CN113481487A - 一种太阳能电池片及其背面pecvd法和应用 - Google Patents

一种太阳能电池片及其背面pecvd法和应用 Download PDF

Info

Publication number
CN113481487A
CN113481487A CN202110760598.4A CN202110760598A CN113481487A CN 113481487 A CN113481487 A CN 113481487A CN 202110760598 A CN202110760598 A CN 202110760598A CN 113481487 A CN113481487 A CN 113481487A
Authority
CN
China
Prior art keywords
nitrogen
sccm
vacuumizing
introducing
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110760598.4A
Other languages
English (en)
Inventor
宋飞飞
王英杰
任勇
何悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengdian Group DMEGC Magnetics Co Ltd
Original Assignee
Hengdian Group DMEGC Magnetics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengdian Group DMEGC Magnetics Co Ltd filed Critical Hengdian Group DMEGC Magnetics Co Ltd
Priority to CN202110760598.4A priority Critical patent/CN113481487A/zh
Publication of CN113481487A publication Critical patent/CN113481487A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Sustainable Energy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供了一种太阳能电池片及其背面PECVD法和应用。所述背面PECVD法包括以下步骤:(1)吹扫循环:插有硅片的石墨舟进舟前,对炉管循环进行氮气冲洗和一次抽真空操作;(2)预处理:通入N2O;(3)镀膜处理:依次沉积背钝化膜、氮化硅膜和氧化硅膜,得到经过背面PECVD处理的硅片;(4)氮气清洗:取出插有硅片的石墨舟,用氮气清洗炉管。本发明在石墨舟进舟前,提前利用氮气吹扫清洗和真空沉降的循环的方式减少PECVD炉管内的颗粒数量,之后再进石墨舟,同时在炉管运行过程中保持相对低的气流量和低气压,避免了反应物过量,最终有效地降低了太阳能电池片的EL黑点污染。

Description

一种太阳能电池片及其背面PECVD法和应用
技术领域
本发明属于太阳能电池的技术领域,涉及一种太阳能电池片及其背面PECVD法和应用。
背景技术
晶体硅太阳能电池是目前商业化的主流太阳能电池,包括常规BSF电池,PERC电池以及PERL电池,IBC,Topcon电池;这些电池的制作工艺都会用PECVD设备在表面镀氮化硅减反射膜;
等离子体增强化学的气相沉积法(Plasma Enhanced Chemical VaporDeposition,PECVD)是借助微波或射频等使含有薄膜成分原子的气体电离,在局部形成等离子体,等离子体化学性质活泼,在电场的作用下会发生反应,将所需要沉积的化学物质沉积在基片上。PECVD反应会有部分反应物质没有沉积在基片,以粉尘和气体的形式随着空气抽离炉管,没有被抽离的粉尘吸附在炉管上会变成下一次工艺反应中的污染源粘附在硅片上形成污染,EL下显示为黑点和黑斑的污染;硅片的表面容易形成污染降低太阳能电池片的良率;
目前太阳能单晶PERC电池的流程是制绒、扩散、刻蚀、氧化、背钝化、PECVD正背膜、激光开槽、丝网印刷、烧结;常规BSF电池的流程是制绒、扩散、刻蚀、PECVD、丝网印刷、烧结;PECVD工序的顺序在刻蚀后和热氧化后,刻蚀后硅片经过HF酸处理,表面脱水干燥,对静电、灰尘以及污染很敏感,环境不良容易导致黑点黑斑等EL不良;PECVD工序本身是高温镀膜,车间温度高,湿度低,炉管内氧化铝氮化硅以及碎片粉尘都比较多。到PECVD工序后,硅片正背面都有一层致密的氮化硅膜层保护,即使暴露在灰尘以及污染较高的环境中,也不容易照成污染。所以PECVD工序的工艺对EL黑点污染的控制非常重要。
