CN116093205A - 一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法 - Google Patents

一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法 Download PDF

Info

Publication number
CN116093205A
CN116093205A CN202310130113.2A CN202310130113A CN116093205A CN 116093205 A CN116093205 A CN 116093205A CN 202310130113 A CN202310130113 A CN 202310130113A CN 116093205 A CN116093205 A CN 116093205A
Authority
CN
China
Prior art keywords
process chamber
passivation layer
preparation
tunneling
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310130113.2A
Other languages
English (en)
Inventor
马红娜
史金超
张文辉
王平
孟庆超
王子谦
赵学玲
翟金叶
郎芳
潘明翠
王红芳
赵亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yingli Energy China Co Ltd
Yingli Energy Development Co Ltd
Original Assignee
Yingli Energy China Co Ltd
Yingli Energy Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yingli Energy China Co Ltd, Yingli Energy Development Co Ltd filed Critical Yingli Energy China Co Ltd
Priority to CN202310130113.2A priority Critical patent/CN116093205A/zh
Publication of CN116093205A publication Critical patent/CN116093205A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及太阳能电池制造技术领域,具体公开一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法。所述方法包括如下步骤:S1、提供硅衬底,将所述硅衬底置于工艺腔室内;S2、向所述工艺腔室内通入第一氧化气体,通过PECVD在硅衬底表面制得隧穿氧化层;S3、向所述工艺腔室内通入硅烷,在所述隧穿氧化层上沉积非晶硅层,制得隧穿氧化钝化层;S4、向所述工艺腔室内依次通入第二氧化气体和含氟气体,降温,完成隧穿氧化钝化层的制备。本发明创造性地将石墨舟清洗步骤与镀膜工艺结合,通过严格控制气体流量,有效避免陶瓷管沉积多晶硅后石墨片正负极提前导通的情况发生,提高了石墨舟的使用稳定性,同时大大缩短了工艺流程时间。

