CN110952073B - 一种薄层SiO2钝化膜的制备方法及制备的电池 - Google Patents

一种薄层SiO2钝化膜的制备方法及制备的电池 Download PDF

Info

Publication number
CN110952073B
CN110952073B CN201911067522.2A CN201911067522A CN110952073B CN 110952073 B CN110952073 B CN 110952073B CN 201911067522 A CN201911067522 A CN 201911067522A CN 110952073 B CN110952073 B CN 110952073B
Authority
CN
China
Prior art keywords
sih
film
sio
passivation film
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911067522.2A
Other languages
English (en)
Other versions
CN110952073A (zh
Inventor
上官泉元
闫路
刘宁杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jietai Photoelectric Technology Co ltd
Original Assignee
Jiangsu Jietai Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jietai Photoelectric Technology Co ltd filed Critical Jiangsu Jietai Photoelectric Technology Co ltd
Priority to CN201911067522.2A priority Critical patent/CN110952073B/zh
Publication of CN110952073A publication Critical patent/CN110952073A/zh
Application granted granted Critical
Publication of CN110952073B publication Critical patent/CN110952073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开了一种薄层SiO2钝化膜的制备方法,具体包括如下步骤:1)首先提供一种链式连续镀膜的PECVD设备;2)通过连续输送机构将载有硅片的载板连续输送至链式PECVD设备工艺腔体内实现镀膜;3)在工艺腔体内,通过等离子源的电极板出气孔出02,同时从等离子源的电极板侧面的分气块出SiH4,SiH4和O2两种气体通过不同管路进入到工艺腔体的不同区域流出,在1‑20Pa的真空下相遇混合并在连续输送的硅片表面形成SiO2钝化膜。该发明只需使用两种特气SiH4和O2作为反应气体,并使用分离式进气方式,具有工艺温度低、安全可靠且环保等优点,且动态链式连续镀膜生长,带速高、产量大,均匀性高度可控。