CN110295358A公开了一种低EL黑斑的PECVD机台饱和工艺,涉及硅太阳能电池制造领域,所述玛雅PECVD机台包括氧化铝反应仓室、氮化硅反应仓室,氧化铝反应仓室用于在硅片表面镀氧化铝薄膜,氮化硅反应仓室用于在氧化铝薄膜表面镀氮化硅薄膜,包括以下步骤:步骤一,真空升温处理;步骤二,工艺温度参数设定;步骤三,气体流量参数设定;步骤四,射频功率参数设定;步骤五,在步骤二至步骤三的参数设定完成后,保持石墨载板连续进出玛雅PECVD机台;步骤六,机台饱和。
CN110277472A公开了一种PERC电池制作方法,包括将经过氧化处理后的电池片半成品送入反应腔,且仅使其背面与反应腔内的气体接触;将所述反应腔抽真空,在设定的压强下通入保护气体,并对反应腔进行加热,直至反应腔内的温度和真空度达到设定要求后通入反应气体;利用射频技术使得反应气体分子被分解为等离子体,所述等离子体在反应腔运动撞击在电池片半成品的背面表面上,使得位于所述电池片半成品背面表面上的脏污脱离所述电池片半成品。
上述两篇文献都是使用电场加速离子轰击污染源降低污染源,这种技术对轻微的气态液体有机物污染效果明显,对实心的固体颗粒污染源效果较差,因为射频电源加速离子轰击的方式很难解决炉管内的固体颗粒污染。在太阳能电池实际生产中,固体氮化硅或者氧化铝以及硅落粉末等细微颗粒污染源在PECVD工序极易产生EL黑点污染,这样会降低电池片的A级率。
因此,如何减少太阳能电池中的EL黑点污染,是急需解决的技术问题。
发明内容
本发明的目的在于提供一种太阳能电池片及其背面PECVD法和应用。本发明在插有硅片的石墨舟进舟前,提前利用氮气吹扫清洗和真空沉降的循环的方式减少PECVD炉管内的颗粒数量,之后再进石墨舟,同时在炉管运行过程中保持相对低的气流量和低气压,避免了反应物过量,进而避免了粉尘悬浮粘附在硅片和炉管管壁上,最终有效地降低了太阳能电池片的EL黑点污染。
为达到此发明目的,本发明采用以下技术方案:
第一方面,本发明提供一种太阳能电池片的背面PECVD法,所述背面PECVD法包括以下步骤:
(1)吹扫循环:插有硅片的石墨舟进舟前,对炉管循环进行氮气冲洗和一次抽真空操作;
(2)预处理:通入N2O;
(3)镀膜处理:采用PECVD法依次沉积背钝化膜、氮化硅膜和氧化硅膜,得到经过背面PECVD处理的硅片;
(4)氮气清洗:取出插有硅片的石墨舟,用氮气清洗炉管。
本发明所提供的背面PECVD法,通过在石墨舟进舟前,用氮气清洗和真空沉积循环交替的方法清理炉管内部的粉尘,进一步降低了炉管内的固体粉尘颗粒造成的电池片的EL黑点污染;镀膜前,提前用N2O(笑气)进行预处理,可以去除硅片表面的部分污染;同时背钝化和镀减反射膜在同一个步骤中完成,减少了进出舟的次数以及反复调整自动化程序的步骤,有效地避免了硅片频繁进出导致的外界污染;最后在取舟后再次清洗炉管,去除反应残留物和粉尘,减少了下次制备时的污染。
通过上述步骤的配合使用,最终减少了电池片的EL黑点黑斑不良情况的产生,提升了电池片的A品率。
优选地,步骤(1)所述吹扫循环的循环次数为1~3次,例如1次、2次或3次等。
本发明中,循环次数过多,不能进一步降低炉管内的固体粉尘颗粒造成的电池片的EL黑点污染,吹扫循环次数1-3次更合适。
优选地,步骤(1)所述氮气冲洗包括:
通入流量为20000~100000sccm的氮气40~60s,温度设置为450~600℃,例如流量为20000sccm、30000sccm、40000sccm、50000sccm、60000sccm、70000sccm、80000sccm、90000sccm或100000sccm等,时间为40s、45s、50s、55s或60s等,温度为450℃、500℃、550℃或600℃等。
本发明中,采用大流量的氮气冲洗,更有利于清扫炉管内的粉尘,能进一步降低炉管内的固体粉尘颗粒造成的电池片的EL黑点污染。
优选地,步骤(1)所述一次抽真空包括:
在450~600℃下,进行一次抽真空,例如温度为450℃、500℃、550℃或600℃等。
优选地,步骤(1)中,对炉管循环进行氮气冲洗和一次抽真空操作后,依次进行充氮、放舟、升温、二次抽真空和恒压操作。
优选地,所述充氮包括:
在450~600℃下,通入流量为2000~5000sccm的氮气,例如温度为450℃、500℃、550℃或600℃等,流量为2000sccm、3000sccm、4000sccm或5000sccm等。
优选地,所述升温包括:
压力设置为10000~20000mtorr,进行升温500~800s,最终升温至450~600℃。
优选地,所述二次抽真空的时间为20~30s,例如20s、25s或30s等。
优选地,所述恒压包括:
在450~600℃下,通入流量为1000~3000sccm的N2O,达到恒定压力1000~1500mtorr,例如温度为450℃、500℃、550℃或600℃等,流量为1000sccm、1500sccm、2000sccm、2500sccm或3000sccm等,压力为1000mtorr、1100mtorr、1200mtorr、1300mtorr、1400mtorr或1500mtorr等。
优选地,步骤(2)所述预处理包括:
在450~600℃下,压力设置为1000~2000mtorr,通入流量为2000~4000sccm的N2O,时间为20~40s,例如温度为450℃、500℃、550℃或600℃等,流量为2000sccm、2500sccm、3000sccm、3500sccm或4000sccm等,时间为20s、25s、30s、35s或40s等。
优选地,步骤(3)所述镀膜处理包括以下步骤:
(I)抽真空和沉积背钝化膜:先抽真空,时间为20~30s,然后沉积氧化铝钝化膜或沉积氮氧化硅钝化膜,例如时间为20s、23s、25s、28s或30s等;
(II)抽真空和沉积氮化硅膜:先抽真空,时间为20~30s,然后通入氮气6000~8000sccm,硅烷600~1200sccm,设置功率为6000~12000w,无效脉冲为30~60,有效脉冲为2~4,时间为300~600s,压力为1500~3000mtorr;
例如时间为20s、23s、25s、28s或30s等,氮气通入流量为6000sccm、6500sccm、7000sccm、7500sccm或8000sccm等,硅烷通入流量为600sccm、800sccm、1000sccm或1200sccm等,功率为6000w、8000w、10000w或12000w等,无效脉冲为30、35、40、45、50、55或60等,有效脉冲为2、3或4等,时间为300s、350s、400s、450s、500s、550s或600s等,压力为1500mtorr、2000mtorr、2500mtorr或3000mtorr等;
(III)抽真空和沉积氧化硅膜:先抽真空,时间为20~30s,然后通入笑气3000~6000sccm,硅烷300~600sccm,设置功率为3000~5000w,无效脉冲为30~60,有效脉冲为2~4,时间为100~200s,压力为1500~2000mtorr;
例如时间为20s、23s、25s、28s或30s等,笑气通入流量为3000sccm、3500sccm、4000sccm、4500sccm、5000sccm、5500sccm或6000sccm等,硅烷的通入流量为300sccm、400sccm、500sccm或600sccm等。
优选地,步骤(I)中沉积氧化铝钝化膜时,通入气体为氮气、笑气和三甲基铝。
优选地,步骤(I)中沉积氮氧化硅膜时,通入气体为硅烷、氨气和笑气。
优选地,步骤(3)所述镀膜处理结束后,依次进行抽真空、充氮气和取舟的操作。
优选地,步骤(3)所述镀膜处理结束后,抽真空的时间为20~30s,例如20s、23s、25s、28s或30s等。
优选地,步骤(3)所述镀膜处理结束后,充氮气过程中,氮气的通入流量为2000~5000sccm,例如2000sccm、3000sccm、4000sccm或5000sccm等。
优选地,步骤(4)所述氮气清洗中,氮气的通入流量为20000~100000sccm,例如20000sccm、30000sccm、40000sccm、50000sccm、60000sccm、70000sccm、80000sccm、90000sccm或100000sccm等。
优选地,步骤(4)所述氮气清洗中,清洗的时间为15~30s,例如15s、20s、25s或30s等。
本发明在对硅片进行背面PECVD时,通过多种参数以及设置条件的配合,减少了电池片的EL黑点黑斑不良情况的产生,提升了电池片A品率。
作为优选的技术方案,所述太阳能电池片的背面PECVD法包括以下步骤:
(1)吹扫循环:插有硅片的石墨舟进舟前,在450~600℃下,循环进行氮气冲洗和一次抽真空操作,循环次数为1~3次,氮气的通入流量20000~100000sccm,冲洗时间为40~60s,依次进行充氮、放舟、升温、二次抽真空和恒压操作;
(2)预处理:在450~600℃下,压力设置为1000~2000mtorr,通入流量为2000~4000sccm的N2O,时间为20~40s;
(3)镀膜处理:依次沉积背钝化膜、氮化硅膜和氧化硅膜;
所述镀膜处理包括:
(I)抽真空和沉积背钝化膜:先抽真空,时间为20~30s,然后沉积氧化铝钝化膜或沉积氮氧化硅钝化膜;
(II)抽真空和沉积氮化硅膜:先抽真空,时间为20~30s,然后通入氮气6000~8000sccm,硅烷600~1200sccm,设置功率为6000~12000w,无效脉冲为30~60,有效脉冲为2~4,时间为300~600s,压力为1500~3000mtorr;
(III)抽真空和沉积氧化硅膜:先抽真空,时间为20~30s,然后通入笑气3000~6000sccm,硅烷300~600sccm,设置功率为3000~5000w,无效脉冲为30~60,有效脉冲为2~4,时间为100~200s,压力为1500~2000mtorr;
所述镀膜处理结束后,依次进行抽真空、充氮气和取舟的操作,得到经过背面PECVD处理的硅片;
(4)氮气清洗:取出插有硅片的石墨舟,用通入流量为20000~100000sccm的氮气清洗炉管15~30s。
第二方面,本发明提供一种太阳能电池片,所述太阳能电池片由如第一方面所述的太阳能电池片的背面PECVD法处理后得到。
本发明提供的太阳能电池片,EL黑点污染明显降低,A品率得到了提升。
第三方面,本发明还提供一种太阳能电池,所述太阳能电池包括如第二方面所述的太阳能电池片。
相对于现有技术,本发明具有以下有益效果:
本发明所提供的背面PECVD法,通过在石墨舟进舟前,用氮气清洗和真空沉积循环交替的方法清理炉管内部的粉尘,进一步降低了炉管内的固体粉尘颗粒造成的电池片的EL黑点污染;镀膜前,提前用N2O(笑气)进行预处理,可以去除硅片表面的部分污染;同时背钝化和镀减反射膜在同一个步骤中完成,减少了进出舟的次数以及反复调整自动化程序的步骤,有效地避免了硅片频繁进出导致的外界污染;最后在取舟后再次清洗炉管,去除反应残留物和粉尘,减少了下次制备时的污染;通过上述步骤的配合使用,最终减少了电池片的EL黑点黑斑不良情况的产生,提升了电池片的A品率,使得电池片的EL黑点降级比例的平均值在1%及以下,而A品率则可以达到99%及以上。
附图说明
图1为具体实施方式中电池片的制备方法的流程图。
图2为对比例1中电池片中EL黑点的实际图。
图3为对比例1的电池片中EL黑点后显微图。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
本发明提供一个电池片的制备方法的具体实施方式,其流程如图1所示,本发明的实施例部分展示了其背面PECVD法的具体步骤。
实施例1
本实施例提供一种太阳能电池片的背面PECVD法,所述背面PECVD法如下所述:
(1)氮气冲洗:在500℃下,通入流量为50000sccm的氮气进行冲洗50s;
(2)一次抽真空:在500℃下,打开真空泵,将炉管内的灰尘抽空50s,使灰尘沉降;
(3)充氮:在500℃下,打开氮气阀门,通入氮气2000sccm;
(4)放舟:在500℃下,将插好硅片的石墨舟放入炉管;
(6)升温:压力设置为15000mtorr,进行升温700s,升温至550℃;
(7)二次抽真空:在500℃下,进行二次抽真空30s;
(8)恒压:在500℃下,设定压力为1000mtorr,通入流量为2000sccm的N2O共20s;
(9)预处理:在500℃下,压力设置为1000mtorr,射频功率为8000W,通入流量为2000sccm的N2O,时间为30s;
(10)抽真空:在500℃下,打开真空泵,将预处理压力N2O抽走,时间为30s;
(11)沉积氮氧化硅膜:压力设置为1500mtorr,功率设置为8000w,温度设置为480℃,氨气通入流量为500sccm,硅烷通入流量为200sccm,笑气通入流量为5000sccm,沉积时间为500s;
(12)抽真空:在500℃下,抽真空20s;
(13)沉积氮化硅膜:在530℃下,压力设置为1600mtorr,功率设置为7000w,无效脉冲设置为55,有效脉冲设置为3,氨气通入流量为6000sccm,硅烷通入流量为750sccm,沉积时间为500s;
(14)抽真空:在500℃下,抽真空20s;
(15)沉积氧化硅膜:压力设置为1700mtorr,功率设置为3500w,无效脉冲设置为55,有效脉冲设置为2,笑气通入流量为4200sccm,硅烷通入流量为350sccm,沉积时间为180s;
(15)抽真空:在450℃下,抽真空30s;
(16)充氮:在450℃下,打开氮气阀门,通入流量为3000sccm的氮气,然后取舟,得到经过背面PECVD处理的硅片;
(17)氮气清洗:在450℃下,在炉管中通入流量为50000sccm的氮气20s。
实施例2
本实施例提供一种太阳能电池片的背面PECVD法,所述背面PECVD法如下所述:
(1)氮气冲洗:在500℃下,通入流量为80000sccm的氮气进行冲洗20s;
(2)一次抽真空:在500℃下,打开真空泵,将炉管内的灰尘抽空50s,使灰尘沉降;
将步骤(1)-步骤(2)循环进行两次;
(3)充氮:在500℃下,打开氮气阀门,通入氮气2000sccm;
(4)放舟:在500℃下,将插好硅片的石墨舟放入炉管;
(6)升温:压力设置为15000mtorr,进行升温500s,升温至450℃;
(7)二次抽真空:在500℃下,进行二次抽真空30s;
(8)恒压:在400℃下,设定压力为1000mtorr,通入流量为2000sccm的N2O共20s;
(9)预处理:在400℃下,压力设置为1000mtorr,射频功率为8000W,通入流量为2000sccm的N2O,时间为30s;
(10)抽真空:在400℃下,打开真空泵,将预处理压力N2O抽走,时间为30s;
(11)沉积氧化铝膜:压力设置为1500mtorr,功率设置为6000w,无效脉冲为120,有效脉冲为3,温度设置为380℃,三甲基铝(TMA)通入流量为60mg/min,笑气通入流量为5000sccm,沉积时间为200s;
(12)抽真空:在500℃下,抽真空20s;
(13)沉积氮化硅膜:在500℃下,压力设置为1600mtorr,功率设置为7000w,无效脉冲设置为55,有效脉冲设置为3,氨气通入流量为6000sccm,硅烷通入流量为750sccm,沉积时间为600s;
(14)抽真空:在500℃下,抽真空20s;
(15)沉积氧化硅膜:压力设置为1700mtorr,功率设置为3500w,无效脉冲设置为55,有效脉冲设置为2,笑气通入流量为4200sccm,硅烷通入流量为350sccm,沉积时间为180s;
(15)抽真空:在450℃下,抽真空30s;
(16)充氮:在450℃下,打开氮气阀门,通入流量为3000sccm的氮气,然后取舟,得到经过背面PECVD处理的硅片;
(17)氮气清洗:在450℃下,在炉管中通入流量为80000sccm的氮气20s。
实施例3
本实施例与实施例1的区别为,本实施例中步骤(1)-步骤(2)循环进行3次。
其余制备方法与参数与实施例1保持一致。
实施例4
本实施例与实施例1的区别为,本实施例步骤(1)中氮气的通入流量为15000sccm。
其余制备方法与参数与实施例1保持一致。
对比例1
本对比例与实施例1的区别为,本对比例中不进行步骤(1)、步骤(2)和步骤(17),直接从步骤(3)开始,再到步骤(16)结束。
其余制备方法与参数与实施例1保持一致。
如图2和图3所示,电池片中出现了明显的EL黑点。
对比例2
本对比例与实施例1的区别为,本对比例中不进行步骤(1)、步骤(2)和步骤(9),直接从步骤(3)开始。
其余制备方法与参数与实施例1保持一致。
对比例3
本对比例与实施例1的区别为,本对比例中不进行步骤(9)和步骤(17),到步骤(16)结束。
其余制备方法与参数与实施例1保持一致。
将经由实施例1-4与对比例1-3所提供的背面PECVD法处理过的电池片进行EL黑点的测试,测试条件及EL黑点降级比例计算方法如下:
实施例1-4和对比例1-3均进行600片EL测试,本发明电池的A品率仅代表去除EL黑点降级比例后的比例,其结果如表1所示。
表1
Figure BDA0003149594130000131
从实施例1与实施例4的数据结果可知,氮气冲洗过程中,氮气流量过小,会导致电池片的EL黑点污染增多,EL黑点降级比例升高。
从实施例1与对比例1的数据结果可知,石墨舟进舟前,不对炉管进行清洗和真空沉降,会提高电池片的EL黑点降级比例升高。
从实施例1与对比例2的数据结果可知,背钝化前,不进行预处理,会使得炉管内的粉尘清理不干净,电池片的EL黑点污染会增多。
从实施例1与对比例3的数据结果可知,取舟后不进行再次清洗,池片的EL黑点污染会增多,会使得电池片的A品率下降。
综上所述,本发明所提供的背面PECVD法,通过在石墨舟进舟前,用氮气清洗和真空沉积循环交替的方法清理炉管内部的粉尘,进一步降低了炉管内的固体粉尘颗粒造成的电池片的EL黑点污染;镀膜前,提前用N2O(笑气)进行预处理,可以去除硅片表面的部分污染;同时背钝化和镀减反射膜在同一个步骤中完成,减少了进出舟的次数以及反复调整自动化程序的步骤,有效地避免了硅片频繁进出导致的外界污染;最后在取舟后再次清洗炉管,去除反应残留物和粉尘,减少了下次制备时的污染;通过上述步骤的配合使用,最终减少了电池片的EL黑点黑斑不良情况的产生,提升了电池片的A品率,使得电池片的EL黑点降级比例的平均值在1%及以下,而A品率则可以达到99%及以上。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种太阳能电池片的背面PECVD法,其特征在于,所述背面PECVD法包括以下步骤:
(1)吹扫循环:插有硅片的石墨舟进舟前,对炉管循环进行氮气冲洗和一次抽真空操作;
(2)预处理:通入N2O;
(3)镀膜处理:采用PECVD法依次沉积背钝化膜、氮化硅膜和氧化硅膜,得到经过背面PECVD处理的硅片;
(4)氮气清洗:取出插有硅片的石墨舟,用氮气清洗炉管。
2.根据权利要求1所述的太阳能电池片的背面PECVD法,其特征在于,步骤(1)所述吹扫循环的循环次数为1~3次;
优选地,步骤(1)所述氮气冲洗包括:
通入流量为20000~100000sccm的氮气40~60s,温度设置为450~600℃;
优选地,步骤(1)所述一次抽真空包括:
在450~600℃下,进行一次抽真空;
优选地,步骤(1)中,对炉管循环进行氮气冲洗和一次抽真空操作后,依次进行充氮、放舟、升温、二次抽真空和恒压操作。
3.根据权利要求2所述的太阳能电池片的背面PECVD法,其特征在于,所述充氮包括:
在450~600℃下,通入流量为2000~5000sccm的氮气;
优选地,所述升温包括:
压力设置为10000~20000mtorr,进行升温500~800s,最终升温至450~600℃;
优选地,所述二次抽真空的时间为20~30s;
优选地,所述恒压包括:
在450~600℃下,通入流量为1000~3000sccm的N2O,达到恒定压力1000~1500mtorr。
4.根据权利要求1-3任一项所述的太阳能电池片的背面PECVD法,其特征在于,步骤(2)所述预处理包括:
在450~600℃下,压力设置为1000~2000mtorr,通入流量为2000~4000sccm的N2O,时间为20~40s。
5.根据权利要求1-4任一项所述的太阳能电池片的背面PECVD法,其特征在于,步骤(3)所述镀膜处理包括以下步骤:
(I)抽真空和沉积背钝化膜:先抽真空,时间为20~30s,然后沉积氧化铝钝化膜或沉积氮氧化硅钝化膜;
(II)抽真空和沉积氮化硅膜:先抽真空,时间为20~30s,然后通入氮气6000~8000sccm,硅烷600~1200sccm,设置功率为6000~12000w,无效脉冲为30~60,有效脉冲为2~4,时间为300~600s,压力为1500~3000mtorr;
(III)抽真空和沉积氧化硅膜:先抽真空,时间为20~30s,然后通入笑气3000~6000sccm,硅烷300~600sccm,设置功率为3000~5000w,无效脉冲为30~60,有效脉冲为2~4,时间为100~200s,压力为1500~2000mtorr;
优选地,步骤(I)中沉积氧化铝钝化膜时,通入气体为氮气、笑气和三甲基铝;
优选地,步骤(I)沉积氮氧化膜时,通入气体为硅烷、氨气和笑气。
6.根据权利要求1-5任一项所述的太阳能电池片的背面PECVD法,其特征在于,步骤(3)所述镀膜处理结束后,依次进行抽真空、充氮气和取舟的操作;
优选地,步骤(3)所述镀膜处理结束后,抽真空的时间为20~30s;
优选地,步骤(3)所述镀膜处理结束后,充氮气过程中,氮气的通入流量为2000~5000sccm。
7.根据权利要求1-6任一项所述的太阳能电池片的背面PECVD法,其特征在于,步骤(4)所述氮气清洗中,氮气的通入流量为20000~100000sccm;
优选地,步骤(4)所述氮气清洗中,清洗的时间为15~30s。
8.根据权利要求1-7任一项所述的太阳能电池片的背面PECVD法,其特征在于,所述背面PECVD法包括以下步骤:
(1)吹扫循环:插有硅片的石墨舟进舟前,在450~600℃下,循环进行氮气冲洗和一次抽真空操作,循环次数为1~3次,氮气的通入流量20000~100000sccm,冲洗时间为40~60s,依次进行充氮、放舟、升温、二次抽真空和恒压操作;
(2)预处理:在450~600℃下,压力设置为1000~2000mtorr,通入流量为2000~4000sccm的N2O,时间为20~40s;
(3)镀膜处理:依次沉积背钝化膜、氮化硅膜和氧化硅膜;
所述镀膜处理包括:
(I)抽真空和沉积背钝化膜:先抽真空,时间为20~30s,然后沉积氧化铝钝化膜或沉积氮氧化硅钝化膜;
(II)抽真空和沉积氮化硅膜:先抽真空,时间为20~30s,然后通入氮气6000~8000sccm,硅烷600~1200sccm,设置功率为6000~12000w,无效脉冲为30~60,有效脉冲为2~4,时间为300~600s,压力为1500~3000mtorr;
(III)抽真空和沉积氧化硅膜:先抽真空,时间为20~30s,然后通入笑气3000~6000sccm,硅烷300~600sccm,设置功率为3000~5000w,无效脉冲为30~60,有效脉冲为2~4,时间为100~200s,压力为1500~2000mtorr;
所述镀膜处理结束后,依次进行抽真空、充氮气和取舟的操作,得到经过背面PECVD处理的硅片;
(4)氮气清洗:用通入流量为20000~100000sccm的氮气清洗炉管15~30s。
9.一种太阳能电池片,其特征在于,所述太阳能电池片由如权利要求1-8任一项所述的太阳能电池片的背面PECVD法处理后得到。
10.一种太阳能电池,其特征在于,所述太阳能电池包括如权利要求9所述的太阳能电池片。
CN202110760598.4A 2021-07-06 2021-07-06 一种太阳能电池片及其背面pecvd法和应用 Pending CN113481487A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110760598.4A CN113481487A (zh) 2021-07-06 2021-07-06 一种太阳能电池片及其背面pecvd法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110760598.4A CN113481487A (zh) 2021-07-06 2021-07-06 一种太阳能电池片及其背面pecvd法和应用

Publications (1)

Publication Number Publication Date
CN113481487A true CN113481487A (zh) 2021-10-08

Family

ID=77941021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110760598.4A Pending CN113481487A (zh) 2021-07-06 2021-07-06 一种太阳能电池片及其背面pecvd法和应用

Country Status (1)

Country Link
CN (1) CN113481487A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114059037A (zh) * 2021-11-09 2022-02-18 横店集团东磁股份有限公司 一种解决perc电池el中心暗斑的方法、perc电池及其应用
CN114107955A (zh) * 2021-11-18 2022-03-01 横店集团东磁股份有限公司 一种改善二合一设备背面钝化均匀性的石墨舟预处理工艺
CN115148853A (zh) * 2022-07-04 2022-10-04 横店集团东磁股份有限公司 一种管式单面氧化铝镀膜方法、perc电池及光伏组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057975A (zh) * 2016-07-19 2016-10-26 苏州阿特斯阳光电力科技有限公司 一种perc太阳能电池的制备方法
WO2018223314A1 (zh) * 2017-06-07 2018-12-13 浙江爱旭太阳能科技有限公司 管式perc太阳能电池的镀膜设备及镀膜方法
CN109285801A (zh) * 2018-07-04 2019-01-29 横店集团东磁股份有限公司 一种解决双面氧化铝结构perc电池石墨舟污染的方法
CN112820783A (zh) * 2021-02-25 2021-05-18 横店集团东磁股份有限公司 一种氮氧化硅perc电池背钝化结构、其制备方法及包括其的perc电池
CN113025994A (zh) * 2021-03-04 2021-06-25 横店集团东磁股份有限公司 一种炉管清洁方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057975A (zh) * 2016-07-19 2016-10-26 苏州阿特斯阳光电力科技有限公司 一种perc太阳能电池的制备方法
WO2018223314A1 (zh) * 2017-06-07 2018-12-13 浙江爱旭太阳能科技有限公司 管式perc太阳能电池的镀膜设备及镀膜方法
CN109285801A (zh) * 2018-07-04 2019-01-29 横店集团东磁股份有限公司 一种解决双面氧化铝结构perc电池石墨舟污染的方法
CN112820783A (zh) * 2021-02-25 2021-05-18 横店集团东磁股份有限公司 一种氮氧化硅perc电池背钝化结构、其制备方法及包括其的perc电池
CN113025994A (zh) * 2021-03-04 2021-06-25 横店集团东磁股份有限公司 一种炉管清洁方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114059037A (zh) * 2021-11-09 2022-02-18 横店集团东磁股份有限公司 一种解决perc电池el中心暗斑的方法、perc电池及其应用
CN114107955A (zh) * 2021-11-18 2022-03-01 横店集团东磁股份有限公司 一种改善二合一设备背面钝化均匀性的石墨舟预处理工艺
CN114107955B (zh) * 2021-11-18 2022-12-20 横店集团东磁股份有限公司 一种改善二合一设备背面钝化均匀性的石墨舟预处理工艺
CN115148853A (zh) * 2022-07-04 2022-10-04 横店集团东磁股份有限公司 一种管式单面氧化铝镀膜方法、perc电池及光伏组件
CN115148853B (zh) * 2022-07-04 2023-07-28 横店集团东磁股份有限公司 一种管式单面氧化铝镀膜方法、perc电池及光伏组件

Similar Documents

Publication Publication Date Title
CN111524788B (zh) 氧化硅的拓扑选择性膜形成的方法
TWI756350B (zh) 藉由熱ald及peald沉積氧化物膜之方法
CN113481487A (zh) 一种太阳能电池片及其背面pecvd法和应用
US11915923B2 (en) Method to clean SnO2 film from chamber
TWI580810B (zh) 沈積保角氮化硼膜
KR100855597B1 (ko) 육불화황 원격 플라즈마 소스 세정
CN109023311B (zh) 通过脉冲低频射频功率获得高选择性和低应力碳硬膜
US20180102259A1 (en) Cobalt-containing material removal
US20030010354A1 (en) Fluorine process for cleaning semiconductor process chamber
US20100099271A1 (en) Method for improving process control and film conformality of pecvd film
JP4441607B2 (ja) 半導体基板を不動態化する方法
WO2013015559A2 (ko) 그래핀의 원자층 식각 방법
TW201618189A (zh) 矽氧化物之沉積方法
US7939388B2 (en) Plasma doping method and plasma doping apparatus
TW201546314A (zh) 用以降低金屬氧化物與金屬氮化物膜中的表面粗糙度之射頻循環清洗
TW201701354A (zh) 保形膜之電漿活化沈積
US20090199901A1 (en) Photovoltaic device comprising a sputter deposited passivation layer as well as a method and apparatus for producing such a device
WO2010009598A1 (zh) 透明导电氧化物绒面的制备方法
KR101134909B1 (ko) 실리콘 산화막의 건식 식각 방법
CN114606478B (zh) 一种管式pecvd制备超薄氧化硅层及钝化接触结构的方法、钝化接触结构
CN116093205A (zh) 一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法
CN113930748A (zh) 太阳能电池的制备方法、太阳能电池与光伏组件
CN112018217A (zh) 硅异质结太阳能电池的制备方法及其太阳能电池
Hsieh et al. Improved process stability on an extremely thin amorphous/crystalline silicon interface passivation layer by using predeposition on the chamber wall
TWI733229B (zh) 形成半導體結構之方法及半導體結構

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211008