Description

一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法
技术领域
本发明涉及太阳能电池制造技术领域,尤其涉及一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法。
背景技术
石墨舟为PECVD工艺沉积薄膜时所用的工装载具,其结构中有很多具有一定间隔、由绝缘的陶瓷管连接起来的石墨片。由于石墨具有良好的导电和导热性能,在石墨片间通交流电压可使两个相邻石墨片形成正负极,当存在一定的气压和气体时,两个石墨片之间就会发生辉光放电,分解工艺气体,进而形成薄膜沉积在硅片表面。在镀膜时,石墨舟表面也会沉积反应产生的薄膜,影响了石墨舟正常使用时和电池片的导电性,镀膜色差较严重,镀膜返工率较高,故需要对石墨舟进行清洗,去除表面沉积的各种副产品薄膜。
目前为解决此类问题,大多数企业采用石墨舟湿法清洗工艺,即在TOPCon电池的制备过程中,当石墨舟运行一定次数后,将石墨舟取出,使用HF溶液泡洗,然后用去离子水漂洗,最后烘干,整个石墨舟清洗过程约为24小时左右。但在制备隧穿氧化钝化层的过程中,发明人发现,仅采用这种达到预设次数后再清洗石墨舟的方式并不能保证工艺的顺利进行,仍会有镀膜质量不佳甚至石墨舟内装载的硅片全部报废的情况发生,严重制约了产能及效益。
发明内容
鉴于此,本发明提供一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法,创造性地将石墨舟清洗步骤与镀膜工艺结合,有效避免陶瓷管沉积多晶硅后石墨片正负极提前导通的情况发生,提高了石墨舟的使用稳定性,保证镀膜质量和电池成品率,同时大大缩短工艺流程时间。
为达到上述发明目的,本发明实施例采用了如下的技术方案:
第一方面,本发明提供了一种隧穿氧化钝化层的制备方法,包括如下步骤:
S1、提供硅衬底,将所述硅衬底置于工艺腔室内;
S2、向所述工艺腔室内通入第一氧化气体,通过PECVD在硅衬底表面制得隧穿氧化层;
S3、向所述工艺腔室内通入硅烷,在所述隧穿氧化层上沉积非晶硅层,制得隧穿氧化钝化层;
S4、向所述工艺腔室内依次通入第二氧化气体和含氟气体,降温,完成隧穿氧化钝化层的制备;其中,所述氧化气体的流量为600sccm~1200sccm,所述含氟气体的流量为500sccm~1000sccm。
在实际生产中,会设定石墨舟清洗频次,即当石墨舟达到使用次数时,再取出石墨舟进行清洗。但是发明人偶然发现,在制备TOPCon电池隧穿氧化钝化层的过程中,辉光放电形成的等离子体会有少量扩散到石墨舟的陶瓷管上,使得陶瓷管上也会沉积能够导电的非晶硅,随着工艺运行次数增加,非晶硅层越来越厚,导致陶瓷管的绝缘性越来越差,从而使两个极性不同的石墨片导通,无法在两个极性不同的石墨片之间形成相应的工作电场,进而无法对反应气体进行电离,影响硅片表面复合膜的生长。而且一个石墨舟具有多个陶瓷管,每个陶瓷管的非晶硅沉积厚度不一致,也就导致每个陶瓷管的绝缘性能情况不一致,因此,可能会出现在未达到石墨舟清洗次数时,部分陶瓷管就已经导通,导致镀膜不均匀或工艺无法正常运行的情况,甚至使石墨舟内装载的硅片全部报废,同时还会降低石墨舟的使用寿命,增加了清洗成本。
基于此,发明人了进行深入研究,摒弃了现有技术中需要消耗大量时间单独对石墨舟进行清洗的方式,创造性地将石墨舟清洗步骤与镀膜工艺结合,在制得隧穿氧化钝化层后先不取出制品,而是直接通入氧化气体,将陶瓷管表面附着的非晶硅氧化为不导电的二氧化硅,再通入含氟气体形成等离子体,对二氧化硅进行刻蚀,达到彻底清除陶瓷管上沉积薄膜的目的;同时,本发明通过严格控制氧化气体与含氟气体的流量,保证陶瓷管上沉积的非晶硅层能够充分清除的同时,尽可能减少甚至杜绝对硅片上的氧化钝化层造成影响。本发明提供的隧穿氧化钝化层的制备方法,在镀膜时即可将石墨舟清洗,无需进行拆卸和运输等操作,大大缩短了整个工艺流程时间,降低了成本,且能够提高石墨舟的使用稳定性,避免陶瓷管沉积多晶硅后石墨片正负极提前导通的情况发生,有效延长石墨舟的使用寿命,保证镀膜质量和电池成品率,进而提高企业的产能及效益。
可选的,所述第一氧化气体为氧气、一氧化二氮、臭氧或携带有纯水蒸气的氮气。
可选的,所述第二氧化气体为氧气、一氧化二氮、臭氧或携带有纯水蒸气的氮气。
可选的,所述含氟气体为氟化氢或氟化硫。
可选的,步骤S1中,将所述硅衬底置于工艺腔室后,进行抽真空,并升温至350℃~550℃。
可选的,步骤S4的具体过程为:在第一微波条件下向工艺腔室内通入氧化气体80s~150s,然后进行抽真空、氮气吹扫;吹扫完成后,在第二微波条件下向工艺腔室内通入含氟气体80s~150s。
可选的,步骤S4中,所述第一微波条件为:射频功率为12kW~16kW,压强为170Pa~210Pa,温度350℃~550℃。优选的射频功率、压强和温度,能够彻底清除陶瓷管上沉积的非晶硅层,改善石墨舟导电的均匀性,提高石墨舟的使用稳定性,保证电池良率。
可选的,步骤S4中,所述第二微波条件为:射频功率为8kW~12kW,压强为210Pa~280Pa,温度350℃~550℃。优选的射频功率、压强和温度,能够驱动等离子体产生垂直石墨舟片方向的轰击效果,加快反应速率,使蚀刻更加均匀、彻底,从而提高清洁质量;同时,还能够精确控制刻蚀厚度,避免破坏制得的隧穿氧化钝化层,保证隧穿氧化钝化层的均匀性及钝化效果。
第二方面,本发明还提供了一种TOPCon电池的制备方法,包括上述隧穿氧化钝化层的制备方法。
第三方面,本发明还提供了一种TOPCon电池,由上述TOPCon电池的制备方法制备得到。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
本发明实施例提供一种隧穿氧化钝化层的制备方法,包括如下步骤:
S1、将装载硅片的石墨舟置于PECVD设备的工艺腔室内,进行抽真空处理,并升温至400℃,然后使用氮气吹扫,吹扫完成后,进行抽真空处理;
S2、在工艺腔室内通入氧气,控制气体流量为100sccm,时长为70s,在硅片上沉积氧化硅层,制得隧穿氧化层;
S3、在工艺腔室内通入硅烷,并开启微波,控制气体流量为300sccm,时长为120s,在隧穿氧化层上沉积多晶硅层,制得隧穿氧化钝化层,镀膜完成后,对工艺腔室内进行抽真空处理,然后使用氮气吹扫,吹扫完成后,再次进行抽真空处理;
S4、在工艺腔室内通入氧气120s,并开启微波,控制温度为450℃,气体流量为900sccm,射频功率为14kW,压强为190Pa,然后对工艺腔室内进行抽真空处理,接着使用氮气吹扫,吹扫完成后,再次进行抽真空处理;
S5、在工艺腔室内通入氟化氢气体120s,并开启微波,控制温度为450℃,气体流量为800sccm,射频功率为10kW,压强为250Pa,然后依次进行抽真空、氮气吹扫和抽真空处理,出舟。
实施例2
本发明实施例提供一种隧穿氧化钝化层的制备方法,包括如下步骤:
S1、将装载硅片的石墨舟置于PECVD设备的工艺腔室内,进行抽真空处理,并升温至350℃,然后使用氮气吹扫,吹扫完成后,进行抽真空处理;
S2、在工艺腔室内通入一氧化二氮,控制气体流量为100sccm,时长为70s,在硅片上沉积氧化硅层,制得隧穿氧化层;
S3、在工艺腔室内通入硅烷,并开启微波,控制气体流量为300sccm,时长为120s,在隧穿氧化层上沉积多晶硅层,制得隧穿氧化钝化层,镀膜完成后,对工艺腔室内进行抽真空处理,然后使用氮气吹扫,吹扫完成后,再次进行抽真空处理;
S4、在工艺腔室内通入臭氧80s,并开启微波,控制温度为350℃,气体流量为600sccm,射频功率为12kW,压强为170Pa,然后对工艺腔室内进行抽真空处理,接着使用氮气吹扫,吹扫完成后,再次进行抽真空处理;
S5、在工艺腔室内通入氟化氢气体85s,并开启微波,控制温度为550℃,气体流量为500sccm,射频功率为8kW,压强为210Pa,然后依次进行抽真空、氮气吹扫和抽真空处理,出舟。
实施例3
本发明实施例提供一种隧穿氧化钝化层的制备方法,包括如下步骤:
S1、将装载硅片的石墨舟置于PECVD设备的工艺腔室内,进行抽真空处理,并升温至550℃,然后使用氮气吹扫,吹扫完成后,进行抽真空处理;
S2、在工艺腔室内通入携带有纯水蒸气的氮气,控制气体流量为100sccm,时长为120s,在硅片上沉积氧化硅层,制得隧穿氧化层;
S3、在工艺腔室内通入硅烷,并开启微波,控制气体流量为300sccm,时长为120s,在隧穿氧化层上沉积多晶硅层,制得隧穿氧化钝化层,镀膜完成后,对工艺腔室内进行抽真空处理,然后使用氮气吹扫,吹扫完成后,再次进行抽真空处理;
S4、在工艺腔室内通入氧气150s,并开启微波,控制温度为550℃,气体流量为1200sccm,射频功率为16kW,压强为210Pa,然后对工艺腔室内进行抽真空处理,然后使用氮气吹扫,吹扫完成后,再次进行抽真空处理;
S5、在工艺腔室内通入氟化氢气体或氟化硫气体150s,并开启微波,控制温度为350℃,气体流量为1000sccm,射频功率为12kW,压强为280Pa,然后依次进行抽真空、氮气吹扫和抽真空处理,出舟。
实施例4
本发明实施例提供一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法,与实施例1的区别在于:步骤S4中,射频功率为10kW。
实施例5
本发明实施例提供一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法,与实施例1的区别在于:步骤S5中,射频功率为15kW
实施例6
本发明实施例提供一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法,与实施例1的区别在于:步骤S5中,压强为180Pa。
实施例7
本发明实施例提供一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法,与实施例1的区别在于:步骤S5中,压强为300Pa。
对比例1
本发明对比例提供一种隧穿氧化钝化层的制备方法,与实施例1的区别在于:在制得隧穿钝化层后未进行原位清洗步骤,采用传统湿法清洗方案,步骤如下:
在制备TOPCon电池过程中,当石墨舟使用60次后,将石墨舟放入以氢氟酸:纯水=1:5的配比溶液中浸泡清洗6~8小时,然后用纯水清洗6~8小时,于150℃烘干6~8小时。
对比例2
本发明对比例提供一种隧穿氧化钝化层的制备方法,与实施例1的区别在于:步骤S4中,氧气流量为1500sccm。
对比例3