Description

一种薄层SiO2钝化膜的制备方法及制备的电池
技术领域
本发明涉及高效太阳能电池制备技术领域,特别涉及一种Topcon、 POLO、IBC、PERC等电池中SiO2钝化膜的制备方法以及制备的Topcon、POLO、 IBC、PERC等电池。
背景技术
近年来,随着晶硅太阳能电池的研究和发展,理论和实践都证明表面钝化是电池效率提升的必经之路,氧化铝薄层钝化在PERC电池上获得广泛推广。但是用掺杂多晶硅和氧化硅叠层钝化效果更佳,是下一代量产技术发展的前景,这是由于氧化硅在晶体硅表面的起到化学钝化作用,而掺杂多晶硅有很好的场钝化效应。但由于氧化硅是绝缘的,它会阻止内部载流子导入掺杂多晶硅电荷收集层。研究发现,如果氧化硅层减薄到2nm以下时,电荷可以顺利穿过氧化层,简称“隧道效应”,而作为钝化层的氧化硅层在1-2nm厚度时就可以起到钝化效果。利用这个叠层设计的一种典型的新电池是Topcon电池,它是在N型硅基的背面形成1.6nm左右的氧化层,再加上150nm左右的磷掺杂的多晶硅层,这种电池的理论电池转换效率可以达到29%左右。但是制备纳米级极薄氧化硅层的精确难以控制,同时均匀性难以掌控,所以如何快速精确的制备均匀性好的纳米级别SiO2薄层是业界普遍难题。
现有技术方案及不足:
1)硝酸湿法氧化:通过高温浓硝酸氧化硅片4分钟,在表面形成极薄的纳米氧化硅薄层,厚度约1.5nm,但是硝酸氧化会造成含N物排放而造成环境污染,不利于环保;
2)热氧化:一般是采用管式设备,加热到570℃左右高温,需要 30-60min左右才能生长2nm左右厚度的SiO2薄膜,具有温度高能耗大、工艺时间长、成本高等缺点;
3)PECVD生长:用等离子激发的化学沉积法(PECVD)通常可以获得很快的反应速度,而且厚度精确可调。市场上现有的管式设备,把很多硅片排放在一个炉管中到达高产能目的。但是由于SiH4遇到O2会剧烈燃烧而生成SiO2粉尘颗粒,从而不能在硅片上生长出极薄的SiO2薄膜,也容易污染腔体,所以管式设备只能使用N2O和SiH4作为反应气体,结果生成的是 SiON而不是所需要的SiO2,由于其生长的SiO2薄膜含有较高的N元素,是 SiON薄膜而不是纯SiO2薄膜,所以性能无法达到要求。同时,N2O成本也很高。
发明内容
为解决上述技术问题,本发明提供了一种薄层SiO2钝化膜的制备方法,具体包括如下步骤:
1)首先提供一种链式连续镀膜的等离子激发的沉积镀膜设备;
2)通过连续输送机构将载有硅片的载板连续输送至链式PECVD设备工艺腔体内实现镀膜;
3)在工艺腔体内,SiH4和O2分别从不同区域出气,通过等离子源的电极板出气孔出02,同时从等离子源的电极板侧面的分气块出SiH4,SiH4和 O2两种气体通过不同管路进入到工艺腔体的不同区域流出,在1-20Pa的真空下相遇混合并在连续输送的硅片表面形成SiO2钝化膜;其中,O2直接进入到腔体后在射频能量下由等离子体优先将O2分解成活性氧离子,活性氧离子往下输运到硅片表面时与从分气块出来的SiH4相遇,这时活性氧离子迅速将SiH4氧化并在硅片表面生成Si02薄膜,反应方程式为:SiH4+2O2→ SiO2+2H2O。
进一步的,硅片在输送进入链式PECVD设备工艺腔体内之前进行预热,且在工艺腔内设置加热板对硅片在线连续加热,使硅片在经过工艺腔体的过程中保持温度在200-400℃之间,以进一步提高SiO2钝化膜的膜层质量。
本发明还提供了一种基于薄层SiO2钝化膜的制备方法制备而成的太阳能电池,太阳能电池为Topcon、POLO、IBC、PERC电池中的任一种。
通过上述技术方案,本发明具有如下有益效果:
①本工艺只需使用两种特气SiH4和O2作为反应气体,并使用分离式进气方式,线性离子源出O2,线性分气块贴近硅片表面出SiH4,因此,本工艺与湿法比不会生成含N排放物,与热氧化相比工艺温度低,与PECVD需要使用N2O比不含N元素,具有工艺温度低,安全可靠且环保等优点;
②采用动态链式连续镀膜生长,带速高、产量大,均匀性高度可控。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本发明实施例所公开的链式PECVD设备工艺腔体结构示意图。
图中数字表示:
10.工艺腔体 20.等离子源 30.分气块 40.硅片
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明首先提供了一种Topcon、POLO、IBC、PERC等电池中薄层SiO2钝化膜的制备方法,具体包括如下步骤:
1)首先提供一种链式连续镀膜的等离子激发的沉积镀膜设备;
2)通过连续输送机构将载有硅片40的载板连续输送至链式PECVD设备的工艺腔体10(如图1所示)内实现镀膜;
3)在工艺腔体10内,SiH4和O2分别从不同区域出气,通过等离子源 20的电极板出气孔出02,同时从等离子源20的电极板侧面的分气块30出 SiH4,SiH4和O2两种气体通过不同管路进入到工艺腔体10的不同区域流出,在1-20Pa的真空下相遇混合并在连续输送的硅片40表面形成SiO2钝化膜;其中,O2直接进入到腔体后在射频能量下由等离子体优先将O2分解成活性氧离子,活性氧离子往下输运到硅片40表面时与从分气块30出来的SiH4相遇,这时活性氧离子迅速将SiH4氧化并在硅片40表面生成Si02薄膜,反应方程式为:SiH4+2O2→SiO2+2H2O。
其中,硅片40在输送进入链式PECVD设备工艺腔体10内之前进行预热,且在工艺腔内设置加热板对硅片40在线连续加热,使硅片40在经过工艺腔体10的过程中保持温度在200-400℃之间,以进一步提高SiO2钝化膜的膜层质量。
基于上述工艺步骤,五组实施例的参数如下表:
Figure BDA0002259846300000041
由上表可以看出,在特气SiH4流量及离子源数量固定的情况下,O2的流量以及射频功率、工艺带速、压强均对生成的SiO2薄膜的厚度具有较大影响,O2的流量越大整体上会获得较厚的SiO2薄膜,而射频功率增大会增加活性氧离子的生成而更有利于SiO2薄膜的生成,同样,工艺带速越慢越有利于SiO2薄膜在硅片40表面的生长,因此,需要根据实际需要控制合理的O2的流量、射频功率、工艺带速及压强以获得合理的SiO2薄膜厚度。
此外,本发明还基于上述实施例1-5所述的一种太阳能电池一种薄层 SiO2钝化膜的制备方法进行制备Topcon、POLO、IBC、PERC电池中的任一种太阳能电池,从而大幅度提高Topcon、POLO、IBC、PERC等电池的电池转换效率。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对上述实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (4)

1.一种薄层SiO2钝化膜的制备方法,其特征在于,具体包括如下步骤:
1)首先提供一种链式连续镀膜的等离子激发的沉积镀膜设备;
2)通过连续输送机构将载有硅片(40)的载板连续输送至链式PECVD设备的工艺腔体(10)内实现镀膜;
3)在工艺腔体(10)内,SiH4和O2分别从不同区域出气,通过等离子源(20)的电极板出气孔出02,同时从等离子源(20)的电极板侧面的分气块(30)出SiH4,SiH4和O2两种气体通过不同管路进入到工艺腔体(10)的不同区域流出,在1-20Pa的真空下相遇混合并在连续输送的硅片(40)表面形成SiO2钝化膜;其中,O2直接进入到腔体后在射频能量下由等离子体优先将O2分解成活性氧离子,活性氧离子往下输运到硅片(40)表面时与从分气块(30)出来的SiH4相遇,这时活性氧离子迅速将SiH4氧化并在硅片(40)表面生成Si02薄膜,反应方程式为:SiH4+2O2→SiO2+2H2O。
2.根据权利要求1所述的一种薄层SiO2钝化膜的制备方法,其特征在于,硅片(40)在输送进入链式PECVD设备工艺腔体(10)内之前进行预热,且在工艺腔内设置加热板对硅片(40)在线连续加热,使硅片(40)在经过工艺腔体(10)的过程中保持温度在200-400℃之间,以进一步提高SiO2钝化膜的膜层质量。
3.一种太阳能电池,其特征在于,基于权利要求1或2所述的一种薄层SiO2钝化膜的制备方法制备而成。
4.根据权利要求3所述的一种太阳能电池,其特征在于,为Topcon、POLO、IBC、PERC电池中的任一种。
CN201911067522.2A 2019-11-04 2019-11-04 一种薄层SiO2钝化膜的制备方法及制备的电池 Active CN110952073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911067522.2A CN110952073B (zh) 2019-11-04 2019-11-04 一种薄层SiO2钝化膜的制备方法及制备的电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911067522.2A CN110952073B (zh) 2019-11-04 2019-11-04 一种薄层SiO2钝化膜的制备方法及制备的电池

Publications (2)

Publication Number Publication Date
CN110952073A CN110952073A (zh) 2020-04-03
CN110952073B true CN110952073B (zh) 2022-02-11

Family

ID=69976021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911067522.2A Active CN110952073B (zh) 2019-11-04 2019-11-04 一种薄层SiO2钝化膜的制备方法及制备的电池

Country Status (1)

Country Link
CN (1) CN110952073B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112359348A (zh) * 2020-10-22 2021-02-12 江苏杰太光电技术有限公司 一种沉积掺杂非晶硅薄膜无绕镀的方法和装置
CN112481606A (zh) * 2020-11-10 2021-03-12 江苏杰太光电技术有限公司 一种pecvd沉积太阳能电池掺杂层的气源和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104867944A (zh) * 2015-05-08 2015-08-26 深圳市华星光电技术有限公司 阵列基板结构及其制作方法
CN105161552A (zh) * 2015-08-18 2015-12-16 广东爱康太阳能科技有限公司 一种单面抛光n型太阳能电池及其制备方法
CN106920849A (zh) * 2017-04-21 2017-07-04 吉林大学 一种散热性好的Ga2O3基金属氧化物半导体场效应晶体管及其制备方法
CN107623052A (zh) * 2017-09-01 2018-01-23 常州比太科技有限公司 一种太阳能电池片钝化用Al2O3镀膜系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104867944A (zh) * 2015-05-08 2015-08-26 深圳市华星光电技术有限公司 阵列基板结构及其制作方法
CN105161552A (zh) * 2015-08-18 2015-12-16 广东爱康太阳能科技有限公司 一种单面抛光n型太阳能电池及其制备方法
CN106920849A (zh) * 2017-04-21 2017-07-04 吉林大学 一种散热性好的Ga2O3基金属氧化物半导体场效应晶体管及其制备方法
CN107623052A (zh) * 2017-09-01 2018-01-23 常州比太科技有限公司 一种太阳能电池片钝化用Al2O3镀膜系统和方法

Also Published As

Publication number Publication date
CN110952073A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
CN110164759B (zh) 一种区域性分层沉积扩散工艺
CN111192935B (zh) 一种管式perc太阳能电池背钝化结构及其制备方法
TWI445197B (zh) 光電轉換元件製造裝置及方法與光電轉換元件
CN110952073B (zh) 一种薄层SiO2钝化膜的制备方法及制备的电池
CN102224599A (zh) 用于太阳能电池应用的硅表面的干法清洁
CN102254987A (zh) 太阳能电池及其制造方法
CN111952153B (zh) 隧穿氧化层的制备方法、太阳能电池及其制备方法
CN110416363B (zh) 一种匹配碱抛选择性发射极的正面钝化工艺
CN112271235A (zh) 一种TOPCon太阳能电池氧化硅层的制备方法和系统
CN102864439A (zh) 一种制备具有抗pid效应的减反射膜的方法
CN104882516A (zh) 一种高温低压的硅片扩散方法
CN109950363A (zh) 一种perc太阳能电池的背面钝化工艺
CN113675295B (zh) PECVD制备硅片复合膜的方法和TOPCon电池的制备方法
CN113328011B (zh) 一种钝化接触晶硅太阳电池制造装置及方法
WO2023184844A1 (zh) 硅基薄膜、太阳电池及其制备方法
CN108470800B (zh) 一种降低pecvd机台tma耗量的方法
JP2014502424A (ja) 半導体層の変換方法
CN102130211B (zh) 一种改善太阳能电池表面扩散的方法
CN108417474B (zh) 晶体硅热氧化工艺、系统及晶体硅太阳能电池热氧化工艺
CN102903785A (zh) 一种采用增氢钝化提高太阳能电池片转换效率的方法
CN113604791A (zh) 一种基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法及应用
CN116682894A (zh) 提升TOPCon电池ALD钝化膜批间均匀性的方法及应用
KR102097758B1 (ko) 태양전지의 제조 방법 및 그 제조 방법에 의해 제조된 태양전지
CN105244412B (zh) 一种n型晶硅电池硼发射极的钝化方法
CN117276055A (zh) 一种n型硅片的硼扩散工艺及n型硅片、太阳电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant