薄膜的生长厚度设置为3nm,并通过膜厚测量仪来监控。
氧化铪/氮化铪多层薄膜的具体生长工艺如下:
a1)经过上述步骤清洗后硅片在放入磁控溅射室之前,用1%氢氟酸溶液浸泡3min,去除硅片表面的氧化层;
a2)首先采用机械泵,然后利用分子泵对溅射腔体抽真空,直至真空度优于5×10- 5Pa;
a3)铪靶预溅射。溅射腔通入氩气,流量为32sccm,溅射功率为50-100W,溅射时间为5-10min,去除靶材表面的污染物和氧化层;
a4)硅片正面溅射氧化铪(HfOx1)薄膜。溅射腔通入反应气体氧气,流量调节为29~32sccm;
a5)硅片正面溅射氮化铪(HfNy1)薄膜。HfOx1薄膜生长结束以后,关闭氩气和氧气阀门,当腔室的真空度优于5×10-3Pa时,重新打开氩气阀门(流量为32sccm),通入反应气体氮气,流量调节为29~32sccm;
a6)硅片正面依次生长HfOx2、HfNy2、HfOx3、HfNy3、……、HfOx10、HfNy10薄膜。HfNy1薄膜生长结束以后,关闭氩气和氮气阀门,当腔室的真空度优于5×10-3Pa时,重新打开氩气阀门(流量为32sccm),通入反应气体氧气,流量调节为26~29sccm,开始HfOx2薄膜生长。随后,重复上述步骤,依次生长HfNy2、HfOx3、HfNy3、……、HfOx10、HfNy10薄膜,氩气的流量保持32sccm不变,唯一有变化的是氧气和氮气的流量每次减少3sccm。当生长最后一层HfOx10和HfNy10薄膜时,氧气和氮气的流量为2~5sccm;
a7)当硅片正面的HfOx/HfNy多层薄膜结束以后,然后通过机械手在不破真空的情况下翻转硅片,然后在硅片背面生长HfOx/HfNy多层薄膜。生长步骤与正面工艺参数完全相同;
a8)在上述的典型的钝化接触结构中,硅片正面和反面沉积的HfOx/HfNy薄膜层数n为10层。当n的取值范围为5~20,沉积第一层HfOx/HfNy薄膜时氧气和氮气的流量为32sccm,随着薄膜层数的增加,氧气和氮气的流量依次减少,每次减少的流量基本相等,沉积最后一层HfOx/HfNy薄膜时氧气和氮气的流量为2~5sccm。
3)快速退火处理
在硅片前后表面生长完HfOx/HfNy多层薄膜以后,放入短波红外线快速退火炉中,采用机械泵对炉膛进行抽真空,达到极限真空以后,通入高纯氩气,然后在抽真空、通入氩气,重复3次,以最大限度地去除炉膛内的氧气等。以氩气为保护气体,炉膛温度从室温快速升温至600~650℃,保温60~120s,然后关闭红外线电源,快速冷却至室温。为了避免氧化铪/氮化铪多层薄膜晶化,退火温度不能高于700℃,同时为了避免晶粒的生长,不仅升温速率要快,不低于40℃/s,降温速率也要快,不低于40℃/s。为了达到这个快速降温,可以通过增加通入氩气的流量来实现。

Claims (4)

1.一种单晶硅钝化接触结构,包括单晶硅片,其特征在于:单晶硅片的正反面均通过磁控溅射法交替沉积有n层HfOx和HfNy,n=5-20;每一层HfOx或HfNy的厚度为3nm,其中最接近单晶硅片的为第1层,即HfOx1和HfNy1,最远离单晶硅片的为第n层,即HfOxn和HfNyn;其中:2.0>x1>x2>…>x9>xn>1.0,1.33>y1>y2>…>y9>yn>0.67。
2.如权利要求1所述的一种单晶硅钝化接触结构,其特征在于:n=10。
3.一种权利要求1或2所述单晶硅钝化接触结构的制备方法,其特征在于:包括下述步骤:
1)清洗单晶硅片;
2)采用磁控溅射法生长组分渐变的氧化铪/氮化铪多层薄膜:
溅射用的靶材为金属铪(Hf)靶,纯度大于99.999%;溅射工作气体氩气(Ar)、反应气体氧气(O2)和氮气(N2)的纯度大于99.999%;硅片衬底温度为150~250℃,薄膜生长时腔内的工作气压为0.5~1.0Pa,溅射功率为10~15W;每层薄膜的生长厚度设置为3nm;具体生长工艺如下:
a1)清洗后的单晶硅片用1%氢氟酸溶液浸泡,去除硅片表面的氧化层;
a2)对溅射腔体抽真空,直至真空度优于5×10-5Pa;
a3)铪靶预溅射:溅射腔通入氩气,溅射功率为50-100W,溅射时间为5-10min,去除靶材表面的污染物和氧化层;
a4)硅片正面溅射第一层氧化铪(HfOx1)薄膜:溅射腔通入反应气体氧气,
HfOx1薄膜生长结束以后,关闭氩气和氧气阀门;
a5)硅片正面溅射第一层氮化铪(HfNy1)薄膜:当腔室的真空度优于5×10-3Pa时,重新打开氩气阀门,并通入反应气体氮气,HfNy1薄膜生长结束以后,关闭氩气和氮气阀门;
a6)重复上述a4)和a5)步骤,在硅片正面依次生长HfOx2、HfNy2、HfOx3、HfNy3、……、HfOxn、HfNyn薄膜;
a7)通过机械手在不破真空的情况下翻转硅片,然后在硅片背面生长HfOx和HfNy多层薄膜,方法与正面相同;
3)退火处理:
在硅片前后表面生长完HfOx和HfNy多层薄膜以后,放入短波红外线快速退火炉中,抽真空,以氩气为保护气体,炉膛温度升温至600~650℃,保温60~120s,然后冷却至室温。
4.如权利要求3所述的制备方法,其特征在于:在步骤2)中,溅射过程中氩气的流量保持为32sccm;氧气和氮气的流量在溅射第一层薄膜时为32sccm,然后每次减少3sccm。
CN202011229632.7A 2020-11-06 2020-11-06 一种单晶硅钝化接触结构及其制备方法 Active CN112349792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011229632.7A CN112349792B (zh) 2020-11-06 2020-11-06 一种单晶硅钝化接触结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011229632.7A CN112349792B (zh) 2020-11-06 2020-11-06 一种单晶硅钝化接触结构及其制备方法

Publications (2)

Publication Number Publication Date
CN112349792A CN112349792A (zh) 2021-02-09
CN112349792B true CN112349792B (zh) 2023-01-31

Family

ID=74428404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011229632.7A Active CN112349792B (zh) 2020-11-06 2020-11-06 一种单晶硅钝化接触结构及其制备方法

Country Status (1)

Country Link
CN (1) CN112349792B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230156031A (ko) * 2021-03-11 2023-11-13 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 강유전성 박막의 형성 방법, 이를 구비하는 반도체 장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079931A (ja) * 2002-08-22 2004-03-11 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
US7498247B2 (en) * 2005-02-23 2009-03-03 Micron Technology, Inc. Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics
JP2006324363A (ja) * 2005-05-17 2006-11-30 Elpida Memory Inc キャパシタおよびその製造方法
US8110469B2 (en) * 2005-08-30 2012-02-07 Micron Technology, Inc. Graded dielectric layers
FR2910712A1 (fr) * 2006-12-20 2008-06-27 Centre Nat Rech Scient Heterojonction a interface dopee
DE112011101134T5 (de) * 2010-03-30 2013-01-10 Applied Materials, Inc. Verfahren zum Bilden einer negativ geladenen Passivierungsschicht über einem verteilten p-dotierten Bereich
CN101964378A (zh) * 2010-04-20 2011-02-02 常州天合光能有限公司 实现太阳能电池背表面缓变叠层钝化薄膜的方法
DE102011008269B4 (de) * 2011-01-11 2015-01-08 Interpane Entwicklungs-Und Beratungsgesellschaft Mbh Dünnschicht-Solarzellen mit diffusionshemmender Schicht
JP6325229B2 (ja) * 2012-10-17 2018-05-16 株式会社半導体エネルギー研究所 酸化物膜の作製方法
CN106129172B (zh) * 2016-07-01 2017-07-04 江苏微导纳米装备科技有限公司 一种可调节电荷密度的晶硅太阳能电池表面钝化方法
US10629496B2 (en) * 2017-07-31 2020-04-21 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming transistor gates with hafnium oxide layers and lanthanum oxide layers
CN109087957A (zh) * 2018-08-08 2018-12-25 浙江师范大学 背面钝化层为氧化铝和氢化氮化铝的perc电池及其制备方法
CN109087965B (zh) * 2018-08-08 2020-07-17 浙江师范大学 一种背面钝化的晶体硅太阳能电池及其制备方法
CN109355622A (zh) * 2018-09-12 2019-02-19 湘潭大学 一种磁控溅射制备铁电薄膜的方法及铁电薄膜
CN109950316B (zh) * 2019-03-26 2020-03-20 湘潭大学 一种氧化铪基铁电栅场效应晶体管及其制备方法
CN111411324A (zh) * 2020-04-26 2020-07-14 北京北方华创微电子装备有限公司 氧化铪薄膜沉积方法

Also Published As

Publication number Publication date
CN112349792A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
US8728918B2 (en) Method and apparatus for fabricating silicon heterojunction solar cells
US8168462B2 (en) Passivation process for solar cell fabrication
CN112420881B (zh) TOPCon电池中氧化硅和掺杂非晶硅膜层的制备方法
CN104094418A (zh) 硅基太阳能电池的钝化薄膜堆叠
CN109273557B (zh) 一种太阳能电池用硅片的处理方法
CN109087965B (zh) 一种背面钝化的晶体硅太阳能电池及其制备方法
EP3971998A1 (en) Solar cell and preparation method therefor, method for processing n-type doped silicon film, and semiconductor device
CN110931596A (zh) 一种基于pvd技术制备钝化接触结构的方法
WO2024012147A1 (zh) 一种硼掺杂发射极的制备方法
WO2023092977A1 (zh) 制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池
CN112349792B (zh) 一种单晶硅钝化接触结构及其制备方法
CN112011788A (zh) 硅异质结太阳能电池本征非晶硅膜层的制备方法
CN115132884B (zh) 一种异质结太阳能电池的制作方法
CN114335236A (zh) 钝化接触电池及其制备方法和钝化接触结构及其制备装置
CN109616533B (zh) 一种晶硅异质结太阳电池及其制备方法
CN115692533A (zh) 一种TOPCon电池及其制备方法
CN115274404A (zh) 改性隧穿氧化层及制备方法、TOPCon结构及制备方法和太阳电池
CN115312620A (zh) 一种TOPCon电池的制备方法
CN115223857A (zh) 一种金属硅化物合金的快速退火方法
CN113913791A (zh) 一种多层非晶硅薄膜的制备方法及太阳能电池
JP3697199B2 (ja) 太陽電池の製造方法および太陽電池
CN112018217A (zh) 硅异质结太阳能电池的制备方法及其太阳能电池
CN110970523A (zh) 一种硅基异质结太阳能电池及制造方法
CN113130669B (zh) 一种针孔尺寸及密度可控的氧化硅钝化接触硅太阳能电池
CN110718604A (zh) P型晶硅太阳能电池的背场及背钝化层制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231211

Address after: No. 18, Wenshan Road, Chahe Town, Lai'an County, Chuzhou City, Anhui Province 239200

Patentee after: Chuzhou Jietai New Energy Technology Co.,Ltd.

Address before: 321004 No. 688 Yingbin Road, Zhejiang, Jinhua

Patentee before: ZHEJIANG NORMAL University

TR01 Transfer of patent right