本发明对比例提供一种隧穿氧化钝化层的制备方法,与实施例1的区别在于:步骤S4中,氧气流量为400sccm。
对比例4
本发明对比例提供一种隧穿氧化钝化层的制备方法,与实施例1的区别在于:步骤S5中,氟化氢流量为1300sccm。
应用本发明实施例1-7及对比例1-4提供的隧穿氧化钝化层的制备方法,按照常规工艺制备TOPCon电池,记录周期内(石墨舟使用60次为一周期)工艺故障次数、周期内产生不合格品比例及合格电池效率。
其中,符合IEC 60904-1:2020光伏电池电流电压特性测试标准,且电池效率>17.9%为合格品。
电池效率采用IV测试仪在标准测试条件下进行测试,标准测试条件为大气质量AM1.5,温度25℃,光强1000W/m2
检测数据如下表所示:
表一工艺稳定性测试数据
Figure BDA0004083489710000071
Figure BDA0004083489710000081
表二电池效率数据
实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7
电池效率 25.18% 25.16% 25.16% 25.14% 25.10% 25.13% 25.09%
对比例1 对比例2 对比例3 对比例4
电池效率 25.13% 24.78% 25.12% 24.82%  
从表1-2数据可以看出,对比例1周期内产生不合格品的比例数量较多,会造成17%的不合格品,且对比例1需要额外的清洗设备、人工和化学品,清洗所需时间较长,综合来看,传统湿法清洗方案的成本远高于本发明提供的方法中石墨舟的清洗成本。除去不合格品的影响,将本发明实施例和对比例制得合格的电池效率进行比较,实施例1-3与对比例1的电池效率相当甚至更好,而实施例4中射频功率较低,实施例6中压强较低,清洗效果一般,会影响石墨舟的使用稳定性,产生一定比例的不合格品;实施例5中射频功率较高,实施例7中压强较高,会影响硅片表面的隧穿钝化层,进而影响电池性能;对比例2及对比例4中气体流量较大,会影响硅片表面的隧穿钝化层,进而影响电池性能;对比例3中氧气流量较小,陶瓷管上的非晶硅转化不充分,降低了石墨舟的使用稳定性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种隧穿氧化钝化层的制备方法,其特征在于,包括如下步骤:
S1、提供硅衬底,将所述硅衬底置于工艺腔室内;
S2、向所述工艺腔室内通入第一氧化气体,通过PECVD在硅衬底表面制得隧穿氧化层;
S3、向所述工艺腔室内通入硅烷,在所述隧穿氧化层上沉积非晶硅层,制得隧穿氧化钝化层;
S4、向所述工艺腔室内依次通入第二氧化气体和含氟气体,降温,完成隧穿氧化钝化层的制备;其中,所述氧化气体的流量为600sccm~1200sccm,所述含氟气体的流量为500sccm~1000sccm。
2.如权利要求1所述的隧穿氧化钝化层的制备方法,其特征在于,所述第一氧化气体为氧气、一氧化二氮、臭氧或携带有纯水蒸气的氮气。
3.如权利要求1所述的隧穿氧化钝化层的制备方法,其特征在于,所述第二氧化气体为氧气、一氧化二氮、臭氧或携带有纯水蒸气的氮气。
4.如权利要求1所述的隧穿氧化钝化层的制备方法,其特征在于,所述含氟气体为氟化氢或氟化硫。
5.如权利要求1所述的隧穿氧化钝化层的制备方法,其特征在于,步骤S1中,将所述硅衬底置于工艺腔室后,进行抽真空,并升温至350℃~550℃。
6.如权利要求1所述的隧穿氧化钝化层的制备方法,其特征在于,步骤S4的具体过程为:在第一微波条件下向工艺腔室内通入氧化气体80s~150s,然后进行抽真空、氮气吹扫;吹扫完成后,在第二微波条件下向工艺腔室内通入含氟气体80s~150s。
7.如权利要求6所述的隧穿氧化钝化层的制备方法,其特征在于,步骤S4中,所述第一微波条件为:射频功率为12kW~16kW,压强为170Pa~210Pa,温度350℃~550℃。
8.如权利要求6所述的隧穿氧化钝化层的制备方法,其特征在于,步骤S4中,所述第二微波条件为:射频功率为8kW~12kW,压强为210Pa~280Pa,温度350℃~550℃。
9.一种TOPCon电池的制备方法,其特征在于,包括权利要求1~8任一项所述的隧穿氧化钝化层的制备方法。
10.一种TOPCon电池,其特征在于,由权利要求9所述的TOPCon电池的制备方法制备得到。
CN202310130113.2A 2023-02-17 2023-02-17 一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法 Pending CN116093205A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310130113.2A CN116093205A (zh) 2023-02-17 2023-02-17 一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310130113.2A CN116093205A (zh) 2023-02-17 2023-02-17 一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法

Publications (1)

Publication Number Publication Date
CN116093205A true CN116093205A (zh) 2023-05-09

Family

ID=86210141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310130113.2A Pending CN116093205A (zh) 2023-02-17 2023-02-17 一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法

Country Status (1)

Country Link
CN (1) CN116093205A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118198207A (zh) * 2024-05-20 2024-06-14 和光同程光伏科技(宜宾)有限公司 基于poly叠层优化的TOPCon电池制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118198207A (zh) * 2024-05-20 2024-06-14 和光同程光伏科技(宜宾)有限公司 基于poly叠层优化的TOPCon电池制备方法

Similar Documents

Publication Publication Date Title
CN109183000B (zh) 石墨舟饱和工艺
US20090199901A1 (en) Photovoltaic device comprising a sputter deposited passivation layer as well as a method and apparatus for producing such a device
CN116682894B (zh) 提升TOPCon电池ALD钝化膜批间均匀性的方法及应用
CN116093205A (zh) 一种隧穿氧化钝化层的制备方法、TOPCOn电池及制备方法
CN115020542B (zh) 一种去除ald绕镀氧化铝的pecvd镀膜方法
CN112159973A (zh) 一种制备Topcon电池钝化膜层的装置及其工艺流程
CN113481487A (zh) 一种太阳能电池片及其背面pecvd法和应用
CN113097342A (zh) 一种太阳能电池、其AlOx镀膜方法、电池背钝化结构及方法
WO2011156560A1 (en) Solar cell silicon wafer process
JP5520834B2 (ja) パッシベーション膜の成膜方法、及び太陽電池素子の製造方法
CN109742185B (zh) 一种改善晶硅双面电池小白点的变温变压热氧化工艺
EP2088630A1 (en) Photovoltaic device comprising a sputter deposited passivation layer as well as method and apparatus for producing such a device
CN114606478B (zh) 一种管式pecvd制备超薄氧化硅层及钝化接触结构的方法、钝化接触结构
JP2006344883A (ja) 太陽電池の製造方法
CN103066150A (zh) 一次扩散法制备选择性发射极电池的方法
JP2005154795A (ja) 薄膜の製造方法および太陽電池
CN113930748B (zh) 太阳能电池的制备方法、太阳能电池与光伏组件
CN115312620A (zh) 一种TOPCon电池的制备方法
CN113066896A (zh) 一种太阳能电池发射结制备方法
CN115148853B (zh) 一种管式单面氧化铝镀膜方法、perc电池及光伏组件
KR20090132541A (ko) 기판형 태양전지의 제조방법
CN113629161B (zh) 间歇等离子体氧化方法和装置、太阳电池的制备方法
CN112908846A (zh) 形成半导体结构的方法及半导体结构
CN118248777A (zh) 一种钝化接触结构叠层膜、其制备方法及TOPCon电池
CN112635619A (zh) 晶硅太阳能电池多层膜的等离子体处理方法及太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination